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THE QUASI-KRONECKER FORM FOR MATRIX PENCILS

THOMAS BERGER∗ AND STEPHAN TRENN†

Abstract. We study singular matrix pencils and show that the so called Wong sequences yield a quasi-Kronecker form. This
form decouples the matrix pencil into an underdetermined part, a regular part and an overdetermined part. This decoupling
is sufficient to fully characterize the solution behaviour of the differential-algebraic equations associated with the matrix pencil.
Furthermore, the Kronecker canonical form is a simple corollary of our result, hence, in passing by, we also provide a new proof for
the Kronecker canonical form. The results are illustrated with an example given by a simple electrical circuit.
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1. Introduction. We study (singular) linear matrix pencils

sE −A ∈ Km×n[s], where K is Q, R or C,

and the associated differential algebraic equation (DAE)

Eẋ = Ax+ f, (1.1)

where f is some inhomogeneity. In the context of DAEs it is natural to call matrix pencils sE1 − A1 and
sE2 −A2 equivalent and write sE1 −A1

∼= sE2 −A2, if there exist invertible matrices S and T such that

S(sE1 −A2)T = sE2 −A2.

Based on this notion of equivalence it is of interest to find the “simplest” matrix pencil within an equivalence
class. This problem was solved by Kronecker [12] (see also [8, 14]). Nevertheless, the analysis of matrix pencils
is still an active research area (see e.g. the recent paper [10]), mainly because of numerical issues or to find ways
to obtain the Kronecker canonical form efficiently (see e.g. [22], [3], [23]).

Our main goal in this paper is to highlight the importance of the Wong sequences [24] for the analysis of matrix
pencils. The Wong sequences for the matrix pencil sE −A are given by the following sequences of subspaces

V0 := Kn, Vi+1 := A−1(EVi) ⊆ Kn,
W0 := {0}, Wi+1 := E−1(AWi) ⊆ Km.

We will show (see Theorem 3.2 and Remark 3.3) that the Wong sequences are sufficient to completely characterize
the solution behaviour of the DAE (1.1) including the characterization of consistent initial values as well as
constraints on the inhomogeneity f .

The Wong sequences can be traced back to Dieudonné [7], however his focus is only on the first of the two Wong
sequences. Bernhard [5] and Armentano [2] used the Wong sequences to carry out a geometric analysis of matrix
pencils. In [15] the first Wong sequence is introduced as “fundamental geometric tool in the characterization
of the subspace of consistent initial conditions” of a regular DAE. In control theory, modified versions of the
first Wong sequence are used to study (A,B)-invariant subspaces, see e.g. [25, Thm. 4.3]. Only a few authors
[1, 13, 21] use the Wong sequences in connection with DAEs, in general, it seems that, especially in the DAE
community, the relevance of the Wong sequences have been overlooked. We therefore believe that our solvability
characterizations solely in terms of the Wong sequences are new.

The Wong sequences directly lead to a quasi-Kronecker triangular form, i.e.

sE −A ∼=

sEP −AP ∗ ∗
0 sER −AR ∗
0 0 sEQ −AQ

 ,
where sER − AR is a regular matrix pencil. sEP − AP is the ”underdetermined” pencil and sEQ − AQ is the
“overdetermined” pencil (Theorem 2.3). With only little more effort we can get rid of the off-diagonal blocks
and obtain a quasi-Kronecker form (Theorem 2.5). From the letter it is easy to obtain the Kronecker canonical
form (Corollary 2.7) and hence another contribution of our work is a new proof for the Kronecker canonical
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form. We have to admit that our proof does not reach the elegance of the proof of Gantmacher [8], however
Gantmacher does not provide any geometrical insight. On the other end of the spectrum, Armentano [2] uses
the Wong sequences to obtain a similar result as we do (the quasi-Kronecker triangular form), however his
approach is purely geometrical so that it is not directly possible to deduce the transformation matrices which
are necessary to obtain the quasi-Kronecker (triangular) form. Our result overcomes this disadvantage because
it presents geometrical insights and, at the same time, is constructive.

Different to other authors we do not primarily aim to decouple the regular part of the matrix pencil, because 1)
the decoupling into three parts which have the solution properties “existence, but non-uniquess” (underdeter-
mined part), “existence and uniqueness” (regular part) and “uniqueness, but possible non-existence” (overde-
termined part) seems very natural, and 2) the regular part can be further decoupled if necessary - again with
the help of the Wong sequences as we showed in [4].

