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The Quarter-State-Sequence Floorplan Representatior

Keishi Sakanushi, Yoji KajitaniFellow, IEEE and Dinesh P. Mehta

Abstract—A floorplan of a bounding box is its dissection into 2) Any code be decoded to exactly one floorplan so that in-

rectangles (ooms by horizontal and vertical segments. This paper feasible codes are not generated and so that codes can be
proposes a string data structure called theQuarter-state sequence evaluated uniquely

(or Q sequencgto represent the floorplan. The Q sequence is a con- . . .
catenation of thestatesof rooms along theAbe orderand is related 3) A transformation on the current solution to obtain a new

to the VH graph, which is the union of the vertical-constraint and solution (i.e., a move) be efficiently implemented so that
horizontal-constraint graphs. It is proved that any floorplan of n few moves are required to transform a solution to an ar-
rooms is uniquely encoded by a Q sequence and any Q sequence is bitrary solution.

uniquely decoded to a floorplan, both inO(n) time. An exactfor- \yhen floorplans are restricted to the slicing structure,
mula for counting distinct floorplans is given and compared with

existing bounds. A linear time transformation of one Q sequence to they can be coded by thedicing tree[1] and thenormalized

another is defined. Ann-room packing algorithm based on simu- Polish expressiofi2]. However, the slicing structure does not
lated annealing was implemented and found to compare favorably capture all floorplans. Sequence pairs (SPs) [3] were used

with existing packing algorithms. for the packing problem [4], [5]. The bounded-sliceline grid
Index Terms—Floorplan combinatorics, floorplan representa- (BSG) [6] is technically a floorplanning data structure as the
tion, graph theory, Q-sequence, simulated annealing. number of nonzero-area rooms equals the number of modules.

The difficulty arises in determining which (of many possible)
rooms should have nonzero area. SP, BSG, and the more recent
transitive closure graph (TCG) [7] suffer because of redun-
FLOORPLAN of a rectanglechip) is a dissection of the dancies which lead to larger solution spaces. O trees [8] and
chip inton rectanglesrtboms by horizontal and vertical B* trees [9] were proposed to represent packings. However,
line segmentsseg$ that meet in T junctions (but are not perthey only provide an incomplete description of the topological
mitted to cross). Floorplanning is important in the design of veigformation and require knowledge of the module dimensions
large-scale integration (VLSI) systems that use IPs or clusteneccomplete the description of a packing. Q sequences [10]-[12]
functional modules because it provides the first estimates of pand corner block lists [13] are general floorplan representations
formance and cost. Multiple objectives such as the minimizatiemat were discovered independently in 2000. Subsequently, in
ofthe chip area, estimated wire-length, critical-path wire lengthp01, the twin binary tree representation [14] and, in 2002,
length of parallel-running wires, clock skew, etc., mustbe simukn equivalent (but more convenient) representation called the
taneously optimized in modern floorplanners. Heuristic searein binary sequence [15] were proposed. The twin binary
technigues such as simulated annealing appear to be the Beguence and the extended corner block list [16] have extended
strategy for tackling this multi-objective optimization problemthe corresponding floorplan representations so that they can be
These approaches successively generate and evaluate candigie effectively for the packing problem.
floorplans to determine the best flooplan encountered so far. INThis paper describes th@uarter-state sequencéQ se-
this state space search strategy, floorplans are representedjncg that (along with corner block lists) was the first
codes that can be efficiently perturbed to generate new flogepresentation to meet the criteria listed above. A room in a
plan states. It is desirable that the following hold. floorplan is characterized by the configuration of one of its four
1) Any legal floorplan be represented by a unique code sorners (hence the term “quarter”), which is callecsteste The
that optimal floorplans are not missed and so that the saffieorplan is represented by a sequence of states of rooms and
floorplan is not generated multiple times. their adjacency relations. A key question that arises in coding a
floorplan is how rooms are to be ordered in the sequence. This
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Fig. 2. In both floorplans, rooms 1 and 2 are adjacent to seg 1, and rooms 3
and 4 are adjacent to seg 3, and all four rooms are adjacent to seg 2. Thus, the
two floorplans are equivalent under the room-seg adjacency relation. However,
rooms 2 and 3 (or 1 and 4) are adjacent to each other in one floorplan, but not
in the other. Thus, the two floorplans are not equivalent under the room-room
adjacency relation.

than that of an optimal packing. Thus, floorplanning may be
viewed as a constrained version of the unconstrained packing
problem (i.e., am-room packing problem). Consequently, we
don’t expect a direct application of floorplanning to yield an op-
(b) BBA=32 timal packing. The Q-sequence representation proposed in this
Fig. 1. Area minimized placement. (a) Unconstrained packing (b) Four-roo%aper’ solves t.he floo_rplannlng prqblem or theoom pqcklng .
packing (floorplanning). problem. In spite of this apparent disadvantage, we will show in

Section VII, that it yields good results for the packing problem.

linear time transformation (move) is defined such thahoves
can transform an initial Q sequence to any Q sequence.
Section Il clarifies some of the commonly used definitions In this subsection, we explicitly differentiate between two
and assumptions in floorplanning literature. It shows that tligpes of adjacency relations that are used in floorplan represen-
floorplanning problem is a constrained version of the geneitaltions. In aroom—segadjacency relation, a relation is defined
packing problem. The structure of the floorplan is studied usidgtween a room and a segment if and only if s is the left,
prime graphs in Section Ill. In Section IV, the Q-sequence datight, top, or bottom border af. A room-roomadjacency rela-
structure is introduced and the decoding algorithm is describ&ién is defined between two roomsand s if and only if they
A counting formula is described in Section V. In Section VI, adshare a nonzero portion of a segment. Fig. 2 uses two floorplans
ditional important properties of the Q sequence are discusstalillustrate the (subtle) difference between these two types of
In Section VI, a floorplan-based packing algorithm is implerelations. Notice that both floorplans are equivalent under the
mented and experimented with. Even though Q sequences pasm-seg adjacency relation, but not under the room-room ad-
vide a constrained packing method, experiments show that jheency relation.
results are no worse than SPs and BSGs and are obtained mudihe room-room adjacency relation was used in initial ef-

