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The Wigner function is shown related to the quantum dielectric function derived from the
quantum Vlasov equation (QVE), with and without a magnetic field, using a standard
method in plasma physics with linear perturbations and a self-consistent mean field
interaction via Poisson’s equation. A finite-limit-of-integration Wigner function, with
oscillatory behavior and negative values for free particles, is proposed. In the classical
regimes, where the problem size is huge compared to the particle wavelength, these limits
go to infinity, and for free particles, the Wigner function becomes a positive delta function
as expected. For the harmonic oscillator potential, there is no distinction between finite
and infinite limits of integration when these are larger than the eigenfunction localization
length.
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1. Introduction

The Weyl–Wigner correspondence associates each quantum mechanical operator

with a function of position and momentum. It is known that the quantum me-

chanical (QM) average of an operator Â can be expressed as a classical average

of the Wigner–Weyl representation of Â with the Wigner Function (WF) playing

the role of the classical phase space distribution.1 The WF is not a classical prob-

ability density function, just a quasi-probability density function since it can be
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negative due of the uncertainty principle (no classically well-defined position and

momentum allowed), but it helps describe a quantum particle in a way that is very

similar to classical mechanics. As a quasi-probability density function, the Wigner

function for B = 0 appears frequently in the literature, from a quantum solution to

plasma physics,2 a single-particle description of transport properties in semiconduc-

tors including quantum interference and intracollisional field effects,3 a description

of mesoscopic systems with nonlinear effects and self-consistency,4 and transport

properties,5 to a kinetic solution for astrophysical collisionless self-gravitating bod-

ies using a modified non-negative probability density function called the Husimi

function.6,7 The quantum nature of the WF has not been enough emphasized; why

it has been given the only treatment of a useful math tool connecting quantum and

classical mechanics is unknown, since the uncertainty principle prevents it from

being a full classical distribution function and its classical limit is singular. In fact,

the WF is the Weyl–Wigner representation of the density matrix. Furthermore, it

can be expressed as the trace of a product of this density matrix and a quantum

phase-space kernel (see Appendix A).

Bertrand and coworkers were closest to associate a physical meaning to the WF

by showing an equation governing its dynamics that reduces to the classical Vlasov

equation when ~ → 0. However the purpose was to develop quantum numerical

methods for describing a classical Vlasov plasma,2 and so their point of view as

stated was “(the WF) is a useful mathematical tool in spite of its poor physical

properties.” It was not clear whether Rammer3 gave more emphasis on the physical

meaning or the mathematical tool aspect of the WF, he stated “the Heisenberg

uncertainty principle excludes the existence of a probability distribution with such

a physical interpretation, but not, however, the introduction of a function with a

formal resemblance to it.” No explicit distinction was found in the paper by Bordone

and co-workers4 regarding quantum transport of electrons in open nanostructures

with the WF formalism.

The wave-particle duality allows one to represent a free electron as a plane wave

where the wavelength depends on the particle’s momentum via the de Broglie’s

formula:

2π

λ
= k =

p

~
. (1.1)

In cold plasma, electrons are almost free, using the plane wave

ψ(x) =
e−ik0x

√
2π

(1.2)

the WF is

fW (x, k) =

∫ ∞

−∞

dse−ikseik0(x− s
2 )e−ik0(x+ s

2 ) = δ(k + k0) , (1.3)

which expresses the uniformly streaming particles at a constant speed. If a harmonic
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oscillator potential is applied, the eigenfunctions are the Hermite functions

ψn(x) =

(
α2

π

)1/4(
1

2nn!

)1/2

e−
α2x2

2 Hn(αx) ,

α ≡
(mw

~

)1/2

(1.4)

and the WF’s are oscillatory Laguerre polynomials (Ref. 1)

f
(n)
W (x, k) =

α√
π

1

2nn!
e−α2x2

∫ ∞

−∞

dse2ikse−α2s2

Hn(α(x + s))Hn(α(x − s))

= (−1)ne−
2H
~ω Ln(4H/~ω) . (1.5)

H ≡ ~
2k2

2m
+

1

2
mw2x2

This is an example of the “poor physical properties” of the WF mentioned in Ref. 2

since it can take on negative values.

In this paper we will derive the quantum linear dielectric functions from a quan-

tum Vlasov equation. This will show how these physically observable quantities are

expressed in terms of the WF. These simple expressions suggest that all physical

information should reside in the WF itself. We are then led to think that the WF’s

negative values are not representatives of poor physical properties but a conse-

quence of the wave nature of the quantum particle. When we deal with dimensions

much larger than the particle’s de Broglie wavelength the particle behavior domi-

nates resulting in a classical regime. This situation can be artificially created with

smoothening/averaging techniques as, for example, used in Ref. 2. When the dimen-

sions are comparable to the de Broglie’s wavelength, the wave behavior is important

and it is expected that the WF present negative values. This dimension/wavelength

relation can be incorporated into the WF via the limits of integration. A plane wave

can be used to represent a free particle moving inside a mesoscopic sample. Now

we are not dealing with a plane wave running from −∞ to +∞ but between the

finite limits of the sample, if finite limits of integration are used in the WF, it shows

oscillatory behavior in momentum around the classical value as shown in Fig. 1.

The sharp contrast between the primary and the secondary peaks increases as the

limits are expanded leading to the classical one-momentum value when the sample

is very large compared to the particle’s wavelength. See Fig. 2 where the limits of

integration have been tripled.

The proposed finite-limit-of-integration WF is

fa
W (x, k) =

1

2π

∫ a

−a

dse−ikseik0(x− s
2 )e−ik0(x+ s

2 ) . (1.6)

For plane waves this looks like

fa
W (x, k) =

1

2π

[
e−i(k+k0)s

−i(k + k0)

]s=a

s=−a

=
sin(k + k0)a

π(k + k0)
. (1.7)
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(a) Modified WF, integrated between −0.5 and 0.5

(b) Modified WF, integrated between −1 and 1

Fig. 1. Modified WF for plane waves: relative magnitude between the primary and secondary
peaks increases as the limit of integration is doubled.

These WF’s show oscillatory behavior versus k, and naturally with negative values

as can be seen in Fig. 3 for k0 = k (a cut for constant x’s from the previous plots).

A three-dimensional plot of the modified WF versus the limit of integration a

and the wave number k shows that the main peak around k = 0 increases linearly

with a (in units of (2π)−1 the WF is 2a when k = 0 for plane waves), with the

tendency of turning into a mere sinusoidal variation away from k = 0. (See Fig. 4.)

This confirms our previous discussion related to Figs. 1 and 2.
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(a) WF for plane waves with limits of integration −30 and 30.

(b) WF for plane waves with limits of integration −90 and 90.

Fig. 2. The modified WF shows oscillatory behavior for plane waves, it turns into the classical
delta function when integration interval is much larger than the de Broglie’s wavelength.

There is a mathematical advantage to the finite-limit-of-integration WF, in the

case of plane waves, since the limit of these functions for a→ ∞ does not rigorously

exist as a function but only as a distribution (see Ref. 8, Eq. (8.112) and discussion

thereafter). That is,

δa(k) ≡ sin ka

πk
(1.8)

has no limit, but it is true that

lim
a→∞

∫ ∞

−∞

dkδa(k + k0)f(k) =

∫ ∞

−∞

dkδ(k + k0)f(k) = f(−k0) (1.9)

where f(k) is any well-behaved function of k. The WF for plane waves is singular

and positive while the modified WF is finite with oscillatory behavior and negative

values.
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Fig. 3. WF versus k for plane waves with a = 30.

Fig. 4. Modified WF (in units of (2π)−1) versus the limit of integration and the wave number.

In the case of the harmonic oscillator eigenfunctions, these are localized in space

(see Fig. 5), and we always deal with finite limits actually that show oscillations;

there is no difference between the finite and infinite-limit-of-integration WF’s. (See

Figs. 6–8.)

In the case of the harmonic oscillator potential, when the eigenfunctions are

localized, the WF is unchanged when the limits of integration are ten times larger.

The WF is not dependent on these limits as discussed.
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Fig. 5. Eigenfunction in an harmonic oscillator potential for n = 3.

Fig. 6. Wigner function using the harmonic oscillator eigenfunction at n = 3; limits of inte-
gration = (−30, 30).

Motivated by the standard derivation of the classical dielectric constant from

the classical Vlasov equation (CVE — the Vlasov equation is a collisionless homo-

geneous kinetic equation governing the behavior of a distribution function) using

linear perturbations and a self-consistent mean field interaction via Poisson’s equa-

tion (see e.g. Ref. 9), we will derive a quantum dielectric function from the quantum

Vlasov equation (QVE), first for B = 0 and then for B 6= 0. Electronic properties

such as conductivity can be easily obtained from the dielectric constant.

The difference between the QVE and the CVE is that the former contains the
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n=3, a=40

-1

-0.5

0

0.5

1

x

-1

-0.5

0

0.5

1

k

-200
-100

0

100

fW

-1

-0.5

0

0.5

1

x

 

Fig. 7. Wigner function using the harmonic oscillator eigenfunction at n = 3; limits of inte-
gration = (−40, 40).
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Fig. 8. Wigner function using the harmonic oscillator eigenfunction at n = 3; limits of inte-
gration = (−4, 4).

Planck constant and a non-local term; it is a quantum kinetic equation that governs

the behavior of the WF. The simultaneous appearance of momentum and position

in the Weyl–Wigner representations is only superficial, and does not necessarily

mean that the calculations involving these functions are classical. In this context,

the derivation of the QVE from the Schrödinger equation (Section 2), and the

derivation of the quantum dielectric function from the QVE (Section 3) are quantum

derivations per se.

When B = 0, except for the expression in term of the WF this dielectric con-

stant is the Lindhard constant [see Ashcroft and Mermin (Ref. 10) Eq. (17.60)

or Madelung (Ref. 11) Eq. (3.58)] which is usually derived from the Schrödinger
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equation (e.g. Ref. 11).