Another advantage of our approach is that we respect the domain of the entries in the matrix pencil, e.g. if
our matrices are real-valued, then all transformations remain real-valued. This is not true for results about the
Kronecker canonical form, because, due to possible complex eigenvalues and eigenvectors, even in the case of
real-valued matrices it is necessary to allow for complex transformations and complex canonical forms. This
is often undesirable, because if one starts with a real-valued matrix pencil one would like to get real-valued
results. Therefore, we formulated our results such that they are valid for K = Q, K = R and K = C. Especially
for K = Q it was also necessary to re-check known results, whether their proofs are also valid in Q. We believe
that the case K = Q is of special importance because this allows the implementation of our approach in exact
arithmetic which might be feasible if the matrices are sparse and not too big. In fact, we believe that the
construction of the quasi-Kronecker (triangular) form is also possible if the matrix pencil sE − A contains
symbolic entries as it is common for the analysis of electrical circuits, where one might just add the symbol R
into the matrix instead of a specific value of the corresponding resistor. However, we have not formalized this,
but our running example will show that it is no problem to keep symbolic entries in the matrix.
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Fig. 1.1. An electrical circuit with sources and an open terminal used as the origin of the DAE (1.2). Used as a running
example.

As a running example we use a DAE arising from an electrical circuit as shown in Figure 1.1. The electrical
circuit has no practicable purpose and is for academic analysis only. To obtain the DAE description, let the state
variable be given by x = (p+, p−, po, pT , iL, ip, im, iG, iF , iR, io, iV , iC , iT )> consisting of the node potentials and
the currents through the branches. The inhomogeneity is f = Bu with u = (I, V )> given by the sources and the
matrix B as below. The defining property of an ideal operational amplifier in feedback configuration is given
by

p+ = p− and i+ = 0 = i−.

Collecting all defining equations of the circuit we obtain 13 equations for 14 state variables, which can be written
as a DAE as follows:

0 0 0 0 L 0 0 0 0 0 0 0 0 0
0 0 -C C 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0


ẋ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 -1 0 0 0 0 0 RG 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 RF 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 R 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 1 -1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 -1 0 0 0 0 0 0 0 0 0 0 0


x+



0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1


(
I
V

)
. (1.2)
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The coefficient matrices are not square, hence the corresponding matrix pencil sE − A cannot be regular and
standard tools cannot be used to analyze this description of the circuit.

The paper is organized as follows. In Section 2 we present our main results, in particular how the Wong
sequences directly yield the quasi-Kronecker triangular form (Theorem 2.3). The proofs of the main results are
carried out in Section 5. Preliminary results are presented and proved in Section 4. After presenting the main
results, we show how the quasi-Kronecker form can be used to fully characterize the solution behaviour of the
corresponding DAE in Section 3.
We close the introduction with the nomenclature used in this paper.

N set of natural numbers with zero, N = {0, 1, 2, ...}
Q,R,C set of rational, real and complex numbers, resp.

K either Q, R, or C

Gln(K) the set of invertible n× n matrices over K

K[s] the ring of polynomials with coefficients in K

K(s) the quotient field of K[s]

Km×n the set of m× n matrices with entries in K

I or In the identity matrix of size n× n for n ∈ N

A> the (conjugate) transposed of the matrix A ∈ Km×n

AS := { Ax ∈ Km | x ∈ S }, the image of the set S ⊆ Kn under A ∈ Km×n

A−1S := { x ∈ Kn | Ax ∈ S }, the pre-image of the set S ⊆ Km under A ∈ Km×n

A−>S := (A>)−1S
S⊥ :=

{
x ∈ Kn

∣∣ ∀s ∈ S : x>s = 0
}

, the orthogonal complement of the set S ⊆ Kn

rankC(λE −A) the complex rank of the matrix (λE−A) ∈ Cm×n, E,A ∈ Km×n, for λ ∈ C; rankC(∞E−
A) := rankCE

spec(sE −A) := { λ ∈ C ∪ {∞} | rankC(λE −A) < n }, the spectrum of the matrix pencil sE − A ∈
Km×n[s]

C∞ the space of smooth (i.e. arbitrarily often differentiable) functions f : R→ R

DpwC∞ the space of piecewise-smooth distributions as introduced in [19, 20]

2. Main results. As mentioned in the Introduction our approach is based on the Wong sequences which
have been introduced in [24] for the analysis of matrix pencils. They can be calculated via a recursive subspace
iteration. In a precorser [4] of this paper we used them to determine the quasi-Weierstraß form and it will turn
out that they are the appropriate tool to determine a quasi-Kronecker form as well.