A. Adjacency Relations in Floorplan Representations

faster. Finally, Section VIII concludes the paper. forts in the 1970s and 1980s to cast the floorplanning problem
in terms of graph duals [20]-[22]. The input to the floorplan-
Il. BAsIC CONCEPTS ning problem is a graph (representing a circuit). If a pair of ver-

. _ . . tices is joined by an edge, then the corresponding rooms in the
In this section, we clarify the difference between the ter J y g P 9

packingand floorplanning which are often used interchange—Foorplan are required to be adjacent. It was shown that a graph

ably in the literature. In a packing, the objective is to accom-admlts a floorplan that satisfies this property only if the graph

date th dules in a bounding box of mini | Is planar triangulated and does not contain any complex trian-
frlno ale 9: modu ?Shltn a ountlngb ox 3. mgmur;n area. yes. However, this was not a practical formulation as the input
oorpianning, we wisn to compute a bounding box of minimu raph was not necessarily planar and the room—room adjacency
area that is dissected inéxactlyn rectangular rooms such that

h modul b dated i _ Fi reiquirement was an overconstraint. Further, no effective opti-
€ach module can be accommodated in a unique room. Fig. lnHi'zation techniques were developed to minimize the number of
lustrates the difference far = 4.

. ) . graph edges that could not meet the adjacency requirement. The
D '.:'g' 1t()a) sZgwsl;an op}ymalac!;anggf module;{l, Bl c, 'and ¢ room-seg relation was made explicitin 1994 after the BSG, and
f In ? oun ,'[nc? oxto tﬁres d OVLGVGT;M Ig.l @ dls nto ép representations were introduced. The room-seg adjacency
oorplan, as it dissecls the bounding bOx Imick ("?m MOl relation is used as the constraint imposed on the one-dimen-
n) rooms, one of which is empty. Fig. 1(b) is an optirfiabr-

. oo A sional compaction. This paper also uses the room—seg adjacenc
plan as the chip rectangle is dissected into four rooms, each P pap gad 4

) : . r8lation.
which accommodates a module. (Here, there is some whitespace

left over in the room containing modul®.) The area of the I p G E
bounding box for the optimal floorplan is 32, which is greater + PRIME GRAPH OF AFLOORPLAN

, _ _ , Afloorplan withn rooms consists of — 1 internal segs (max-
IThe term “floorplan” is often used in the literature to describe the conce

t h . . .
that we refer to as “packing” and the term “mosaic” floorplan is used to referFEna.I vertical or horizontal |I!1€ segments). A vertical seg and a
the concept that we call a “floorplan.” horizontal seg are not permitted to cross one other, but can touch
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top (if s is horizontal) until it merges with the walk’ consists
of n — 1 rooms. lts left-top room was the next room/obefore
the prime seg was shifted.

Lemma 1: (Deletion) VH'(F) = VH(F").

Proof: The edges of the VH graph correspond to the ad-
jacency relations between rooms that are on opposite sides of a
seg. Shiftinglt’s prime seg does not change any of these rela-
tionships, except for those involvirig These are precisely the
Fig.3. Inboth floorplans, the prime segiois the bold line, and the associatededges that are eliminated VAH'(F'). [ ]
rooms arei, j, andk. i is the next room of-. Lemma 2: (DAG) V H(F) is a directed acyclic graph (DAG)
with a single source (vertex with no incoming edgg)and a
single sink (vertex with no outgoing edge),.

d d Proof: There is no incoming edge to a verte¥ and only
if the left border and top border of, are both walls. Roortt is
the only room that satisfies this condition. Hengg s the only
source inV H(F'). A similar argument shows that vertey, is
the only sink. Ifn. = 1, VH(F) is trivially a DAG. Assume
that any floorplan withn — 1 or less rooms has a VH graph
that is a DAG. It is a well-known fact that a directed graph is a
DAG if and only if it contains at least one source and the graph
obtained from the graph by deleting the source is a DAG. Since
a VH graph contains one source ald?’(F') is a VH graph
of a floorplan ofn, — 1 rooms (Lemma 1), we have proved by
induction thatV’ H (F') is a DAG. [ |

For a roomr, let next(r) denote its next room angkev(r)
the previous room; i.eprev(next(r)) = r. next(r) is unique
unlessr = rb and so isprev(r) unlessr = It.
Fig. 4. Floorplan of seven rooms, its VH graph, and pVH graph. Henceforth, Lemma  3: (Hamiltonian Path) VH(G) has a
the vertex label in our figures also denotes the name of the corresponding rogifiique directed Hamiltonian pathm whose vertex
sequence corresponds to the room sequeiicenext(lt),

to form a T junction. The four bounding segments of a chip arext(next(lt)), ..., next®(lt), ... next"='(it) = rb.

also segs, but are calledalls if it is necessary to distinguish Proof: Since there is an edggv,, vnexi(r)) for every
them from internal segs. In the following, we will focus on théoom r(#  rb), the vertex sequence corresponding to
right-bottom and left-top corners of the chip. If the right seg arml(k) = (I¢, next(lt), next(next(It)), ..., next*(it)) is a
bottom seg of a roomare both walls, itis the right-bottom roompath. SinceV’ H(F) is a DAG, no vertex appears twice in this
and is denoted byb. (The room whose left seg and top seg argath. Then,r(k) can be extended until the unique sink,
both walls is the room at the left top, which we nafg For is encountered. If a vertex is not contained inr(k), then
any roomr exceptrb, two segs meet at the right-bottom cornegonsider the path ofexs starting withv. This path must
of r and one ends there forming a T junction. The seg that erigcounter a vertex, on (k) sincev, is the only sink. This

at the T junction is called therime segpf . (Note that-b does Means thaprev(q) is not unique, a contradiction. =

not have a prime seg.) Next, we define the prime graph which is a subgraph of

The rooms that are adjacentits prime seg on the opposite V H (¥).
side ofr are called thassociated roomsf . The topmost (left-  Definition Prime GraphpV H(F): The vertex set is the
most) of the associated rooms is called tieat roomof r. See Same as that oV H(F'). An edgee = (v,,v,) exists if and
Fig. 3 for an illustration of these definitions. only if ¢ is an associated room pf In other words, the edges of