The B 6= 0 quantum dielectric function in term of the magnetic WF is derived

for the first time. The derivation starts with the quantum kinetic equation with a

magnetic field as derived in Section 4. The method is similar to that used in the

derivation of the B = 0 linear quantum dielectric function in Section 3. This result

indicates that:

(i) Since properties such as conductivities are related to the dielectric function and

so to the Wigner function, the physics is contained in the latter. A magnetic

Wigner function shows de Haas–van Alphen oscillations as proved in Ref. 12.

(ii) An explicit manifestation that the structure of the kinetic equation gives rise

to D, not Π (see Appendix B for their definitions). This is related to the choice

of D or Π in the definition of the magnetic Wigner function, and we argue for

D for gauge invariance, see Ref. 13.

The derivation of the B 6= 0 QVE in the symmetric gauge will be presented

for the first time in Section 4. Both the B 6= 0 QVE and the linear quantum

dielectric function reduce to the appropriate limits when B → 0 (see Sections 4

and 5, respectively). We have found related but not similar work in the papers

by Kelly14 and Harris.15 Kelly obtained a dielectric tensor, not dielectric function,

whose components did not present any de Haas–van Alphen oscillations. Harris gave

an expression (2.69) for the dielectric function in terms of “a quantum mechanical

distribution function, which is a Fourier transform of the density matrix. . . It is

similar but not identical to the well-known distribution function of Wigner”, which

differs from ours by an extra summation over the indices of Bessel functions. It is

not clear how this expression would reduce to the Lindhard equation at B = 0.

2. Derivation of the QVE from the SE

This equation was given in, e.g. the paper by Bertrand and co-workers in 1980.2

It is called the quantum Vlasov equation (QVE) since it differs from the classical

Vlasov equation (CVE), a well-known equation in plasma physics, in a non-local

integral in the third and last term that reduces to the classical form when ~ →
0. A same quantum Vlasov equation (QVE) is obtained from the single-particle

Schrödinger equation (SE) (a QVE for a purely single-particle density matrix) or

also by taking the N -particle QVE (obtained from the N -particle SE), integrating

out the variables corresponding to the other N −1 particles, arriving at a quantum

kinetic equation for a single-particle density matrix that involves a two-particle

density matrix (this new term is given in (2.20)), and then ignoring any two-particle

correlation by approximating that two-particle density matrix as a simple product of

two single-particle density matrices. At this point we have a QVE for a one-particle

density matrix obtained by integrating out the variables of the otherN−1 particles,

which is the same as the QVE for a single-particle density matrix. Consequently,

when the correlation between two particles is ignored, the purely single-particle
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density matrix and the single-particle density matrix obtained by integrating out

all variables of the other N−1 particles are the same thing. No distinction is needed

in this case.

In fact, when the correlation between two particles is ignored in a two-particle

density matrix (DM), the single-particle DM constructed from a many-particle

system is the same as a purely single-particle DM. This point has not been clearly

discussed in the literature related to the Wigner function.

The integration over N − 1 variables is a standard procedure in plasma physics

known as the Born–Bogoliubov–Green–Kirkwood–Yvon (BBGKY) hierarchy re-

duction, as mentioned in I.A. The reader is referred to the paper by Bertsch16

or Hillery and co-workers1 for a complete BBGKY hierarchy reduction of the N -

particle quantum kinetic equation. However, the relevant modification in the final

single-particle equation is included in Eq. (2.20).

2.1. Explicit derivation from the single-particle Schrödinger

equation

Given the Wigner function

f(x, v, t) =
m

2π~

∫ +∞

−∞

e−i mv∆
~ Ψ∗

(

x− ∆

2
, t

)

Ψ

(

x+
∆

2
, t

)

d∆ (2.1)

by using the Schrödinger equation

i~
∂Ψ

∂t
= − ~

2

2m

∂2Ψ

∂x2
+ eφΨ (2.2)

we will show that it satisfies the quantum Vlasov equation (2.3):

∂f

∂t
+ v

∂f

∂x
+

e

m

∫ +∞

−∞

K(x, v, v′, t)
∂f

∂v′
dv′ = 0 (2.3)

where

K(x, v, v′, t) ≡ m

2π~

∫ +∞

−∞

e−i m(v−v′)∆
~

[

φ

(

x− ∆

2
, t

)

− φ

(

x+
∆

2
, t

)]
1

∆
d∆ . (2.4)

To construct the special Wigner density matrix, we rewrite the Schrödinger

equation and its complex conjugate in the following way

ξ ≡ x− ∆

2
, ξ′ ≡ x+

∆

2
, (2.5)

i~
∂

∂t
Ψ(ξ′, t) = − ~

2

2m
∇2

ξ′Ψ(ξ′, t) + eφ(ξ′)Ψ(ξ′, t) , (2.6)

−i~ ∂
∂t

Ψ∗(ξ, t) = − ~
2

2m
∇2

ξΨ
∗(ξ, t) + eφ(ξ)Ψ∗(ξ, t) . (2.7)

Let us call the Wigner density matrix by

ρ(ξ, ξ′, t) ≡ Ψ∗(ξ, t)Ψ(ξ′, t) (2.8)
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The operation Eq. (2.7) × (−ψ) + (ψ∗) × Eq. (2.6) gives

i~
∂

∂t
ρ(ξ, ξ′, t) =

~
2

2m
(∇2

ξ −∇2
ξ′)ρ(ξ, ξ′, t) − e[φ(ξ) − φ(ξ′)]ρ(ξ, ξ′, t) (2.9)

where ψ have been moved across Laplacian operators as ξ and ξ ′ are independent

variables. Using the following properties

∂

∂∆
ρ(ξ, ξ′, t) ≡ ∂ρ

∂ξ

∂ξ

∂∆
+
∂ρ

∂ξ′
∂ξ′

∂∆
=

1

2

(

−∂ρ
∂ξ

+
∂ρ

∂ξ′

)

, (2.10)

∂

∂x

∂

∂∆
ρ(ξ, ξ′, t) ≡ 1

2

[
∂

∂ξ

(

−∂ρ
∂ξ

+
∂ρ

∂ξ′

)
∂ξ

∂x
+

∂

∂ξ′

(

−∂ρ
∂ξ

+
∂ρ

∂ξ′

)
∂ξ′

∂x

]

= −1

2

[
∂2

∂ξ2
− ∂2

∂ξ′2

]

ρ(ξ, ξ′, t) , (2.11)

and multiplying Eq. (2.9) by e−
imv∆

~ and integrating over ∆, we obtain

i~
2π~

m

∂f

∂t
= −~

2

m

∫ +∞

−∞

d∆e−
imv∆

~ ∇x · ∇∆ρ− e

∫ +∞

−∞

d∆e−
imv∆

~ [φ(ξ) − φ(ξ′)]ρ

= −i~2π~

m
v · ∇xf − e

∫ +∞

−∞

d∆e−
imv∆

~ [φ(ξ) − φ(ξ′)]ρ (2.12)

where in order to obtain the second equality, an integration by part has been per-

formed on the first integral. To rewrite the second integral, we view the Wigner

function f(x, v, t) [Eq. (2.1)] as the “Wigner transform” of ρ(x − ∆/2, x+ ∆/2, t)

and define an “inverse Wigner transform” by

ρ

(

x− ∆

2
, x+

∆

2
, t

)

=

∫ +∞

−∞

dv′e
imv′∆

~ f(x, v′, t) . (2.13)

As a check, Eq. (2.13) can be plugged into Eq. (2.1) to obtain an identity, by noting

that
∫ +∞

−∞

d∆e−
im(v−v′)∆

~ =
2π~

m
δ(v − v′) . (2.14)

Using Eqs. (2.13) and (2.4) we can rewrite the second integral in Eq. (2.12) as

−e
∫ +∞

−∞

dv′f(x, v′, t)

∫ +∞

−∞

d∆e−im(v−v′)∆/~[φ(ξ) − φ(ξ′)]
∆

∆

= −e
∫ +∞

−∞

dv′f(x, v′, t)
2π~

m

~

im

∂K

∂v′

= −e2π~

m

i~

m

∫ +∞

−∞

dv′
∂f(x, v′, t)

∂v′
K (2.15)

where an integration by parts has been performed in the last equality. Using

Eq. (2.15) in Eq. (2.12) we obtain

∂f(x, v, t)

∂t
= −v ∂

∂x
f(x, v, t) − e

m

∫ +∞

−∞

dv′
∂f

∂v′
K(x, v, v′, t) (2.16)
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which is the quantum Vlasov equation (2.3).

2.1.1. Classical limit

In the definition of K (2.4), because of the highly oscillating nature of the exponen-

tial, when ~ → 0 contributions to the integral are non-vanishing when also ∆ → 0,

in which case

K(x, v, v′, t) → − m

2π~

∂φ

∂x

∫ +∞

−∞

e−i m(v−v′)∆
~ d∆ = −∂φ

∂x
δ(v − v′) . (2.17)

When we use this in the quantum Vlasov equation (2.16), it reduces to

∂f

∂t
= −v ∂

∂x
f − e

m
E
∂f

∂v
(2.18)

which is the one-dimensional classical Vlasov equation.

2.1.2. Discussion

Two observations are in order

(i) The different signs in the definitions of the Wigner functions are correlated for

mathematical consistency, an equivalent definition is16,17

f(p, r, t) =
1

(2π~)3

∫

dξe
i
~
p·ξΨ∗

(

r +
ξ

2
, t

)

Ψ

(

r− ξ

2
, t

)

. (2.19)

(ii) There is a missing minus sign in the exponential of [Ref. 2, Eq. (4)].

