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1 Introduction

In this article we derive an equation for the cusp anomalous dimension for all angles and

for all values of the ’t Hooft coupling λ = g2YMN in the planar limit of N = 4 super Yang

Mills. We obtain a system of non-linear integral equations of the form of a Thermodynamic

Bethe Anstaz (TBA) system. The value of the cusp anomalous dimension can be obtained

from a solution of the TBA system. This is also equal to the quark/anti-quark potential

on the three sphere, see figure 1.

The cusp anomalous dimension is associated with the logarithmic divergence arising

from a Wilson loop with a cusped contour [1]

〈W 〉 ∼ e
−Γcusp(φ,λ) log

LIR
ǫUV , (1.1)

where LIR and ǫUV are IR and UV cutoffs respectively.

The locally supersymmetric Wilson loop in N = 4 super Yang Mills also includes a

coupling to the scalar fields specified by a direction in the internal space ~n (with ~n2 = 1)

W ∼ Tr
[
Pei

∮
A·dx+

∮
|dx|~n·~Φ

]
. (1.2)

Instead of considering the same vector ~n on the two lines that make the cusp, we can take

two vectors ~n and ~n′. This introduces a second angle cos θ = ~n · ~n′. Thus we have the

generalized cusp anomalous dimension Γcusp(φ, θ, λ) [2]. Γcusp(φ, θ) can be computed in

terms of a solution of the TBA system of equations presented in this article. We can also

consider the continuation φ = iϕ, where ϕ is a boost angle in Lorentzian signature. Before

describing the computation, let us make some general remarks.

φ φ

(a) (b)

S3

Figure 1. (a) A Wilson line with a cusp angle φ. (b) Under the plane to cylinder map the two

half lines in (a) are mapped to a quark anti-quark pair sitting at two points on S3 at a relative

angle of π − φ. The quark anti-quark lines are extended along the time direction.
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1.1 Remarks on the cusp anomalous dimension

Γcusp is related to a variety of physical observables:

• It characterizes the IR divergences that arise when we scatter massive colored par-

ticles. Here ϕ is the boost angle between two external massive particle lines. For

each consecutive pair of lines in the color ordered diagram we get a factor of the form

(1.1), where LIR is the IR cutoff and ǫ2UV is the given by the square of the sum of

the momenta of the two consecutive particles. More explicitly, the angle is given by

coshϕ = − p1.p2√
p21p

2
2

. This relation is general for any conformal gauge theory. See [3, 4]

and references therein. In N = 4 super Yang Mills the massive particles can be

obtained by setting some Higgs vevs to be non-zero ~Φ. Then the angle θ is the angle

between the Higgs vevs associated to consecutive massive particles [5].

• The IR divergences of massless particles are characterized by Γ∞
cusp which is the

coefficient of the large ϕ behavior of the cusp anomalous dimension, Γcusp ∝ ϕΓ∞
cusp.

Γ∞
cusp was computed in the seminal paper [6]. Note that Γ∞

cusp is also sometimes called

the “cusp anomalous dimension” though it is a particular limit of the general, angle

dependent “cusp anomalous dimension” defined in (1.1) .

• By the plane to cylinder map this quantity is identical with the energy of a static

quark and anti-quark sitting on a spatial three sphere at an angle π − φ.

Γcusp(φ, θ) = V (φ, θ) . (1.3)

See figure 1 . This potential depends on the angle φ as well as on the internal

orientations of the quark and anti-quark, which define the second angle θ.

• In particular, in the small δ = π− φ limit we get the same answer as the quark-anti-

quark potential in flat space1

Γcusp(φ, λ) ∼
v(θ, λ)

δ
, when δ = π − φ→ 0 , (1.4)

where v(λ) is the coefficient of the quark-anti-quark potential, V = v(θ,λ)
r , for a quark

and an anti-quark at distance r in flat space and couplings to the Higgs fields which

are rotated by a relative angle θ.

• In the small φ limit the cusp anomalous dimension goes as φ2 and one can define a

Bremsstrahlung function B by

Γcusp ∼ −(φ2 − θ2)B(λ) φ, θ ≪ 1 . (1.5)

This function B can be computed exactly using localization, see [8] and [9]. Here we

will derive a set of integral equations that also determines B. In this way we can link

the localization and integrability exact solutions. This function B is also related to

a variety of observables, see [8, 9] for further discussion.

1This limit does not commute with the perturbative expansion in λ. So (1.4) is correct if δ ≪ λ. If we

expand first in λ and then take the δ → 0 limit we get a different answer due to IR divergences that arise in

the naive perturbative expansion. These also arise in QCD, The origin of these logs are discussed in [5, 7].

– 3 –



J
H
E
P
0
8
(
2
0
1
2
)
1
3
4

Another motivation to study the cusp anomalous dimension is the study of amplitudes.

Amplitudes are also functions of the angles between particles. Here we get a very simple

function of one angle which has a structure very similar to amplitudes, since it is related

to amplitudes of massive particles. Thus, obtaining exact results for this quantity is useful

to learn about the general structure of the amplitude problem.

1.2 Method

The method to obtain the equation is a bit indirect and we need several preliminary results

that are interesting in their own right. Just for orientation we will outline the main idea

and method for its derivation.

The method consists of the following steps

• We first consider the problem of computing the spectrum of local operators on a

Wilson line. We consider the particular case of operators with a large charge, i.e.

operators containing a large number, L, of the complex scalar field Z insertions.

These insertions create a BMN vacuum [10].

• In the large L limit the problem can be solved using an asymptotic Bethe Ansatz that

involves the propagation of certain “magnons”. These equations describe magnons

moving on a long strip of length L with two boundaries associated to the Wilson loop

on each of the “sides” of the operator, see [11]. The propagation of the magnons in

the bulk is the usual one [12]. The new feature is the existence of a boundary. The

magnons are reflected at the boundary and one needs the boundary reflection matrix.

This is fixed in two steps.

• We determine the matrix structure of the reflection matrix from group theory, as

in [13–16]. This reflection matrix is such that it obeys the boundary Yang Baxter

equation [17]. This is evidence that the boundary condition preserves integrability.

• We derive a crossing equation for the reflection phase and we find a solution.

• Doing a time/space flip, so that now we have the mirror theory between two boundary

states separated by a mirror “time” L. See figure 2. We can apply a symmetry

generator that rotates one boundary relative to the other, so that we introduce the

two angles.

• We compute this overlap using TBA equations for any L, focusing on the ground

state energy, which is extracted by taking the large T limit of the computation in

figure 2. These boundary TBA equations can be derived following a method similar

to the relativistic case [18].

• We set L = 0 we get the cusp anomalous dimension.

Let us discuss these steps in a bit more detail. First we should note that the exact

integrability methods, as currently understood, work best to compute energies of states.

– 4 –
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Thus, we should phrase the computation of the cusp anomalous dimension as the com-

putation of an energy. This is very simple. Under the usual plane to cylinder map, the

cusp on the plane maps into two static quark and anti-quark lines on S3 × R. The quark

and anti-quark lines are extended along the time direction, and they are separated by an

angle π − φ on the S3, see figure 1. The case φ = 0, which is the straight line in the

plane, is mapped to a quark-anti-quark pair at opposite points on the sphere. If θ = 0,

this is a BPS configuration and the cusp anomalous dimension vanishes exactly for all λ.

In fact, for θ = ±φ we continue to have a BPS configuration [19] and the cusp anomalous

dimension continues to vanish. In general, the cusp anomalous dimension is the energy of

this quark-anti-quark configuration, as a function of the two angles, φ and θ.

The configuration with θ = φ = 0 preserves 16 supercharges which, together with

the bosonic symmetries, give rise to a OSp(4∗|4) symmetry group. This is important to

determine the boundary reflection matrix.

Let us begin by considering an apparently unrelated problem which is the problem of

computing the anomalous dimension of operators inserted along a Wilson loop. First we

consider a straight Wilson loop and we insert an operator at the point t = 0. For example,

we can consider an insertion of a complex scalar field Z on the contour

Pei
∫ 0
−∞(A+iΦ4)Z(0)ei

∫∞
0 (At+iΦ4) = BlZ(0)Br . (1.6)

These are operators that live on the loop and should not be confused with closed string

operators. We denote these operators as BlZBr, where Bl,r stands for the usual path

ordered exponentials of the gauge field. The operator considered above is BPS if Z is

constructed out of scalars that do not appear in Bl,r (1.6). To be definite, we consider

Z = Φ5 + iΦ6. We can similarly consider operators of the form BlZ
LBr which continue to

be BPS. The straight Wilson loop is invariant under dilatations, so we can characterize the

operators by their dimension under dilatations. These operators have dimension ∆ = L.

Determining the scaling dimension of operators of this type, but with more general

insertions, is easier in the large L limit. Then, we can solve this problem by considering

impurities propagating along a long chain of Z’s. The impurities are the same as the

ones that were used to solve the closed string problem in a similar regime [13, 20]. The

new aspect is that the impurities can be reflected from the boundaries at the end of the

chain. This picture was discussed at the 1-loop order in the weak coupling limit in [11]. To

proceed, we need to determine the boundary reflection matrix to all orders in the coupling.

The matrix structure can be determined by group theory, as in [13]. The phase factor is

more subtle. We write a crossing equation for it and we solve it following the strategy

outlined in [21, 22]. At this stage we have completely solved the problem for operators

with large L. Up to corrections of order e−(const)L, we can find the energy of any open

string state by solving the appropriate Asymptotic Bethe equations.

After we have found the boundary reflection matrix we can then consider the possibility

of rotating the half Wilson line that is associated with it. This rotation will simply act on

the indices of the reflection matrix via a global transformation. Now we can consider states

of the form BlZ
LBr(θ, φ), where we have rotated one of the sides of the Wilson line. This

– 5 –
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L

T
left

Blboundary Br
right
boundary

Figure 2. The BTBA trick. The same partition function can be viewed in two ways (1.7). In

the open string channel it is a trace over all states in the open string Hilbert space. In this case

Euclidean time runs along the T arrow. Alternatively we can view it as the propagation of a closed

string along the L arrow. The closed string has length T and propagates over a Euclidean time L.

The two boundary conditions, now lead to two boundary states that create the closed strings that

propagate along the closed string channel.

operator is no longer BPS but its energy is very small when L is very large, i.e. it has zero

energy up to e−(const)L corrections. These are called Luscher (or wrapping) corrections.

Before writing down the Thermodynamic Bethe Ansatz that describes the most general

finite L state, we will make some checks on the phase that has been obtained. As a non-

trivial check one can get the first corrections to the ground state energy for large L. Namely,

we are interested in the anomalous dimension of the operator of the form BlZ
LBr(θ, φ).

This correction is given by a Luscher-type formula. This formula can be most simply

understood by considering the problem in the mirror picture. Namely, we exchange space

and time in the open string picture. In other words, we have the equivalence

Zopen
Bl,Br

= Tropen[e
−THopen

Bl,Br ] = 〈Bl|e−LHclosed |Br〉 , (1.7)

where Hopen
Bl,Br

is the open chain Hamiltonian on a strip of length L and Hclosed is the

closed chain Hamiltonian of the mirror theory on a circle of size T . So now we have a

closed string exchanged between two boundary states. The analytic continuation of the

boundary reflection matrix gives us the probability of emitting a pair of particles from

the boundary state. It turns out that this continued reflection matrix has a pole at zero

mirror momentum which implies that we can create single particles [17]. The coefficient of

the pole in the reflection matrix at zero mirror momentum determines the prefactor of the

Luscher correction [23]. We compute this at strong coupling and we find agreement with

a direct string theory computation. Furthermore, the leading order correction at weak

coupling, going like g2, also comes from this Luscher type term. In this way we match the

leading corrections at weak and strong coupling. This constitutes a test of the boundary

reflection matrix. In particular the very existence of the pole at zero mirror momentum is

due to the phase factor of the matrix, which we derived by solving the crossing equation.

Finally, one can write down a Thermodynamic Bethe Ansatz equation that describes

the finite L situation. This follows the standard route for getting the energies of states of

an integrable field theory with a boundary. The derivation of these equations is very similar

to the derivation of the equations for closed string states. The new element is that instead

of a thermodynamic partition function we have the overlap between two boundary states,

– 6 –
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as in (1.7). The derivation of TBA equations for integrable systems with a boundary was

considered in [18]. The boundary states are given in terms of the analytic continuation

of the boundary reflection matrix. The TBA system of equations arises from evaluating

this exact overlap between the two boundary states in an approximate way by giving the

densities. Most of the TBA equations come from the entropy terms, which are the same

in our case. Thus the boundary TBA equations are very similar in structure to the closed

ones. We obtain

log YA = log(κlAκ
r
A)− 2LEm,A +KAB ∗ log(1 + YB) . (1.8)

The cusp anomalous dimension, or quark/anti-quark potential is given schematically by

E = − 1

2π

∑

A

∞∫

0

dqA log(1 + YA) . (1.9)

Here Em,A and qA are the energies and momenta of the excitations in the mirror theory.

The equations will be given below in their full detail, (4.2)-(4.6). The information about

the boundary is contained in κA which comes from the reflection phase of the theory and

depends on the boundary state.

Note. We were informed that similar ideas were pursued in [24].

2 Spectrum of operators on a Wilson line

Let us first discuss the symmetries preserved by a straight Wilson line. Let us start

with the bosonic symmetries. It preserves an SL(2) × SU(2) × SO(5) symmetry group.

The SO(5) is the subset of SO(6) that leaves Φ4 invariant, where Φ4 is the scalar that

couples to the Wilson line. The SU(2) factor corresponds to the spatial rotations around

the loop. The SL(2) factor contains time translations, dilatations and special conformal

transformations along the time direction. In addition, we preserve half of the supercharges.

The full supergroup is OSp(4∗|4). The star means it is the real form of SO(4) such that

SO(4∗) ∼ SL(2)× SU(2).

Now we can consider the insertion of an operator of the form ZL on the Wilson loop,

we can denote this as BlZ
LBr. Here we choose Z to be Z = Φ5 + iΦ6.

The operator Z inserted at the origin preserves an SU(2|2)2 subgroup of the full

symmetry group of the theory. The Wilson loop, together with the Z insertions at the

origin preserve an SU(2|2)D subgroup of all the symmetry groups we mentioned. This is a

diagonal combination of the two SU(2|2) factors preserved by Z. This common preserved

symmetry is very useful for analyzing this problem. These operators are BPS, and they

have protected anomalous dimension, E ≡ ∆− J56 = 0.

Note that on S3 we have a flux tube that goes between the quark and the anti-quark.

These operators inserted on the Wilson loop are mapped to to various excitations of the

flux tube.

– 7 –
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ΨAḂ(p)

ΨCḊ(−p)

ΨA(p)

ΨĎ(p)

ΨB̌(−p)

ΨC(−p)

Figure 3. Unfolding of R(p) into S(p,−p). There is a non-trivial map between dotted and checked

indices. See appendix A for details.

2.1 The boundary reflection matrix

Recall that the bulk excitations are in a fundamental representation of each of the two

s̃u(2|2) factors of the s̃u(2|2)2 symmetry of the Z-vacuum. The tilde means that we

are considering the momentum dependent central extensions discussed in [13, 25]. In

other words, we can think of them as particles with two indices ΨA,Ḃ, where A labels

the fundamental of the first s̃u(2|2) and Ḃ labels the fundamental of the second s̃u(2|2)
factor of the s̃u(2|2)2 symmetry of the infinite chain. This central extension determines

the dispersion relation for the excitations

i

g
= x+ +

1

x+
− x− − 1

x−
, (2.1)

eip =
x+

x−
, ǫ = ig

(
1

x+
− 1

x−
− x+ + x−

)
=
√

1 + 16g2 sin2 p
2 , (2.2)

Throughout this paper we define g as2

g ≡
√
λ

4π
=

√
g2YMN

4π
. (2.3)

The scattering matrix between two particles has the form SCĊDḊ
AȦ,BḂ

= S2
0 Ŝ

CD
AB Ŝ

ĊḊ
ȦḂ

[13].

Namely, it is the product of a phase factor S2
0 and two identical matrices, one for each

s̃u(2|2) factor. These matrices are fixed (up to an overall factor) by the s̃u(2|2) symmetry

of the theory [13, 25]. These matrices depend on the two momenta, p1 and p2, of the

scattered variables. The phase factor S0(p1, p2) was guessed in [6, 26], and a nice derivation

was given in [21, 22].