Definition VH graphV H(F): Each vertex i H(F) cor- pV H(F') are defined only by the rooms and their prime segs.
responds to a room in floorpla. For a roomy, v, denotes the An edge ofpV H(F') is calledB edge orR edge depending on
corresponding vertex il H(F') and for a vertew in VH(F), Whether the prime seg, is horizontal or vertical, respectively.
r, denotes the corresponding room. For two roanendy, a LettersB andR are called the positional symbols and stand for
directed edgév,.,v,) exists inV H(F) if and only if there is “Below” and “Right,” respectively. The definition is illustrated
either a vertical seg such thats is the right border of: and by Fig. 40
the left border ofy, or a horizontal segmentsuch that is the ~ Theorem 1:pV H(F) has a unique Hamiltonian path starting
bottom border of: and the top border of. Fig. 4 illustrates the With v;; and ending ab,,.
definition1 Proof: From Lemma 3, the Hamiltonian pathin V H (F')

For a floorplanF” of n rooms, letV H'(F) be the graph ob- consists of edge@., vuext(s)) Which are defined by the rooms
tained fromV H(F) by deleting vertex,;; and the edges inci- and their prime segs.These edges are retainpt/ i (/"). =
dent to it. LetF” be the floorplan obtained frorfy by shifting Since the Hamiltonian path is unique, each room can be
the prime seg;; of room!t to the left (if s;; is vertical) or to the assigned an integer label corresponding to its position:in
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Fig. 5. pVH graph of Fig. 4 normalized by the Abe order.

1(=1t),2,3,...,n(= rb). The existence of a unique ordering
is fundamental since it permits us to determine whether or not
two floorplans are structurally identical. This discovery dates
back to a 1930 paper by Michio Abe that is concerned with
counting distinct floorplans [17]. His contribution was to order
the segs. We extended this to order rooms. We refer to this or-
dering of rooms and segs, which is illustrated in Fig. 5, as tf'I:(ie 7 The epvH h g he bVH hof Fia. 5
Abe Ordering. g. /. P grapn corresponaing to tl ep grapn or FIg. o.
pHV'(F) denotes the graph obtained fropV H(F) by
deletingv;; and its edges. otherwise there is a vertical seg that termindtdsy forming a
Lemma 4: (Deletion in pVH) pVH(F') = pVH'(F). In T junction to the left ofr,. Then,r, cannot be an associated
general, the graph obtained frg# H (F') by deleting the first room, a contradiction. Thus, all of these rooms, one of which is
p—1verticesv;, va, . .., v,_1 iSthe prime graph of the floorplan r,,, are not top (left) wall rooms.
which is obtained by — 1 shifts of the prime segs of the left-top Assume next that is not in anyB span R span). Then, it
room. has no incoming3 edge R edge) since incoming edde, v)
Proof: A proof identical to that of Lemma 1 showscontainsy in its span by definition. This implies that there is no
thatpVH(F') = pVH'(F). The second claim is proved byroom above-,, i.e., roomr, is a top wall room. [ |
showing that shifting eliminates the current left-top room and Theorem 4: (SPAN) If a vertex is in a3 span R span), it
makes its next room the new left-top room. m has an incoming edge R edge).
A room whose top border (left border) is part of the top wall ~ Proof: From Lemma 5, a vertex in a B span does not
(left wall) is called the top (left) wall room. correspond to a top wall room. It must be an associated room of
Theorem 2:(IN EDGE) The number of incoming edges the room above it, whose prime segment,is top border. Soy
(R edges) to any vertex of pV H(F) is either zero or one. has an incoming edge. The discussion f& span is similam
Proof: A B edge(u,v) exists if and only if the prime seg Theorem 5: (LPD) GraphpV H(F') has a planar embedding
L of r, is horizontal and-, is an associated room. For a giverthe linear-planar drawing (LPD) such that the Hamiltonian path
r,, such a roonr, exists only ifr, is not a top wall room. If it = is drawn on a straight horizontal line and evérgdge not in
exists,r, is the (unique) room whose prime sedlsA similar = is above and everR edge not inr is below it.
discussion holds foR edges. [ | Proof: Clearly,pV H(F') can be drawn as specified. We
Theorem 3: (OUT EDGE) For each vertex of pV H(F) will show that this drawing is planar. Assume that th@dges
(exceptv,4), the outgoing edges are all exclusivédyedges or (a,b) and(c, d) cross each other. Let < ¢ < b < d without
R edges. loss of generality. Vertek has a single incomingg edge from
Proof: The outgoing edges from a vertexcorrespond to vertexa (Theorem 2). LepV H'(F’) be the graph obtained from
the associated rooms of. They are all5 edges orR edges pV H(F') by deleting verticed,2,...,c — 1, which is also a
depending on whether,’s prime seg is horizontal or vertical, pVH graph of some floorplan (Lemma 4). Here, veridelongs
respectively. m to the B span of edgéc, d) but does not have an incomirtg)
Lete = (u,v) be aB edge R edge). The set of verticesedge because vertexvas deleted. This contradicts Theorem 4,
u + 1 throughw in the Hamiltonian pathr is called the3 span proving that there is no pair of crossif§jedges. Similarly, it

(R span) ofe. can be shown thaR edges do not cross. [ |
Lemma 5; (Wall Room) A vertexw is not in anyB span R Fig. 6 shows an LPD of the prime graph in Fig. 5. To char-
span) if and only if roomr,, is a top (left) wall room. acterize the prime graph, we define a class of graphs that con-

Proof: Assume that isin B spanbye = (p,q). Itimplies tain all prime graphs. An H graph is a directed graph whose
that roomr,1 andr, are associated rooms of roam. Then, vertex set consists of vertices labeled by integer subscripts as
their top borders are at the same height as the primg,se§ = = vy,vo,..., v,. Edges are of two kindsk edges and3

rp. Top borders of rooms, ; ; throughr, are not above, since edges. There is a Hamiltonian path along the vertex sequence
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Fig. 8. Horizontal linear planar drawing of teV H(F') in Fig. 7.