2.2. From the N-particle Schrödinger equation with BBGKY

hierarchy reduction

The quantum Vlasov equation (2.3) has been derived by using the one-particle

Schrödinger equation (2.2). Had we started with a N -particle Schrödinger equation

and then reduce to an one-body density matrix equation equivalent to Eq. (2.9), we

would have obtained a different quantum Vlasov equation that includes correlation

effects between two particles. The last term in (2.12) would be replaced by

−e
∫ +∞

−∞

d∆e−
imv∆

~

∫ +∞

−∞

dκ[φ(ξ, κ) − φ(ξ′, κ)]ρ(2)(ξ, κ; ξ′, κ) (2.20)

where ρ(2) is the two-particle density matrix function.

2.3. Single-particle description from a many-particle approach

If any two-particle correlation is ignored, i.e. the following approximation is made:

ρ(2)(ξ1, ξ2; ξ
′
1, ξ

′
2) = ρ(1)(ξ1, ξ

′
1)ρ

(1)(ξ2, ξ
′
2) . (2.21)
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Using the definition (2.8) for the single-particle density matrix, term (2.20) becomes

−e
∫ +∞

−∞

d∆e−
imv∆

~

∫ +∞

−∞

dκ[φ(ξ, κ) − φ(ξ′, κ)]|Ψ(κ)|2
︸ ︷︷ ︸

φ(ξ)−φ(ξ′)

ρ(1)(ξ, ξ′) (2.22)

which is identical to that obtained directly from the single-particle Schrödinger

equation (2.12). So it turns out that the single-particle density matrix in a single-

particle approach is the same as that obtained by integrating the N -particle density

matrix over the variables dscribing the other N −1 particles, when the two-particle

correlation is ignored.

3. The B = 0 Quantum Dielectric Function

In this section we derive a quantum dielectric function when B = 0. The quantum

dielectric function (3.23) or the alternative form (3.35), in term of the Fourier trans-

form (FT) of the Wigner function (WF) is just the standard Lindhard dielectric

constant in term of the FT of a distribution function [see Ref. 10, Eq. (17.60) or

Ref. 11 Eq. (3.58)]. We present an original derivation from the quantum Vlasov

equation (QVE) — derived in Section 2, and the Madelung’s derivation from the

Schrödinger equation (SE), in Appendix C. Results from the two derivations are

identical, which is shown in Section 3.1.3 via the alternative form. Our derivation

was motivated by the similar standard derivation of the classical dielectric function

from the classical Vlasov equation (CVE) using linear perturbations, described in

plasma physics textbooks (see e.g. Ref. 9). In fact when ~ → 0 our derivation leads

to the classical linear dielectric function, see Section 3.1.1.

The simultaneous appearance of momentum and position in the arguments of

the Weyl–Wigner representations does not necessarily mean that the calculations

involving these functions are classical, since the Weyl–Wigner correspondence as-

sociates each quantum mechanical operator with a function of position and mo-

mentum coordinates. It is in this context that the derivation of the QVE from the

Schrödinger equation (Section 2), and that of the quantum dielectric function from

the QVE are quantum derivations.

We recall that the QVE is a quantum kinetic equation for a single particle WF

or a reduced many-particle WF with two-particle correlations ignored. It can be

noted that the quantum linear dielectric function describes a single-particle that

interacts with the mean field created by the rest via the self-consistently coupled

Poisson’s equation. However it includes the main important collective behavior

obtained otherwise from a many-particle SE in a much more complicated derivation

that uses a charge-screened and mass-renormalized electron to eliminate divergences

due to the long-range Coulomb interaction.
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3.1. Quantum linear dielectric function from the quantum

Vlasov–Poisson system

We consider a 1D neutral quantum plasma — there is no preferred direction when

B = 0, the modifications to include additional dimensions are trivial — in which

the electron and ion distribution functions F− and F+ satisfy the quantum Vlasov

equation (QVE). The electric field is related to these distribution functions via

Gauss’ law. We assume small perturbations from the equilibrium values with the

ion distribution remains unperturbed due to their large mass:

F− = F−
0 + εg , F+ = F+

0 ,

E = 0 + εE1 , φ = 0 + εφ1 ,
(3.1)

where E and φ are the electric field and electrostatic potential, respectively.

Then the linearized QVE and Gauss’ law read, respectively,

∂g

∂t
+ v

∂g

∂x
+

e

m

∫ ∞

−∞

dv′K1
∂F−

0

∂v′
= 0 (3.2)

and

∇ ·E1 = −4πe

∫

gdv (3.3)

in which from Eq. (2.4):

K1(x, v, v
′, t) =

m

2π~

∫ ∞

−∞

d∆e−
i
~

m(v−v′)∆

× 1

∆

[

φ1

(

x− ∆

2
, t

)

− φ1

(

x+
∆

2
, t

)]

. (3.4)

From now on we will drop the super index ‘−’ in the electron equilibrium distribu-

tion function.

We do Fourier transforms in space and time by substituting

g(x, v, t) =
1

(2π)2

∫

dk

∫

dωḡ(ω, k, v)ei(kx−ωt) (3.5)

and

φ1(x, t) =
1

(2π)2

∫

dk

∫

dωφ̄1(ω, k)e
i(kx−ωt) . (3.6)

In this case
[

φ1

(

x− ∆

2
, t

)

− φ1

(

x+
∆

2
, t

)]

=
1

(2π)2

∫

dk

∫

dωφ̄1(ω, k)e
i(kx−ωt)

(

−2i sink
∆

2

)

. (3.7)
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Then

K1 =
1

(2π)2

∫

dk

∫

dωφ̄1(ω, k)e
i(kx−ωt)

(−im
π~

) ∫ ∞

−∞

d∆e−
i
~

m(v−v′)∆ sin k∆
2

∆
︸ ︷︷ ︸

−2 tan−1 i~k
2m(v−v′)

=−2i tanh−1 ~k
2m(v−v′)

(3.8)

After inserting Eqs. (3.5), (3.6), and (3.8) into the linearized QVE (3.2) we get

−iωḡ + ikvḡ − 2e

π~
φ̄1(ω, k)

∫

dv′ tanh−1

[
~k

2m(v − v′)

]
∂F0

∂v′
= 0 , (3.9)

i.e.

ḡ =
1

ω − kv

{

2ie

π~
φ̄1(ω, k)

∫

dv′ tanh−1

[
~k

2m(v − v′)

]
∂F0

∂v′

}

. (3.10)

We assume that the perturbation is due to an electron test charge. The general-

ization of Gauss’ law to include this test charge is not different from the classical

linear analysis:

∇ · E1 = −4πeδ(x− v0t) − 4πe

∫

gdv (3.11)

whose Fourier transform expression reads

ik · Ē1 = −8π2eδ(ω − kv0) − 4πe

∫

ḡdv (3.12)

where

E1(r, t) =
1

(2π)2

∫

dk

∫

dωĒ1(ω,k)ei(k·x−ωt) . (3.13)

By substituting the Fourier transform of the perturbation distribution, expression

(3.10), into (3.12) we obtain the quantum equation

ik ·E1 = −8π2eδ(ω − kv0) −
8ie2

~
φ̄1(ω, k)

×
∫

dv
1

ω − kv

∫

dv′ tanh−1

[
~k

2m(v − v′)

]
∂F0

∂v′
. (3.14)

3.1.1. Classical limit of the plasma dielectric function

As ~ is small, to first order we note that

tanh−1

[
~k

2m(v − v′)

]

≈ ~k

2m(v − v′)
. (3.15)

In the classical limit of ~ → 0, for nontrivial result we expect

2m(v − v′)
~→0−−−−→ 0 or v → v′ (3.16)

which can be expressed rigorously by using the Plemelj’s formula:

lim
ε→0

1

v − v′ − iε
= ℘

(
1

v − v′

)

+ iπδ(v − v′) . (3.17)
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As a consequence the quantum equation (3.14) becomes in the classical limit

ik ·E1 = −8π2eδ(ω − kv0) +
8e2

2m
(−i)kφ̄1(ω, k)
︸ ︷︷ ︸

=E1=
k(k·E1)

k2

×
∫

dv
1

ω − kv

[(∮

Γ1

dv′
1

v − v′
∂F0

∂v′

)

︸ ︷︷ ︸

−2πi
∂F0
∂v

+

(

iπ
∂F0

∂v

)]

(3.18)

where we assumed that only longitudinal waves exist in the perturbation and the

path Γ1 goes around the pole v′ = v in the clockwise direction. With

F0 = n0f̄0(v) , ω2
p =

4πn0e
2

me
, (3.19)

Eq. (3.18) now reads

ik ·E1

[

1 +
ω2

p

k2

∫

dv
k · ∂f̄0

∂v

ω − kv

]

︸ ︷︷ ︸

εcl(k,ω)

= −8π2eδ(ω − kv0) . (3.20)

i.e. we obtain the classical plasma dielectric function εcl(k, ω). (see Refs. 15 and 18).

3.1.2. Quantum plasma dielectric function

The quantum plasma dielectric function can be obtained from the quantum equa-

tion (3.14) by first doing an integration by parts assuming that f̄0 goes to zero at

±∞:

ik · E1 = −8π2eδ(ω − kv0) +
8in0e

2

~
φ̄1(ω, k)

×
∫

dv
1

ω − kv

∫

dv′
~k
2m

(v − v′)2 − ( ~k
2m )2

f̄0

= −8π2eδ(ω − kv0) −
1

π
ω2

p (−i)kφ̄1(ω, k)
︸ ︷︷ ︸

=E1=
k(k·E1)

k2

×
∫

dv
1

ω − kv

∮

Γ2

dv′
f̄0

(v − v′)2 − ( ~k
2m )2

︸ ︷︷ ︸

I2

. (3.21)

With a contour Γ2 that deforms to include poles in the clockwise direction, the

integral I2 in Eq. (3.21) reads

I2 =

∮

Γ2

dv′
f̄0

[v′ − (v + ~k
2m )][v′ − (v − ~k

2m )]
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= πi

[
f̄0(v + ~k/2m)

~k/m
+
f̄0(v − ~k/2m)

−~k/m

]

=
πim

~k

[

f̄0

(

v +
~k

2m

)

− f̄0

(

v − ~k

2m

)]

. (3.22)

Then the quantum plasma dielectric function reads

εQ(k, ω) = 1 +
mω2

p

~k2

∫

dv
f̄0(v + ~k

2m ) − f̄0(v − ~k
2m )

ω − kv
. (3.23)

This is the Lindhard equation for the dielectric constant [Ref. 10, p. 344 Eq. (17.60)

or Ref. 11, p. 116]. An alternative form is being derived in the next section.