In our problem we need to fix a reflection matrix of the form RCḊ
AḂ

(p). Let us consider

first the reflection from the right boundary, see figure 3. This matrix depends on only one

momentum p, the momentum of the incident magnon. The boundary is invariant under an

s̃u(2|2)D symmetry group, which is diagonally embedded in the s̃u(2|2)2 symmetry group

of the bulk of the spin chain (see appendix A). A similar problem was studied in [16]

and the matrix part of the reflection is the same. Thus the symmetries constraining the

2Note that g 6= gY M .
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reflection matrix are exactly the same as those constraining the bulk scattering matrix

for each of the s̃u(2|2) factors. From this argument we expect that the matrix structure

should be completely fixed. In fact, the matrix structure should be essentially the same as

what we encounter in the matrix ŜCD
AB (p,−p), or RCĊ

AȦ
(p) ∝ ŜCĊ

AȦ
(p,−p). One is tempted

to say that the scattering phase factor would be S0(p,−p). However, this is not fixed by

the symmetries, and will not be true as we discuss below. In the presence of a boundary,

we can do a kind of “unfolding” of the spin chain. Here each bulk magnon is viewed as a

pair of magnons of s̃u(2|2)D, one with momentum p to the left of the boundary and one

with momentum −p to the right of the boundary. See figure 3 .

This completely solves the problem of fixing the matrix structure of the reflection

matrix. The full reflection matrix, in complete detail, is given in appendix A. One can

also check that it obeys the boundary Yang Baxter equation. But this is clear from the

“unfolded” picture in terms of a single chain. We should emphasize that we have assumed

that there are no boundary degrees of freedom. We do not see any evidence of any boundary

degrees of freedom at either weak or strong coupling, so this is a reasonable assumption.

Before we determine the phase, let us make a side remark. There is a variety of

problems that give rise to a spin chain with boundaries and preserve the same symmetries,

OSp(4∗|4). We can consider an open string ending on a D5 brane that wraps AdS4 × S2,

or AdS2 × S4. In fact, there is a whole family of BPS branes of this kind that arises by

adding flux for the U(1) gauge field on the brane worldvolume on the S2 or AdS2. In fact,

in the limit of large electric flux on the AdS2 × S4 brane we get a boundary condition like

the Wilson loop one. In fact the AdS2 × S4 branes can be interpreted as Wilson loops in

the k-fold antisymmetric representation of U(N) [27]. In all these cases one can choose

the BMN vacuum (or choose the field Z) in such a way that we preserve the s̃u(2|2)D
of the spin chain. Therefore, we would get the same matrix structure for the reflection

matrix, again assuming that there are no boundary degrees of freedom. However, they

would differ in the choice of a phase factor. Below we get a phase factor which has all the

right properties to correspond to the one of the Wilson loop. It would be interesting to fix

the phase factor also for these other cases, but we leave this to the future.

In order to fix the phase factor we write a crossing equation. We derive this by writing

the identity state of [13], scattering it through the boundary and demanding that the

full phase is equal to one. Denoting the phase factor as R0, defined more precisely in

appendix A, we obtain the crossing equation

R0(p)R0(p̄) = σ(p,−p̄)2 , (2.4)

where the bar indicates the action of the crossing transformation. Here σ(p1, p2) is the

bulk dressing phase, discussed in [6, 22]. We are going to p̄ along the the same contour in

momentum space that we choose in the formulation of the bulk crossing equation.

In addition, we also should impose the unitarity condition

R0(p)R0(−p) = 1 . (2.5)

– 9 –
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We now write the ansatz

R0(p) =
1

σB(p)σ(p,−p)

(
1 + 1

(x−)2

1 + 1
(x+)2

)
. (2.6)

Here σ is the bulk dressing phase. This would be our naive choice for a phase factor. The

explicit factors of x± have been chosen only to simplify the final formula. We have an

unknown factor σB(p). Now (2.4) becomes

σB(p)σB(p̄) =
x− + 1

x−

x+ + 1
x+

. (2.7)

We can now solve this equation using the method proposed in [21, 22]. We give the

details in appendix B. We obtain

σB = eiχ(x
+)−iχ(x−) , (2.8)

iχ(x) = iΦ(x) =

∮

|z|=1

dz

2πi

1

x− z
log

{
sinh[2πg(z + 1

z )]

2πg(z + 1
z )

}
, |x| > 1 . (2.9)

This expression is valid when |x| > 1. The value for χ in other regions is given by analytic

continuation. We have also introduced the function Φ(x) which is given by the integral for

all values of x. When |x| < 1 these two functions differ by

iχ(x) = iΦ(x) + log

{
sinh[2πg(x+ 1

x)]

2πg(x+ 1
x)

}
, |x| < 1 (2.10)

The ambiguities in the choice of branch cuts for the logarithm cancel out when we compute

σB in (2.8). Note that χ(x) = χ(−x).
So far, we have found a particular solution of the boundary crossing equation. Still,

the true dressing phase might require the inclusion of further CDD factors. In order to

make a conjecture for the exact boundary dressing phase, we need to compare against some

explicit computations.

Before doing so, let us observe that, given σB(p), we can define an infinite family of

solutions by taking

σ
(s)
B (p) =

(
x− + 1

x−

x+ + 1
x+

)s

[σB(p)]
1−2s . (2.11)

By computing the dressing phase in the physical regime we will be able to show that s = 0

is the solution we want.

The proposal for the phase factor for the reflection matrix, given in (2.6), (2.8) is one

of the important results of this paper. We will perform various checks on its validity.

2.2 Checks of the boundary reflection phase in the physical region

Let us describe how to compute the boundary dressing phase at strong coupling. We have

to consider the open string solution that corresponds to a 1/2 BPS Wilson line carrying

– 10 –
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p −p

σ

p = π

0

Figure 4. Computation of the reflection phase at strong coupling. We have a soliton at the

boundary, which is at rest at σ = 0. There is also an image soliton coming from the right. Then

the soliton with momentum p scatters through the soliton at rest and the one with momentum −p,
leading to a certain time delay. From the time delay we can compute the derivative of the reflection

phase with respect to the energy.

a large J56 charge given in [11]. This solution describes the transition from the boundary

Wilson line to an infinite BMN vacuum. It is convenient to understand this solution in

the conformal gauge, when we set the stress tensor on the S5 equal to one, and the stress

tensor of the AdS5 to minus one. In these variables, the problem only involves an AdS2×S2

subspace and we can perform the Pohlmeyer reduction in each factor. The S2 part gives

rise to a sine gordon theory and the solution is just half of a soliton at rest. More precisely,

the center of the sine gordon soliton sits at the boundary. In the AdS2 part we have a

sinh gordon theory, and the solution is a sinh-gordon “soliton”. This is a singular solution

which is the direct analytic continuation of the sine gordon soliton. The singularity reflects

the fact that the string goes to the AdS boundary. If we compute the energy, there is a

divergent part and the finite part is zero. The setup is explained in more detail in [11].

The fact that the finite part of the energy is zero is consistent with the absence of a

boundary impurity transforming non-trivially under s̃u(2|2). A bulk magnon is a sine

gordon soliton, and leaves the AdS part of the solution unperturbed. In the presence of

a boundary, we need to put also the “image” of this soliton and the configuration looks

as in figure 4. The reflection involves the scattering of the soliton with the image soliton

as well as the scattering with the soliton at rest. These soliton scattering phases were

computed in [14, 28]. So the strong coupling limit of the right boundary scattering phase

R0(p) = eiδR(p) is given by

δR(p) = −8g cos p
2 log cos

p
2 − 4g cos p

2 log

(
1− sin p

2

1 + sin p
2

)
. (2.12)

The first term in (2.12) is exactly what one gets from the strong coupling limit of the

factor 1/σ(p,−p) [28]. We will see that the second term corresponds to σB(p)
−1. At strong

coupling can expand (2.9) as

iχ(x) ∼ 4g

[
−1 + (x+

1

x
)
1

2i
log

(x+ i)

(x− i)

]
+O(1) , (2.13)
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which leads, for physical excitations, to

1

i
log σB(p) = 4g cos p

2 log

(
1− sin p

2

1 + sin p
2

)
. (2.14)

This indicates that we must pick the case s = 0 from the family of solutions (2.11).

Finally, let us discuss the behavior at weak coupling. The bulk dressing phase σ has

its first contribution at order g6, leading to four loop corrections to anomalous dimensions.

On the other hand, the boundary dressing phase, σB, receives its first contribution at g4,

so that it will start modifying anomalous dimensions of operators inserted on the Wilson

loop (dual to open string states) at three loops.

2.3 Reflection matrix for a Wilson line at general angles

We will need the boundary reflection matrix for a Wilson line sitting at general angles, φ

and θ. In particular, we want the left and right boundaries of the open chain to be rotated

by relative angles. We can obtain the boundary state of the Wilson line at a different

position on the S3, or the S5, by applying a symmetry transformation on Br. This should

be a symmetry that is broken by Br. So for example, we can apply an SU(2)L rotation on

the S3 which is in one of the SU(2) factors in the SO(4) group of rotations of the 3-sphere.

If we apply an SU(2)L rotation with an angle 2φ, we will get that the quark is rotated by an

angle φ on the S3, away from the south pole. See figure 1(b). Note that the SU(2)L we are

considering is a symmetry of the Z vacuum. We have a similar feature on the S5. We can

also apply a rotation in an SU(2)L′ factor inside SO(4) ⊂ SO(6) (this SO(4) leaves the Z

vacuum invariant). The reflection matrix is very easy to obtain. We pick these two SU(2)

generators so that they sit in the bosonic part of one of the s̃u(2|2) factors of the s̃u(2|2)2
symmetry of the bulk. Then they will simply introduce some phases of the form eiφ or eiθ

when a state is reflected from the boundary and its SU(2) quantum number changes. The

SU(2)L or SU(2)L′ quantum numbers can change because they are not symmetries of the

boundary state. More explicitly, the reflection matrix from a boundary state at angles φ, θ

is given by

RBḂ
AȦ

(θ, φ) = (m−1)BDm
C
AR

DḂ
CȦ

(0, 0) , with m = diag(eiθ, e−iθ, eiφ, e−iφ) . (2.15)

Note that the matrix m acts only on the undotted indices since we did a rotation inside

only one of the s̃u(2|2) factors.

2.4 Luscher computations and checks in the mirror region

In this subsection we start considering the problem with two boundaries. In other words

the operator BlZ
LBr(φ, θ). Here φ, θ are the relative orientations of the two boundaries.

On the plane, this corresponds to a cusp, plus an operator of the form ZL at the tip. In

the limit L ≫ 1 we get the naive superposition of the two boundaries and the energy of

the state is zero (E = ∆−L = 0), regardless of the orientation of the two boundaries. The

leading correction is of the form e−(constant)L. These corrections come from the exchange of

particles along the “mirror” channel. The boundary sources particles, which then travel to

– 12 –
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the other boundary. These corrections sometimes go under the name of Luscher corrections.

Of course the familiar Yukawa potential is a simple example where the leading correction

comes from the exchange of a single massive particle.

In order to derive the precise correction formula it is convenient to describe in more

detail the mirror theory. In the bulk of the worldsheet the mirror theory was discussed in

various papers, see [29] for example. This theory is defined by exchanging the space and

time directions of the spin chain we have been considering so far. Thus, instead of (2.2)

we define q = iǫ and Em = ip, and use the same formulas as in (2.2). Here q is the mirror

momentum and Em is the mirror energy. In order for these to be real we will need to pick

a solution of (2.1) with |x+| > 1 and |x−| < 1. From the expression for q, we can write

z[±a] =
1

4g

(√
1 +

16g2

a2 + q2
± 1

)
(q + ia) , (2.16)

Em = 2arcsinh

√
q2 + a2

4g
. (2.17)

Here z± just denote the values of x± in the mirror region. We have also written the

dispersion relation in the mirror region, for an arbitrary bound state. The elementary

mirror magnon has a = 1.

When we have a boundary, this time/space flip turns the boundary into a boundary

state, see figure 2. Then a suitable analytic continuation of the boundary reflection matrix

characterizes the boundary state. The boundary state creates a supersposition of many

particles. The total mirror momentum should be zero since it is translational invariant.

So, schematically the state has the form

|B〉 = |0〉+
∞∫

0

dq

2π
KAȦ,BḂ(q)a†

−q AȦ
a†
q BḂ

|0〉+ · · · (2.18)

with

KAȦ,BḂ(q) =
[
R−1(z+, z−)

]AȦ

DḊ
CDḊ,BḂ , (2.19)

where we put the mirror values (2.16). Here R is the right reflection matrix, with z±

continued to the mirror region (2.16). This amounts to an analytic continuation of the

reflection matrix. Here a†
q AȦ

is the creation operator of a magnon with momentum q. C is

a charge conjugation matrix. In the case of a relativistic model with a single particle (2.19)

reads K(θ) = 1/R(θ − iπ2 ), [17]. The formula (2.19) can be obtained by performing a π/2

rotation of the boundary condition. Due to the independence of reflection events from a

boundary, we can exponentiate (2.19) to get the full boundary state [17, 18]. Similarly, we

can form a future boundary state. This is a boundary state that annihilates the particles.

It is given by

〈B| = 〈0|+ 〈0|
∞∫

0

dq

2π
K̄AȦ,BḂ(q)a

AȦ
q aBḂ

−q + · · · (2.20)
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with

K̄AȦ,BḂ(q) =

[
R−1

(
− 1

z−
,− 1

z+

)]DḊ

BḂ

CDḊAȦ . (2.21)

In the relativist case (2.21) would be K̄(θ) = 1
R(−iπ

2
−θ) .

When L is very large the leading L-dependent contribution comes from the exchange

of this pair of particles and we can write the corresponding contribution as

δE = −
∞∫

0

dq

2π
e−2LEm(q)t(q) , t(q) = Tr[K(q)K̄(q)] . (2.22)

This formula is correct whenever the integral is finite.

In our case, the phase factor σB has a pole at q = 0. In the physical region σB(p) was

perfectly finite. This pole in the mirror region is crucial for obtaining the correct answer.

But first we need to generalize (2.22) to the situation when we have a pole at q = 0. The

physical interpretation of this pole at q = 0 is that the boundary state is sourcing single

particles states in the mirror theory [17]. For a similar case in the AdS/CFT context

see [30]. Obviously such source has to contain only zero momentum particles.

A careful analysis leads to the formula [23]

E ∼ −
∞∫

0

dq

2π
log
{
1 + e−2LEm(q)Tr[K(q)K̄(q)]

}
∼ −1

2
e−LEm(0)

√
q2Tr[K(q)K̄(q)]|q=0 .

(2.23)

In the last equality we extracted the leading term in the integral, which comes only from the

coefficient of the pole. Notice that the L dependence is precisely what we expect from the

exchange of a single particle. We should sum over all the particles that can be exchanged.

The mirror theory contains bound states indexed by an integer a = 1, 2, · · · , and we should

sum over them.

In appendix D we show that we can evaluate t(q) for a fundamental mirror particle

and we obtain

t(q) = σB(z
+, z−)σB

(
− 1

z−
,− 1

z+

)(
z−

z+

)2 (
Tr[(−1)F ]

)2
, (2.24)

where the trace is over the four states of a single s̃u(2|2) magnon. Let us now give a simple

explanation for this formula, for more details see appendix D. We can write the reflection

matrices that appear in K and K̄ (2.19) (2.21) in terms of bulk S-matrices for the unfolded

theory, namely in terms of bulk S matrices for a single s̃u(2|2) factor. The matrix in K is

essentially S(−p, p) and the one in K̄ is S(p̄,−p̄). When we multiply these matrices we can

use the bulk crossing equation to get the identity. Here we should use the full bulk matrix,

including the bulk σ factor. This is the reason that the bulk σ factor disappears from

the final formula (2.24), but the boundary one remains. The factor of z−/z+ arises from

the factor in parenthesis in (2.6). Finally, the (−1)F is related to the fact that we have

fermions. Here F is the fermion number. When we perform the TBA trick, we get periodic

fermions in Euclidean time if we started with periodic fermions in the spatial directions. Of
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(a) (b) (c)

Figure 5. (a) We have a strip with pairs of particles being exchanged. The two colors represent

the two types of indices. In (b) we unfolded this into a cylinder computation. The K matrices

became S matrices for a single s̃u(2|2). (c) Using crossing we have moved the lines. The red circles

indicates the action of the matrix m.

course a periodic fermion in Euclidean time is the same as the trace with a (−1)F inserted.

