
376 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 3, MARCH 2003

The Quarter-State-Sequence Floorplan Representation
Keishi Sakanushi, Yoji Kajitani, Fellow, IEEE, and Dinesh P. Mehta

Abstract—A floorplan of a bounding box is its dissection into
rectangles (rooms) by horizontal and vertical segments. This paper
proposes a string data structure called theQuarter-state sequence
(or Q sequence) to represent the floorplan. The Q sequence is a con-
catenation of thestatesof rooms along theAbe orderand is related
to the VH graph, which is the union of the vertical-constraint and
horizontal-constraint graphs. It is proved that any floorplan of
rooms is uniquely encoded by a Q sequence and any Q sequence is
uniquely decoded to a floorplan, both in ( ) time. An exact for-
mula for counting distinct floorplans is given and compared with
existing bounds. A linear time transformation of one Q sequence to
another is defined. An -room packingalgorithm based on simu-
lated annealing was implemented and found to compare favorably
with existing packing algorithms.

Index Terms—Floorplan combinatorics, floorplan representa-
tion, graph theory, Q-sequence, simulated annealing.

I. INTRODUCTION

A FLOORPLAN of a rectangle (chip) is a dissection of the
chip into rectangles (rooms) by horizontal and vertical

line segments (segs) that meet in T junctions (but are not per-
mitted to cross). Floorplanning is important in the design of very
large-scale integration (VLSI) systems that use IPs or clustered
functional modules because it provides the first estimates of per-
formance and cost. Multiple objectives such as the minimization
of the chip area, estimated wire-length, critical-path wire length,
length of parallel-running wires, clock skew, etc., must be simul-
taneously optimized in modern floorplanners. Heuristic search
techniques such as simulated annealing appear to be the best
strategy for tackling this multi-objective optimization problem.
These approaches successively generate and evaluate candidate
floorplans to determine the best flooplan encountered so far. In
this state space search strategy, floorplans are represented by
codes that can be efficiently perturbed to generate new floor-
plan states. It is desirable that the following hold.

1) Any legal floorplan be represented by a unique code so
that optimal floorplans are not missed and so that the same
floorplan is not generated multiple times.
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2) Any code be decoded to exactly one floorplan so that in-
feasible codes are not generated and so that codes can be
evaluated uniquely.

3) A transformation on the current solution to obtain a new
solution (i.e., a move) be efficiently implemented so that
few moves are required to transform a solution to an ar-
bitrary solution.

When floorplans are restricted to the slicing structure,
they can be coded by theslicing tree [1] and thenormalized
polish expression[2]. However, the slicing structure does not
capture all floorplans. Sequence pairs (SPs) [3] were used
for the packing problem [4], [5]. The bounded-sliceline grid
(BSG) [6] is technically a floorplanning data structure as the
number of nonzero-area rooms equals the number of modules.
The difficulty arises in determining which (of many possible)
rooms should have nonzero area. SP, BSG, and the more recent
transitive closure graph (TCG) [7] suffer because of redun-
dancies which lead to larger solution spaces. O trees [8] and

trees [9] were proposed to represent packings. However,
they only provide an incomplete description of the topological
information and require knowledge of the module dimensions
to complete the description of a packing. Q sequences [10]–[12]
and corner block lists [13] are general floorplan representations
that were discovered independently in 2000. Subsequently, in
2001, the twin binary tree representation [14] and, in 2002,
an equivalent (but more convenient) representation called the
twin binary sequence [15] were proposed. The twin binary
sequence and the extended corner block list [16] have extended
the corresponding floorplan representations so that they can be
used effectively for the packing problem.

This paper describes theQuarter-state sequence(Q se-
quence) that (along with corner block lists) was the first
representation to meet the criteria listed above. A room in a
floorplan is characterized by the configuration of one of its four
corners (hence the term “quarter”), which is called itsstate. The
floorplan is represented by a sequence of states of rooms and
their adjacency relations. A key question that arises in coding a
floorplan is how rooms are to be ordered in the sequence. This
was addressed by Abe [17] (see also [18], [19]) in 1930!

An important graph theoretic contribution of our paper is that
the union of the horizontal-constraint and vertical-constraint
graphs has a unique Hamiltonian path that starts with the vertex
corresponding to a room at a corner and ends with the vertex
corresponding to the room at the diagonally opposite corner.
The Q-sequence data structure is defined as the concatenation of
the configuration of one corner with the states of all the rooms
along the Hamiltonian path. Any floorplan can be encoded by a
unique Q sequence and any Q sequence is decoded to a unique
floorplan in linear time. The Q sequence also makes it possible
to have a counting formula for the number of floorplans. Also, a
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Fig. 1. Area minimized placement. (a) Unconstrained packing (b) Four-room
packing (floorplanning).

linear time transformation (move) is defined such thatmoves
can transform an initial Q sequence to any Q sequence.