For the equilibrium distribution function f̄0 we could use the fermionic or the

bosonic one. We first consider the Maxwellian distribution

f̄0(v
′) =

e−v′2/2C2

√
2πC

(3.24)

where C is a constant. With it, Eq. (3.21) becomes

ik ·E1 = −8π2eδ(ω − kv0) +
i

C

√

1

2π

mω2
p

~k3
(k · E1)

×
∮

Γ3

dv
e−

1
2C2 (v+~k/2m)2 − e−

1
2C2 (v−~k/2m)2

v − ω
k

= −8π2eδ(ω − kv0) −
2

C

√
2π
mω2

p

~k3
(k ·E1)

× e−
1

2C2 [(ω/k)2+(~k/2m)2] sinh
~ω

2mC2
. (3.25)

Consequently, the quantum plasma dielectric function for a Maxwellian distribution

is

εQ(k, ω) = 1 − 2i

C

√
2π
mω2

p

~k3
e−

1
2C2 [(ω/k)2+(~k/2m)2] sinh

~ω

2mC2
. (3.26)

If the Fermi–Dirac (FD) or Bose–Einstein (BE) distributions are used:

f̄0(v
′) =

1

C±

1

1 ± e
1

kBT ( 1
2 mv′2−µ)

(3.27)

where the upper and lower signs correspond to FD and BE distributions, respec-

tively, and C is a normalization constant. The corresponding quantum plasma di-

electric functions read, respectively,

εQ(k, ω) = 1 ∓ 4πi

C±

mω2
p

~k3

sinh ~ω
2kBT

e
µ

kB T − m
2kBT [( ω

k )2+( ~k
2m )2]

+ e
− µ

kBT ± 2 cosh ~ω
2kBT

. (3.28)
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3.1.3. Quantum plasma dielectric function: alternative form

To compare this result from the quantum Vlasov–Poisson equations with the one

from the Schrödinger–Poisson equations, we first rename k → q

εQ(q, ω) = 1 +
mω2

p

~q2

∫

dv
f̄0(v + ~q

2m ) − f̄0(v − ~q
2m )

ω − qv
. (3.29)

With a change of variable v′ = v − ~q
2m , it becomes

εQ(q, ω) = 1 +
mω2

p

~q2

∫

dv′
f̄0(v

′ + ~q
m ) − f̄0(v

′)

ω − q(v′ + ~q
2m )

. (3.30)

In order to change the variable of integration from v to k, we make the change

v′ = ~k
m , obtaining

εQ(q, ω) = 1 +
mω2

p

~q2

∫
~

m
dk
f̄0[

~

m (k + q)] − f̄0(
~

mk)

ω − q ~

m (k + q
2 )

. (3.31)

To do the discussion on the rescaling of the integrand in the last equation we rewrite

it as follows

εQ(q, ω) = 1 +
mω2

p

~q2

{
∫

~

m
d(k + q)

f̄0[
~

m(k + q)]

ω − q ~(k+q)
m + q2 ~

2m
︸ ︷︷ ︸

(a)

−
∫

~

m
dk

f̄0(
~

mk)

ω − q ~k
m − q2 ~

2m
︸ ︷︷ ︸

(b)

}

. (3.32)

After the following rescaling

~

m
(k + q) → (k + q) for (a)

~

m
k → k for (b)

, (3.33)

the last expression for the dielectric constant becomes

εQ(q, ω) = 1 +
mω2

p

~q2

{
∫

d(k + q)
f̄0[(k + q)]

ω − q ~

m (k + q) + q2 ~

2m
︸ ︷︷ ︸

(a)

−
∫

dk
f̄0(k)

ω − q ~k
m − q2 ~

2m
︸ ︷︷ ︸

(b)

}

. (3.34)
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Note that the denominators remain unchanged, since rescaling here can only means

regrouping the ~

m factor from (k + q) or k to q, otherwise dimensional analysis is

violated. Then the original dielectric function turns out to be

εQ(q, ω) = 1 +
mω2

p

~q2

∫

dk
f̄0[(k + q)] − f̄0(k)

ω − q ~

m (k + q
2 )

= 1 −
mω2

p

q2

∫

dk
f̄0[(k + q)] − f̄0(k)
~2

2m (2qk + q2) − ~ω

= 1 −
mω2

p

q2

∫

dk
f̄0[(k + q)] − f̄0(k)

E(k + q) −E(k) − ~ω
. (3.35)

This expression can readily be generalized to 3D by adding a vector sign over k

and q:

εQ(q, ω) = 1 −
mω2

p

q2

∫

dk
f̄0[(k + q)] − f̄0(k)

E(k + q) −E(k) − ~ω
. (3.36)

3.2. Linear quantum dielectric function from the

Schrödinger–Poisson system

The quantum dielectric function from the Schrödinger–Poisson equations can be

written in the form (see Appendix C)

ε(q, ω) = 1 −
meω

2
p

q2

∫

dk
f̄0(k + q) − f̄0(k)

E(k + q) −E(k) − ~ω
. (3.37)

This is identical to the one derived above from the quantum Vlasov–Poisson system

(3.36).

3.3. Summary

A linear analysis of the quantum Vlasov equation in 1D as been performed, the

classical plasma dielectric function has been obtained in the classical limit. A quan-

tum plasma dielectric function has been derived that agrees with those of Ref. 11

and 15. The linear quantum dielectric functions for the Maxwellian, Fermi–Dirac

and Bose–Einstein distributions have been obtained.

On the other hand, starting from the Schrödinger–Poisson system of equations,

a dielectric function defined as the ratio of the applied external potential over

the total potential11 (sum of the external and the internal potential given by the

rearrangement of charges via the Poisson equation), whose derivation is included in

Appendix C, is identical with that derived here from the quantum Vlasov–Poisson

system of equation. We present this case as a proof of the equivalence between the

two systems of equations.
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4. Derivation of the B 6= 0 QVE from the SE

Ours is a 3D problem with a uniform magnetic field along the z-axis. Positions and

momenta are coupled in the transverse XY plane via the mechanical momentum

with the orbits being quantized. The motion along the z-axis is that of a free parti-

cle, with a z-dependence in the wave function via a plane wave. The z-component

of the mechanical momentum is just equal to the z-component of the canonical

momentum. If a plane wave along the z-axis is employed in the definition of the

Wigner function (WF), it can be seen immediately that the latter does not depend

on z and neither on pz. We will derive a quantum Vlasov equation (QVE) in the

transverse plane to a uniform magnetic field from the Schrödinger equation (SE), in

analogy to the corresponding derivation for B = 0 (see Section 2). In this case the

symmetric gauge is required. A key property is that a spatial derivative now has

an extra contribution due to the position-momentum coupling via the mechanical

momentum. This magnetic QVE will serve as the starting point in our derivation

of the quantum linear dielectric function in a magnetic field in Section 5.

The magnetic QVE is a quantum kinetic equation that governs the dynamics of

the magnetic WF. The difference with the classical equation resides in the fourth

and last term that exhibits an integral indicating a nonlocal character, as happened

in the B = 0 QVE. Again it will be shown that this term reduces to the appropriate

classical limit when ~ → 0.

As when B = 0, ours is a single-particle description — that is the same as a

many-particle description with BBGKY hierarchy reduction and two-particle cor-

relations ignored — in a mean field created by other particles.

A QVE for an electron in a self-consistent magnetic field was given in Ref. 14.

However in practical applications, the self-consistent magnetic field is negligible as

compared to the external field.

4.1. Quantum Vlasov equation (QVE) from the Schrödinger

equation

To derive the QVE from the Schrödinger equation with the magnetic field pointing

along the z direction, we need the symmetric gauge

A = −1

2
B× r =

B0

2
xŷ − B0

2
yx̂ (4.1)

in which the canonical momentum and the vector potential commute

p ·A + A · p = 2A · p . (4.2)

The kinetic term in the Hamiltonian is

(

p − e

c
A
)2

= p2 +
m2Ω2

4
(x2 + y2) − i~mΩ(y∂x − x∂y) . (4.3)

If φ allows, the problem is translationally invariant in the z direction.
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Given the symmetry, the following definitions are used

Π⊥ ≡ Π = (Πx,Πy) =

(

px +
mΩ

2
y, py − mΩ

2
y

)

,

∇⊥ ≡ ∇ = (∂x, ∂y) ,
(4.4)

ζ ≡ µx̂+ ηŷ ,

ξ ≡ r +
ζ

2
= ξxx̂+ ξy ŷ , ξx ≡ x+

µ

2
, ξy ≡ y +

η

2
,

ξ′ ≡ r− ζ

2
= ξ′xx̂+ ξ′y ŷ , ξ′x ≡ x− µ

2
, ξ′y ≡ y − η

2
.