The operations that lead to (2.24) can be understood graphically as in figure 5.

Of course, for a fundamental magnon Tr[(−1)F ] = 0. This is good, since it is saying

that the correction vanishes in the BPS situation. If we rotate one boundary relative to

the other then we need to perform the replacement

Tr[(−1)F ] −→ Tr[(−1)Fm] = −2(cosφ− cos θ) . (2.25)

where m is given in (2.15). Again, we see that it vanishes in the BPS case φ = ±θ.
To write down the full Luscher formula we need to compute t(q) also for the bound

states of the mirror theory. One can first use the standard fusion procedure to get the

bound state reflection matrix. Then one can use the same argument as above to eliminate

the bulk S matrices, as in figure 5. The final formula is

ta(q) = σB(z
[+a], z[−a])σB

(
− 1

z[−a]
,− 1

z[+a]

)(
z[−a]

z[+a]

)2 (
Tr[(−1)Fma]

)2
, (2.26)

Tr[(−1)Fma] = (−1)a2(cosφ− cos θ)
sin aφ

sinφ
, ‘ (2.27)

where now the trace is over all the states of a magnon boundstate in a single copy of

s̃u(2|2), see equation (D.7) in appendix D. As anticipated, an important property of σB is

that it has a pole at q = 0. More precisely the combination of σB in (2.26) becomes

eiχ(z
[+a])−iχ(z[−a])+iχ(1/z[−a])−iχ(1/z[+a])=

2πg(z[−a] + 1
z[−a] )

sinh[2πg(z[−a] + 1
z[−a] )]

2πg(z[+a] + 1
z[+a] )

sinh[2πg(z[+a] + 1
z[+a] )]

×ei(Φ(z[+a])−Φ(z[−a])+Φ(1/z[−a])−Φ(1/z[+a])) . (2.28)
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Here we used that z is in the mirror kinematics and we used (2.10) to evaluate χ(x) when

|x| < 1. We have also used that χ(−x) = χ(x). Each of the sinh factors leads to a pole at

q = 0. Namely, using (2.16) we get

2πg(z[±a] +
1

z[±a]
) = ±iπa+ πq

√
1 +

16g2

a2
+O(q3) . (2.29)

for small q. We then can write the pole part of (2.28) as

eiχ(z
[+a])−iχ(z[−a])+iχ(1/z[−a])−iχ(1/z[+a]) ∼ 1

q2
a4

(a2 + 16g2)
F (a, g)2 +O(1) , (2.30)

with F (a, g)2 ≡ ei(Φ(z[+a])−Φ(z[−a])+Φ(1/z[−a])−Φ(1/z[+a]))|q=0 ,(2.31)

where the last factor is evaluated at q = 0.

Then we find the coefficient of the double pole of t as

lim
q→0

q2 ta(q) = 4
(cosφ− cos θ)2

sin2 φ
sin2(aφ)

a4

(a2 + 16g2)

(
−a+

√
a2 + 16g2

a+
√
a2 + 16g2

)2

F (a, g)2 .

(2.32)

The factor in parenthesis is (z[−a]/z[a])2. Finally, inserting this into the expression for the

energy (2.23), we find

∆E ∼ −(cosφ− cos θ)

sinφ

∞∑

a=1

(−1)a

(
−1 +

√
1 + 16g2/a2

1 +
√

1 + 16g2/a2

)1+L

sin(aφ)
a√

1 + 16g2/a2
F (a, g) .

(2.33)

The factor in parenthesis is just e−Em(a)(L+1), representing the exchange of a bound state

in the mirror channel. The sign (−1)a is a bit subtle and has to do with the correct sign

we should pick for the square root in (2.23). The correct sign is easier to understand for

an angle of the form φ = π − δ, for small δ. In this case we have a quark antiquark

configuration and it is clear that we should get a negative contribution to the energy. In

fact, we can think of the overlap of the two boundary states as computing a kind of norm

or inner product. We see that in terms of δ the expression has the expected sign. In other

words, for small δ we get the positive sign of the square root in (2.23). Of course, once we

get the expression for small δ we can write it in terms of φ, or even analytically continue

φ = −iϕ.

2.4.1 Leading Luscher correction at weak coupling

The expression (2.33) gives the leading Luscher correction at all values of the coupling for

large L. Let us now examine it at weak coupling. Then the factor in parenthesis in (2.33) is

of order g2. So, at leading order, we get a term of the form g2+2L. This has the interesting

implication that this leading “wrapping” correction appears at L + 1 loops. In particular

for L = 0, the one loop contribution comes from such a term!. In fact, expanding (2.33) to
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leading order in g2, and setting L = 0, we can set F = 1 to this order and obtain

Γcusp = −4g2
(cosφ− cos θ)

sinφ

∞∑

a=1

(−1)a
sin aφ

a
(2.34)

= 2g2
(cosφ− cos θ)

sinφ
φ , (2.35)

which coincides exactly with the leading 1-loop contribution to Γcusp(φ, θ) computed in [2].

We can also do the computation of the leading order term for any L, we get

E = −g2+2L (cosφ− cos θ)

sinφ

(−1)L(4π)1+2L

(1 + 2L)!
B1+2L

(
π − φ

2π

)
+O(g4+2L) (2.36)

where Bn(x) is the Bernoulli polynomial, which is a polynomial of degree 2L+ 1. In [5] a

particular class of diagrams was identified which produced the same expression.

2.4.2 Leading Luscher correction at strong coupling

We can also compute the leading large L correction at strong coupling. We simply evaluate

the large g limit of (2.33). First we note that

(
z[−a]

z[+a]

)L+1

∼ e
− a

2g
L
= e−LEm(q=0) . (2.37)

This implies that to leading order in e−L we only need to consider the case a = 1. The

expansion of the function F is done in appendix C.1 eq. (C.31). Putting everything

together we find that the leading strong coupling correction goes as

E = (cosφ− cos θ)
16g

e2
e
− L

2g . (2.38)

This agrees precisely with the result computed directly from classical string theory in

appendix C, see (C.23). This constitutes a nontrivial check of the reflection phase. Notice,

the funny factor of e−2 which is correctly matched.

3 The open Asymptotic Bethe Ansatz equations

We will now write down the asymptotic Bethe ansatz (ABA) equations that describe the

spectrum of operators with large L inserted on the Wilson loop. These give rise to a

spin chain with two boundaries, which are separated by a large distance L. Moreover, the

ABA equations are used to derive the BTBA system by embedding them into the closed

equations, as we do in appendix E.1.

In order to obtain the ABA equations we have to diagonalize the way the bulk and

boundary scattering matrices act. This can be done by formulating a nested Bethe ansatz,

which defines impurities at different levels of nesting. Here we just sketch the computation,

which is a straightforward generalization of the case with periodic boundary conditions

studied in [13].
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Consider an asymptotic state with N I bulk magnons, or level I excitations, on the

half-line with a right boundary. We will introduce a second boundary and relative angles

later, when writing down the Bethe equations. In particular, we can consider a state whose

level I impurities all carry the same SU(2|2)D index.3 Say, for example, in the unfolded

notation,

|Ψ3(p1) · · ·Ψ3(pN I)Ψ3̌(−pN I) · · ·Ψ3̌(−p1)〉 ≡ |0〉II , (3.1)

which is regarded as the level II vacuum state. Of course, we could also consider states

where N II out of the N I level I impurities have different indices. Those should be under-

stood as N II impurities in the level II vacuum state. In total, such states will contain N I

level I impurities and N II level II impurities. In general, we have |Ψa1(y1) · · ·Ψa
NII (yN II)〉II

for ak = 1, 2, where yk are auxiliary parameters associated with the level II impurities.

Similarly, a third level of nesting can be defined. If all the level II excitations carry the

same index, for instance |Ψ1(y1) · · ·Ψ1(yN II)〉II ≡ |0〉III, we can define a level III vacuum

state. Then, magnons Ψ2 will be treated as level III impurities propagating in |0〉III. For

the kind of SU(2|2) spin chain we are considering, this level III is the final level of nesting.4

Then, to formulate a coordinate Bethe ansatz, bulk and boundary scattering factors

among excitations of different levels have to be introduced to write the nested wavefunc-

tions. Those can be determined by imposing certain compatibility conditions. Namely,

that the action of the bulk and boundary scattering matrices on wavefunctions with higher

level impurities just pulls out the same factor as when acting on the level II vacuum state.

Naturally, the bulk scattering factors are exactly the same as the ones obtained in the

periodic case [13],

SI,I(x±1 , x
±
2 )=−S0(p1, p2) , (3.2)

SI,II(x±, y)=1/SII,I(y, x±) = −y − x−

y − x+
, (3.3)

SIII,II(w, y)=
w − y − 1

y + i
2g

w − y − 1
y − i

2g

=
w − v + i

2g

w − v − i
2g

, (3.4)

SIII,III(w1, w2)=
w1 − w2 − i

g

w1 − w2 +
i
g

, (3.5)

where

S0(p1, p2)
2 =

(x+1 − x−2 )(1− 1
x−
1 x+

2

)

(x−1 − x+2 )(1− 1
x+
1 x−

2

)

1

σ(p1, p2)2
(3.6)

is the bulk dressing factor and v = y + 1
y . All other bulk scattering factors are trivial.

The reflection factors can be derived in the same way. The level II vacuum (3.1)

containing N I magnons becomes a lattice with 2N I sites. Consider a single level II impurity

propagating in this vacuum from left, i.e. propagating along the left (undotted) indices of

the bulk magnons. Undotted and dotted indices can only mix by the reflection of the

3The choice of index is arbitrary.
4Ψ4 are not considered as elementary but as double excitations.
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3̌3̌a 3 3̌3̌3 a 3̌3̌3 a

+ +R̃II + · · ·

3̌a3 3

+RII + · · ·

Figure 6. Propagation of a single level II impurity across the defect.

rightmost bulk magnon. That could make us think there exists a defect in the middle of

the level II vacuum lattice which separates the 3 and 3̌ indices of the rightmost level I

impurity. In principle, the level II impurity could be reflected and transmitted across such

defect, see figure 6.

However, and because the boundary scattering matrix R(p) ∝ S(p,−p), the compati-

bility condition we obtain from the reflection of the rightmost level I impurity is analogous

to the ones we obtain from the scattering of two level I impurities. In this way, the com-

patibility conditions imply that level II impurities are purely transmitted. In other words

R̃II = 0 and RII = 1. Analogously, the reflection of level III impurities is determined. In

summary, we have

RI(x±) = R0(p) , RII(y) = 1 , RIII(w) = 1 , (3.7)

where R0(p) is the boundary phase factor (2.6).

Let us now put the system in a finite strip by introducing another boundary. We

will then have certain quantization conditions on the rapidities for all kind of excitations,

namely the Bethe ansatz equations. We will introduce the left boundary with relative

angles with respect to the right one, by using the rotation discussed in section 2.3. To

understand how this rotation affects the factors RI, RII and RIII it is enough to consider

the action of m, defined in (2.15), on the following key components of the reflection matrix

R33̌
33̌ 7→ R33̌

33̌ , ⇒ RI 7→ RI ,

R31̌
13̌ 7→ eiθ−iφR31̌

13̌ , ⇒ RII 7→ eiθ−iφRII , (3.8)

R12̌
21̌ 7→ e−2iθR12̌

21̌ , ⇒ RIII 7→ e−2iθRIII ,

Let us finally write down the nested Bethe ansatz equations. They are obtained by

picking an impurity of any level of nesting and moving it through all the other impurities

twice and reflecting it from both boundaries as it is shown in the left picture of figure 7.

If we go to the unfolded picture what we have is periodic chain of length 2L, where

for every level I excitation of momentum pk there exists a mirrored one of momentum

−pk, figure 7. Such duplication does not occur for higher levels of nesting, for which the

excitations do not necessarily come in pairs. When moving around the level I excitations

to derive the Bethe equations, we have to recall that their duplication is an artifact of the

unfolding. Every pair represents a single magnon in the original picture. When we move

the original magnon, it looks like moving the pair simultaneously in the unfolded picture.

Then, for level I impurities we pick up the factors that correspond to simultaneously moving
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p1 p2 p3 p p4 −p1p1 p2 p3 p p4 −p4−p −p3−p2
(a) (b)

Figure 7. Bethe equation for the open chain. (a) The original picture with boundaries. The

particle goes to one boundary, then the other, and finally back to the origina position. (b) The

unfolded picture. We have a closed circle. The leftmost solid line is identified the rightmost one.

The motion that leads to the Bethe equations involves moving the magnon with momentum p

around the closed circle and at the same time we also move its partner which has momentum −p
around the circle in the opposite direction.

around the pair with momentum pk and −pk in opposite directions. For level II impurities,

we have to collect the factors corresponding to going through all the level I pairs and all

the level III impurities (scattering between level II particles is trivial). Finally, for level

III impurities we get the factors of going through all the level II impurities and all the

other level III impurities (scattering between level III and level I particles is trivial). The

resulting set of open Bethe ansatz equations is the following

1 =

(
x+k
x−k

)2L
(
1 + 1

(x−)2

1 + 1
(x+)2

)2
1

σB(pk)2σ(pk,−pk)2
N II∏

l=1

yl − x−k
yl − x+k

yl + x−k
yl + x+k

, (3.9)

N I∏

l 6=k

(x+k − x−l )(1− 1
x−
k
x+
l

)

(x−k − x+l )(1− 1
x+
k
x−
l

)

(x+l + x+k )(1 +
1

x−
l
x−
k

)

(x−l + x−k )(1 +
1

x+
l
x+
k

)

1

σ(pk, pl)2σ(pl,−pk)2

1 = eiθ−iφ
N I∏

l=1

yk − x+l
yk − x−l

yk + x−l
yk + x+l

N III∏

l=1

wl − vk − i
g

wl − vk +
i
g

(3.10)

1 = e−2iθ
N II∏

l=1

wk − vl +
i
g

wk − vl − i
g

N III∏

l 6=k

wk − wl − 2i
g

wk − wl +
2i
g

. (3.11)

Eq. (3.9) can be re-written, including l = k in the second product, as

1 = −
(
x+k
x−k

)2L
x− + 1

x−

x+ + 1
x+

1

σB(pk)2

N II∏

l=1

yl − x−k
yl − x+k

yl + x−k
yl + x+k

, (3.12)

N I∏

l=1

(x+k − x−l )(1− 1
x−
k
x+
l

)

(x−k − x+l )(1− 1
x+
k
x−
l

)

(x+l + x+k )(1 +
1

x−
l
x−
k

)

(x−l + x−k )(1 +
1

x+
l
x+
k

)

1

σ(pk, pl)2σ(pl,−pk)2
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As usual, the energy is given by

E =

NI∑

k=1

ǫ(pk) (3.13)

4 The boundary TBA equations

The Bethe equations (3.9)–(3.11) presented in the previous section are the correct descrip-

tion of the spectrum for large chains, L ≫ 1. As L becomes small, wrapping effects come

into play and the Bethe equations are no longer valid. Moreover, in this paper, we are

mainly interested in L = 0. A description of the spectrum that is valid for any L is the

Boundary Thermodynamic Bethe Ansatz (BTBA) equations. These are a set of integral

equations that govern the dynamics in the mirror channel. That is, the dynamics of excita-

tions after exchanging the two dimensional space and time directions [17, 31], see figure 2.

The TBA equations can be derived from the knowledge of the spectrum of states and

bound states in the mirror channel. This spectrum was derived in [32]. The derivation

of the TBA equations then follows the standard route given in [31, 33–36]. In the case

that we have a boundary we can follow essentially the same route. We use the boundary

state defined in section 2, and the untangling of boundary reflection matrices described in

figure 5. Then we get a TBA which looks very similar to what we would obtain for a closed

chain of twice the length L, except for the fact that for each particle of momentum q we

get one of momentum −q, since the boundary state creates such a pair of particles. The

consequence of this is that the Y functions obey a reflection property

Ya,s(u) = Ya,−s(−u) (4.1)

The set of Ya,s functions is the same as the one we have for the closed string problem [34–

36]. However, due to (4.1) we can restrict our attention to the ones with s ≥ 0. The

boundary data appears as chemical potentials which depend on the angles, θ, φ, as well as

a u dependent chemical potential given by the boundary dressing phase σB. The precise

form of the equations is derived in appendix (E).