Section II clarifies some of the commonly used definitions
and assumptions in floorplanning literature. It shows that the
floorplanning problem is a constrained version of the general
packing problem. The structure of the floorplan is studied using
prime graphs in Section III. In Section IV, the Q-sequence data
structure is introduced and the decoding algorithm is described.
A counting formula is described in Section V. In Section VI, ad-
ditional important properties of the Q sequence are discussed.
In Section VII, a floorplan-based packing algorithm is imple-
mented and experimented with. Even though Q sequences pro-
vide a constrained packing method, experiments show that the
results are no worse than SPs and BSGs and are obtained much
faster. Finally, Section VIII concludes the paper.

II. BASIC CONCEPTS

In this section, we clarify the difference between the terms
packingand floorplanning, which are often used interchange-
ably in the literature.1 In a packing, the objective is to accom-
modate the modules in a bounding box of minimum area. In
floorplanning, we wish to compute a bounding box of minimum
area that is dissected intoexactly rectangular rooms such that
each module can be accommodated in a unique room. Fig. 1 il-
lustrates the difference for .

Fig. 1(a) shows an optimalpackingof modules , , , and
in a bounding box of area 30. However, Fig. 1(a) is not a

floorplan, as it dissects the bounding box into (and not
) rooms, one of which is empty. Fig. 1(b) is an optimalfloor-

plan as the chip rectangle is dissected into four rooms, each of
which accommodates a module. (Here, there is some whitespace
left over in the room containing module .) The area of the
bounding box for the optimal floorplan is 32, which is greater

1The term “floorplan” is often used in the literature to describe the concept
that we refer to as “packing” and the term “mosaic” floorplan is used to refer to
the concept that we call a “floorplan.”

Fig. 2. In both floorplans, rooms 1 and 2 are adjacent to seg 1, and rooms 3
and 4 are adjacent to seg 3, and all four rooms are adjacent to seg 2. Thus, the
two floorplans are equivalent under the room–seg adjacency relation. However,
rooms 2 and 3 (or 1 and 4) are adjacent to each other in one floorplan, but not
in the other. Thus, the two floorplans are not equivalent under the room–room
adjacency relation.

than that of an optimal packing. Thus, floorplanning may be
viewed as a constrained version of the unconstrained packing
problem (i.e., an -room packing problem). Consequently, we
don’t expect a direct application of floorplanning to yield an op-
timal packing. The Q-sequence representation proposed in this
paper, solves the floorplanning problem or the-room packing
problem. In spite of this apparent disadvantage, we will show in
Section VII, that it yields good results for the packing problem.

A. Adjacency Relations in Floorplan Representations

In this subsection, we explicitly differentiate between two
types of adjacency relations that are used in floorplan represen-
tations. In aroom–segadjacency relation, a relation is defined
between a room and a segment if and only if is the left,
right, top, or bottom border of. A room–roomadjacency rela-
tion is defined between two roomsand if and only if they
share a nonzero portion of a segment. Fig. 2 uses two floorplans
to illustrate the (subtle) difference between these two types of
relations. Notice that both floorplans are equivalent under the
room–seg adjacency relation, but not under the room–room ad-
jacency relation.

The room–room adjacency relation was used in initial ef-
forts in the 1970s and 1980s to cast the floorplanning problem
in terms of graph duals [20]–[22]. The input to the floorplan-
ning problem is a graph (representing a circuit). If a pair of ver-
tices is joined by an edge, then the corresponding rooms in the
floorplan are required to be adjacent. It was shown that a graph
admits a floorplan that satisfies this property only if the graph
is planar triangulated and does not contain any complex trian-
gles. However, this was not a practical formulation as the input
graph was not necessarily planar and the room–room adjacency
requirement was an overconstraint. Further, no effective opti-
mization techniques were developed to minimize the number of
graph edges that could not meet the adjacency requirement. The
room–seg relation was made explicit in 1994 after the BSG, and
SP representations were introduced. The room–seg adjacency
relation is used as the constraint imposed on the one-dimen-
sional compaction. This paper also uses the room–seg adjacency
relation.

III. PRIME GRAPH OF A FLOORPLAN

A floorplan with rooms consists of internal segs (max-
imal vertical or horizontal line segments). A vertical seg and a
horizontal seg are not permitted to cross one other, but can touch
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Fig. 3. In both floorplans, the prime seg ofr is the bold line, and the associated
rooms arei, j, andk. i is the next room ofr.

Fig. 4. Floorplan of seven rooms, its VH graph, and pVH graph. Henceforth,
the vertex label in our figures also denotes the name of the corresponding room.

to form a T junction. The four bounding segments of a chip are
also segs, but are calledwalls if it is necessary to distinguish
them from internal segs. In the following, we will focus on the
right-bottom and left-top corners of the chip. If the right seg and
bottom seg of a roomare both walls, it is the right-bottom room
and is denoted by . (The room whose left seg and top seg are
both walls is the room at the left top, which we name.) For
any room except , two segs meet at the right-bottom corner
of and one ends there forming a T junction. The seg that ends
at the T junction is called theprime segof . (Note that does
not have a prime seg.)