Definition 2.1 (Wong sequences [24]). Consider a matrix pencil sE − A ∈ Km×n[s]. The Wong sequences
corresponding to sE −A are given by

V0 := Kn, Vi+1 := A−1(EVi) ⊆ Kn,
W0 := {0}, Wi+1 := E−1(AWi) ⊆ Km.

Let V∗ :=
⋂
i∈N Vi and W∗ :=

⋃
i∈NWi be the limits of the Wong sequences. �

It is easy to see that the Wong sequences are nested, terminate and satisfy

∃ k∗ ∈ N ∀ j ∈ N : V0 ) V1 ) · · · ) Vk∗ = Vk∗+j =: V∗ = A−1(EV∗) ⊇ kerA,

∃ `∗ ∈ N ∀ j ∈ N : W0 ⊆ kerE =W1 ( · · · (W`∗ =W`∗+j =:W∗ = E−1(AW∗) ,

}
(2.1)

AV∗ ⊆ EV∗ and EW∗ ⊆ AW∗ . (2.2)
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For our example DAE (1.2) we obtain:

V1 = im



0 0 0
0 0 0
0 0 0
R 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 -1 1
-1 1 -1


= V∗ and W1 = im



1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


, W2 = im



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1


=W∗

We carried out the calculation with Matlab and its Symbolic Tool Box and the following short function for
calculating the pre-image:

Listing 1
Matlab function for calculating a basis of the pre-image A−1(imS) for some matrices A and S

function V=getPreImage(A,S)
[m1 ,n1]= size(A); [m2,n2]= size(S);
if m1==m2

H=null ([A,S]);
V=colspace(H(1:n1 ,:));

else
error(’Both matrices must have same number of rows’);

end;

Before stating our main result we repeat the result concerning the Wong sequences and regular matrix pencils.

Theorem 2.2 (The regular case, [4]). Consider a regular matrix pencil sE − A ∈ Km×n[s], i.e. m = n and
det(sE − A) ∈ K[s] \ {0}. Let V∗ and W∗ be the limits of the corresponding Wong sequences. Choose any full
rank matrices V and W such that imV = V∗ and imW = W∗. Then T = [V,W ] and S = [EV,AW ]−1 are
invertible and put the matrix pencil sE −A into quasi-Weierstraß form

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
,

where J ∈ KnJ×nJ , nJ ∈ N, and N ∈ KnN×nN , nN = n−nJ , is a nilpotent matrix. In particular, when choosing
TJ and TN such that T−1

J JTJ and T−1
N NTN are in Jordan canonical form, then S′ = [EV TJ , AWTN ]−1 and

T ′ = [V TJ ,WTN ] put the regular matrix pencil sE −A into Weierstraß canonical form. �
Important consequences of the known result about the Wong sequences in the regular case are

V∗ ∩W∗ = {0}, EV∗ ∩AW∗ = {0},
V∗ +W∗ = Kn, EV∗ +AW∗ = Kn.

These properties do not hold anymore for a general matrix pencil sE − A, see Figure 2.1 for an illustration of
the situation.

Kn

nQ

V∗ +W∗

nR

V∗ ∩W∗
nP

Km

mQ

EV∗ +AW∗

mR

EV∗ ∩AW∗
mP

Fig. 2.1. The relationship of the limits V∗ and W∗ of the Wong sequences of the matrix pencil sE − A ∈ Km×n[s] in the
general case; the numbers nP , nR, nQ,mP ,mR,mQ ∈ N denote the (difference of the) dimensions of the corresponding spaces.

We are now ready to present our first main result which states that the knowledge of the spaces V∗ and W∗ is
sufficient to obtain the quasi-Kronecker triangular form, which already captures most structural properties of
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the matrix pencil sE−A. With the help of the Wong sequences Armentano [2] already obtained a similar result,
however his aim was to obtain a triangular form where the diagonal blocks are in a canonical form. Therefore,
his result is more general then ours, however, the price is a more complicated proof and it is also not clear how
to obtain the transformation matrices explicitly.