(v1, v, ...,v,). The prime graph is an H graph but an H grapborders of rooms imp downwards by the same distance, room
may not be a prime graph. Now we have the main theorem. 1 can be inserted to get a new rectangular floorplan. Since the
Theorem 6: (Feasibility) An H graph H of n vertices is relation with respect to room 1 is correctly realized and no

pV H(F') of some floorplan® of n rooms if and only ifHf sat- relations inpV H(F") are changed, the new floorplanfswith
isfies the following four properties. pV H(F). [ |
LPD: H has a planar embedding such that the The prime graph a_\nd its enpoding to astring (the_ Q sequence)
Hamiltonian pathr is drawn on a straight are used in a practical solution to the floorplanning problem.

horizontal line and ever edge not inr is However, the prime graph is asymmetric in that an eRgeBy,)
above and ever edge not inr is below it sometimes does not appear in the graph becausekdmmders

SPAN: If a vertex is contained in/d span R span), a Ieflt)_(totp) _wlall. TTt'S asyrr;metry makes 't_ﬁ:ﬁ'c.u It to d(ejf"’j b
it has an incoming3 edge R edge). combinatorial results about Q sequences. This is remedied by

. : : defining the extended prime graph.
IN EDGE: The number of incoming edges R edges) e . ] L
to a vertex is 0 or 1. Definition Extended Prime GrapbpV H(F'): This is ob-

OUT EDGE: The outgoing edges from a vertex are excl gined from the prime grappV’ H(F) by adding two _vert|c_:es
sively B edges ofR edges.  andWr, and edge§WW, v,.) for every roomr that is adja-
cent to the left wall andWr, v,.) for every room that is adjacent
Proof: We only have to prove sufficiency; i.e., that ano the top walld
H graph that satisfies these conditions (a feasible H graph)see Fig. 7 and its horizontal linear planar embedding (Fig. 8).
corresponds to a floorplan. Assume that there is a floorplan forp 7 graph is a directed graph whose vertex set consists
any feasible H graph if the number of vertices is less tharet  of ;, vertices labeled by integer subscripts @swvs, . .. vy,
H be a feasible H graph of vertices.H" is the graph obtained ang two vertices;, and Wr. Edges are of two kindsR

from H by deleting vertex,; and its incident edges!” trivially  edges ands edges. There is a path along the vertex sequence

those properties. Assume that SPAN is not satisfied, i.e. thefgph may not be an epVH graph.

is a vertexv in H' which is in a3 span of edge but has N0 Theorem 7: A Z graph Z isepV H(F) for a floorplan F ofn
incoming edge. Then, from Theorem 4, there is an incomiRgoms if and only if Z satisfies the following properties:

B edgef from v, to v since H satisfies SPAN. Therg and _ h | beddi h
f cross each other, a contradiction to LPD. Bbis feasible LPD: Z has a planar embedding such t 'éit_’ Wr,
and the pathr are drawn on a straight hor-

and, from the induction hypothesis, it has a corresponding ; ! , .
floorplan F/ whose rooms are labeled with ..., n. In H’, izontal line and every3 edge not inry is

a vertex that has no incoming edge is a top wall room by above and everg edge notinry is below it
Lemma 5. (The case when there is no inconfigdge can be OUT EDGE: The outgoing edges from a vertex are exclu-
discussed analogously.) Moreover, the top wall is a sequence of S'V_EIVB edges ok edgesl¥, has only_ out-
top borders of these rooms ordered by increasing labels from going’R edges and¥'r has only outgoing3

the left. The outgoing edges from vertex are exclusively edges. ) i

B edges orR edges (by OUT EDGE). We assunfeedges IN EDGE: Every vertexv, has exactly two incoming
without loss of generality. A vertex that has no incomiig edges: on&k; and oneB.. W7, andWr do
edge inH' is called aB candidate, meaning that only such a not have incoming edges.
vertex has the possibility to have an incomiigedge fromu, Proof: The proofis similar to that of Theorem 6. In the in-
(by IN EDGE). Letm be the maximum room label among all ofductive step, we deletg from the graph as before, but instead
the B-candidates that have an incomiigedge fromw;. Then, of deleting its outgoing edges, we modify them so that they go
every5 candidate, (z < m) has an incoming edge fromw;  out from W, if they areR edges and fronWr if they are3

(by SPAN). The sets of these vertices and corresponding rooetgjes. The resulting Z graph clearly satisfies all of the proper-
are denoted a® andrp, respectively. Since vertices il are ties specified in the theorem and, from the induction hypothesis,
not in anyBB span inH’ (otherwise LPD is violated), their top corresponds to a floorplan. The floorplan may now be modified
borders form a continuous left part of the top wallidf. Place as in Theorem 6 so that the resulting floorplan corresponds to
room 1 so that its bottom border i3. Then, by shifting the top the given Z graph. ]