The rooms that are adjacent to’s prime seg on the opposite
side of are called theassociated roomsof . The topmost (left-
most) of the associated rooms is called thenext roomof . See
Fig. 3 for an illustration of these definitions.

Definition VH graph : Each vertex in cor-
responds to a room in floorplan. For a room , denotes the
corresponding vertex in and for a vertex in ,

denotes the corresponding room. For two roomsand , a
directed edge exists in if and only if there is
either a vertical seg such that is the right border of and
the left border of , or a horizontal segmentsuch that is the
bottom border of and the top border of. Fig. 4 illustrates the
definition.

For a floorplan of rooms, let be the graph ob-
tained from by deleting vertex and the edges inci-
dent to it. Let be the floorplan obtained from by shifting
the prime seg of room to the left (if is vertical) or to the

top (if is horizontal) until it merges with the wall. consists
of rooms. Its left-top room was the next room ofbefore
the prime seg was shifted.

Lemma 1: (Deletion) .
Proof: The edges of the VH graph correspond to the ad-

jacency relations between rooms that are on opposite sides of a
seg. Shifting ’s prime seg does not change any of these rela-
tionships, except for those involving. These are precisely the
edges that are eliminated in .

Lemma 2: (DAG) is a directed acyclic graph (DAG)
with a single source (vertex with no incoming edge)and a
single sink (vertex with no outgoing edge) .

Proof: There is no incoming edge to a vertexif and only
if the left border and top border of are both walls. Room is
the only room that satisfies this condition. Hence,is the only
source in . A similar argument shows that vertex is
the only sink. If , is trivially a DAG. Assume
that any floorplan with or less rooms has a VH graph
that is a DAG. It is a well-known fact that a directed graph is a
DAG if and only if it contains at least one source and the graph
obtained from the graph by deleting the source is a DAG. Since
a VH graph contains one source and is a VH graph
of a floorplan of rooms (Lemma 1), we have proved by
induction that is a DAG.

For a room , let denote its next room and
the previous room; i.e. . is unique
unless and so is unless .

Lemma 3: (Hamiltonian Path) has a
unique directed Hamiltonian path whose vertex
sequence corresponds to the room sequence:, ,

.
Proof: Since there is an edge for every

room , the vertex sequence corresponding to
is a

path. Since is a DAG, no vertex appears twice in this
path. Then, can be extended until the unique sink
is encountered. If a vertex is not contained in , then
consider the path ofnexts starting with . This path must
encounter a vertex on since is the only sink. This
means that is not unique, a contradiction.

Next, we define the prime graph which is a subgraph of
.

Definition Prime Graph : The vertex set is the
same as that of . An edge exists if and
only if is an associated room of. In other words, the edges of

are defined only by the rooms and their prime segs.
An edge of is called edge or edge depending on
whether the prime seg is horizontal or vertical, respectively.
Letters and are called the positional symbols and stand for
“Below” and “Right,” respectively. The definition is illustrated
by Fig. 4.

Theorem 1: has a unique Hamiltonian path starting
with and ending at .

Proof: From Lemma 3, the Hamiltonian pathin
consists of edges which are defined by the rooms
and their prime segs.These edges are retained in .

Since the Hamiltonian path is unique, each room can be
assigned an integer label corresponding to its position in:
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Fig. 5. pVH graph of Fig. 4 normalized by the Abe order.

. The existence of a unique ordering
is fundamental since it permits us to determine whether or not
two floorplans are structurally identical. This discovery dates
back to a 1930 paper by Michio Abe that is concerned with
counting distinct floorplans [17]. His contribution was to order
the segs. We extended this to order rooms. We refer to this or-
dering of rooms and segs, which is illustrated in Fig. 5, as the
Abe ordering.

denotes the graph obtained from by
deleting and its edges.

Lemma 4: (Deletion in pVH) . In
general, the graph obtained from by deleting the first

vertices is the prime graph of the floorplan
which is obtained by shifts of the prime segs of the left-top
room.

Proof: A proof identical to that of Lemma 1 shows
that . The second claim is proved by
showing that shifting eliminates the current left-top room and
makes its next room the new left-top room.

A room whose top border (left border) is part of the top wall
(left wall) is called the top (left) wall room.

Theorem 2: (IN EDGE) The number of incoming edges
( edges) to any vertexof is either zero or one.

Proof: A edge exists if and only if the prime seg
of is horizontal and is an associated room. For a given
, such a room exists only if is not a top wall room. If it

exists, is the (unique) room whose prime seg is. A similar
discussion holds for edges.