(4.5)

Even though the quadratic terms proportional to mΩ2/8 in Eqs. (4.6) and (4.7)

would not cancel each other immediately, the linear terms are much easier to work

with if we write the Schrödinger equation and its complex conjugate at (ξ ′, t) and

(ξ, t), respectively, instead of at the same point (x, t) and then putting it in terms

of ξ′ and ξ:

i~
∂

∂t
Ψ(ξ′, t) =

{

− ~
2

2m
(∂2

ξ′

x
+ ∂2

ξ′

y
) +

mΩ2

8
(ξ′2x + ξ′2y )

− i~Ω

2
(ξ′y∂ξ′

x
− ξ′x∂ξ′

y
) + eΦ(ξ′, t)

}

Ψ(ξ′, t) (4.6)

and

−i~ ∂
∂t

Ψ∗(ξ, t) =

{

− ~
2

2m
(∂2

ξx
+ ∂2

ξy
) +

mΩ2

8
(ξ2x + ξ2y)

+
i~Ω

2
(ξy∂ξx − ξx∂ξy ) + eΦ(ξ, t)

}

Ψ∗(ξ, t) . (4.7)

By doing Eq. (4.7) × [−Ψ(ξ′, t)] + [Ψ∗(ξ, t)] × Eq. (4.6) the following equation for

the Wigner density matrix is obtained

i~
∂

∂t
ρ(ξ, ξ′, t) =

{

+
~

2

2m
[(∂2

ξx
− ∂2

ξ′

x
) + (∂2

ξy
− ∂2

ξ′

y
)]

︸ ︷︷ ︸

(Ia)

+
mΩ2

8
[(ξ′2x − ξ2x) + (ξ′2y − ξ2y)]

︸ ︷︷ ︸

(Ib)

− i~Ω

2
(ξy∂ξx − ξx∂ξy + ξ′y∂ξ′

x
− ξ′x∂ξ′

y
)

︸ ︷︷ ︸

(II)

−e[Φ(ξ, t) − Φ(ξ′, t)]
︸ ︷︷ ︸

(III)

}

ρ(ξ, ξ′, t) . (4.8)
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Following the same procedures as for the free particle, i.e. doing
∫

dµdη

(2π~)2
e

i
~
(Πxµ+Πyη) × Eq. (4.8) . (4.9)

It is important to note that the procedures and properties that will be used in the

derivation of the quantum and classical Vlasov equation for the Wigner function do

not depend on whether its definition is gauge-invariant (i.e. with d in the exponent)

or not (i.e. with Π in the exponent). Using Eq. (4.9) we will arrive at a quantum

Vlasov equation in terms of the mechanical momentum Π. It can be checked that

a similar equation but in terms of d would be obtained had we used
∫

dµdη

(2π~)2
e

i
~
(dxµ+dyη) × Eq. (4.8) . (4.10)

A classical Vlasov equation in terms of d would be obtained if we exploit the

d-dependence of the Wigner function instead of what we will do with the Π-

dependence in the next section. The LHS of (4.9) is

i~
∂

∂t

∫
dµdη

(2π~)2
e

i
~
(Πxµ+Πyη)ρ(ξ, ξ′, t) = i~

∂

∂t
f(r,Π, t) . (4.11)

For the first term (Ia) in the RHS of (4.9), we use

(∂2
ξx

− ∂2
ξ′

x
)ρ = 2∂x∂µρ , (∂2

ξy
− ∂2

ξ′

y
)ρ = 2∂y∂ηρ , (4.12)

and notice that for the problem with a magnetic field

∂r → ∂r + (∂rΠ) · ∂Π (4.13)

which in the symmetric gauge means

∂a → ∂a + (∂aΠā)∂Πā ,

(a, ā) ≡ (x, y) or (y, x) ,
(4.14)

and that the density ρ depends on Π,12 after an integration by parts in µ and η for

the two terms of (Ia), respectively,

− i~
m

∑

a=x,y

Πa

{

∂af +
∂Πā

∂a

∫
dµdη

(2π~)2
[∂Πā(e

i
~
(Πxµ+Πyη)ρ(ξ, ξ′, t))

− (∂Πāe
i
~
(Πxµ+Πyη))ρ(ξ, ξ′, t)]

}

. (4.15)

So the first term in the RHS of Eq. (4.9) or term (Ia) becomes

− i~
m

(Πx∂x + Πy∂y)f +
i~Ω

2
(Πx∂Πy − Πy∂Πx)f

− i~Ω

2

∫
dµdη

(2π~)2
i

~
(Πxη − Πyµ)e

i
~
Π·ζρ . (4.16)
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On the other hand

ξ′2x + ξ′2y − (ξ2x + ξ2y) = −2(xµ+ yη) (4.17)

and the second term in the RHS of Eq. (4.9) or term (Ib) quickly gives

−mΩ2

4

∫
dµdη

(2π~)2
e

i
~
Π·ζ(xµ+ yη)ρ . (4.18)

The linear term in the RHS of Eq. (4.9) or term (II) is

− i~Ω

2

∫
dµdη

(2π~)2
e

i
~
Π·ζ(ξy∂ξx − ξx∂ξy + ξ′y∂ξ′

x
− ξ′x∂ξ′

y
)ρ . (4.19)

By noting

Πx(ξ) = px +
mΩ

2
ξy = Πx +

mΩ

4
η ,

Πy(ξ) = py − mΩ

2
ξx = Πy − mΩ

4
µ ,

Π(ξ) · ζ = Π · ζ ,

(4.20)

and similarly

Πx(ξ′) = px +
mΩ

2
ξ′y = Πx − mΩ

4
η ,

Πy(ξ′) = py − mΩ

2
ξ′x = Πy +

mΩ

4
µ ,

Π(ξ′) · ζ = Π · ζ .

(4.21)

Equation (4.19) can be rewritten as

− i~Ω

2

{
∫

dµdη

(2π~)2
e

i
~
Π(ξ)·ζ(ξy∂ξx − ξx∂ξy )ρ

︸ ︷︷ ︸

ξ′

x,ξ′

y const.

+

∫
dµdη

(2π~)2
e

i
~
Π(ξ′)·ζ(ξ′y∂ξ′

x
− ξ′x∂ξ′

y
)ρ

︸ ︷︷ ︸

ξx,ξy const.

}

. (4.22)

Since

µ = ξx − ξ′x ,

η = ξy − ξ′y ,

(4.23)
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and as for the spatial derivatives in a magnetic problem (4.14)

∂ξx → ∂µ +
∂Πy(ξ)

∂µ
∂Πy(ξ) = ∂µ − mΩ

4
∂Πy(ξ)

∂ξy → ∂η +
∂Πx(ξ)

∂η
∂Πx(ξ) = ∂η +

mΩ

4
∂Πx(ξ)







ξ′x, ξ
′
y const ,

∂ξ′

x
→ −∂µ − ∂Πy(ξ′)

∂µ
∂Πy(ξ′) = −∂µ − mΩ

4
∂Πy(ξ′)

∂ξ′

y
→ −∂η − ∂Πx(ξ′)

∂η
∂Πx(ξ′) = −∂η +

mΩ

4
∂Πx(ξ′)







ξx, ξy const .

(4.24)

As all the derivatives are not independent of the variables of integrations µ and η,

we just need to do integrations by parts. Grouping separately in Eq. (4.22) terms

from the two types of derivatives:

− i~Ω

2

∫
dµdη

(2π~)2
e

i
~
Π·ζ [(ξy − ξ′y)∂µ − (ξx − ξ′x)∂η ]ρ

− i~mΩ2

8

∫
dµdη

(2π~)2
{e i

~
Π(ξ)·ζ [−ξy∂Πy(ξ) − ξx∂Πx(ξ)]ρ

+ e
i
~
Π(ξ′)·ζ [−ξ′y∂Πy(ξ′) − ξ′x∂Πx(ξ′)]ρ} . (4.25)

After an integration by parts

i~Ω

2

∫
dµdη

(2π~)2
e

i
~
Π·ζ i

~
[Πx (ξy − ξ′y)

︸ ︷︷ ︸

η

−Πy (ξx − ξ′x)
︸ ︷︷ ︸

µ

]ρ

+
i~mΩ2

8

∫
dµdη

(2π~)2

{

e
i
~
Π(ξ)·ζ i

~
[−ξyη − ξxµ]ρ+ e

i
~
Π(ξ′)·ζ i

~
[−ξ′yη − ξ′xµ]ρ

}

.

(4.26)

Using Eqs. (4.20) and (4.21) again for the second term in Eq. (4.26) it becomes

i~Ω

2

∫
dµdη

(2π~)2
e

i
~
Π·ζ i

~
[Πxη − Πyµ]ρ

+
mΩ2

8

∫
dµdη

(2π~)2
e

i
~
Π·ζ[(ξy + ξ′y)

︸ ︷︷ ︸

2y

η + (ξx + ξ′x)
︸ ︷︷ ︸

2x

µ]ρ (4.27)

where we can see that first term exactly cancels the last term in Eq. (4.16), and

the second term cancels (4.18) or term (Ib).

The last term in the RHS of Eq. (4.9) or term (III) reads

e

(2π~)2

∫

dζe
i
~
Π·ζ [φ(ξ, t) − φ(ξ′, t)]ρ(ξ, ξ′, t) . (4.28)
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After introducing the 2D “inverse Wigner transform”

ρ(ξ, ξ′, t) = ρ
(

r +
ς

2
, r − ς

2
, t
)

=

∫

dΠ′e−
i
~
Π

′·ζf(r,Π′, t) (4.29)

and noting that

φ(ξ, t) − φ(ξ′, t) = φx(ξ, ξ′x, t) + φy(ξy , ξ
′, t) ,

φx(ξ, ξ′x, t) ≡ φ

(

x+
µ

2
, y +

η

2
, t

)

− φ

(

x− µ

2
, y +

η

2
, t

)

,

φy(ξy, ξ
′, t) ≡ φ

(

x− µ

2
, y +

η

2
, t

)

− φ

(

x− µ

2
, y − η

2
, t

)

.