Let us summarize the final equations

log
Y1,1
Y1,1

=Km−1 ∗ log
1 + Y 1,m

1 +Y1,m

1 +Ym,1

1 + Ym,1
+R(01)

1 a ∗ log(1 + Ya,0) (4.2)

log
Y 2,2

Y2,2

= Km−1 ∗ log
1 + Y 1,m

1 +Y1,m

1 +Ym,1

1 + Ym,1
+ B(01)

1 a ∗ log(1 + Ya,0) (4.3)

log
Y 1,s

Y1,s

=−Ks−1,t−1 ∗ log
1 + Y 1,t

1 +Y1,t

−Ks−1∗̂ log
1 + Y1,1

1 + Y 2,2

(4.4)

log
Ya,1
Ya,1

=−Ka−1,b−1 ∗ log
1 + Yb,1
1 +Yb,1

−Ka−1∗̂ log
1 + Y1,1

1 + Y 2,2

+
[
R(01)

ab + B(01)
a−2,b

]
∗ log(1 + Yb,0) (4.5)

log
Ya,0
Ya,0

=
[
2Sa b −R(11)

a b + B(11)
a b

]
∗ log(1 + Yb,0) + 2

[
R(1 0)

a b + B(1 0)
a,b−2

]
∗

sym
log

1 + Yb,1
1 +Yb,1
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s

a

1 2 3 4

2

3

4

s

a

1 2 3 4

2

3

4

−4 −3 −2 −1

2

3

4

(a) (b)

Figure 8. (a) Set of Ya,s functions for the closed string problem. Here we have the same set but

the additional condition (4.1) implies that we can restrict to the set in (b).

+2R(1 0)
a 1 ∗̂

sym
log

1 + Y1,1
1 +Y1,1

− 2B(1 0)
a 1 ∗̂

sym
log

1 + Y 2,2

1 +Y2,2

(4.6)

where we used the conventions of [37, 38] for the kernels and integration contours.5 We

have also defined the barred Y ’s as Y
(here)
a,s = 1/Y

(there)
a,s , (see appendix E.3 for a summary).

Here, the momentum carrying Ya,0 functions are defined as symmetric functions Ya,0(−u) =
Ya,0(u) and ∗

sym
f(v) = [∗f(v) + ∗f(−v)]/2 is a symmetric convolution.6 There are implicit

sums over one of the indices of the kernels.7 The bold face Y’s represent the asymptotic

large L solution. This is the solution we obtain when the convolutions with the momentum

carrying Ya,0’s are dropped. These asymptotic solutions are the only place where the angles

and the boundary dressing phase enter. They are given by

Y1,1=− cos θ

cosφ
, Y1,s =

sin2 θ

sin[(s+ 1)θ] sin[(s− 1)θ]
(4.7)

Y2,2=− cos θ

cosφ
, Ya,1 =

sin2 φ

sin[(a+ 1)φ] sin[(a− 1)φ]
(4.8)

Ya,0 = 4
eiχ(z

[+a])+iχ(1/z[−a])

eiχ(z
[−a])+iχ(1/z[+a])

(
z[−a]

z[+a]

)2L+2

(cosφ− cos θ)2
sin2 aφ

sin2 φ
. (4.9)

where χ is the function defining the boundary dressing phase (2.8). Notice that the length

L appears only in (4.9). Here z[±a] are the solutions of

u = g

(
z[+a] +

1

z[+a]

)
− i

a

2
= g

(
z[−a] +

1

z[−a]

)
+ i

a

2
=
q

2

√
1 +

16g2

a2 + q2
(4.10)

5The convolutions of terms depending on Y1,1 or Y 2,2 are over a finite range |u| ≤ 2g. We use ∗̂ as a

reminder of that.
6For the ground state, we expect all functions to be symmetric, Ya,s(u) = Ya,s(−u). But for excited

states (4.1) only requires the Ya,0 functions to be symmetric. The equation for excited states could in

principle be obtained by analytic continuation from these equations [37–40].
7The indices of Y1,m or Ym,1 run over m ≥ 2. For Yb,0 they run over b ≥ 1. The same as in [38].
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in the mirror region with |z[+a]| > 1 and |z[−a]| < 1.

Once we solve this system of equations, we can compute the ground state energy as

E = −
∞∑

a=1

∞∫

0

dq

2π
log(1 + Ya,0) , (4.11)

where q is the mirror momentum of each magnon bound state

q = g

[
z[+a] − z[−a] − 1

z[+a]
+

1

z[−a]

]
(4.12)

4.1 Recovering the Luscher result

As a simple check of these equations let us rederive the results of section 2.4. In the large

L limit we see that the factor
(
z[−a]

z[+a]

)2L+2
= e−Em2(L+1) is very small. This implies that

the Ya,0 in (4.9) are very small. So we expect that the Ya,0 are also small and that we

can set them to zero in all the convolution terms of the TBA equations. In this limit,

the energy is given by inserting the asymptotic form Ya,0, (4.9), in the expression for the

energy (4.11). One would be tempted to expand the logarithm in (4.11), since Ya,0 is very

small. However, Ya,0 has a double pole a u = 0, or q = 0, coming from the boundary

dressing phase. In other words, it behaves as

Ya,0 ∼
G2

a

q2
+O(1) (4.13)

for small q. We can then write the integrals in (4.11) as

∞∫

0

dq

2π
log(1 +Ya,0) =

∞∫

0

dq

2π
log

(
1 +

G2
a

q2

)
+

∞∫

0

dq

2π
log

(1 +Ya,0)(
1 + G2

a

q2

) (4.14)

In the second term we can certainly expand to first order in Ya,0 and G2
a, which produces

a result which is of order e−2Em(L+1). The first term, however, gives Ga/2 ∼ e−Em(L+1),

which is bigger. So we get

E ∼ −1

2

∞∑

a=1

Ga (4.15)

But this is precisely the same as what we got in section 2. Namely, (2.23) is the same

as (4.15) after we realize that Ga defined in (4.13) is essentially the same as (2.32), using

(4.9). This is not too surprising since [23] derived (2.23) by appealing to TBA equations.

In summary, (4.15) agrees precisely with (2.33).

In the next section we will perform a weak coupling check of the equations. We will

derive a simplified set of equations that describe the small angle limit θ, φ ∼ 0 and we will

expand and solve the resulting equations up to order g6.
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5 The near BPS limit

When φ = θ the Wilson loop is BPS and the energy vanishes. As we deform the angles

away from this supersymmetric configuration, the energy behaves as

Γcusp(φ, θ) = −(φ2 − θ2)
1

1− φ2

π2

B(λ̃) +O((φ2 − θ2)2) , λ̃ = λ

(
1− φ2

π2

)
. (5.1)

The function B, also known as the “Bremsstrahlung function”, is related to a variety of

physical quantities [8, 9]. It was computed exactly in [8, 9] using localization. In the planar

limit we get

B =
1

4π2

√
λ̃I2(

√
λ̃)

I1(
√
λ̃)

+O(1/N2) (5.2)

On the one hand, this allows us to test the BTBA equation to high loop orders by penetrat-

ing deep into almost all parts of the equation. On the other hand, the simplicity of (5.2)

suggests that, in the near BPS limit, the BTBA equations can be drastically simplified.

The equations we will find in this limit are not that simple. We hope that understanding

how to simplify them will teach us how to simplify TBA equation in general.

In this section we will study the BTBA equations in this limit. We will show that the

BTBA equations can be reduced to a simplified set of equations. We will then solve them

to 3-loop order. Here we restrict the discussion to θ = 0,8 so that λ̃ = λ and Γcusp(φ, θ) =

−φ2B(λ) + O(φ4). We also set L = 0 to extract the cusp anomalous dimension. It is

important to note that now φ is the smallest parameter. In particular, it is smaller than λ.

In this small angle limit, the momentum carrying Y-functions are of order Ya,0 =

O(φ4) and therefore very small. This limit reminds us of the large L asymptotic limit

where the momentum carrying Ya,0’s are exponentially suppressed. However, as opposed

to the asymptotic limit, in the small angle limit, we cannot drop the convolutions with

the momentum carrying Ya,0’s. Instead, we remain with a simplified set of non linear

equations. The reason is that the large value of log Ya,0 is not due to the sources in the

BTBA equations. Instead, it is due to the fact that the fermionic Y -functions (Y1,1 and

Y2,2) approach −1 and lead to a big contribution through the log(1+Y1,1) and log(1+Y2,2)

terms in the convolutions.

5.1 The simplified equations at small angles

As the momentum carrying Y-functions are small, they only contribute to B(λ) through

their double pole. We define Ca as the coefficient of the double pole at u = 0,

lim
q→0
φ→0

Ya,0 =

[
−φ

2

2u
Ca

]2
(5.3)

8The general near BPS case, with θ 6= 0, has a similar degree of complexity. In fact, we have explicitly

expanded the equations up to second order in λ and verified the corresponding expansion in (5.2). But we

will not give the details here.
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The energy, which is dominated by the value of Ya,0 at the double pole, reduces to

E =
φ2

2

∞∑

a=1

Ca√
1 + 16g2/a2

, (5.4)

where square root factor comes from the q → 0 limit of (q/2u), see (4.10).

In this small φ-limit, the other Y -functions can be expanded as

Y1,1 = −1− φ2Ψ+O(φ4) , Ym,1 = Ym

[
1 + φ2(Ωm −Xm)/2

]
+O(φ4) , (5.5)

Y 2,2 = −1− φ2Φ+O(φ4) , Y 1,m = Ym

[
1 + φ2(Ωm + Xm)/2

]
+O(φ4) .

where we assumed that to leading order Y1,1 = Y2,2 = −1 and Ym,1 = Y1,m. It is not

difficult to see that this assumption is consistent with the BTBA equations. Moreover, we

find that the functions Ωm drop out of the equations.

We find that the BTBA equations (4.2)–(4.9) reduce to

Ψ=
1

2
+Km−1 ∗

[
Xm

Ym

1 + Ym
+

1

3

]
− πCaR(01)

1 a (u, 0) (5.6)

(5.7)

Φ=
1

2
+Km−1 ∗

[
Xm

Ym

1 + Ym
+

1

3

]
− πCa B(01)

1 a (u, 0) (5.8)

logYm=−Km−1,n−1 ∗ log (1 + Yn)−Km−1∗̂ log
Ψ

Φ
(5.9)

Xm=−
m2

3
−Km−1,n−1 ∗

[
Xn

Yn

1 + Yn
+

1

3

]
+ πCn

[
R(01)

mn + B(01)
m−2,n

]
(u, 0) (5.10)

∆conv=

{
R(1 0)

a 1 ∗̂ log
( Ψ

1/2

)
−B(1 0)

a 1 ∗̂log
( Φ

1/2

)
+
[
R(1 0)

a b +B(1 0)
a,b−2

]
∗log

(
1 + Yb

1 + 1
b2−1

)}∣∣∣∣∣
u=0

(5.11)

Ca=(−1)aa2F (a, g)
z
[−a]
0

z
[+a]
0

e∆conv (5.12)

where z
[±a]
0 denote the values of z[±a] at q = 0 (2.16). In (5.11) we are evaluating the

non-convoluted variable of the kernels at u = 0. The hat on ∗̂ is a convolution over the

range |u| ≤ 2g. F (a, g) is given in (2.31). These equations are derived by implementing

the expansion of Y-functions (B.18) in the TBA system of equations (4.2)-(4.6). Let us

make a couple of comments. First, the factors of 1/2, 1/3, m2/3

stand for the subtraction of the asymptotic solutions. These read

Ψ = Φ =
1

2
, Ym =

1

m2 − 1
, Xm = −m

2

3
(5.13)

Second, note that in the BPS vacuum where φ = 0, the TBA equations are not

well defined and need a regularization. A regulator commonly used is a twist for the

fermions [41]. Here, the angle φ can be viewed as a physical regulator. As opposed to

other regulators, the leading order solution Ym is a non trivial function of the coupling.
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5.2 Weak coupling expansion of the small φ TBA

To test the BTBA equations, we have solved the small angle simplified equations, (5.6)-

(5.12), up to three loops. In this section we will present the results. The derivation is given

in appendix F.

The small φ TBA equations, (5.6)-(5.12), are certainly simpler than the general TBA

equations (4.2)-(4.6), but they continue to be non-linear. However, if we make a weak

coupling expansion we obtain a linear system of integral equations order by order.

To solve these linear equations we find it useful to first simplify the TBA equations as

in [42, 43]. To simplify (5.6) and (5.7), we take a convolution of the equations with s ∗ s
−1

where

s(u) =
1

2 cosh(πu)
(5.14)

The other equations can also be simplified as shown in the appendix F. Then (5.6)-(5.12)

become

Φ−Ψ=π CaK̂y,a(u, 0) , (5.15)

Φ + Ψ=−2s ∗ X2

1 + Y2
+ 2πs ∗ R(01)

2n (u, 0)Cn − πCaKa(u, 0) , (5.16)

logYm=s ∗ Im,n log
Yn

1 + Yn
+ δm,2 s ∗̂ log Φ

Ψ
, (5.17)

Xm=s ∗ Im,n
Xn

1 + Yn
+ πs Cm + δm,2 s ∗̂(Φ−Ψ) , (5.18)

∆conv=

{
R(1 0)

a 1 ∗̂log
( Ψ

1/2

)
−B(1 0)

a 1 ∗̂log( Φ

1/2
)+
[
R(1 0)

a b + B(1 0)
a,b−2

]
∗log

(
1 + Yb

1+ 1
b2−1

)}∣∣∣∣∣
u=0

(5.19)

Ca=(−1)aa2F (a, g)
z
[−a]
0

z
[+a]
0

e∆conv (5.20)

where Im,n = δm+1,n + δm−1,n and K̂y,a is defined in appendix F.

Now expanding the functions Ψ, Φ, Yn and Xn in powers of g2, we can obtain them

order by order by solving a linear system of equations. Up to three loops (see appendix F

for details) we find that

Ca = 4(−1)ag2 + 8(−1)a
[
π2 − 4

a2

]
g4 + 16(−1)a

[
π4

3
− 4π2

a2
+

20

a4

]
g6 +O(g8) , (5.21)

Finally, the relation (5.4), we obtain the expression for energy up to 3-loop order9

E=−φ2
[
g2 − g4

2π2

3
+ g6

2π4

3
+O(g8)

]
=−φ2

[
λ

16π2
− λ2

384π2
+

λ3

6144π2
+O(λ4)

]
,

(5.22)

In perfect agreement with the expansion of (5.2).

9 We encounter the sum
∑∞

a=1(−1)a = − 1
2
. This can be understood by regularizing it as

limφ→0

[

∑∞
a=1(−1)a sin aφ

aφ

]

= − 1
2
.
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6 Conclusions and discussion

In this paper we have considered the problem of computing the quark anti-quark potential

on the 3-sphere in N = 4 super Yang Mills in the planar approximation. Since the planar

theory is integrable [12], we expected to be able to derive an exact expression. Indeed, we

found a system of boundary TBA equations (4.2)-(4.6) which determines the potential as a

function of three parameters: the planar coupling λ, the geometric angle φ, which sets the

angular separation on the 3-sphere and an internal angle θ which is the relative orientation

of the coupling to the scalar field for the quark and the anti-quark.

This quark and anti-quark configuration gives rise to an integrable system with a

boundary. This is most clearly seen in the string theory picture where we have a string going

between the two lines on the boundary. One might be surprised that we have a boundary

since the string is infinitely long. However, note that the local geometry of the string near

the boundary is AdS2, which indeed has a boundary. The energy is then the ground state

energy, or Casimir energy, on the strip and it is given in terms of the solution of the TBA

equations (4.11). This is the energy of the flux tube connecting the quark and anti-quark.

These TBA equations should also enable one to compute the energies of excitations of the

flux tube. These correspond to operators that are inserted on the Wilson loop.

The quark anti-quark potential on S3 is the same as the cusp anomalous dimension as

a function of the angles, Γcusp(φ, θ, λ).

The derivation of the boundary TBA equations is similar to the one in other integrable

models with boundary [18]. A crucial step is the determination of the boundary reflection

matrix. The matrix part is fixed by the symmetries and the dressing phase was found by

solving the boundary crossing equation and the final answer is in (2.8), (2.9). Since there is

always a certain amount of guesswork in determining the dressing phase, we have checked

it at strong coupling and we have seen that it gives the right value both in the physical and

mirror regions. A crucial feature of the dressing phase is that it contains a pole at zero mir-

ror momentum. This is crucial for the proposed phase to work at weak coupling. Note that

the boundary dressing phase is responsible for the leading order contribution in the mirror

picture, while it only starts contributing at three loops for anomalous dimensions in the

physical picture. The pole simply means that the boundary is sourcing single particle states.