Theorem 3: (OUT EDGE) For each vertex of
(except ), the outgoing edges are all exclusivelyedges or

edges.
Proof: The outgoing edges from a vertexcorrespond to

the associated rooms of . They are all edges or edges
depending on whether ’s prime seg is horizontal or vertical,
respectively.

Let be a edge ( edge). The set of vertices
through in the Hamiltonian path is called the span

( span) of .
Lemma 5: (Wall Room) A vertex is not in any span (

span) if and only if room is a top (left) wall room.
Proof: Assume that is in span by . It implies

that room and are associated rooms of room. Then,
their top borders are at the same height as the prime segof

. Top borders of rooms through are not above since

Fig. 6. Horizontal linear planar embedding of thepV H(F ) in Fig. 5.

Fig. 7. The epVH graph corresponding to the pVH graph of Fig. 5.

otherwise there is a vertical seg that terminatesby forming a
T junction to the left of . Then, cannot be an associated
room, a contradiction. Thus, all of these rooms, one of which is

, are not top (left) wall rooms.
Assume next that is not in any span ( span). Then, it

has no incoming edge ( edge) since incoming edge
contains in its span by definition. This implies that there is no
room above , i.e., room is a top wall room.

Theorem 4: (SPAN) If a vertex is in a span ( span), it
has an incoming edge ( edge).

Proof: From Lemma 5, a vertex in a span does not
correspond to a top wall room. It must be an associated room of
the room above it, whose prime segment is’s top border. So,
has an incoming edge. The discussion for span is similar.

Theorem 5: (LPD) Graph has a planar embedding
the linear-planar drawing (LPD) such that the Hamiltonian path

is drawn on a straight horizontal line and everyedge not in
is above and every edge not in is below it.

Proof: Clearly, can be drawn as specified. We
will show that this drawing is planar. Assume that twoedges

and cross each other. Let without
loss of generality. Vertex has a single incoming edge from
vertex (Theorem 2). Let be the graph obtained from

by deleting vertices , which is also a
pVH graph of some floorplan (Lemma 4). Here, vertexbelongs
to the span of edge but does not have an incoming
edge because vertexwas deleted. This contradicts Theorem 4,
proving that there is no pair of crossingedges. Similarly, it
can be shown that edges do not cross.

Fig. 6 shows an LPD of the prime graph in Fig. 5. To char-
acterize the prime graph, we define a class of graphs that con-
tain all prime graphs. An H graph is a directed graph whose
vertex set consists of vertices labeled by integer subscripts as

. Edges are of two kinds: edges and
edges. There is a Hamiltonian path along the vertex sequence
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Fig. 8. Horizontal linear planar drawing of theepV H(F ) in Fig. 7.

. The prime graph is an H graph but an H graph
may not be a prime graph. Now we have the main theorem.

Theorem 6: (Feasibility) An H graph of vertices is
of some floorplan of rooms if and only if sat-

isfies the following four properties.

LPD: H has a planar embedding such that the
Hamiltonian path is drawn on a straight
horizontal line and every edge not in is
above and every edge not in is below it.

SPAN: If a vertex is contained in a span ( span),
it has an incoming edge ( edge).

IN EDGE: The number of incoming edges ( edges)
to a vertex is 0 or 1.

OUT EDGE: The outgoing edges from a vertex are exclu-
sively edges or edges.

Proof: We only have to prove sufficiency; i.e., that an
H graph that satisfies these conditions (a feasible H graph)
corresponds to a floorplan. Assume that there is a floorplan for
any feasible H graph if the number of vertices is less than. Let

be a feasible H graph of vertices. is the graph obtained
from by deleting vertex and its incident edges. trivially
satisfies LPD, IN EDGE, and OUT EDGE since satisfies
those properties. Assume that SPAN is not satisfied, i.e. there
is a vertex in which is in a span of edge but has no
incoming edge. Then, from Theorem 4, there is an incoming

edge from to since satisfies SPAN. Then, and
cross each other, a contradiction to LPD. So is feasible

and, from the induction hypothesis, it has a corresponding
floorplan whose rooms are labeled with . In ,
a vertex that has no incoming edge is a top wall room by
Lemma 5. (The case when there is no incomingedge can be
discussed analogously.) Moreover, the top wall is a sequence of
top borders of these rooms ordered by increasing labels from
the left. The outgoing edges from vertex are exclusively

edges or edges (by OUT EDGE). We assumeedges
without loss of generality. A vertex that has no incoming
edge in is called a candidate, meaning that only such a
vertex has the possibility to have an incomingedge from
(by IN EDGE). Let be the maximum room label among all of
the -candidates that have an incomingedge from . Then,
every candidate has an incoming edge from
(by SPAN). The sets of these vertices and corresponding rooms
are denoted as and , respectively. Since vertices in are
not in any span in (otherwise LPD is violated), their top
borders form a continuous left part of the top wall of. Place
room 1 so that its bottom border is. Then, by shifting the top

borders of rooms in downwards by the same distance, room
1 can be inserted to get a new rectangular floorplan. Since the
relation with respect to room 1 is correctly realized and no
relations in are changed, the new floorplan iswith

.
The prime graph and its encoding to a string (the Q sequence)

are used in a practical solution to the floorplanning problem.
However, the prime graph is asymmetric in that an edge
sometimes does not appear in the graph because roomborders
a left (top) wall. This asymmetry makes it difficult to derive
combinatorial results about Q sequences. This is remedied by
defining the extended prime graph.