(4.30)

Equation (4.28) can be rewritten as

e

(2π~)2

∫

dΠ′f(r,Π′, t)

∫

dζe
i
~
(Π−Π′)·ζ

[

µ
φx

µ
+ η

φy

η

]

. (4.31)

In analogy with the 1D free particle QVE derivation, by introducing the vector K

with cartesian components defined as

Ka(r,Π,Π′, t) ≡ 1

(2π~)2

∫

dζe
i
~
(Π−Π′)·ζ φa

ζa
, a = x, y . (4.32)

Equation (4.31) can be rewritten as

e

∫

dΠ′f(r,Π′, t)

(

−~

i

)

∂Π′

a
Ka , a = x, y (4.33)

where summation over repeated index has been used. With an integration by parts,

term (III) finally becomes

−i~e
∫

dΠ′∂Π′

a
f(r,Π′, t)Ka = −i~e

∫

dΠ′ ∂f

∂Π′
·K . (4.34)

Combining Eqs. (4.11), (4.16), (4.18), (4.27), and (4.34), we have

i~
∂

∂t
f(r,Π, t) = − i~

m
(Πx∂x + Πy∂y)f +

i~Ω

2
(Πx∂Πy − Πy∂Πx)f

− i~e

∫

dΠ′

(
∂f

∂Π′
x

Kx +
∂f

∂Π′
y

Ky

)

(4.35)

or

∂

∂t
f(r,Π) +

1

m
Π · ∇f − Ω

2
(Π× ∇Π) · ẑf + e

∫

dΠ′∇Π′f · K = 0 . (4.36)
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4.2. Classical Vlasov equation (CVE)

In a problem with a magnetic field the generalized or mechanical momentum Π,

following Sakurai’s notation,19 is form invariant under gauge transformation:

Π = m
dr

dt
= p− e

c
A (4.37)

where p is called the canonical momentum. The r introduced in the above equation

can be referred to as the generalized spatial coordinate. It is reasonable to write the

Wigner distribution function as

f = f(r, ṙ, t) = f(r,Π, t) . (4.38)

Then the classical Vlasov equation can be written as

d

dt
f(r,Π, t) =

(
∂

∂t
+

Π

m
·
(
∂

∂r
+

(
∂Π

∂r

)

· ∂

∂Π

)

+ Π̇ · ∂

∂Π

)

f(r,Π, t) = 0 . (4.39)

Using the Ehrenfest’s theorem19

dΠ

dt
= e

[

E +
1

2c

(
dr

dt
×B−B× dr

dt

)]

. (4.40)

In our case as B is constant, pointing along the z-direction, and does not depend

on any momentum coordinate, this equation reduces to the classical Lorentz force

equation:

dΠ

dt
= e

[

E +
1

c

dr

dt
×B

]

= eE + ΩΠ× ẑ . (4.41)

Concentrating on the 2D problem in the transverse plane, i.e.

r = (x, y) (4.42)

we get

Π

m
·
(
∂Π

∂r

)

· ∂

∂Π
=

1

m
(Πx,Πy) ·

(
∂Πy

∂x
∂Πy ,

∂Πx

∂y
∂Πx

)

=
Ω

2
(−Πx∂Πy + Πy∂Πx) . (4.43)

And by using Eq. (4.41)

Π̇ · ∂

∂Π
= eE · ∂

∂Π
+ Ω(Π× ẑ) · ∂

∂Π
(4.44)

the CVE (4.39) becomes
[

∂

∂t
+

1

m

(

Πx
∂

∂x
+ Πy

∂

∂y

)

+
Ω

2

(

Πy
∂

∂Πx
− Πx

∂

∂Πy

)

+ eE · ∂

∂Π

]

f(x,Π, t) = 0 . (4.45)
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When we look back at the quantum Equation (4.36) and the definition of the

vector K in Eq. (4.32), in the classical limit ~ → 0 the exponential in Eq. (4.32)

oscillates very rapidly and the contributions are phased out unless also ζ → 0 in

which case φa/ζa → ∂φ/∂a. Then K becomes

K(r,Π,Π′, t) ≡ ∇φ

(2π~)2

∫

dζe
i
~
(Π−Π′)·ζ = ∇φδ2(Π−Π′) . (4.46)

Then, in the classical limit the last term in the quantum equation (4.36) becomes

e∇φ · ∇Πf . (4.47)

Then we see that QVE reduces to CVE in the classical limit for a particle in a

magnetic field (E = −∇φ).

5. The B 6= 0 Quantum Dielectric Function

In this section we use the quantum kinetic equation for a particle in a magnetic field

derived in Section 4 and a similar procedure as that used in Section 3 for zero field, to

derive a linear quantum dielectric function for a particle in a magnetic field in term

of the Wigner function. The dielectric function, and the closely related conductivity,

describes the particle collective behavior. The direct implication of the Wigner

function in the dielectric function means that the former is not just a calculation

tool but also carries the underlying physics. For example it has been shown12 that

the Wigner function show oscillations in term of B−1 that are consistent with de

Haas–van Alphen effect (dHvA), in which the period of oscillation is related to the

Fermi energy. It will be straightforward to note that the quantum linear dielectric

function for B 6= 0 reduces to the Lindhard equation of Section 3 when B → 0.

As a by-product, the derivation of this equation shows the internal structure

of the quantum dielectric function sheds light on the correct sign for the gauge

invariance of the Wigner function.

Kelly14 obtained a dielectric tensor, not dielectric function, whose components

did not present any oscillations. Harris gave an expression [Ref. 15 Eq. (2.69)] for

the dielectric function in terms of “a quantum mechanical distribution function,

which is a Fourier transform of the density matrix. . . It is similar but not identical

to the well-known distribution function of Wigner”, which differs with ours by an

extra summation over the indices of Bessel functions, but it is not clear how this

expression would reduce to the Lindhard equation at B = 0.

Starting with the quantum Vlasov equation (4.46)

∂f

∂t
+

1

m
Π · ∇f − Ω

2
(Π× ∇Π) · ẑf + e

∫

dΠ′∇Π′ · K = 0 (5.1)

or the expanded version in the XY (2D) plane perpendicular to the field, Eq. (4.45)

∂f

∂t
+

1

m
(Πx∂x + Πy∂y)f − Ω

2
(Πx∂Πy − Πy∂Πx)f

+ e

∫

dΠ′

(
∂f

∂Π′
x

Kx +
∂f

∂Π′
y

Ky

)

= 0 (5.2)
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with

Ka =
1

(2π~)2

∫

d2ξe
i
~
(Π−Π′)·ξ φa

ξa
, a = x, y , ξ ≡ (µ, η) , (5.3)

and

φx = φ

(

x+
µ

2
, y +

η

2
, t

)

− φ

(

x− µ

2
, y +

η

2
, t

)

,

φy = φ

(

x− µ

2
, y +

η

2
, t

)

− φ

(

x− µ

2
, y − η

2
, t

)

.

(5.4)

As in Section 3 we assume small perturbations from the equilibrium values with

the ion distribution remains unperturbed due to their large mass:

f = f−
0 + εg , f+ = f+

0 , φ = 0 + εφ1 (5.5)

The perturbations for Ka are

K1x =
1

(2π~)2

∫

d2ξe
i
~
(Π−Π

′)·ξ 1

µ

[

φ1

(

x+
µ

2
, y +

η

2
, t

)

− φ1

(

x− µ

2
, y +

η

2
, t

)]

,

(5.6)

K1y =
1

(2π~)2

∫

d2ξe
i
~
(Π−Π′)·ξ 1

η

[

φ1

(

x− µ

2
, y +

η

2
, t

)

− φ1

(

x− µ

2
, y − η

2
, t

)]

.

(5.7)

Now we go to the frequency domain by writing

g(r,v, t) =
1

(2π)3

∫

d2k

∫

dωḡ(ω,k,v)ei(k·r−ωt) , (5.8)

φ1(r, t) =
1

(2π)3

∫

d2k

∫

dωφ̄1(ω,k)ei(k·r−ωt) . (5.9)

With these definitions, the appropriate combinations are

φ1

(

x+
µ

2
, y +

η

2
, t

)

− φ1

(

x− µ

2
, y +

η

2
, t

)

=
1

(2π)3

∫

d2k

∫

dωφ̄1(ω,k)ei(k·r−ωt)eiky
η
2 2i sinkx

µ

2
(5.10)

and

φ1

(

x− µ

2
, y +

η

2
, t

)

− φ1

(

x− µ

2
, y − η

2
, t

)

=
1

(2π)3

∫

d2k

∫

dωφ̄1(ω,k)ei(k·r−ωt)e−ikx
µ
2 2i sin ky

η

2
. (5.11)
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With these combinations of perturbations for φ we can go to the frequency domain

for the perturbations in K with

K1x =
1

(2π~)2
1

(2π)3

∫

d2k

∫

dωφ̄1(ω,k)ei(k·r−ωt)

×
∫

d2ξe
i
~
(Π−Π′)·ξeiky

η
2
2i sin kx

µ
2

µ
︸ ︷︷ ︸

I1x

. (5.12)

The integral I1x is done as follows

I1x =

∫

dµe
i
~
(Πx−Π′

x)µ2i
sinkx

µ
2

µ
︸ ︷︷ ︸

(2i)2 tanh−1 ~kx
2(Πx−Π′

x)

∫

dηe
i
~
(Πy−Π′

y)ηeiky
η
2

︸ ︷︷ ︸

2π~δ(Πy−Π′

y+
~ky
2 )

. (5.13)

Similarly,

K1y =
1

(2π~)2
1

(2π)3

∫

d2k

∫

dωφ̄1(ω,k)ei(k·r−ωt)

×
∫

d2ξe
i
~
(Π−Π′)·ξe−ikx

µ
2
2i sin ky

η
2

η
︸ ︷︷ ︸

I1y

. (5.14)

The integral I1y is done as follows

I1y =

∫

dµe
i
~
(Πx−Π′

x)µe−ikx
µ
2

︸ ︷︷ ︸

2π~δ(Πx−Π′

x−
~kx
2 )

∫

dηe
i
~
(Πy−Π′

y)η2i
sin ky

η
2

η
︸ ︷︷ ︸

(2i)2 tanh−1 ~ky

2(Πy−Π′
y)

. (5.15)