The BTBA equations were written in (4.2)-(4.6). They look very similar to the bulk

TBA equations [34, 36, 42], except that the boundary conditions for large u are different.

They now depend on the angles. In addition, for the momentum carrying nodes, the Ya,0,

there is an extra source term involving the boundary dressing phase.

We have obtained a simplified set of equations, (5.15)-(5.20), which describes the small

angle region, φ, θ ≪ 1. In this region, the simplest way to solve the problem is through

supersymmetric localization, as explained in [8]. The planar answer is

Γcusp(φ, θ = 0, λ) = −φ2B +O(φ4) , B =
1

4π2

√
λI2(

√
λ)

I1(
√
λ)

(6.1)

So, we know the answer by independent means. Thus, these simplified BTBA equations

should reproduce (6.1). Indeed, directly expanding these simplified equations up to third
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order in the coupling we reproduced the expansion of (6.1). However, these “simplified”

equations are vastly more complex than the simple Bessel functions in (6.1)!. Thus, there

should be a way to simplify these equations much further and directly get the simple answer

(6.1). Hopefully, the methods used to simplify the equation will also be useful in order to

simplify the full BTBA equations for general angles. Note that in [44] the TBA system for

closed strings was reduced to a set of equations involving a finite number of functions. It

is very likely that the same method works in our case.

Notice that the simplified small angle equations connect the integrability and the

localization exact solutions. In particular, computing the function B by both methods

would enable us to see whether the coupling constant λ that appears in both approaches

is the same or not. Of course, we expect them to be the same for N = 4 super Yang Mills.

However, if one could generalize the discussion in this paper to Wilson loops in ABJM

theory [45], then this small angle region could enable us to compute the undetermined

function h(λ) that appears in the integrability approach to the ABJM theory [46].

In principle, one might wonder whether the Wilson loop leads to an integrable bound-

ary condition. We have found that the reflection matrix obeys the boundary Yang Baxter

equation. The TBA equations were derived assuming integrability. So all the checks we

performed on them are further evidence that the Wilson loop boundary condition is in-

deed integrable.

There are further checks of the equations that one should be able to do. In particular,

one would like to reproduce the BES equation [6] for ϕ→ ∞.

It would also be nice to take the small δ = π−φ limit. In this limit the answer should

go like 1/δ and probably one can obtain again a simplified equation for the coefficient. This

determines the quark anti-quark potential in the flat space limit.

One should also be able to take the strong coupling limit of the equations and reproduce

the result derived from classical strings in AdS5 × S5 in [47, 48]. It is likely that the ideas

in [49, 50] would enable this.

Though solving the TBA equation analytically looks difficult, it should be possible

to solve the equations numerically. The problem should be very similar to the one solved

in [51].

It would also be nice to study the problem of determining the open string spectrum on

the AdS4 × S2 or AdS2 × S4 D-branes which also preserve the same amount of symmetry.

The only difference with the current paper should be a different choice for the boundary

dressing phase. For this reason, the TBA equations would be the same, except for the

choice of the boundary dressing phase.

The study of perturbative amplitudes at weak coupling has found remarkably simple

underlying structures. It would be interesting to study these structures in the context of

the cusp anomalous dimension, where we have a function of a single angle φ. In particular,

it would be nice to see how to connect those structures with the TBA approach described

here. This would most probably lead to both a simplification of this TBA approach as well

as some hints on the exact structure underlying the amplitude problem.

Throughout this paper we have considered the locally BPS Wilson loop which contains

the coupling to the scalar, as in (1.2). Of course, one can also consider the Wilson loop
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which does not couple to the scalars, W = trPei
∮
A. It would be interesting to see whether

this leads to an integrable boundary condition. At strong coupling this loop leads to a

Neumann boundary condition on the S5 [52], which is classically integrable.10

Note. We were informed that similar ideas were pursued in [24].
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A Reflection matrix

With the conventions we are using, the (canonical) diagonal symmetry generators are

LD
+̌
+̌
= L+

+ − L̃+̇
+̇
, RD

ǎ
b̌
= Ra

b + R̃ȧ
ḃ
, QD

±̌
ǎ = Q±

a ∓ iQ̃∓̇
ȧ ,

LD
±̌
∓̌
= L±

∓ − L̃∓̇
±̇
, SD

ǎ
±̌ = Sa

± ± iS̃ȧ
∓̇ . (A.1)

The generators (A.1) give rise to the diagonal s̃u(2|2)D residual symmetry. Now we

should determine how a bulk magnon transforms under the diagonal s̃u(2|2)D. A bulk

magnon transforms in a representation (�(a,b,c,d), �̃(a,b,c,d)) of the bulk symmetry s̃u(2|2)L×
s̃u(2|2)R. The quantum numbers

a =
√
gη, b =

√
g
iζ

η

(
x+

x−
− 1

)
, c = −√

g
η

ζx+
, d = −√

g
x+

iη

(
x−

x+
− 1

)
, (A.2)

characterize the action of the fermionic generators. For the left fundamental

(φ1, φ2, ψ+, ψ−)

Qα
a|φb〉 = a δba|ψα〉, Sa

α|φb〉 = c ǫαβǫ
ab|ψβ〉,

Qα
a|ψβ〉 = b ǫαβǫab|φb〉, Sa

α|ψβ〉 = d δβα|φa〉, (A.3)

and similarly for the right generators Q̃α̇
ȧ and S̃ȧ

α̇ and on a right fundamental

(φ̃1̇, φ̃2̇, ψ̃+̇, ψ̃−̇). ζ is a phase and unitarity requires |η|2 = i (x− − x+).

The left part of a bulk magnon, �(a,b,c,d) is also �
D
(a,b,c,d), with identical quantum

numbers However, the right �̃(a,b,c,d) needs to be re-arranged to transform canonically

under the action of the diagonal symmetry generators. That can be achieved defining,

(φ̃1̌, φ̃2̌, ψ̃+̌, ψ̃−̌) := (φ̃1̇, φ̃2̇,−iψ̃−̇,+iψ̃+̇) , (A.4)

10See [61] for a systematic study of classically integrable boundary conditions.
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which turns out to be a �
D
(a,−b,−c,d). Due to the signs in −b and −c we should interpret

the right part as a magnon with quasi-momentum −p and phase ζeip under su(2|2)D.
Therefore, with the change of basis (A.4), the original left and right parts of the bulk

magnon transforms in the following tensor representation of su(2|2)D

�(a,b,c,d) ⊗�(a,−b,−c,d) = V (p, ζ)⊗ V
(
−p, ζeip

)
. (A.5)

Diagonal s̃u(2|2)D is preserved during the reflection, which fixes the boundary scat-

tering matrix up to a phase factor. We should take into account that the multiplet labels

change with the reflection according to,

V (p, ζ)⊗ V
(
−p, ζeip

)
→ V (−p, ζ)⊗ V

(
p, ζe−ip

)
. (A.6)

The reflection matrix RR(p,−p) intertwines the same representations as a bulk S-matrix

S(p,−p), and therefore the two must be equal up to a phase [16]. The resulting reflection

matrix is given by

RR |φǎp × φ̃b̌−p〉=AR(p)|φ{ǎ−p × φ̃b̌}p 〉+BR(p)|φ[ǎ−p × φ̃b̌]p 〉+ 1
2CR(p)ǫ

ǎb̌ǫα̌β̌ |ψα̌
−p × ψ̃β̌

p 〉 ,

RR |ψα̌
p × ψ̃β̌

−p〉=DR(p)|ψ{α̌
−p × ψ̃β̌}

p 〉+ ER(p)|ψ[α̌
−p × ψ̃β̌]

p 〉+ 1
2FR(p)ǫǎb̌ǫ

α̌β̌ |φǎ−p × φ̃b̌p〉 ,
RR |φǎp × ψ̃β̌

−p〉=GR(p)|ψβ̌
−p × φ̃ǎp〉+HR(p)|φǎ−p × ψ̃β̌

p 〉 ,
RR |ψα̌

p × φ̃b̌−p〉=KR(p)|ψα̌
−p × φ̃b̌p〉+ LR(p)|φb̌−p × ψ̃α̌

p 〉 . (A.7)

where

AR = R0(p)
x−

x+
η1η2
η̃1η̃2

, DR = −R0(p) ,

BR = −R0(p)
x−(x− + (x+)3)

(x+)2(1 + x−x+)

η1η2
η̃1η̃2

, ER = R0(p)
x+ + (x−)3

x−(1 + x−x+)
,

CR = −R0(p)
iη1η2(x

− + x+)

ζx+(1 + x−x+)
, FR = −R0(p)

iζ(x− + x+)(x− − x+)2

η̃1η̃2x+(1 + x−x+)
,

GR = R0(p)
x− + x+

2x+
η1
η̃1
, HR = R0(p)

x− − x+

2x+
η1
η̃2
,

KR = R0(p)
x− − x+

2x+
η2
η̃1
, LR = R0(p)

x− + x+

2x+
η2
η̃2
. (A.8)

η̃i are the values of ηi after the reflection. The choice for η in the so-called string theory

basis is

η(p, ζ) = ζ
1
2 e

ip

4

√
ix− − ix+ , (A.9)

B Solution to the boundary crossing equation

In this appendix we solve the crossing equation for the boundary dressing phase

σB(p)σB(p̄) =
x− + 1

x−

x+ + 1
x+

, σB(p)σB(−p) = 1 . (B.1)

– 30 –



J
H
E
P
0
8
(
2
0
1
2
)
1
3
4

We follow a procedure similar to the one described in [21, 22]. First we introduce the

Zhukovski variable u,

x(u) +
1

x(u)
=
u

g
, x± := x(u± i

2) , (B.2)

so that the crossing equation can be written as

σB(u)σ
γ
B(u) =

u− i
2

u+ i
2

. (B.3)

The index γ means the analytical continuation along a closed contour γ that crosses both

x+(u) and x−(u) cuts. We are also going to assume that

σB(x
+(u), x−(u)) =

G(x+)

G(x−)
. (B.4)

In terms of the shift operator D := e
i
2∂u , the crossing equation reads

[G(x(u))G(1/x(u))]D−D−1

= uD
−1−D . (B.5)

Therefore, our crossing equation is of the form

G(x(u))G(1/x(u)) = uF (D) . (B.6)

Naively one would say that F (D) = −1, but that would associate the cuts of x(u) to

G(x(u))G(1/x(u)). Instead, we will use

Fk(D) =
Dk

1−Dk
+

D−k

1−D−k
=

∞∑

n=1

Dkn +

∞∑

n=1

D−kn , (B.7)

for some integer k. Different values of k would lead to different expressions for uFk(D). A

posteriori we will analyze what values of k are consistent with the crossing condition. With

this Fk(D), we get

uFk(D) = exp

(
∞∑

n=1

log(u2 + k2n2

4 )

)
. (B.8)

As in [22], we regulate the divergent sum in (B.8), by taking the derivative of the exponen-

tial’s argument, performing the sum and integrating back. As a result, up to an irrelevant

integration constant, we obtain

uFk(D) =
sinh(2πk u)

2π
k u

=
1

Γ(1 + 2ui
k )Γ(1− 2ui

k )
. (B.9)

We should now check consistency with original crossing equation, so we compute:

(
sinh(2πk u)

2π
k u

)D−D−1

=
sinh(2πk (u+ i

2))

sinh(2πk (u− i
2))

u− i
2

u+ i
2

. (B.10)
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Consistency with the crossing condition (B.3) requires

sinh(2πk (u+ i
2))

sinh(2πk (u− i
2))

= 1 , (B.11)

and we then choose the value k = 1.

We still need to solve for the function G(x). Let us define G(x) := eiχ(x). The crossing

condition (B.6) imposes

χ(x(u+ i0)) + χ(x(u− i0)) =
1

i
log

(
sinh(2πu)

2πu

)
. (B.12)

The kernel introduced in the bulk case can also be used to solve our problem. Indeed, the

kernel

K ⋆ f :=

2g+i0∫

−2g+i0

dw

2πi

x(u)− 1
x(u)

x(w)− 1
x(w)

1

w − u
f(w) , (B.13)

satisfies

(K ⋆ f)(u+ i0) + (K ⋆ f)(u− i0) = f(u) , (B.14)

if |u| < 2g. Thus, equation (B.12) is solved by

χ(x(u)) = −iK ⋆ log

(
sinh(2πu)

2πu

)
. (B.15)

Up to a term that cancels when we compute the difference χ(x+) − χ(x−), we can write

χ(x) as a contour integral,

χ(x) = Φ(x) = −i
∮

|z|=1

dz

2πi

1

x− z
log

(
sinh[2πg(z + 1

z )]

2πg(z + 1
z )

)
. (B.16)

This ‘DHM’ representation [53] of the solution for the crossing equation is valid for |x| > 1.

As x moves towards the interior of the unit circle, the function defined by the contour inte-

gral is discontinuous, as it picks up a residue at x. Since we want the analytic continuation

to the interior of the disk to be continuous, for |x| < 1, we have instead

χ(x) = Φ(x)− i log

(
sinh[2πg(x+ 1

x)]

2πg(x+ 1
x)

)
. (B.17)

This analogous to the analysis of [54] for the bulk dressing phase. As x moves inside the

unit disk, some of the branch cuts of the logarithmic term in (B.17) can be crossed. There

are infinitely many of those branch cuts, corresponding to the zeros of sinh(2πg(x + 1
x)).

However, crossing such branch cuts could only produce 2π terms in χ which are, in any

case, irrelevant to the boundary dressing factor σB(x
+, x−) = eiχ(x

+)−iχ(x−).

Being careful about the crossing contour one can check that the final σB obtained

after this procedure indeed solve the crossing equation (B.1). The unitarity condition is a
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consequence of the fact that χ(−x) = χ(x) plus the the fact that σB is a ratio of a function

of x+ and the same function of x− (B.4).

We can expand the contour integral Φ(x) in negative powers of x for large |x| values,

Φ(x) = −
∞∑

r=1

cr(g)

xr
. (B.18)

The coefficients cr(g) can be expanded either in the weak or in the strong coupling limit.

In the weak coupling limit we obtain

cr(g) =

∞∑

n=1

i(−4)ng2nζ(2n)Γ
(
− r

2 − n
)

Γ(1− 2n)Γ
(
− r

2 + n+ 1
) . (B.19)

Notice that for odd r the coefficient cr(g) is vanishing, while for even r is order gr.

In the strong coupling limit we find

cr(g) = 2gi

2π∫

0

dteitr| cos t|+O(1) =
4gir+1(1 + (−1)r)

1− r2
+O(1) . (B.20)

To evaluate the contour integral for |x| < 1 we can use the identity

Φ(x) + Φ(1/x) = Φ(0) , for |x| 6= 1 , (B.21)

and the expansion

Φ(0) = −i
∞∑

n=1

g2n(−16)n
(2n− 1)!!

n(2n)!!
ζ(2n) . (B.22)

C Luscher correction at strong coupling

In this appendix we consider an open string operator of the form BlZ
LBr(θ, φ) and compute

the leading correction to the energy for large L, this correction goes as e−(constant)L. We will

compute the correction for φ = 0, θ 6= 0 at leading order in the strong coupling expansion.

In this case we have a string that moves on AdS2 × S3. It is convenient to decouple the

AdS2 and S3 problems by choosing a worldsheet gauge where −TAdS
±± = TS

±± = 1. We

fix the solution on the AdS2 part. This AdS2 solution is completely characterized by the

extent of the spatial worldsheet coordinate σ, which we take to run between [−s/2, s/2].
The other worldsheet coordinate is τ . In particular the spacetime energy ∆ of the solution

is fixed, once s is fixed. As we vary the parameters we will see that L will change, θ will

change, and so will ∆− L.