Definition Extended Prime Graph : This is ob-
tained from the prime graph by adding two vertices

and , and edges for every room that is adja-
cent to the left wall and for every room that is adjacent
to the top wall.

See Fig. 7 and its horizontal linear planar embedding (Fig. 8).
A Z graph is a directed graph whose vertex set consists

of vertices labeled by integer subscripts as
and two vertices and . Edges are of two kinds:
edges and edges. There is a path along the vertex sequence

. An epVH graph is a Z graph but a Z
graph may not be an epVH graph.

Theorem 7: A Z graph Z is for a floorplan F of
rooms if and only if Z satisfies the following properties:

LPD: Z has a planar embedding such that, ,
and the path are drawn on a straight hor-
izontal line and every edge not in is
above and every edge not in is below it.

OUT EDGE: The outgoing edges from a vertex are exclu-
sively edges or edges. has only out-
going edges and has only outgoing
edges.

IN EDGE: Every vertex has exactly two incoming
edges: one and one . and do
not have incoming edges.

Proof: The proof is similar to that of Theorem 6. In the in-
ductive step, we delete from the graph as before, but instead
of deleting its outgoing edges, we modify them so that they go
out from if they are edges and from if they are
edges. The resulting Z graph clearly satisfies all of the proper-
ties specified in the theorem and, from the induction hypothesis,
corresponds to a floorplan. The floorplan may now be modified
as in Theorem 6 so that the resulting floorplan corresponds to
the given Z graph.
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IV. CODING AND DECODING

A. The Q sequence

In this section, we show how to represent by a
sequence as it is more efficient to manipulate a sequence than
a graph when using a technique such as simulated annealing to
search the state space.

Definition State of a Room, , or :

For a room , its Q state is the sequence of the room
label followed by positional symbols (if the prime
seg is vertical) or (if the prime seg is horizontal) with
subscripts of the associated rooms in decreasing order.
For symbol , is the sequence followed by

with subscripts of rooms that adjoin the left wall in de-
creasing order. is similarly defined.
The state of a room may be defined on the LPD of

as the sequence consisting of (or or
) followed by the labels of out edges from (or

or ) arranged in anti-clockwise order for edges or
clockwise order for edges.

Definition Q sequence:

The concatenation of the states of , , and rooms in
Abe order. It is written as

The Q sequence of the floorplan in Fig. 7 is

Since and have no corresponding rooms and can be
inferred from the context, they are often omitted in a Q-sequence
representation as follows:

Next, we introduce the Z seq to describe necessary and suffi-
cient conditions for a sequence to be a Q sequence.

Definition Z seq:

A Z seq contains , , which appear in this
order in the string. It also contains positional symbols

and . These may appear anywhere
except before . One or more s appear between
and and one or more s between and 1.

A Q sequence is clearly a Z seq.
Theorem 8: A Z seq is a Q sequence if and only if the fol-

lowing two conditions are satisfied.

Unique-Symbol:There is a sequence of length at least one
of positional symbols between two adjacent room labels
consisting exclusively of s or s.
Parenthesis:Subscripts are assigned to thes and s so
that the sequence is aparenthesis systemunder the ordered
pairing of , and also under the ordered pairing of

for .2

2The “parenthesis system under a specified ordered pairing(x; y)” is con-
ventional if we imaginex andy to be the parenthesis pair “(” and “)”. Formally,
it is a sequence that satisfies the hierarchical property that successive deletion
of the specified pairs that have no inside pairs results in a null sequence.

Fig. 9. Illustration of the parenthesis system of the Q sequence corresponding
to Fig. 5.

Fig. 9 illustrates the parenthesis systems pairing
(shown above) and (shown below).

Proof: Consider a Q sequence that (by definition) cor-
responds to some graph . PropertyUnique-Symbol
reflects the property that the outgoing edges from a vertex are
either all s or all s and the existence of a path along the Abe
order. The Q sequence can be used to construct an epVH graph
(Fig. 9) by replacing the Q-state of each room, say ,
by a vertex and out edges labeled , and going to
vertices . Thus, each edge represents a pair of paren-
theses. PropertyParenthesisof a Q sequence is then a direct
consequence of the planarity of an epVH graph. Thus, it is clear
that for a Z seq to be a Q sequence, it must have these properties.
To see that it is sufficient for Z seq to have these properties, we
describe the construction of a floorplan from a string (decoding)
that has these properties in the next section.