SAKANUSHI et al. Q-SEQUENCE FLOORPLAN REPRESENTATION 381

IV. CODING AND DECODING ‘
A. The Q sequence (
B

)
5
In this section, we show how to represepl’ H(F') by a
sequence as it is more efficient to manipulate a éeguence than i u t( U i {.} i U U
a graph when using a technique such as simulated annealing to
search the state space. Fig. 9. lllustration of the parenthesis system of the Q sequence corresponding
Definition State of a Roon¥/,, or Wr: to Fig. 5.
For a roomr, its Q state)(r) is the sequence of the room
label r followed by positional symbolR (if the prime ~ Fig. 9 illustrates the parenthesis systems pair{iy, i)
seg is vertical) o3 (if the prime seg is horizontal) with (shown above) an@R;, i) (shown below).
subscripts of the associated rooms in decreasing order. Proof: Consider a Q sequence that (by definition) cor-
For symbolW, Q(Wy) is the sequencl/;, followed by responds to some graphpV H (F'). PropertyUnique-Symbol
R with subscripts of rooms that adjoin the left wall in defeflects the property that the outgoing edges from a vertex are
creasing ordeiQ(Wr) is similarly defined. either allBs or all'Rs and the existence of a path along the Abe
The state of a room may be defined on the LPD girder. The Q sequence can be used to construct an epVH graph
epV H(F) as the sequence consisting of (or W or (Fig. 9) by replacing the Q-state of each room, 8&; ... R,
W) followed by the labels of out edges from (or W, by a vertexv;, and out edges labeleR;, .. ., andR; going to

or Wr) arranged in anti-clockwise order f@& edges or verticesv;, ..., v;. Thus, each edge represents a pair of paren-
clockwise order fo3 edges. theses. PropertiParenthesisof a Q sequence is then a direct
O consequence of the planarity of an epVH graph. Thus, itis clear
Definition Q sequence: that for a Z seq to be a Q sequence, it must have these properties.

To see that it is sufficient for Z seq to have these properties, we
describe the construction of a floorplan from a string (decoding)
that has these properties in the next section. [ |

The concatenation of the stateslgt,, W+, and rooms in
Abe order. It is written as

(QIWLQRWQLQ) -+ Qn)). |
B. Decoding

Next, we show how to decode a given Q sequence to a floor-
plan. The sequence of positional symbols betweandk + 1
(WLRsR1WrByB1 1R3R, 2B7B4B3 3R4 4BsB5 5R6 6R77). is denoted byl (k) and the number of elements by(k)|. In

SinceW; and W, have no corresponding rooms and can H&€ €pVH graph/(k) and|I(k)| correspond to the set of out-

inferred from the context, they are often omitted in a Q-sequen@@ind edges from,. and the outdegree of., respectively! (k)
representation as follows: is called theR-interval or B-intervaldepending on the symbols

it consists of. The decoding procedure in the following is illus-
(RsR1 BaB1 1R3Ro 2878483 3R 4 4B6B5 5Re 6R7 7). trated by the example in Fig. 10.

O
The Q sequence of the floorplan in Fig. 7 is

Next, we introduce the Z seq to describe necessary and suffi-
cient conditions for a sequence to be a Q sequence. ) .

Definition Z seq: Algorithm Decoding of a Q sequence to a Floorplan
Input: Q, a Q sequence

A Z seq containdVy,, Wr, 1, ..., which appear in this
d L PT0 " PP Output: F', a floorplan.

order in the string. It also contains positional symbols

Initialization:
Ri, -+, RnandBy,---, B,. These may appear anywhere . )
except befordVy. One or moreRs appear betweeW, II\_/Ie;il: gtee;floorplan consisting of one room with lahel

andWr and one or moréss betweerdV and 1. .
Repeat the following stepfdr=n — 1,n — 2,...1.

1) I(k) is an R-interval: Insert roomk so that it becomes
the left-top room such that its left seg is the left wall and
its right seq is the left seg of tg@ (k)| rooms.

See Fig. 10(A), (C), and (E).

2) I(k)is aB-interval: Insert roonm% so that it becomes the
left-top room such that its top seg is the top wall and its
bottom seg is the top segs of I¢fi k)| rooms.

See Fig. 10(B), and (D).

O

A Q sequence is clearly a Z seq.

Theorem 8: A Z seq is a Q sequence if and only if the fol-
lowing two conditions are satisfied.

Unique-Symbol: There is a sequence of length at least one
of positional symbols between two adjacent room labels
consisting exclusively oRs or Bs.

Parenthesis:Subscripts are assigned to tRs andBs so
that the sequence igparenthesis systeander the ordered
pairing of (R, k), and also under the ordered pairing of
(Bi, k) fork =1,...,n.2 -

The algorithm is based on the principles enunciated in the proof
2The "parenthesis system under a specified ordered paiiing)” is con-  of Theorem 6. A formal proof of correctness is omitted. Instead,
ventional if we imagine: andy to be the parenthesis pair “(" and “)”. Formally, . . . . . .
it is a sequence that satisfies the hierarchical property that successive del Gn'nformal (_axplanatlon of the step |IIust_rateq in Fig. J_-O(E) 1S
of the specified pairs that have no inside pairs results in a null sequence.  provided. This is the stage when room 1 is going to be inserted.
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For example,(R5R182811R3R228684833R44B55R66)
is the Q sequence of the floorplan in Fig. 10. This belongs to
C(6,4,4), C(5,2,4), C(4,2,1), C(3,1,1), C(2,1,0), and
6 > o8 C(1,0,0).