Before writing down the frequency domain quantum Vlasov equation for the

linear perturbations we consider one issue. The derivatives with respect to the

mechanical momentum in the third term are taken at fixed spatial positions. In the

symmetric gauge, the mechanical momenta are defined as

Πx = px +
mΩ

2
y , Πy = py − mΩ

2
x , (5.16)

and for the third term in the quantum Vlasov equation:

∂Πy |x =
1

~
∂ky , ∂Πx |y =

1

~
∂kx . (5.17)

Then the frequency domain equation in the linear perturbation reads

−iωḡ +
i

m
(Πxkx + Πyky)ḡ − iΩ

2~
(Πxy − Πyx)ḡ

︸ ︷︷ ︸

T23

+
(2i)2e

(2π~)
φ̄1

{
∫

dΠ′
x

∂f0
∂Π′

x

∣
∣
∣
∣
∣
Π′

y=Πy+
~ky
2

tanh−1 ~kx

2(Πx − Π′
x)
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+

∫

dΠ′
y

∂f0
∂Π′

y

∣
∣
∣
∣
∣
Π′

x=Πx−
~kx
2

tanh−1 ~ky

2(Πy − Π′
y)

}

= 0 . (5.18)

Term T23 is rearranged into

T23 =

[
i

m~
Πx

(

~kx − mΩ

2
y

)

+
i

m~
Πy

(

~ky +
mΩ

2
x

)]

ḡ

≡ (iVxKx + iVyKy)ḡ (5.19)

with

Kx ≡ Dx

~
, Dx ≡ ~kx − mΩ

2
y ,

Ky ≡ Dy

~
, Dy ≡ ~ky +

mΩ

2
x ,

(5.20)

and

Va ≡ Πa

m
, a = x, y . (5.21)

Here we pause to make an important discussion. From the derivation of the

quantum Vlasov equation in Section 4, Πa is replaced by Da should we choose to

do that in the definition of the Wigner function. So the exact definition of Va in

term of Πa or Da is arbitrary, depending on a choice in the definition of the Wigner

function (if we ignore the fact that gauge invariance require the choice of Da).

However, the definition of Ka is not arbitrary, it comes from the internal structure

of the quantum Vlasov equation, and it is related to Da not Πa!

Back to the frequency domain equation in the linear perturbation of the distri-

bution function, it leads to

ḡ =
4ieφ̄1

(2π~)

1

ω −K ·V

{
∫

dΠ′
x

∂f0
∂Π′

x

∣
∣
∣
∣
∣
Π′

y=Πy+
~ky
2

tanh−1 ~kx

2(Πx − Π′
x)

+

∫

dΠ′
y

∂f0
∂Π′

y

∣
∣
∣
∣
∣
Π′

x=Πx−
~kx
2

tanh−1 ~ky

2(Πy − Π′
y)

}

. (5.22)

As with the derivation for B = 0 in Section 3, we assume that the perturbation

is due to an electron test charge. The generalization of Gauss’ law to include this

test charge is

∇ ·E1 = −4πeδ(r− v0t) − 4πe

∫

dVg . (5.23)

Using the last expression for ḡ in the Fourier transform expression of the gen-

eralized Gauss’ law:

ik · Ē1 = −8π2eδ(ω − k · v0) − 4πe

∫

dVḡ (5.24)
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where

E1(r, t) =
1

(2π)3

∫

d2k

∫

dωĒ1(ω,k)ei(k·r−ωt) , (5.25)

we arrive at

ik · Ē1 = −8π2eδ(ω − k · v0) +
16πin0e

2

(2π~)
φ̄1

∫

dV
1

ω −K · V

×
[
∫

dΠ′
xf̄0(Π

′
y = Πy + ~ky/2)

~kx/2

(Πx − Π′
x)2 − (~kx/2)2

︸ ︷︷ ︸

≡Ix(~kx/2)

+

∫

dΠ′
yf̄0(Π

′
x = Πx − ~kx/2)

~ky/2

(Πy − Π′
y)2 − (~ky/2)2

︸ ︷︷ ︸

≡Iy(~ky/2)

]

(5.26)

where we also have used f0 = n0f̄0 and applied the result

∂

∂Π′
a

[

tanh−1 ~ka

2(Πa − Π′
a)

]

=
~ka/2

(Πa − Π′
a)2 − (~ka/2)2

, a = x, y . (5.27)

The next step is to use the residue theorem to evaluate the integrals

Ix =

∮

Γ2

dΠ′
x

f̄0

(

Π′
y = Πy +

~ky

2

)

[

Π′
x −

(

Πx +
~kx

2

)][

Π′
x −

(

Πx − ~kx

2

)]

=
πi

~kx

[

f̄0

(

Πx +
~kx

2
,Πy +

~ky

2

)

− f̄0

(

Πx − ~kx

2
,Πy +

~ky

2

)]

, (5.28)

Iy =

∮

Γ2

dΠ′
y

f̄0

(

Π′
x = Πx − ~kx

2

)

[

Π′
y −

(

Πy +
~ky

2

)][

Π′
y −

(

Πy − ~ky

2

)]

=
πi

~ky

[

f̄0

(

Πx − ~kx

2
,Πy +

~ky

2

)

− f̄0

(

Πx − ~kx

2
,Πy − ~ky

2

)]

, (5.29)

and also using the definition of the plasma frequency

ω2
p =

4πn0e
2

m
(5.30)

to arrive at

ik · E1 = −8π2eδ(ω − k · v0) −
mω2

p

~
φ̄1

∫

dV
1

ω −K ·V
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×
{

f̄0

(

Πx +
~kx

2
,Πy +

~ky

2

)

− f̄0

(

Πx − ~kx

2
,Πy +

~ky

2

)

+ f̄0

(

Πx − ~kx

2
,Πy +

~ky

2

)

− f̄0

(

Πx − ~kx

2
,Πy − ~ky

2

)}

. (5.31)

Since

ik · E1ε(k, ω) = −8π2eδ(ω − k · v0) (5.32)

and

−∇φ1 = E1 → −ikφ̄1 = Ē1 → φ̄1 = i
k · Ē1

k2
(5.33)

finally, we have

ε(k, ω) = 1 +
mω2

p

~k2

×
∫

dV
f̄0(Πx + ~kx/2,Πy + ~ky/2) − f̄0(Πx − ~kx/2,Πy − ~ky/2)

ω −K · V .

(5.34)

It can be noted that this equation reduces to that derived in Section 3 when B = 0.

6. Conclusions

We have derived a quantum dielectric function (QDF) from the quantum Vlasov

equation (QVE), first for B = 0 (Section 3) and then for B 6= 0 (Section 5),

using linear perturbations and a self-consistent mean field interaction via Poisson’s

equation. The QVE is a quantum kinetic equation that governs the behavior of the

Wigner function (WF). The QVE was derived from the Scrodinger equation (SE)

for B = 0 (Section 2) and for B 6= 0 (Section 4). The B = 0 QDF, except for its

expression in term of the WF, is the Lindhard constant, which is usually derived

from the SE in the literature. The B 6= 0 QDF was derived for the first time. This

result indicated that

(i) Since properties such as conductivities are related to the dielectric function and

so to the Wigner function, the physics is contained in the later. A magnetic

Wigner function should show de Haas–van Alphen oscillations as proved in

Ref. 12.

(ii) An explicit manifestation that the structure of the kinetic equation gives rise

to D, not Π (see Appendix B for their definitions). This is related to the choice

of D or Π in the definition of the magnetic Wigner function, and we argue for

D for gauge invariance.13
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We have found related but not similar work in the papers by Kelly14 and

Harris.15 Kelly obtained a dielectric tensor, not dielectric function, whose com-

ponents did not present any de Haas–van Alphen oscillations. Harris gave an ex-

pression (2.69) for the dielectric function in terms of “a quantum mechanical distri-

bution function, which is a Fourier transform of the density matrix. . . It is similar

but not identical to the well-known distribution function of Wigner”, which differs

with ours by an extra summation over the indices of Bessel functions. It is not clear

how this expression would reduce to the Lindhard constant at B = 0.

We have also proposed a modified WF with finite limits of integration. For free

particles when the eigenfunctions are plane waves, the WF is singular and positive

while the modified WF is finite with oscillatory behavior. For a harmonic oscillator

potential when the eigenfunctions are localized in space, finite limits of integration

are effective even in the original WF and there is no distinction with the modified

one.

Appendix A. The Kernel for the Trace expression of WF

The Wigner function can be obtained from the density matrix ρ and a kernel ∆ via

a trace expression

f = hTr(ρ∆) . (A.1)

To obtain an expression in the position representation we expand the trace as

f = h

∫

dp′〈p′|ρ∆|p′〉 . (A.2)

When the kernel

∆W (p− p̂, q − q̂) =
1

(2π)2

∫∫

dξdηei[ξ(p−p̂)+η(q−q̂)] (A.3)

is used in Eq. (A.2), the usual Wigner function is obtained,20 with p̂, q̂ being the

momentum and position operators, respectively. We can note that ∆ has dimension

of [action]−1. The trace and ρ are dimensionless, so Eq. (A.1) corresponds to di-

mensionless distribution functions. In fact, by using the Baker–Campbell–Hausdoff

formula in Eq. (A.3), inserting position-space completeness relations into Eq. (A.2),

and using the resulting delta functions, we recover the usual expression for the

Wigner distribution function

fW (p, q) = ~

∫

dξeiξp

〈

q − ~ξ

2

∣
∣
∣
∣
ρ(p, q)

∣
∣
∣
∣
q +

~ξ

2

〉

(A.4)

which is dimensionless as each position ket has a dimension of [length]−1/2.