B. Decoding

Next, we show how to decode a given Q sequence to a floor-
plan. The sequence of positional symbols betweenand
is denoted by and the number of elements by . In
the epVH graph, and correspond to the set of out-
going edges from and the outdegree of , respectively.
is called the -intervalor -intervaldepending on the symbols
it consists of. The decoding procedure in the following is illus-
trated by the example in Fig. 10.

Algorithm Decoding of a Q sequence to a Floorplan
Input: Q, a Q sequence
Output: , a floorplan.
Initialization:
Let be a floorplan consisting of one room with label.
Main Step:
Repeat the following step for .

1) is an -interval : Insert room so that it becomes
the left-top room such that its left seg is the left wall and
its right seg is the left seg of top rooms.

See Fig. 10(A), (C), and (E).
2) is a -interval : Insert room so that it becomes the

left-top room such that its top seg is the top wall and its
bottom seg is the top segs of left rooms.

See Fig. 10(B), and (D).

The algorithm is based on the principles enunciated in the proof
of Theorem 6. A formal proof of correctness is omitted. Instead,
an informal explanation of the step illustrated in Fig. 10(E) is
provided. This is the stage when room 1 is going to be inserted.
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Fig. 10. Decoding of a Q sequence. (The interval under consideration is
underlined): (A):R R B B 1R R 2 B B B 3R 4 B 5R 6 (B):R
R B B 1 R R 2 B B B 3 R 4 B 5 R 6 (C): R R B B 1 R

R 2 B B B 3 R 4 B 5 R 6 (D): R R B B 1 R R 2 B B B 3

R 4 B 5 R 6 (E): R R B B 1 R R 2 B B B 3 R 4 B 5 R 6

(F): Unique resultant floorplan.

Rooms 6, 5, 4, 3, and 2 have already been inserted. Thus, five
closed parentheses have been used. Two open parentheses cor-
responding to and have been used so far. So,
rooms have their left segs on the left wall. Room 1 pushes two
rooms inside (corresponding to and ).

C. Computational Complexity

The computational complexity of coding and decoding are
determined as follows. Coding consists of traversing the rooms
of the floorplan in Abe order to generate the Q-sequence repre-
sentation, which requires time. Decoding requires the se-
quence to be searched backward to determine the order in which
rooms are to be inserted. This is also possible in .

Theorem 9: Coding (from a floorplan to a Q sequence) and
decoding (from a Q sequence to a floorplan) are both possible
in time.

V. COUNTING FLOORPLANS

A. Exact Number

Counting, listing, or generation of distinct floorplans of
rooms has been a major concern in combinatorics. See [18],
[19]. Based on the previous sections, the problem is reduced
to counting distinct Q sequences. A classification of the Q se-
quences is introduced.

Definition Class of Q sequences:For
, is the set of Q sequences

that contain ’s and ’s in the subsequence consisting of
rooms labeled from to .

For example,
is the Q sequence of the floorplan in Fig. 10. This belongs to

, , , , , and
.

If is not empty, and , . No
two sets and contain a Q sequence in
common if or . Hence, the number of distinct
floorplans with rooms is given by

(1)

To calculate this numerically, we use a recursive formula for
. Any Q sequence of is obtained from

either

1) , by adding a Q- state of a room in
the form (room label) where the number of s
is , or

2) , by adding a Q state of a room in
the form (room label) where the number of s
is .

Hence,
.

The boundary conditions are obtained by observing that
consists of exactly one floorplan and

if or

where (2)

otherwise.

(3)

It must be noted that counts the number ofstructurally
distinct floorplans. If we assign labels to room numbers, the total
number of distinct floorplans is .

B. Upper Bounds

Let be the sequence obtained from a Q sequence Q by
deleting all ’s. is a parenthesis system with respect to
pairing . It is known that the variety of the parenthesis
system of parentheses is [23, p. 495]

Given , consider reconstructing the corresponding Q se-
quence. The positional symbol can be inserted before room
1 and between two successive rooms, except when the intervals
have one or more s. Further, every interval without must be
filled with at least one . For a given , the number of possi-
bilities is bounded by the number of ways s can be placed in

intervals, where is the number of intervals that contain
s. This quantity is , which is bounded by .

Multiplying this quantity with the Catalan number yields

(4)

This is tighter than the upper bound in [18]
and [19].



SAKANUSHI et al.: Q-SEQUENCE FLOORPLAN REPRESENTATION 383

Fig. 11. Numerical comparison of focused functions (normalized by1=n!).

C. Comparison With Other Representations

The number of distinct binary trees with leaves and two
kinds of inner node labels is .
(The number of structurally distinct binary trees is
and the number of internal nodes each of which can
be of two types. The leaves can be labeled inways.) Since
any slicing floorplan is represented by this class of binary trees
(though there is some redundancy), is an upper bound of
the number of slicing floorplans. However, our result (4) shows
that is also an upper bound of the number of general
floorplans. So, we continue with a more detailed analysis.