So we now concentrate on the solution on the S3, which we parametrize as

x1 + ix2 = eiγτ
√

1− ρ2(σ) , x3 + ix4 = ρ(σ)eiϕ(σ) (C.1)

Inserting this in the Euler Lagrange equations for the string and imposing the Virasoro

constraints, T±± = 1 one finds two integrals of motion, ℓ and γ. They are given by

ℓ = ρ2ϕ′ (C.2)
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and
ρ2(ρ′)2

1− ρ2
= −ℓ2 − (γ2 − 1)ρ2 + γ2ρ4 (C.3)

The boundary conditions are ρ′(0) = 0, ρ(s/2) = 1. Let us define ρ0 to be the value of ρ

at σ = 0 where the derivative vanishes. It is a root of

0 = −ℓ2 − (γ2 − 1)ρ20 + γ2ρ40 (C.4)

By using (C.3) we can write the following expressions

s

2
=

∫ 1

ρ0

dρ
ρ√

1− ρ2
√
D

(C.5)

θ

2
=

∫ 1

ρ0

dρ
ℓ

ρ
√
1− ρ2

√
D

(C.6)

L

2
= 2g

∫ s/2

0
dσγ|x1 + ix2|2 = 2gγ

∫ 1

ρ0

dρ
ρ
√
1− ρ2√
D

(C.7)

D = −ℓ2 − (γ2 − 1)ρ2 + γ2ρ4 = (ρ2 − ρ20)[γ
2(ρ2 + ρ20)− (γ2 − 1)] (C.8)

From the first two equations we should find ρ0 and γ as a function of s and θ, and then

we can find the expression for L and for the energy. We want to find a solution where L is

very large.

This happens when ρ0 → 0 and γ → 1 and ℓ → 0. More precisely, we need to scale

them as

γ = 1 + ǫ/2 , ℓ = ǫ
ℓ̂

2
, ρ =

√
ǫv (C.9)

where v is a new rescaled variable and ℓ̂ is fixed as ǫ → 0. Now, to leading order in ǫ we

find that (C.4) becomes

0 = − ℓ̂
2

4
− v20 + v40 , or v20 =

1 +
√

1 + ℓ̂2

2
(C.10)

The integral for θ, (C.6), becomes negligibly small away from ρ ∼ ρ0 since there a factor of

ℓ multiplying. So it receives all its contribution from the small ρ region, namely the finite

v region, see (C.9). We can write

θ

2
=
ℓ̂

2

∫ ∞

v0

1

v
√
D̃
, =⇒ ℓ̂ = tan θ (C.11)

D̃ = (v2 − v20)(v
2 + v20 − 1) (C.12)

We can similarly compute the integral for s,

s

2
=

∫ 1

ρ0

dρ
ρ√

1− ρ2

(
1√
D

− 1

ρ2

)
+

∫ 1

ρ0

dρ
1

ρ
√
1− ρ2

(C.13)

=

∫ ∞

v0

dv v

(
1√
D̃

− 1

v2

)
+ log 2− log ρ0 (C.14)

s

2
= log 4− 1

2
log(

ǫ

cos θ
) , =⇒ ǫ

cos θ
= 16e−s (C.15)
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where we used ρ0 =
√
ǫv0 and the result (C.11), and the definition of D̃ in (C.12). Here

we have split the integral in two terms, the first receives contributions only form the small

ρ region and the second, which can be done explicitly with no need to take the small ρ0
limit (though we quoted here only the small ρ0 answer).

We now want to compute L. We will compute instead

L

4g
− s

2
=
ǫ

2

∫ 1

ρ0

dρρ
√
1− ρ2

(
1√
D

− 1

ρ2

)
− (C.16)

∫ 1

ρ0

dρ
ρ3√
1− ρ2

(
1√
D

− 1

ρ2
+ ǫ

(1− ρ2)

2ρ4

)
−
∫ 1

ρ0

dρ
ρ√

1− ρ2
(C.17)

L

4g
− s

2
=
ǫ

2

∫ ∞

v0

dvv

(
1√
D̃

− 1

v2

)
− (C.18)

ǫ

∫ ∞

v0

dvv3

(
1√
D̃

− 1

v2
+

1

2v4

)
− 1 +

ρ20
2

(C.19)

L

4g
− s

2
= ǫ(

1

4
− v20

2
)− 1 + ǫ

v20
2

= −1 +
ǫ

4
= −1 + cos θ4e−s (C.20)

L− 2gs = −4g + 16g cos θe
− L

2g
−2

(C.21)

Here we have split the integrals having in mind that we want an accuracy of order ǫ. The

first has an ǫ in front and we made sure that only the small ρ region contributes. In the

second we made sure that only the small ρ region contributes up to order ǫ. The last can

can be evaluated exactly and we quoted here the small ρ0 result.

Here we have in mind keeping s fixed as we change θ. Under these circumstances ∆

stays fixed, since the AdS2 part of the solution would always be the same. In addition, we

know that for θ = 0 the result should vanish due to the BPS condition. Thus we find that

∆− L = g(1− cos θ)
16

e2
e
− L

2g (C.22)

If we changed the angle in the AdS part, then instead of 1 in (C.22) we would get some

function of φ. However, since we know that for θ = φ we should get zero due to the BPS

condition, we conclude that for generic angles we get

∆− L = g(cosφ− cos θ)
16

e2
e
− L

2g (C.23)

C.1 Strong coupling expansion of the function F

In order to compare this to the expected answer from the Luscher type correction we

need to evaluate the function F in (2.31) at strong coupling. This involves evaluating the

function Φ in (2.8), (2.10) at z[±a] at q = 0. When q = 0 we have that

− 1/z[−a](0) = z[+a](0) = i
(√

1 + a2/(16g2)− a/(4g)
)
= i

(
1 +

a

4g
+ · · ·

)
(C.24)
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which is very close to i, where the strong coupling expansion is tricky, since we cannot use

(2.13). We need to compute

logF = iΦ(y)− iΦ(1/y) =
2

π

π
2∫

0

dt
(y4 − 1)

(1 + y2)2 − 4y2 sin2 t
log

[
sinh 4πg sin t

4πg sin t

]
(C.25)

with y = z[a](0). Then the y dependent factor can be well approximated by

(y4 − 1)

(1 + y2)2 − 4y2 sin2 t

∣∣∣∣
y=x[a](0)

∼ a

4g

[
1

sin2 t+ a2

16g2

]
(C.26)

We now insert this into the integral (C.25), and split the integral into two pieces

logF = r1 + r2 (C.27)

r1 =
a

2πg

π
2∫

0

dt

[
1

sin2 t+ a2

16g2

]
4πg sin t = 2a log

[
8g

a

]
+ o(1/g) (C.28)

r2 =
a

2πg

π
2∫

0

dt

[
1

sin2 t+ a2

16g2

]
log

[
1− e−8πg sin t

8πg sin t

]
= (C.29)

r2 =

∞∫

0

dt
4a

v2 + 4a2π2
log

[
1− e−v

v

]
= 2 [a log a− a− log Γ(a+ 1)] (C.30)

where we have defined t = v/(8πg) in the integral for r2 and taken the g → ∞ limit.

Summarizing, we get that the leading strong coupling approximation is

F (a, g) =
26ag2a

e2a(a!)2
(C.31)

D Evaluating t(q)

Let us now evaluate t(q), given in (2.22). In order to perform the trace over the matrix

indices it is convenient to write the reflection matrix in terms of the bulk S matrix. The

reason is that we will be able to use the bulk crossing equation to simplify the form of t(q).

We start by writing

KAȦ,BḂ(q) = σb(z
+, z−)

1 + 1
(z+)2

1 + 1
(z−)2

√
z+ + 1/z+

z− + 1/z−
SAE
CD(−p, p)T Ȧ

E T
Ḃ
F CCBCDF , (D.1)

where S is the full bulk S matrix for one of the s̃u(2|2) factors, which obeys the crossing

equation, with the identity in the right hand side. Here p is the value of the momentum

analytically continued so that we have x± in the mirror region. The square root arises

because of a conventional way to define the bulk S matrix. It is cancelling a square root

in a the phase factor of the bulk S matrix. The matrix T converts the dotted indices into
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undotted indices. It arises in the precise implementation of the “unfolding” trick, where we

replace a bulk magnon with momentum p that transforms under s̃u(2|2)2 into two magnons

of s̃u(2|2)D, one with momentum p and the other with momentum −p, see appendix A.

We then see that K̄ in (2.21) is essentially the same as K, but evaluated at −p̄. More

explicitly, we can write

K̄AȦ,BḂ(q) = σb

(
− 1

z−
,− 1

z+

)
1 + (z−)2

1 + (z+)2

√
z− + 1/z−

z+ + 1/z+
SGH
BM (p̄,−p̄)TN

Ȧ
TM
Ḃ

CGACHN .

(D.2)

We can now insert this into the expression for t(q). We will need to use that

SAE
CD(−p, p)ΣN

E CCBCDFSGH
BM (p̄,−p̄)ΣM

F CGACHN = Tr[Σ]2 , (D.3)

here ΣN
E = TN

Ȧ
T Ȧ
E , where

Σ = diag(1, 1,−1,−1) = (−1)F . (D.4)

This arises because the action of the charge conjugation changes in the basis given by (A.4).

The charge conjugation matrix can be taken to be

CAB =

(
−iǫab 0

0 ǫαβ

)
. (D.5)

Equation (D.3) arises from the repeated use of the crossing equation. Ignoring charge

conjugation matrices the identity we need is

S(−p, p)S(p̄,−p̄) = S(−p, p)S(−p̄, p)S(p,−p̄)S(p̄,−p̄) = 1 (D.6)

where S denotes the full S matrix. When (D.3) is used, we get (2.24) in the main text.

The series of operations we have done are most clearly summarized by the figure 9. First

we do the unfolding trick. Then the use of the crossing relation (D.6) amounts to moving

the lines, as in figure 5, and untangling them. If we introduce the rotation matrix m, we

can do all the same steps but we have insertions of the matrix m or m−1 along some lines.

This is represented in figure 9 by the solid circles. Once we untangle the lines as in figure 5,

we get get an insertion of m on one line and an insertion of m−1 on the other, leading to

(2.25) (since the trace of m or m−1 are the same).

This gave us t(q) for the fundamental mirror magnon. For the bound states we can use

the fusion procedure. Given the form of σB in (2.8), which involves a ratio of a function

of x+ and x−, then it is clear that the fusion procedure gives a σB which is the same

ratio, but evaluated at z[+a] and z[−a]. The corresponding matrices are determined also

by multiplying the matrices of the elementary constituents. All the manipulations we used

above can be used again for these matrices. In particular, we can untangle the lines as

in 9. The only new thing we need to understand is the set of states of a magnon bound

state and the action of the matrix m. The matrix m is

ma=diag(

a︷ ︸︸ ︷
eiθ−i(a−1)φ, · · · , eiθ+i(a−1)φ,

a︷ ︸︸ ︷
e−iθ−i(a−1)φ, · · · , e−iθ+i(a−1)φ,

a+1︷ ︸︸ ︷
e−iaφ, · · · , eiaφ,

a−1︷ ︸︸ ︷
e−i(a−2)φ, · · · , ei(a−2)φ) (D.7)
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(a) (b) (c)

ΣC−1

ΣCC

C−1

m

m−1

Figure 9. (a) Original picture. White circles represent rotation matrices, one is m and the other

is m−1. Solid circles represent charge conjugations. (b) Unfolded picture. In the unfolding of the

dotted indices there is a change of basis that produces the Σ’s. (c) Untangled picture . After using

crossing we get two independent traces of the matrix m.

This can be understood as follows. The mirror magnon bound state arises from a SL(2)

sector fundamental magnons, giving rise to an SL(2) representation of spin 2j = a, these

lead to the components with the a+ 1 bracket. The other elements arise from acting with

the supercharges in s̃u(2|2). Then we see that the trace gives the result quoted in (2.27).

Thus, the cancelation of the bulk S matrices, plus the form for σB for the bound states,

together with (D.7) lead to ta(q) in (2.26).

E Derivation of the BTBA equations

In this appendix we derive the BTBA equations presented in the main text (4.2)–(4.9).

We will do so in two different ways. In the first way, presented in section E.1, we will

follow the original derivation of the TBA for the spectrum [37, 38] by embedding our open

ABA equations into the closed ones. In the second way, presented in section E.2, we will

take a more direct route and derive the BTBA from the thermodynamics in the mirror

picture [17].

E.1 Derivation by embedding into the bulk system

The spectrum of closed strings or single trace operators in N = 4 SYM is governed by the

so called Y-system [37]. The Y-system is a set of functions Ya,s(u) characterizing the ratio

of the density of bulk excitation to the density of holes in the mirror channel [31]. The

indices (a, s) stands for rectangular representations of the bulk SU(2, 2|4) excitations and
u is the spectral parameter. The Y-function are subject to the general functional equation

Y +
a,sY

−
a,s

Ya+1,sYa−1,s
=

(1 + Ya,s+1)(1 + Ya,s−1)

(1 + Ya+1,s)(1 + Ya−1,s)
(E.1)

where f± = f(u ± i/2). For the bulk excitations, the Y’s live in a fat hook bounded by

Y0,s = ∞, Y2,|s|>2 = ∞ and Ya>2,±2 = 0, (see fig 8.a). The Y-system is also equivalent to

the Hirota equation for the T-functions as

T+
a,sT

−
a,s = Ta,s+1Ta,s−1 + Ta+1,sTa−1,s , where Ya,s =

Ta,s+1Ta,s−1

Ta+1,sTa−1,s
(E.2)
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and enjoy a gauge invariance under Ta,s → g[±a±s]Ta,s. For more details, see [37, 38]. The

TBA equations for the Y functions are the solution to the functional relation (E.1), subject

to the relevant boundary conditions and analytic behavior. The procedure of deriving the

TBA equations in this fashion was carried out in [37, 38].

Operators on Wilson loops are associated to a string, or a spin chain, with boundaries.

Suppose we start with such operators and go to the mirror picture where space and time

are interchanged (see figure 2). In the mirror picture, one have exactly the same system

of mirror particles as in the closed case. In the limit of large T , see figure 2, these particles

live on a large closed chain governed by the mirror asymptotic Bethe equations [35]. The

boundaries in the original physical picture are mapped to two boundary states in the mirror

past and future. These boundary states are determined by the boundary reflection matrix

as we discussed in section 2. As opposed to the closed case where all mirror states are

traced over in the partition function, in the overlap between boundary states only a subset

of mirror excitations are summed over. Moreover, the weights of these excitations in the

summation lead to a new asymptotic behavior for their densities. We therefore expect the

the Y-system and the TBA equations to be identical to the ones in the closed case modulo

projections and new sources.

In this section we will exploit that relation to derive the boundary TBA equations.

That is, we will first map the open s̃u(2|2)D ABA equations (3.9)–(3.11) into a folded

version of the standard closed s̃u(2|2)2 ones. That map is nothing but the embedding of

the diagonal s̃u(2|2)D excitations in the full s̃u(2|2)L × s̃u(2|2)R by restricting to singlet

excitations of the diagonal s̃u(2|2)D preserved by the boundary. Having done so, the

corresponding BTBA equations will follow from the derivation of the closed TBA ones [38].

We will only add the angles that enter as (diagonal) twists and the boundary dressing phase

that enters as a momentum dependent chemical potential for the momentum carrying

excitations. As most of the details are the same as in the closed case, we will be brief.