Here is the complete derivation:

fW = hTr[ρ(p̂, q̂)∆W (p− p̂, q − q̂)]

=
h

(2π)2

∫

dp′〈p′|ρ(p̂, q̂)
∫∫

dξdη ei[ξ(p−p̂)+η(q−q̂)]
︸ ︷︷ ︸

eiη(q−q̂)eiξ(p−p̂)e
1
2

ξη[q̂,p̂]

|q′〉 . (A.5)
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The Baker–Campbell–Hausdoff formula has been used in the last equality. Using

[q̂, p̂] = i~ , (A.6)

and applying the momentum operator in the exponential to the momentum ket and

taking all the number exponentials outside the expectation value, one obtains

fW (p, q) =
h

(2π)2

∫∫

dξdηei(ηq+ξp)e
i~

2 ξη

∫

dp′e−iξp′〈p′|ρ(p̂, q̂)e−iηq̂ |p′〉
︸ ︷︷ ︸

∫∫
dq′dq′′ 1

2π~
e

i
~

p′(q′′−q′)e−iηq′′ 〈q′|ρ|q′′〉

.

(A.7)

The last result has been obtained by inserting completeness relations in q′ and q′′

∫

dq′|q′〉〈q′| ,
∫

dq′′|q′′〉〈q′′| (A.8)

immediately after the bra and before the ket, respectively, and using the plane wave

definition

〈p′|q′〉 =
1√
2π~

e−
i
~
p′·q′

. (A.9)

Rearranging Eq. (A.7):

fW (p, q) =
1

(2π)2

∫∫

dξdηei(ηq+ξp)e
i~

2 ξη

∫∫

dq′dq′′e−iηq′′ 〈q′|ρ|q′′〉
∫

dp′e
i
~

p′(q′′−q′−~ξ)

︸ ︷︷ ︸

2π~δ[q′′−(q′+~ξ)]

=
~

2π

∫∫∫

dξdηdq′ei(ηq+ξp)e
i~

2 ξηe−iη(q′+~ξ)〈q′|ρ|q′ + ~ξ〉

=
~

2π

∫∫

dξdq′eiξp〈q′|ρ|q′ + ~ξ〉
∫

dηe−iη(q′+ ~ξ
2 −q)

︸ ︷︷ ︸

2πδ[q′−(q− ~ξ
2 )]

= ~

∫

dξeiξp

〈

q − ~ξ

2

∣
∣
∣
∣
ρ

∣
∣
∣
∣
q +

~ξ

2

〉

= ~

∫

dξeiξpψ∗

(

q +
~ξ

2

)

ψ

(

q − ~ξ

2

)

. (A.10)

Appendix B. Definitions of D and Π

The form, which we will call the operator form (operators carry a hat)

f(p) =

∫

dr0e
i
~
p·r0〈ψ|e− 1

2 r0·D̂
+ ⊗ e

1
2 r0·D̂|ψ〉 (B.1)

is gauge invariant,21 where the d-derivative operator should be defined as:

D̂ ≡ i

~

(

p̂ +
e

c
Â

)

(B.2)
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whose Cartesian components commute with the free particle Hamiltonian in the

transverse plane (the constant magnetic field points along z):

Ĥ =
1

2m
Π̂

2
(B.3)

with the mechanical momentum defined as

Π̂ ≡ p̂ − e

c
Â , (B.4)

i.e.

[Ĥ⊥, D̂x] = [Ĥ⊥, D̂y] = 0 . (B.5)

This property is not shared by the Cartesian components of the mechanical mo-

mentum itself

[Ĥ⊥, Π̂x] = −2i~mΩΠ̂y , [Ĥ⊥, Π̂y] = 2i~mΩΠ̂x . (B.6)

The fact that Eq. (B.1) is invariant under a gauge transformation that leaves

the mechanical momentum invariant

Â → Â + ∇χ(r̂, t) , ψ → e
ie
~c χ(r̂,t)ψ , (B.7)

p̂ → T̂+
χ p̂T̂χ = p̂ +

e

c
∇χ(r̂, t) , T̂χ(t) = e

ie
~c χ(r̂,t) , (B.8)

but not the d-derivative

D̂ → D̂ + 2
ie

~c
∇χ(r̂, t) (B.9)

is because

e−
1
2 r0·D̂

+

e
1
2 r0·D̂ → e−

1
2 r0·[D̂

+−2 ie
~c (∇χ)+]e

1
2 r0·[D̂+2 ie

~c (∇χ)] = e−
1
2 r0·D̂

+

e
1
2 r0·D̂ .

(B.10)

Appendix C. Linear Quantum Dielectric Function from the

Schrödinger–Poisson System

Starting from the Schrödinger equation (SE) and its complex conjugate

i~
∂

∂t
|Ψ〉 = H |Ψ〉 and −i~ ∂

∂t
〈Ψ| = 〈Ψ|H , (C.1)

when we differentiate the density matrix with respect to time, the Heisenberg equa-

tion is obtained:

i~
∂ρ

∂t
= i~

(
∂|Ψ〉
∂t

〈Ψ| + |Ψ〉∂〈Ψ|
∂t

)

= Hρ− ρH = [H, ρ] . (C.2)

The density matrix is the statistical operator, which in term of the wave functions

reads

ρ = ΨΨ∗ . (C.3)
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It is observed that the bra-ket notation clearly indicates the right order for the

wave functions.

Our SE is a single-particle mean-field equation with

H = H0 + V (C.4)

where H0 is the free-particle Hamiltonian. V , which is considered a perturbation,

can be decomposed into an applied external potential Ve plus an internal potential

Vi.

V (r, t) = Ve(r, t) + Vi(r, t) . (C.5)

The internal potential is produced by the charged particle fluctuations

n = n0 + δn , ρ = ρ0 + δρ , (C.6)

via the Poisson equation:

∇2Vi(r, t) = −4πe2δn(r, t) . (C.7)

The linearized Heisenberg equation reads

i~
∂δρ

∂t
= [H0, δρ] + [V, ρ0] . (C.8)

This equation in terms of the matrix elements in momentum space can be derived

using the properties

H0|k〉 = E(k)|k〉 , E(k) =
~

2k2

2m
, (C.9)

ρ0|k〉 = f0(k)|k〉 , f0 = fermi distribution , (C.10)

to be

i~〈k′|δρ̇|k〉 = [E(k′) −E(k)]〈k′|δρ|k〉 − [f0(k
′) − f0(k)]〈k′|V |k〉 . (C.11)

The matrix element for V is the q-component of the Fourier transform of V (q =

k′ −k)). In fact, by inserting position-space closure relations and using plane-wave

definitions

〈k′|V (r, t)|k〉 =

∫∫

dr1dr2 〈k′|r1〉
︸ ︷︷ ︸

1

(2π)3/2 e−ik′
·r1

〈r1|V (r, t)|r2〉
︸ ︷︷ ︸

δ(r1−r2)V (r2,t)

〈r2|k〉
︸ ︷︷ ︸
1

(2π)3/2 eik·r2

=
1

(2π)3

∫

dr1e
−iq·r1V (r1, t) ≡ Vq(t) . (C.12)

We introduce the Fourier transform in space and time for V and δρ:

V (r, t) =
1

(2π)3

∫∫

dq′dωei(q′·rωt)V (q′, ω) . (C.13)
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Then the matrix elements become

〈k′|V (r, t)|k〉 = Vq(t) =
1

(2π)3

∫

dr1e
−iq·r1V (r1, t)

=
1

(2π)3

∫∫

dq′dωe−iωtV (q′, ω)

∫

dr1e
−i(q−q′)·r1

︸ ︷︷ ︸

(2π)3δ(q−q′)

=

∫

dωe−iωtV (q, ω) . (C.14)

Similarly,

〈k′|δρ(r, t)|k〉 =

∫

dωe−iωtδρ(q, ω) . (C.15)

By using these Fourier transforms in the linearized Heisenberg equation (C.11) it

gives

i~(−iω)δρ(q, ω) = [E(k′) −E(k)]δρ(q, ω) − [f0(k
′) − f0(k)]V (q, ω) (C.16)

which means

δρ(q, ω) =
f0(k

′) − f0(k)

E(k′) −E(k) − ~ω
V (q, ω) . (C.17)

On the other hand, the particle fluctuation can be written in term of the sta-

tistical operator fluctuation as

δn(r0, t) = Tr{δ(r − r0)δρ} =

∫

dk〈k|δ(r − r0)δρ|k〉

=

∫∫

dkdk′ 〈k|δ(r − r0)|k′〉
︸ ︷︷ ︸
1

(2π)3

∫
dreiq·rδ(r−r0)

〈k′|δρ|k〉

=
1

(2π)3

∫∫

dkdk′eiq·r0〈k′|δρ|k〉 . (C.18)

By using Eqs. (C.13), (C.15), and (C.18) in the linearized Poisson equation (C.7)

it becomes

1

(2π)3

∫∫

dqdωei(q·r−ωt)(−q2)Vi(q, ω)=−4πe2
1

(2π)3

∫∫∫

dkdk′dωei(q·r−ωt)δρ(q, ω)

(C.19)

which reduces, with dk′ = dq, to

−q2Vi(q, ω) = −4πe2
∫

dkδρ(q, ω) . (C.20)

When the final version of the linearized Poisson equation (C.20) is used in the final

version of the linearized Heisenberg equation (C.17), it shows

Vi(q, ω) =
4πe2

q2

∫

dk
f0(k

′) − f0(k)

E(k′) − E(k) − ~ω
V (q, ω) . (C.21)
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If we follow Ref. 11 in defining, the dielectric constant as

ε(q, ω) ≡ Va(q, ω)

V (q, ω)
= 1 − Vi(q, ω)

V (q, ω)

= 1 − 4πe2

q2

∫

dk
f0(k + q) − f0(k)

E(k + q) −E(k) − ~ω
. (C.22)

With the definitions

f0 ≡ n0f̄0 , ω2
p ≡ 4πn0e

2

me
, (C.23)

the quantum dielectric function from the Schrödinger–Poisson equations is finally

written in the form

ε(q, ω) = 1 −
meω

2
p

q2

∫

dk
f̄0(k + q) − f̄0(k)

E(k + q) −E(k) − ~ω
. (C.24)

This is identical to the one derived from the quantum Vlasov–Poisson system (3.36).
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