If C(m,r,b)is notemptyyn < nandr,b < n — 1. No
two setsC(m,r,b) andC(m,r’,b") contain a Q sequence in
common ifr # ' orb # b’. Hence, the numbdr(n) of distinct
floorplans withn rooms is given by
B} |Bd B} 11
‘ Fn) =Y > 1C(n.r.b)]. 1)

6 6 r=0b=0

To calculate this numerically, we use a recursive formula for
5 5 |C(n,r,b)|. Any Q sequence of’(n,r,b) is obtained from
either

1) C(n — 1,7',b), " < r by adding a Q- state of a room in
2 2 the form foom labe) R, . .. R, where the number oRs
1 1 isr—1r', or
= 3 4 3 4 2) C(n—1,r,b),b < bbyadding a Q state of a room in

6 6 the form foom labe) B, ... B, where the number afs
5 5 isb—1.
Hence, |C(n,m,b)] = XI1C( - Lrb) +
b—1 ’
Fig. 10. Decoding of a Q sequence. (The interval under consideration |sb'=0 |C(n ~Lnb )| " : ;
underlined): (A)Rs Ry Bs Bi1 Ro Ra2 By Ba By3 R4 B Ro6 (B): Rs The boundary conditions are obtained by observing that

Ry By Bil Ry Ra2 Be By Bs3 Rud B35 Reb (C): Rs Ry Bo B11 Ry C(1,0,0) consists of exactly one floorplan adt{n,r,b) =
R2 Bs By Bs3 Rad Bsb Re6 (D): Rs Ry Bo Bil Ra Ro2 BeBaBs3  if r > norb > n
Rad Bs5 Re6 (E): Rs Ry Bo Bl RsRo2 Bs By B33 Rud Bsb Re6 - -

4
BS‘

&

=

(F): Unique resultant floorplan. n—1ln—1
F(n)=Y_>"|C(n,r,b)|, where )
r=0 b=0
Rooms 6, 5, 4, 3, and 2 have already been inserted. Thus, five 1, n=1,r=b=0
closed parentheses have been used. Two open parentheses cor- 0, rb>n
responding taR, andR have been used so far. Sb= 5 — 2 |C(n,r,b)|= SO0 — 1,07, b)) ()
rooms have their left segs on the left wall. Room 1 pushes two N 22’—:10 IC(n—1,r,0')[, otherwise.

rooms inside (corresponding 103 andR.,).
It must be noted thal'(n) counts the number aftructurally

distinct floorplans. If we assign labels to room numbers, the total

. . ) ) number of distinct floorplans is!F(n).
The computational complexity of coding and decoding are

determined as follows. Coding consists of traversing the rooBs Upper Bounds

of the floorplan in Abe order to generate the Q-sequence reprey o O* be the sequence obtained from a Q sequence Q by

sentation, which require3(n) time. Decoding requires the S€-geleting all B's. Q* is a parenthesis system with respect to

guence to be segrched backvyard to determ'ine the orderin Wkﬁ%ﬁ}ing (R, k). Itis known that the variety of the parenthesis
rooms are to be inserted. This is also possibl@{n).

, system ofn parentheses is [23, p. 495]
Theorem 9: Coding (from a floorplan to a Q sequence) and

C. Computational Complexity

_decoding_ (from a Q sequence to a floorplan) are both possible Catalan(n) ~ 22"
in O(n) time. (n+1)ymn.
Given Q*, consider reconstructing the corresponding Q se-
V. COUNTING FLOORPLANS qguence. The positional symb#l can be inserted before room

1 and between two successive rooms, except when the intervals

have one or mor&s. Further, every interval witho® must be
Counting, listing, or generation of distinct floorplans wf filled with at least one3. For a givenQ*, the number of possi-

rooms has been a major concern in combinatorics. See [1id]ities is bounded by the number of way®3s can be placed in

[19]. Based on the previous sections, the problem is reduced m intervals, wheren is the number of intervals that contain

to counting distinct Q sequences. A classification of the Q s&s. This quantity is,_1C,,_,,,_1, Which is bounded by"~!.

guences is introduced. Multiplying this quantity with the Catalan number yields
Definition Class C(m,r,b) of Q sequencesfor ne1 om  en—1 3n

m = 1,2,...,n, 0(77(177’7 b) )is the set of Q sequences F(n) < Catalan(n) x 2 S27x2 =2 “)

that contain R's andb B’s in the subsequence consisting offhis is tighter than the upper bourthtalan(n) x n! in [18]

m rooms labeled from — m + 1 ton. and [19].

A. Exact Number
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Solution Space
1e+20

1e+18 [

1e+16 [

Te+14 [

le+12

1e+10 [

1e+08 [

1e+06

10000

100 |

15 20
Number of Rooms

Fig. 11. Numerical comparison of focused functions (normalizei ).

C. Comparison With Other Representations

The number of distinct binary trees with leaves and two 2
kinds of inner node labels 81 (n) = Catalan(n) x 2"~! x n!. —
(The number of structurally distinct binary tree<lstalan(n) SN~
and the number of internal nodes— 1 each of which can
be of two types. The leaves can be labeledfirways.) Since
any slicing floorplan is represented by this class of binary trees
(though there is some redundancl)(n) is an upper bound of
the number of slicing floorplans. However, our result (4) shows
that BI(n) is also an upper bound of the number of general
floorplans. So, we continue with a more detailed analysis.

Let SL(n) be the exact number of distinct slicing structure
floorplans. Clearly, inequality iSZ(n) < F(n) < BI(n).Our
interest is in the difference betweét{rn) andSL(n). We com-
putedSL(n) numerically using the idea aformalized binary
trees[2]. F(n) was numerically calculated by (2) and (3). Up
ton = 20, they are approximated as

F(n) ~ Catalan(n) x 20-6518n—2.26 _ I .
0.5072n—1.45 Fig.12.  Merged Q sequence with origin room 6 is common to three floorplans:
SL(n) ~ Catalan(n) x 2% =2 (1A12L5L,3A34L 4 L35 A5 A1685B:TRs8R09).

Fig. 11 shows the graphBI(n) and SP(n) = (n!)? (the
number of packings using SPs) are also shown for compari
purposes.

From these data, we observe that little significant reduction
the solution space is achieved by restricting the floorplan to
slicing structure. It could also be concluded that the SP produ
a great amount of redundancy with respeat-imom floorplan-
ning, or, equivalentlyp-room floorplans cover an insufficient
part of the unconstrained packing space.

~
oo [@

and that this can be extrapolated to the global property of the
*Rbe ordering. Is it possible to define a sequence by starting with
a? arbitrary room and merging the two sequences leading from

is room in opposite directions? Does such a sequence cover
é':léﬁ the rooms and encode the floorplan?