As we discussed in section 2, and in appendix A, the diagonal s̃u(2|2)D magnon excita-

tions transforms in a tensor representation of the bulk s̃u(2|2)L×s̃u(2|2)R. Correspondingly,
the ABA equations can be embedded into the closed ones together with the addition of the
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reflection matrix. That is, (3.9)–(3.11) can also be written as in a redundant way as

−e2iθ = Q+
1 Q

−−
2 Q+

3

Q−
1 Q

++
2 Q−

3

∣∣∣∣
u2,k

1 eiφ−iθ =
B
(−)Q+

2

B(+)Q−
2

∣∣∣∣∣
u1,k

eiφ−iθ =
R
(−)Q+

2

R(+)Q−
2

∣∣∣∣∣
u3,k

R−2
0 (u) =

[(
x+

x−

)L

S(u)2
R−

3 B
−
1

R+
3 B

+
1

]
×
[(

x+

x−

)L

S̄(u)2
R̄−

3 B̄
−
1

R̄+
3 B̄

+
1

]∣∣∣∣∣
u4,k

e−iφ+iθ =
R
(−)Q̄+

2

R(+)Q̄−
2

∣∣∣∣∣
−u3,k

−e−2iθ =
Q̄+

1 Q̄
−−
2 Q̄+

3

Q̄−
1 Q̄

++
2 Q̄−

3

∣∣∣∣
−u2,k

e−iφ+iθ =
B
(−)Q̄+

2

B(+)Q̄−
2

∣∣∣∣∣
−u1,k

7

6

5

3

2

4

(E.3)

where

Rl(u) =

Kl∏

j=1

x(u)− xl,j

(xl,j)1/2
, Bl(u) =

Kl∏

j=1

1
x(u) − xl,j

(xl,j)1/2
, Ql(u) =

Kl∏

j=1

(u− ul,j)

R̄l(u) =

Kl∏

j=1

x(u) + xl,j

(xl,j)1/2
, B̄l(u) =

Kl∏

j=1

1
x(u) + xl,j

(xl,j)1/2
, Q̄l(u) =

Kl∏

j=1

(u+ ul,j)

R
(±)(u) =

K4∏

j=1

(x(u)− x∓j )(x(u) + x±j )

(x+j x
−
j )

1/2
, B

(±)(u) =

K4∏

j=1

( 1
x(u) − x∓j )(

1
x(u) + x±j )

(x+j x
−
j )

1/2

S(u) =

K4∏

j 6=k

S0(p(u), pj)
2 , S̄(u) =

K4∏

j 6=k

S0(p(u),−pj)2 (E.4)

where we used that S0(pj ,−p(u)) = S0(p(u),−pj).
Note that equations for nodes 1-3 in (E.3) are equivalent to the ones in nodes 5-

7.11 However, here we will think about these as describing the left and right parts of the

bulk magnon excitations correspondingly.12 We see that momentum carrying excitations

11Remember that in physical kinematics, where (E.3) is written, |x[a]| > 1 and therefore x±(−u) =

−x∓(u), x(−u) = −x(u), p(−u) = −p(u) and ǫ(−u) = ǫ(u).
12After rearrangement of the quantum numbers discussed in the appendix.
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come in pairs with opposite momenta. The nested level excitations also comes in pairs of

rapidities u5 = −u3, u6 = −u2 and u7 = −u1. That is, Q̄l(u) is nothing but Q8−l(u) with

roots ul,j = −u8−l,j .

We will now use that embedding to derive from them the asymptotic values of the left

and right T-functions. Of course, these are not independent and we only have one set of

independent s̃u(2|2)D T-functions.

In the asymptotic L → ∞ limit the right (Ta,s≥0) and left (Ta,s≤0) T systems decou-

ples.13 The asymptotic values of T1,1 and T1,−1, whose analyticity would lead to equations

in nodes 1-3 and 5-7 in (E.3) correspondingly, are derived as in the periodic case [37]. In

what follows, we will use bold face (Y,T) for the asymptotic values of Y’s and T’s. Up to

a gauge transformation, the asymptotic TR
1,1 and TL

1,−1 are

TR
1,1=

R
−(+)

R−(−)

(
e−iθQ

−−
2 Q+

3

Q2Q
−
3

− e−iφR
−(−)Q+

3

R−(+)Q−
3

+ eiθ
Q++

2 Q−
1

Q2Q
+
1

− eiφ
B
+(+)Q−

1

B+(−)Q+
1

)
(E.5)

TL
1,−1=

R
−(+)

R−(−)

(
eiθ
Q̄−−

2 Q̄+
3

Q̄2Q̄
−
3

− eiφ
R
−(−)Q̄+

3

R−(+)Q̄−
3

+ e−iθ Q̄
++
2 Q̄−

1

Q̄2Q̄
+
1

− e−iφB
+(+)Q̄−

1

B+(−)Q̄+
1

)
(E.6)

The right 1-3 in (E.3) ABA equations are obtained by demanding analyticity of TR
1,1 when

u goes to u1,k − i
2 , u2,k and u3,k + i

2 . The equivalent right equations 5-7 in (E.3) are

obtained from the analyticity of TL
1,−1 when u goes to −u1,k − i

2 , −u2,k and −u3,k + i
2 . In

the gauge where T
L/R
0,s = T

L/R
a,0 = 1, the other T functions of the right and left (decoupled)

SU(2|2) wings are obtained from the generating functional [37, 55–57]

W =

[
1− eiφ

B
+(+)Q−

1

B+(−)Q+
1

R
−(+)

R−(−)
D

][
1− eiθ

Q++
2 Q−

1

Q2Q
+
1

R
−(+)

R−(−)
D

]−1

(E.7)

×
[
1− e−iθQ

−−
2 Q+

3

Q2Q
−
3

R
−(+)

R−(−)
D

]−1 [
1− e−iφQ

+
3

Q−
3

D

]

as

W =

∞∑

s=0

T
[1−s]
1,s Ds , W−1 =

∞∑

a=0

(−1)aT
[1−a]
a,1 Da , D = e−i∂u (E.8)

Similarly, for negative s we reverse the sign of the angles and use Q̄ instead of Q. Their

analyticity leads to the Bethe equations for the bound states. In the vacuum, the T’s are

independent of u. Their constant values read

TR
a,1=TL

a,−1 = (−1)a 2(cosφ− cos θ)
sin aφ

sinφ
, (E.9)

TR
1,s=TL

1,−s = − 2(cosφ− cos θ)
sin s θ

sin θ
. (E.10)

13Throughout this section the word “asymptotic”, means this large L limit, which should not be confused

with the large u limit.
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Using the Hirota equation and the definition of the Y-functions in the right and left de-

coupled wings (E.2) we read the corresponding values of the asymptotic Y’s

Y1,1=− cos θ

cosφ
, Y1,s =

sin[(s+ 1)θ] sin[(s− 1)θ]

sin2 θ
(E.11)

Y2,2=−cosφ

cos θ
, Ya,1 =

sin2 φ

sin[(a+ 1)φ] sin[(a− 1)φ]

For the asymptotic Ya,0 (Ya,0) we have

Ya,0 =

(
x[−a]

x[+a]

)2L
φ[−a]

φ[+a]
TL

a,−1T
R
a,1 (E.12)

Here,
(
x[−a]

x[+a]

)2L
φ[−a]

φ[+a] is a zero mode of the discrete Laplace equation A+
a A−

a

Aa+1Aa−1
= 1 [37].

It comes about because TR and TL in (E.5)–(E.8) are written in different gauges. It is

determined by demanding that Y1,0(u4,k) = −1 gives the 4th node Bethe equation. We find

φ−

φ+
= R2

0(u)S
2(u)S̄2(u)

R
−(−)

B
+(+)

R+(+)B−(−)

B+
1 B̄

+
1 B

−
3 B̄

−
3

B−
1 B̄

−
1 B

+
3 B̄

+
3

(E.13)

The boundary crossing equation (2.7) is then obtained by demanding that Y1,1 is invariant

under crossing (provided that the bulk dressing phase obeys the bulk crossing equation).

In particular, in the vacuum we get

Ya,0 = 4
eiχ(z

[+a])+iχ(1/z[−a])

eiχ(z
[−a])+iχ(1/z[+a])

(
z[−a]

z[+a]

)2L+2

(cosφ− cos θ)2
sin2 aφ

sin2 φ
. (E.14)

Finally, note that TL
a,−s(u) can be obtained from TR

a,s(u) in two steps. First reflect the

sign of u by considering T1,1(−u). Second, flip the signs of all the shifts and the angles.

In mirror kinematics, that second step that basically amount to a complex conjugation,

is equivalent to a gauge transformation [58]. We therefore find that in mirror kinematics

Tmir
a,−s(u) ≃ Tmir

a,s (−u) and as a result Ymir
a,−s(u) = Ymir

a,s (u).
14 As the closed TBA equation

respects that symmetry, we expect all solutions to the BTBA equations to respect it. That

is, we have a folded version of the bulk Y-system where Ya,−s(u) is identified with Ya,s(−u)
as presented in the main text (4.1). Such a folding is also expected a priory as the Wilson

lines break the bulk SU(2, 2|4) symmetry (at θ = φ = 0) down to OSp(4∗|4). For the

ground state, we expect all functions to be symmetric.

We conclude that the BTBA equations, once divided by the asymptotic ones, are

the same as in the closed case. The only two differences are the modified asymptotic

solutions (E.11), (E.14) and the folding Ya,−s(u) = Ya,s(−u). These are the BTBA equa-

tions (4.2)–(4.9) presented in the main text.

14To see that Ymir
a,0 is a symmetric function note that in mirror kinematics, x[a](−u) = −1/x[−a] and that

χ(−x) = χ(x).
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q1−q1

−q1q1

(a) (b) (c)

−q1 q1q2−q2

Figure 10. (a) Original computation. The boundary states create and annihilate pairs of particles.

The blue and red lines represent the two s̃u(2|2) representations of each bulk magnon. The doted

line represents the projection on to states that obey the Bethe equations for a chain that is closed

along the horizontal direction. The red dots are the rotation matrices m in (2.15) and the black

dots are the boundary dressing phase. (b) The same in the unfolded picture. We have a single

s̃u(2|2) group. We continue to have insertions of the matrix m and the dressing phase. The Bethe

equations now involve some operation which also involves the bottom part. (c) The same in the

untangled picture. Here for each line we take the trace over all four states of the magnon.

E.2 Direct derivation of the boundary TBA

The derivation of boundary TBA equations from the boundary state (2.18) is fairly stan-

dard in relativistic theories [17, 18]. Here we need to follow the same steps.

After doing the flip between space and time, see figure 2, we have a past and a future

boundary characterized by the matrices K and K̄ which give the probability amplitude for

creating or annihilating a pair of particles (2.18), (2.20). This pair has opposite momenta

and it is in the singlet representation of an SU(2|2)D, since this is a symmetry preserved

by the boundary state. By independent creation events we can create a multiparticle state.

We can graphically represent the quantity we want to evaluate as in figure 10(a). Along the

spatial direction we have a closed circle of length T , we need to solve the Asymptotic Bethe

equations on this circle and find the Bethe eigenstates. Only the subset of momenta that

corresponds to Bethe eigenstates can propagate. These states propagate for Euclidean time

L. These asymptotic Bethe equations are the ones in the mirror theory and were written

in [32], following [20]. These equations involve various roots, u1, · · ·u7, where u4 are the

momentum carrying roots. The only new feature is that we are considering states which

are composed of pairs of particles with opposite momenta. This imposes the condition that

the u4 roots should appear in pairs. In other words a root u4 should appear together with

a root −u4. The boundary state is invariant under a diagonal SU(2|2)D. The condition

that we only have singlets under SU(2|2)D implies that if roots ua, with a = 1, 2, 3 appear,

then so should roots u8−a = −ua. This will be more clearly seen below.

For this multiparticle state we can perform an unfolding and untangling trick identical

to the one we did for a single particle in section 2, see figure 10(b),(c). Now we have

particles for a single s̃u(2|2) chain, but with insertions associated to the rotation matrix

m as well as the dressing phase, σB(q). We can view these as “chemical” potentials in
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q1−q1

−q1q1

(a) (b) (c)

−q1 q1q2−q2

Figure 11. The Bethe equations in the various pictures come from demanding that each full

particle can be taken around the chain producing a total phase of 1. (a) The Bethe equation in

the original picture. (b) The Bethe equation in the unfolded picture comes from taking both a top

particle with momentum q and a bottom particle with momentum −q around the chain. (c) The

same but in the untangled picture.

(b) (c) (d)

−q1 q1

y−y

−q1 q1

y−y

(a)

y

q1−q1

y

q1−q1

Figure 12. (a) Bethe equations for the momentum carrying nodes in the original picture. The

doted lines represent the various nested levels, with red and blue for each of the s̃u(2|2) factors.

Here y represents the rapidity of levels u1, u2 or u3, and −y is the rapidity of the u5,u6 or u7 levels.

(b) Bethe equation for the nesting levels. (c) Equations for the momentum carrying nodes in the

unfolded and untangled picture. Note that both the particle with momentum q and the one with

momentum −q cross the nesting doted line. (d) Bethe equation for the nested line.

a thermodynamic computation. The Bethe equations in this new picture look slightly

more complicated because taking a single full particle around the circle, as in figure 11(a),

amounts to taking a pair of particles around the circle, as in figure 11(b),(c). We should

project onto states that obey these equations. These equations are for the full matrices.

We can do the nesting procedure and follow the unfolding for the various levels of the

nesting. The Bethe equations for the various nesting levels can be graphically represented

as in figure 12. The final result is that the equations are identical to the ones we would

get in a situation where we have the full mirror theory, but we impose that each root ua is
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accompanied by a root −u8−a.

The final Bethe equations in the mirror picture are

1 = eip(u
j
4)T
∏

k

S44(u
j
4, u

k
4)S44(u

j
4,−uk4)

∏

l

S43(u
j
4, u

l
3)S43(−uj4, ul3) (E.15)

1 =
∏

k

S34(u
l
3, u

k
4)S34(u

l
3,−uk4)

∏

m

S32(u
l
3, u

m
2 ) (E.16)

−1 =
∏

m

S32(u
m
3 , u

l
2)
∏

n

S33(u
l
3, u

n
3 ) (E.17)

where Sab are the S matrices (really just phases) between the impurities of the various

kinds. We have removed the u1 roots by turning them into u3 roots, just to make the

equations more compact. The Sab are the same as the one that appear in the ordinary

mirror Bethe equations in [32], see also [20]. In this form, these equations follow in a

straightforward fashion from figure 12(c)(d). Note, in particular, that the last factor in

(E.15) can also be written as S43(−uj4, ul3) = S45(u
j
4, u

l
5) with ul5 = −ul3. So that we

can view the whole set of equations, (E.15)-(E.17), as arising from the full chain, with

both s̃u(2|2) factors, but in a configuration with the roots related by u8−a = −ua, as we

discussed above.

We can simply add the rotation matrices to this picture. They act diagonally on the

various impurities of the various levels. They appear as chemical potentials. The potentials

are as follows. The momentum carrying modes, labeled by u4, are in the SL(2) sector and

have spacetime charges, so we get a factor of e−2iφ, one e−iφ for the particle of momentum

q and one for the one with momentum −q. The next root, u3 or u1, is the action of a

fermionic generator that changes a fermion into a boson, so that we need to add eiθ+iφ.

Then a bosonic generator with e−2iθ is associated to the root u2. Taking into account the

number of roots of each type in a magnon bound state, we can get the chemical potential

coming from the angles for each magnon bound state [32]. In addition, the boundary

dressing phase also appears as a kind of chemical potential. For each pair of momenta q

and −q we have a factor of

σBσ̄B ≡ σB(z
+, z−)σB

(
− 1

z−
,− 1

z+

)
(E.18)

The derivation of the TBA equations for this system follows the same essential steps as

the derivation for the full TBA for the closed string. There are only minor differences due

to the constraints on the position of the Bethe roots. For example, for the roots u4 we only

need to know the density in the region u4 > 0, since there is always another associated root

at −u4. Thus, all integrals over u4 will run over u4 > 0. We can define the Y functions,

as usual, in terms of densities of particles over densities of holes. We then run through the

usual argument [33], but keeping track of the range of integration, etc. We end up with the
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boundary TBA equations

log Y1,1=iθ + iφ+Km−1 ∗ log
1 + Y 1,m

1 + Ym,1
+R(01)

1 a ∗ log(1 + Ya,0) (E.19)

log Y 2,2= iθ + iφ+Km−1 ∗ log
1 + Y 1,m

1 + Ym,1
+ B(01)

1 a ∗ log(1 + Ya,0) (E.20)

log Y 1,s=2i(s− 1)θ −Ks−1,t−1 ∗ log(1 + Y 1,t)−Ks−1 ∗ log
1 + Y1,1

1 + Y 2,2

(E.21)

log Ya,1=i2(a− 1)φ−Ka−1,b−1 ∗ log(1 + Yb,1)−Ka−1 ∗ log
1 + Y1,1

1 + Y 2,2

+

+
[
R(01)

ab + B(01)
a−2,b

]
∗ log(1 + Yb,0) (E.22)

log Ya,0=−i2aφ+ log[σBσ̄B]− 2LEa
m(u) + (E.23)

+
[
2Sa b −R(11)

a b + B(11)
a b

]
∗ log(1 + Yb,0) + 2

[
R(1 0)

a b + B(1 0)
a,b−2

]
∗

sym
log(1 + Yb,1) +

+2R(1 0)
a 1 ∗

sym
log(1 + Y1,1)− 2B(1 0)

a 1 ∗
sym

log(1 + Y 2,2) (E.24)

where the kernels are listed in appendix E.3 and are the same as in [37, 38] but with

Y
(here)
a,s = 1/Y

(there)
a,s . The values of the angle dependent form of the chemical potential for

each Ya,s function follows from the particle content of each mirror bound state associated

to each Ya,s function [32]. If we set to zero the Y0,a that appear in the convolutions,

we get the large L solution quoted in (4.7), (4.9). These equations look similar to the

ones in [59, 60] for twisted boundary conditions, apart from the folding symmetry and the

boundary dressing function σB.