Let be the exact number of distinct slicing structure
floorplans. Clearly, inequality is . Our
interest is in the difference between and . We com-
puted numerically using the idea ofnormalized binary
trees[2]. was numerically calculated by (2) and (3). Up
to , they are approximated as

Fig. 11 shows the graph. and (the
number of packings using SPs) are also shown for comparison
purposes.

From these data, we observe that little significant reduction of
the solution space is achieved by restricting the floorplan to the
slicing structure. It could also be concluded that the SP produces
a great amount of redundancy with respect to-room floorplan-
ning, or, equivalently, -room floorplans cover an insufficient
part of the unconstrained packing space.

VI. REMARKS ON Q SEQUENCE

There are several natural questions that arise about the
Q-sequence structure and possible variations. Below, we list
four questions and provide answers.

A. Q sequences Starting With Noncorner Room

The proposed Q sequence starts with the room at a corner of
the chip and ends at the room at the diagonally opposite corner.
The key was that the “next room” is well defined for each room

Fig. 12. Merged Q sequence with origin room 6 is common to three floorplans:
(1A 2L L 3A 4L L 5A A 6B B 7R 8R 9).

and that this can be extrapolated to the global property of the
Abe ordering. Is it possible to define a sequence by starting with
an arbitrary room and merging the two sequences leading from
this room in opposite directions? Does such a sequence cover
all the rooms and encode the floorplan?

It is true that the proposed sequence covers all the rooms.
However, the following counterexample shows that such a se-
quence does not uniquely encode a floorplan. In Fig. 12, three
distinct floorplans are shown. The sequence starting with room 6
toward the right bottom is for all three. The
sequence starting with room
6 and leading toward the left-top corner is also common to all
three. (Here, positional symbolsand point to the rightmost
room above and bottom-most room on the left, respectively.)

B. Double Q State (Half State)

We have so far focused on the sequence of rooms from the left
top to the right bottom. A symmetric discussion holds for the
sequence of rooms from the right top to the left bottom, which
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could be used to define another Q sequence. It is apparently
redundant to use two Q sequences to represent a floorplan when
one is enough. However, redundancy sometimes has benefits.
Is there any merit to maintaining more than one Q sequence
to reduce computation time or to study other properties of the
floorplan?

Define the Half state (H state) of a room as the concatenation
of its right-bottom Q state (as proposed in this paper) and the
left-above Q state using symbols and . The Half-state
sequence(H sequence) is the concatenation of H states of
all rooms. In the example in Fig. 10(F), the H state of room
2 is and that of room 5 is . The
H sequence is

.
The length is , 5/3 times larger than that of the original

Q sequence. However, the interval between and
contains the information about the rooms that are adjacent to
the prime seg of . Thus, this representation has a potential in
application for VLSI place-and-route design by channel routing
scheme. For the above example, provides
us with an information that the seg between rooms 4 and 5 is
horizontal, and its adjoining rooms are 4, 3, and 1 above and
room 5 below. Thus, it can be quickly determined whether two
rooms are adjacent. If the Q sequence was being used,
time would be required to answer these questions.

It is an important problem to specify theboundary condition
in layout design so that specified modules are laid out along the
boundary of the chip to facilitate I/O pin connections [24]. In an
H sequence, the rooms on the boundary are present in the pre and
post sequences. In our example, pre sequence im-
plies that rooms 5 and 1 are adjacent to the left wall, and rooms
2 and 1 to the top wall. Similarly, post sequence
shows that rooms 6 and 2 are adjacent to the right wall, and
rooms 6 and 5 to the bottom wall. This feature can be exploited
when one searches floorplans under the boundary constraint
using simulated annealing.

C. Coding by the Tree Pair

The parenthesis system is equivalent to a rooted tree repre-
sentation of the data. The Q sequence embeds two parenthesis
systems. Is it possible to represent a Q sequence or a floorplan
by a pair of rooted trees?

Consider the floorplan in Fig. 5 and the parenthesis configu-
ration of its Q sequence in Fig. 9. We can interpret the-paren-
thesis system as the rooted tree described as follows: The root
has two children 2 and 7, of which 2 has one child 1, and 1 is
a leaf. Additionally, 7 has two children 4 and 6, of which 4 has
one child 3. The child 3 is a leaf. Additionally, 6 has one child
5, and 5 is a leaf. This tree is drawn on the floorplan as shown
in Fig. 13 (left) where nodes denote the rooms and the region to
the right of the chip. The rooted tree may be constructed by the
rule: each node that corresponds to a roomwith right seg

has exactly one incoming edge. It is from a node that corre-
sponds to the top room of the rooms to the right of. This is
equivalently stated as follows: for each seg, every node cor-
responding to a room on the left has an incoming edge from the
node corresponding to room . Node R is regarded as .
The same claim holds for the parenthesis system with respect to

Fig. 13. Tree-pair representation of the floorplan in Fig. 5.