Tt is true that the proposed sequence covers all the rooms.
However, the following counterexample shows that such a se-
guence does not uniquely encode a floorplan. In Fig. 12, three
distinct floorplans are shown. The sequence starting with room 6
toward the right bottom 685537 7Rs8R49) for all three. The
sequence€6.4,4.A455L3L44.A33L1L22.A,1) starting with room

There are several natural questions that arise about #hand leading toward the left-top corner is also common to all
Q-sequence structure and possible variations. Below, we listee. (Here, positional symbalsand£ point to the rightmost
four questions and provide answers. room above and bottom-most room on the left, respectively.)

VI. REMARKS ON Q SEQUENCE

A. Q sequences Starting With Noncorner Room B. Double Q State (Half State)

The proposed Q sequence starts with the room at a corner ofVe have so far focused on the sequence of rooms from the left
the chip and ends at the room at the diagonally opposite corrtep to the right bottom. A symmetric discussion holds for the
The key was that the “next room” is well defined for each rooreequence of rooms from the right top to the left bottom, which
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could be used to define another Q sequence. It is apparently /@\

redundant to use two Q sequences to represent a floorplan when (D1 -

one is enough. However, redundancy sometimes has benefits. )0 3@ ®\C§ @

Is there any merit to maintaining more than one Q sequence @/I@‘ Y59 ,@
to reduce computation time or to study other properties of the /
floorplan?

Define the Half stateH{ statg of a room as the concatenation _ _ o
of its right_bottom Q state (as proposed in this paper) and tﬁ@ 13. Tree-pair representation of the floorplan in Fig. 5.
left-above Q state using symbols and A. The Half-state

sequencgH sequenceis the concatenation of H states of 1
all rooms. In the example in Fig. 10(F), the H state of roomn R:RiB1 lthzW 4 Rs5Re6 3
2 is £,2BgB.B3 and that of room 5 isd4,.A3A4,5Rs. The 2
H sequence is (R5R162611R3R2£12868483A23R4£3 l ‘ | ° | ¢
485./44./43./415R6£5£46£6£2A6A5).
The length issn, 5/3 times larger than that of the original R:RiBi 1 BsBsBB:B22 RiRs 3 4Rs35 Rs6 1
Q sequence. However, the intenidk) betweenk andk + 1 1
contains the information about the rooms that are adjacent !
the prime seg of. Thus, this representation has a potential irR:R:B: 1 BéBsBs B22 Rs 4Rs5Re6

application for VLSI place-and-route design by channel routing
scheme. For the above examplel) = (B5.A44.43.A;) provides
us with an information that the seg between rooms 4 and 5|;s o

. . .. ig. 14. Room deletiofii = 3).
horizontal, and its adjoining rooms are 4, 3, and 1 above and ‘

room 5 below. Thus, it can be quickly determined whether ™R . Its rooted tree is shown in the figure (right). It is a trivial but

rooms arlz :E\)djacen_t. l:; the Q Sequr(]ance was '.Oe"‘g U3 interesting exercise to find the relations with the gr&pH (F),
time would be required to answer these questions. pVH(F), ot epV H(F).

It is an important problem to specify th®undary condition

in layout design so that specified modules are laid out along the Space Requirements of the Q-Sequence Representation

boundary of the chip to facilitate 1/O pin connections [24]. In an . I T
IH practical applications, the space complexity is usually not

H sequence, the rooms on the boundary are presentinthe pre an . : .
. as iImportant as the time complexity. Sometimes, the computa-
post sequences. In our example, pre sequ@y®B>5; im-

plies that rooms 5 and 1 are adjacent to the left wall, and roor.tﬁ%n time may be reduced by storing a precomputed result which

s increases the space complexity. However, it is always of theo-

ih?)r\:\(/js 1tht§t TO%:T?E év er!' dsémailrzrzldg(z:se}nﬁgutie éri ;?Svélol Jreficalinterest to determine the minimum number of bits needed
ja 9 ’ .-10,most efficiently store information. In packing, it has been re-

rooms 6 and 5 to the bottom wall. This feature can be exploited .
o;ted that the O-tree data structure [8] and LOT [25] require

when one searches floorplans under the boundary constrain ; ! :

using simulated annealing n + nlogn bits. Recall that the O tree only contains partial
' topological information and requires information about module

C. Coding by the Tree Pair sizes to reconstruct the floorplan. Moreover, we are considering

i ) i a complete floorplan representation rather than a partial packing
The parenthesis system is equivalent to a rooted tree reR&sresentation.

sentation of the data. The Q sequence embeds two parenthesig,q space complexity estimation of a straightforward imple-

systems. Is it possible to represent a Q sequence or a floorplaghtation issn log 3n since a Q sequence consistsefletters

by a pair of rooted trees? . . _and it need$og 3n space to identifyn kinds of labels. A more
Consider the floorplan in Fig. 5 and the parenthesis configiicient representation stores the two parenthesis systems using

ration of its Q sequence in Fig. 9. We can interpretfgaren- o, o, hits. Sincen log  bits are necessary to store room labels,

thesis system as the rooted tree described as follows: The rgpt space complexity i&n -+ n log n. Consider the example in

has two children 2 and 7, of which 2 has one child 1, and 1§, g The parentheses systems can be stored by denoting an

a leaf. Additionally, 7 has two children 4 and 6, of which 4 hagpen parenthesis with a “1” and a closed parenthesis with a “0”
one child 3. The child 3 is a leaf. Additionally, 6 has one childg ¢5j1ows:

o v st on e 00 08 s 11015080100
9. 9 B-parenthesis: 11001 110 011 000.

the right of the chip. The rooted tree may be constructed by ttFllﬁe room sequence is stored as 1234 567. Note that if we are

rule: each node, that corresponds to a roomwith right seg vint ted in the fi lsstructure th
s, has exactly one incoming edge. It is from a node that corr@0Y INterested in the Toorplasiructure the room sequence can
be eliminated and onlyn bits are needed.