Finally, the expression for the energy is the one quoted in (4.11).

E.3 Kernels conventions

For the kernels we use the same definitions as in [37, 38],

Kn(u, v)=
2n/π

n2 + 4(u− v)2
, Kn,m(u, v) =

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

K2j+2k+2(u, v) , (E.25)

R(ab)
nm (u, v)=

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

1

2πi

d

dv
log

r(u+ ia/2 + ij, v − ib/2 + ik)

r(u− ia/2 + ij, v + ib/2 + ik)
, (E.26)

B(ab)
nm (u, v)=

n−1
2∑

j=−n−1
2

m−1
2∑

k=−m−1
2

1

2πi

d

dv
log

b(u+ ia/2 + ij, v − ib/2 + ik)

b(u− ia/2 + ij, v + ib/2 + ik)
, (E.27)

Snm(u, v)=
1

2πi

d

dv
log σ

(
x[±n](u), x[±m](v)

)
, (E.28)

r(u, v)=
x(u)− x(v)√

x(v)
, b(u, v) =

1/x(u)− x(v)√
x(v)

(E.29)

Fourier transformations of Kn(u, 0) and Kn,m(u, 0) are used at different stages,

K̃n(w) = sign(n)e−|nw|/2 , K̃m,n(w) = coth
|w|
2

[
e−

|w|
2

|m−n| − e−
|w|
2

(m+n)
]
−δm,n . (E.30)
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F Perturbative solution of the small φ TBA

Before we start with the perturbative expansion of the small φ TBA system, let us see

in more detail how the simplified system (5.15)-(5.20) arises from (5.6)-(5.12). In order

to simplify (5.6), (5.7) we have to convolute their Km−1 terms with s ∗ s
−1 and use the

identity

s
−1 ∗Km−1 = K1,m−1 + δ2,m , for s(u) =

1

2 cosh(πu)
. (F.1)

We then use the TBA equation for X2 and the exact relations

R(01)
1 a (u, v) + B(01)

1 a (u, v) = Ka(u, v) , (F.2)

R(01)
1 a (u, v)− B(01)

1 a (u, v) = K̂y,a(u, v) = K(u, v − ia2 )−K(u, v + ia2 ) , (F.3)

where

K(u, v) =
1

2πi

√
4g2 − u2

4g2 − v2
1

v − u
. (F.4)

Regarding the other TBA equations, we can simplify them by convoluting with

(Kl−1,m−1 + δ(u)δl,m)−1 = δ(u)δl,m − s Il,m , Il,m = δl+1,m + δl−1,m . (F.5)

The simplified TBA equations (5.15)-(5.20) are useful to solve for the Y-functions in

the small φ-limit perturbatively. We should begin by expanding the Y-functions in powers

of g2,15

Ψ = Ψ(0) +Ψ(1)g2 +Ψ(2)g4 + · · ·
Φ = Φ(0) +Φ(1)g2 +Φ(2)g4 + · · ·

Ym = Y(0)
m (1 + Y(1)

m g2 + Y(2)
m g4 + · · · )

Xm = X (0)
m + X (1)

m g2 + X (2)
m g4 + · · ·

Ca = C
(2)
a g2 + C

(2)
a g4 + C

(3)
a g6 + · · ·

(F.6)

The leading orders in the expansion (F.6) can be obtained by setting setting θ = 0 and

L = 0 and taking the small φ limit in the asymptotic solution (4.7)-(4.9). Thus we have

Ψ(0) = Φ(0) =
1

2
, Y(0)

m =
1

m2 − 1
, X (0)

m = −m
2

3
, C

(2)
a = 4(−1)a . (F.7)

We can obtain the higher order terms by solving the system as follows. By inspecting

the equations (5.17) and their perturbative expansions, one realizes that, to any order, the

system can be solved in this schematic way: Ψ(k) − Φ(k) → Y(k)
m → X (k)

m → Ψ(k) + Φ(k) →
C
(k)
a , provided the order k − 1 functions are known. In the final step of computing C

(k)
a

(5.20) two kinds of contributions must be distinguished. On the one hand, there is ∆conv

which is originated in from the convolutions with the Y-functions in (5.19). On the other

hand we have contributions from the explicit functions in (5.12) which can be expanded to

15The different choice in the Ym expansion is to have similar recurrent equations to those of Xm.
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any order independently of the Y-system solution. These give

a4

[
z
[−a]
0

z
[+a]
0

]2
F (a, g)2=a4

(
a−

√
a2 + 16g2

a+
√
a2 + 16g2

)2

ei(Φ(z
[+a]
0 )−Φ(z

[−a]
0 )+Φ(1/z

[−a]
0 )−Φ(1/z

[+a]
0 )) (F.8)

=16g4
[
1+

(
π2 − 6

a2

)
8g2

3
+

(
7π4 − 150π2

a2
+

630

a4

)
16g4

45
+O(g6)

]

where we have used that z
[±a]
0 are given by (2.16) at q = 0. We kept the first 3 loop orders

only.

F.1 Small φ solution at 2-loops

Let us now solve for the small φ Y-functions to the next to leading order in the coupling

expansion. We refer to this as the 2-loop order computation because this order gives rise

to a correction O(g4) to the energy E . Note however, that the Y-functions corresponding

to this order are O(g2).

We start with (5.15). Using the leading order of Ca and the expression for Ky,a,

Φ−Ψ ≈
∑

a

16(−1)ag2
√

4g2 − u2

(a2 + 4u2)
. (F.9)

Given that fermionic Y-functions are defined in the interval (−2g, 2g), this difference is

essentially O(g3). Thus, it will be convenient to use the variable ũ = u/(2g) that runs

between −1 and 1. We then obtain

Φ(2g ũ)−Ψ(2g ũ) = 32g3
√
1− ũ2

∞∑

a=1

(−1)a

a2
+O(g5) = −8π2g3

3

√
1− ũ2 +O(g5) . (F.10)

This indicates that fermionic convolutions do not contribute to X (1)
n or Y(1)

n Then, we have

Y(1)
m − s ∗ Im,nY(1)

n

(n2 − 1)

n2
= 0 . (F.11)

The same recurrence equations, thought with different rhs’s, will repeatedly appear in the

weak coupling expansion of the small angle limit TBA equations. In F.3 we present the

resolvent of the corresponding recurrence operator (demanding Y(1)
1 = 0 and that Y(1)

m

remains bounded as m→ ∞). In this particular case, we solve (F.11) with Y(1)
m = 0.

The recurrence equation that X (1)
m satisfies is non-homogeneous. It has a non-vanishing

r.h.s. because of the term πs Cm in (5.18),

X (1)
m − s ∗ Im,nX (1)

n

(n2 − 1)

n2
= 4π(−1)ms . (F.12)

In Fourier space this becomes

2 cosh
w

2
X̃ (1)
m − m(m− 2)

(m− 1)2
X̃ (1)
m−1 −

m(m+ 2)

(m+ 1)2
X̃ (1)
m+1 = 4π(−1)m , (F.13)
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which can be solved using the resolvent of F.3. Here we write down only the component

we need

X̃ (1)
2 = −8

3
π
[
2 cosh

w

2
log
(
1 + e−

|w|
2

)
− 1− e−

|w|
2

]
. (F.14)

Now, from (5.16), we have

Φ(1) +Ψ(1) = −3

2
s ∗ X (1)

2 + 8π(−1)ns ∗Kn−1 − 4π(−1)aKa , (F.15)

where we have used

R(01)
2b (u, 0) = Kb−1(u) +

8g2

b2
K1(u) +O(g4) . (F.16)

To compute the convolutions we go to Fourier space and get

Φ̃(1) + Ψ̃(1) = 4π log(1 + e−|w|/2) , (F.17)

and then

Φ(1) +Ψ(1) =
1

u2

(
1− 2πu

sinh(2πu)

)
. (F.18)

To compute convolution with this fermionic Y-functions (Φ and Ψ) we shall use the afore-

mentioned ũ, at the expense of introducing a g-dependence which has to be expanded as

Φ(1)(2gũ) + Ψ(1)(2gũ) =
2π2

3
− 56π4

45
g2ũ2 +O(g4) . (F.19)

For the next to leading order it is enough to keep only the constant term. Note, however,

that the second term will also contribute to the next to next to leading order.

We now compute

∆conv = R(1 0)
a 1 ∗̂ log 2Ψ− B(1 0)

a 1 ∗̂ log 2Φ +
[
R(1 0)

a b + B(1 0)
a,b−2

]
∗ log 1 + Yb

1 + 1
b2−1

. (F.20)

and we find to the leading order

∆conv =
2π2g2

3
+O(g4) . (F.21)

We are now in the position to evaluate Ca at the 2-loop order. Inserting (F.21) and (F.8)

into (5.20) we find

Ca = 4(−1)ag2 + 8(−1)a
[
π2 − 4

a2

]
g4 +O(g6) , (F.22)

F.2 Small φ solution at 3-loops

Convolutions with fermionic Y-functions (Φ and Ψ) start contributing to the next to next to

leading order. We have already obtained the difference of fermionic Y-functions in (F.10).

For the convolution needed in (5.17) we get

s ∗̂ log Ψ

Φ
≃ 16π2g3

3
s(u− 2gũ)∗̂

√
1− ũ2 ≃ 16π3g4

3
s(u) . (F.23)
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Thus, from (5.17) using Ym ≃ 1
m2−1

(1 + g4Y(2)
m + . . . ) we obtain

Y(2)
m − s ∗ Im,nY(2)

n

(n2 − 1)

n2
= −16π3

3
δm,2s . (F.24)

This recursive equation in Fourier space is

2 cosh w
2 Ỹ(2)

m − m(m− 2)

(m− 1)2
Ỹ(2)
m−1 −

m(m+ 2)

(m+ 1)2
Ỹ(2)
m+1 = −16π3

3
δm,2 , (F.25)

for which we find the solution

Ỹ(2)
m = −16π3

3

m

m2 − 1
e−

1
2
m|w|

(
cosh

w

2
+m sinh

|w|
2

)
, (F.26)

valid for m ≥ 2, otherwise Ỹ(2)
m vanishes.

Next, we consider the equation for Xm. Recall that we are expanding it as Xm =

−m2

3 + g2X (1)
m + g4X (2)

m + . . . . Here, X (1)
m is the solution to (F.12), for which we have only

quoted X (1)
2 . This however does not contribute to the equation for X (2)

m . For the latter we

get the usual recurrence equation. In the r.h.s. there are contributions from the solution

Y(2)
m , Cm and the fermionic convolution. In Fourier space the recurrence equations are

2 cosh w
2 X̃ (2)

m − m(m− 2)

(m− 1)2
X̃ (2)
m−1 −

m(m+ 2)

(m+ 1)2
X̃ (2)
m+1=

2

3
cosh w

2 Ỹ(2)
m (F.27)

+(−1)m8

[
π3 − 4π

m2

]
− 8

9
π3δm,2

where Ỹ(2)
m is the the solution (F.26). This equation was also solved using the resolvent

presented in F.3. We write only X̃ (2)
2 ,

X̃ (2)
2 =−128π

3

[
Li2

(
−e−|w|/2

)
sinh |w|

2 + Li3

(
−e−|w|/2

)
cosh w

2 + 1
]

(F.28)

−8π3

27

(
5e−3|w|/2 − 9e−|w|/2

)
− 16π3

3

[
2 cosh w

2 log
(
e−|w|/2 + 1

)
− 1
]
.

which is the only component that enters in the fermionic TBA equations. Then, from the

fermionic Y-functions, we get

Φ(2) +Ψ(2)=2πs ∗
[
8π2(−1)nKn−1 +

32(−1)n

n2
(K1 −Kn−1)

]

−8π(−1)a
[
π2 − 4

a2

]
Ka −

3

2
s ∗ X (2)

2 − 1

2
s ∗ Y(2)

2 (F.29)

We compute the convolutions in Fourier space,

Φ̃(2) + Ψ̃(2) =
4

3
π3e−|w| + 8π3 log(1 + e−|w|/2) + 32πLi3(−e−|w|/2) , (F.30)

and then

Φ(2)+Ψ(2) =
4π2

3(1 + u2)
+

2π2

u2

(
1− 2πu

sinh(2πu)

)
+

2

u4

(
1− 2πu

sinh(2πu)
− 2π2u2

3

)
. (F.31)
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Evaluating for u = 2gũ we obtain for the leading weak coupling limit

Φ(2)(2gũ) + Ψ(2)(2gũ) =
4π2

3
+

32π4

45
+O(g2) (F.32)

Now we have to compute up to the O(g4) convolutions in (5.19). If we use16

R(10)
a 1 (u, v) + B(10)

a 1 (u, v) = Ka(u, v) (F.33)

R(10)
a 1 (u, v)− B(10)

a 1 (u, v) = K̂a,y(u, v) = K(u+ ia2 , v)−K(u− ia2 , v) (F.34)

we can re-write the fermionic convolutions in the TBA equation (5.19) as

2R(1 0)
a 1 ∗̂ logΨ− 2B(1 0)

a 1 ∗̂ log Φ = Ka∗̂ log
Ψ

Φ
+Ka,y∗̂ logΨΦ (F.35)

It is important to recall that we need only the u→ 0 limit of this. For the order g4 of the

first term in (F.35) we get
16π3g4

3
Ka(0) =

32π2g4

3a
(F.36)

The second term in (F.35) is

Ka,y∗̂ logΨΦ=

2g∫

−2g

dv Ka,y(0, v)
[
log(−4) + 2g2

(
Ψ(1)(v) + Φ(1)(v)

)
(F.37)

−
(
Ψ(1)(v) + Φ(1)(v)

)2
g4 + 2

(
Ψ(2)(v) + Φ(2)(v)

)
g4 + · · ·

]
,

where its g4 order is

− 56π4g4

45

1∫

−1

dṽ
2ṽ2

π
√
1− ṽ2

− 9π4g4

4
+ 2

(
4π2

3
+

32π4

45

)
g4 = −12π4g4

45
+

8π2g4

3
. (F.38)

Thus, the total g4 order of (F.35) is

32π2g4

3a
+

8π2g4

3
− 12π4g4

45
. (F.39)

For the remaining convolution in (5.19), 2
[
R(1 0)

a b + B(1 0)
a,b−2

]
∗ log(1 + Yb) we use

R(1 0)
a b (0, v) + B(1 0)

a,b−2(0, v) = Kb−1(v) +

a−3
2∑

j=−a−1
2

Kb+2j +O(g2) . (F.40)

We go to Fourier space, where the term order g4 is

2


K̃b−1 +

a−3
2∑

j=−a−1
2

K̃b+2j



Ỹ(2)
b

b2
= −8π3

3
e−|w| − 16π3

3

a− 1

a
e−

a|w|
2 . (F.41)

16Note the difference with K̂y,a defined in (F.3).
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We Fourier transform back and evaluate for u→ 0 and we get

2


Kb−1 +

a−3
2∑

j=−a−1
2

Kb+2j


 ∗ Y(2)

b

b2

∣∣∣∣∣∣∣
u=0

=
32π2

3a2
− 32π2

3a
− 8π2

3
. (F.42)

Thus, for ∆conv up the 3-loop order we have

∆conv =
2π2g2

3
+

[
−6π4

45
+

16π2

3a2

]
g4 +O(g6) . (F.43)

Which, together with (F.8), gives rise to

Ca = 4(−1)ag2 + 8(−1)a
[
π2 − 4

a2

]
g4 + 16(−1)a

[
π4

3
− 4π2

a2
+

20

a4

]
g6 +O(g8) . (F.44)

F.3 Recurrence resolvent

For solving perturbatively the small φ TBA equations we are faced with certain recurrence

equations, all of same form but with different inhomogeneities. They can be solved in terms

of the resolvent χ̂ m
n = f(m,n),for n ≥ m and χ̂ m

n = f(n,m) for n < m with

f(m,n) = −2
√
2
(cosh w

2 + n sinh |w|
2 )(cosh w

2 sinh m|w|
2 −m sinh |w|

2 cosh mw
2 )

mn(coshw − 1)3/2
e−

n|w|
2

(F.45)

This resolvent χ̂ m
n is the solution to

2 cosh
w

2

n2

n2 − 1
χ̂ m
n − χ̂ m

n−1 − χ̂ m
n+1 = δ m

n . (F.46)

This can be transformed into our recurrence relations by setting χm = m2

m2−1
χ̂.
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