Fig. 14. Room deletion(i = 3).

. Its rooted tree is shown in the figure (right). It is a trivial but
interesting exercise to find the relations with the graph ,

, or .

D. Space Requirements of the Q-Sequence Representation

In practical applications, the space complexity is usually not
as important as the time complexity. Sometimes, the computa-
tion time may be reduced by storing a precomputed result which
increases the space complexity. However, it is always of theo-
retical interest to determine the minimum number of bits needed
to most efficiently store information. In packing, it has been re-
ported that the O-tree data structure [8] and LOT [25] require

bits. Recall that the O tree only contains partial
topological information and requires information about module
sizes to reconstruct the floorplan. Moreover, we are considering
a complete floorplan representation rather than a partial packing
representation.

The space complexity estimation of a straightforward imple-
mentation is since a Q sequence consists ofletters
and it needs space to identify kinds of labels. A more
efficient representation stores the two parenthesis systems using

bits. Since bits are necessary to store room labels,
the space complexity is . Consider the example in
Fig. 9. The parentheses systems can be stored by denoting an
open parenthesis with a “1” and a closed parenthesis with a “0”
as follows:

-parenthesis: 11 011 001 001 010;
-parenthesis: 11 001 110 011 000.

The room sequence is stored as 1 234 567. Note that if we are
only interested in the floorplanstructure, the room sequence can
be eliminated and only bits are needed.

VII. PACKING BY FLOORPLANNING AND EXPERIMENTS

As discussed previously, a floorplanning approach to the
packing problem may not yield an optimal solution even if
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TABLE I
EXPERIMENTAL RESULTSWITH DIFFERENTREPRESENTATIONS

the entire floorplanning space is examined. Since it is not
practical to search the entire solution space, the quality of the
packing depends significantly on the time required to evaluate
one solution. We implemented a simulated annealing packing
algorithm based on the Q sequence. The input consists of

rectangular modules whose dimensions are provided. A
floorplan is represented by a Q sequence. Modules are assigned
to the rooms in one-to-one fashion. Each room must be large
enough to contain the corresponding module. The process of
computing the bounding box area is conventional and omitted
here.

A key element of the search is the proceduremovethat trans-
forms one Q sequence to another. Our proposed move is called
thedel-ins movewhich consists of deleting and inserting a room.
The deletion procedure is described below. See Fig. 14.

ProcedureRoom Deletion

If is - ( -)interval and , move to
the place before .
Delete , , and .

Room Insertionis the inverse of deletion and its details are
omitted here.

The solution spacemay be defined as the pair (a set of so-
lutions, move). A solution space is said to bereachableif any
solution may be obtained by successive applications of the move
starting with any initial solution. The maximum number of ap-
plications needed to get one solution from any other solution is
thediameterof the solution space. A small diameter is desirable.

Theorem 10:The solution space (floorplans defined by Q
sequence,del-ins move) is reachable and the diameter is.

Our packing algorithm is named . For comparison, we used
two competitive algorithms (which is based on the SP)[3]
and (which is based on the BSG)[6]. Both provide a so-
lution space guaranteed to contain an optimum solution. The
benchmark circuits “ami33” and “ami49” were used. The an-
nealing schedule for these three algorithms are the same. The
program is written in C++ and ran on Pentium III 910-MHz
CPU. Packing was tried ten times for each instance. The best,
worst, and average area ratios (sum of area of modules/area of
floorplan) are listed in Table I.

The parameters of the simulated annealing are chosen so that
the number of cycles is the same for all three. Thus the CPU
time is proportional to the time of one cycle.

We observe that resulted in solution qualities that are
comparable to those of and . However, the CPU times
of were substantially smaller than the competition.

VIII. C ONCLUDING REMARKS

We began by differentiating between floorplanning and
packing and between room–room and room–seg adjacencies.
We have addressed the problem of floorplanning based on
room–seg adjacencies. The Q sequence is a string representa-
tion of a floorplan, but is equivalent to graph representations
such as and . The Q sequence is so named
because it concatenates the states of one of four corners of each
room. The Q sequence is a very convenient representation of
the floorplan because its rooms are arranged in Abe order. Since
the Abe order is unique for a floorplan, room labels are not
required to represent thestructureof a floorplan. We introduced
a simple transformation operation on the Q sequence that makes
it possible to convert an initial floorplan toanyfloorplan in just

steps. This greatly facilitates searching the floorplan state
space. If a floorplan is to be evaluated by the size of the area
of the bounding rectangle, then we determined experimentally
that, in spite of our restriction that each room contains exactly
one module (i.e., no rooms are empty), our solutions compare
with those obtained by BSG and SP that have the advantage of
having a larger search space that includes all possible packings.
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