sponds to the top room of the rooms to the rightof This is
equivalently stated as follows: for each sgg every node cor-
responding to a room on the left has an incoming edge from the
node corresponding to roopt 1. Node R is regarded as+ 1. As discussed previously, a floorplanning approach to the
The same claim holds for the parenthesis system with respecpéxking problem may not yield an optimal solution even if

VIl. PACKING BY FLOORPLANNING AND EXPERIMENTS
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TABLE |
EXPERIMENTAL RESULTS WITH DIFFERENT REPRESENTATIONS

Circuits | Data structures Area ratio(%) CPU Time(s)

best | worst | average | best | worst | average
ami49 Q-sequence: Agq 969 [ 953 96.0 27 29 28
ami49 Seq-pair: Asp | 97.2 | 95.7 96.3 174 178 178
ami49 BSG(49x49):Apsc | 97.3 | 96.5 96.9 | 1788 | 1789 1789
ami33 Q-sequence: Ag 96.4 | 942 95.3 21 22 21
ami33 Seq-pair: Asp | 969 | 94.1 95.9 86 88 87
ami33 BSG(33x33):ABsc | 98.2 | 964 97.2 668 670 669

the entire floorplanning space is examined. Since it is not VIIl. CONCLUDING REMARKS

practical to search the entire solution space, the quality of th

“we b by diff tiating betw fl lanni d
packing depends significantly on the time required to evalu © began oy dierentiating between toorpanning an

lution. We imol ted imulated i Ki gcking and between room-room and room-seg adjacencies.
one solution. Vve implemented a simulated annealing packi have addressed the problem of floorplanning based on

algorithm based on the Q sequence. The Input COUS'StS rg m-seg adjacencies. The Q sequence is a string representa-
n rectangular modules whose dimensions are prowded_.t n of a floorplan, but is equivalent to graph representations
floorplanis represented byaQ sequence. Modules are assig agV H(F) andepV H(F). The Q sequence is so named

to the rooms in ene-to-one faSh'Of?- Each room must be laf Ecause it concatenates the states of one of four corners of each
enough. to contain th? correspond!ng module. The ProCesS, 8bm. The Q sequence is a very convenient representation of
computing the bounding box area is conventional and omnt% floorplan because its rooms are arranged in Abe order. Since

here. the Abe order is unique for a floorplan, room labels are not
A key element of the search is the procedm®vethat trans- required to represent tiséructureof a floorplan. We introduced
forms one Q sequence to another. Our proposed move is caliggmple transformation operation on the Q sequence that makes
thedel-ins movavhich consists of deleting and inserting a roomyt possible to convert an initial floorplan amyfloorplan in just
The deletion procedure is described below. See Fig. 14.  ,, steps. This greatly facilitates searching the floorplan state
Procedure Room Deletion(7) space. If a floorplan is to be evaluated by the size of the area
. ) ) , of the bounding rectangle, then we determined experimentally
If 1(i) is R- (B-)interval and /(i — 1) > 1, movel(i) 10 yhat in spite of our restriction that each room contains exactly
the place befor&;(B;). one module (i.e., no rooms are empty), our solutions compare
Deletes, R;, andB;. with those obtained by BSG and SP that have the advantage of
Room Insertions the inverse of deletion and its details ar@aving a larger search space that includes all possible packings.
omitted here.
The solution spacenay be defined as the pair (a set of so- ACKNOWLEDGMENT
lutions, move). A solution space is said to teachableif any

solution may be obtained by successive applications of the moe/{he ?#tgfrts are _g?ratre:]ull to Asf,s:)ﬂ?telljrofglssordéi. Tak:;r&atshu
starting with any initial solution. The maximum number of ap-0 yo Institute of 1echnology for his valuable advice and to

plications needed to get one solution from any othersolution'?%‘ Changwen Zhuang (Research Associate, The University

thediameterof the solution space. A small diameter is desirabl hK|takyu|sdhu)| forl_fllls tsu?r?esﬂolg f(;r ;_hhe :oro_of of Thfeorfem_|_6.

Theorem 10:The solution space (floorplans defined by Q[ tey vglr(])u ﬁst()) ! t('a ob tan r(t)h. fi utatswaman ?r: act I-d
sequence,del-ins move) is reachable and the diameter is ating the coflaborafion between the first two co-authors an
0O the third co-author.

Our packing algorithm is named,,. For comparison, we used
two competitive algorithmstsp (which is based on the SP)[3]

andABSG (WhiCh is based on the BSG)[G]. Both provide a so- [1] R. H. J. M. Otten, “Automatic floorplan design,” ifProc. 19th
. . : ) ACM/IEEE DAG 1982, pp. 261-267.
lution space guaranteed to contain an optimum solution. They) p_F. wong and C. L. Liu, “Floorplan design of VLSI circuits&lgo-

benchmark circuits “ami33” and “ami49” were used. The an- rithmica, vol. 4, pp. 263-291, 1989.

nealing schedule for these three algorithms are the same. Thil H- Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence-H&iE

program is written in C++ and ran on Pentium Il 910-MHz  Jrans. Comput. Aided Desiguol. 15, pp. 1518-1524, Dec. 1996.
CPU. Packing was tried ten times for each instance. The best4] H.Murata, K. Fujiyoshi, T. Watanabe, and Y. Kajitani, “A mapping from

worst, and average area ratios (sum of area of modules/area of Z;g”ggge'pa" to rectangular dissection,Pioc. ASPDAC1997, pp.

floorplan) are listed in Table I. [5] K. Kiyota and K. Fujiyoshi, “Simulated annealing search through gen-
The parameters of the simulated annealing are chosen so that €ral structure floorplans using sequence-pair,Pioc. ISCASvol. 3,

. 2000, pp. 77-80.
the number of cycles is the same for all three. Thus the CF)U[G] S. Nakatake, H. Murata, K. Fujiyoshi, and Y. Kajitani, “Module packing
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