Theorem 2.3 (Quasi-Kronecker triangular form). Let sE − A ∈ Km×n[s] and consider the corresponding
limits V∗ and W∗ of the Wong sequences as in Definition 2.1. Choose any full rank matrices P1 ∈ Kn×nP ,
P2 ∈ Km×mP , R1 ∈ Kn×nR , R2 ∈ Km×mP , Q1 ∈ Kn×nQ , Q2 ∈ Km×mQ such that

imP1 = V∗ ∩W∗, imP2 = EV∗ ∩AW∗,
V∗ ∩W∗ ⊕ imR1 = V∗ +W∗, EV∗ ∩AW∗ ⊕ imR2 = EV∗ +AW∗,

(V∗ +W∗)⊕ imQ1 = Rn, (EV∗ +AW∗)⊕ imQ2 = Rm.

Then Ttrian = [P1, R1, Q1] ∈ Gln(K) and Strian = [P2, R2, Q2]−1 ∈ Glm(K) transform sE−A in quasi-Kronecker
triangular form:

(StrianETtrian, StrianATtrian) =

EP EPR EPQ
0 ER ERQ
0 0 EQ

 ,
AP APR APQ

0 AR ARQ
0 0 AQ

 , (2.3)

where

(i) EP , AP ∈ KmP×nP , mP < nP , are such that rankC(λEP −AP ) = mP for all λ ∈ C ∪ {∞},

(ii) ER, AR ∈ KmR×nR , mR = nR, with sER −AR regular, i.e. det(sER −AR) 6≡ 0,

(iii) EQ, AQ ∈ KmQ×nQ , mQ > nQ, are such that rankC(λEQ −AQ) = nQ for all λ ∈ C ∪ {∞}. �

The proof is carried out in Section 5.

Remark 2.4. The sizes of the blocks in (2.3) are uniquely given by the matrix pencil sE − A because they
only depend on the subspaces constructed by the Wong sequences and not on the choice of bases thereof. It is
also possible that mP = 0 (or nQ = 0) which means that there are matrices with no rows (or no columns).
On the other hand, if nP = 0, nR = 0 or mQ = 0 then the P -blocks, R-blocks or Q-blocks are not present at
all. Furthermore, it is easily seen, that if sE −A fulfills (i), (ii) or (iii) itself then sE −A is already in quasi-
Kronecker triangular form with Ttrian = P1 = I, Ttrian = R1 = I, or Ttrian = Q1 = I, and Strian = P−1

2 = I,
Strian = R−1

2 = I, or Strian = Q−1
2 = I. �

In our example (1.2) we have

V∗ ∩W∗ = V∗, V∗ +W∗ =W∗

and, with K := RG+RF

RG
,

EV∗ ∩AW∗ = EV∗ = im



0
1
0
0
0
0
0
0
0
0
0
0
0

 , EV
∗ +AW∗ = AW∗ = im



1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

-K 0 -
RF
RG

1 0 0 -RF KRF 0 0


Therefore, we can choose

[P1, R1, Q1] =



0 0 0
0 0 0
0 0 0
R 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 -1 1
-1 1 -1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0
1
0
0
0
0
0
0
0
0
0


and [P2, R2, Q2] =



0
1
0
0
0
0
0
0
0
0
0
0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

-K -
RF
RG

1 0 0 -RF KRF 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0

0 1


.
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With this choice we obtain the following Kronecker triangular form for our example:

(E,A) ∼=





CR 0 0 0 0 -C 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 L
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0LK


,



0 -1 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0RG 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 RF 0 0 0 0
0 0 0 0 0 0 0 0 0 0 R 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0 0 0 0 0 0 0




The quasi-Kronecker triangular form is already useful for the analysis of the matrix pencil sE − A and the
associated DAE Eẋ = Ax + f . However, a complete decoupling of the different parts, i.e. a block triangular
form, is more satisfying from a theoretical viewpoint and is also a necessary step to obtain the Kronecker
canonical form as a corollary. In the next result we show that we can transform any matrix pencil sE−A into a
block triangular form, which we call quasi-Kronecker form because all the important features of the Kronecker
canonical form are captured. In fact, it turns out that the diagonal blocks of the quasi-Kronecker triangular
form (2.3) already are the diagonal blocks of the quasi-Kronecker form.

Theorem 2.5 (Quasi-Kronecker form). Using the notation from Theorem 2.3 the following equations are
solvable for matrices F1, F2, G1, G2, H1, H2 of appropriate size:

0 = ERQ + ERF1 + F2EQ
0 = ARQ +ARF1 + F2AQ

(2.4a)

0 = EPR + EPG1 +G2ER
0 = APR +APG1 +G2AR

(2.4b)

0 = (EPQ + EPRF1) + EPH1 +H2EQ
0 = (APQ +APRF1) +APH1 +H2AQ

(2.4c)

and for any such matrices let

S :=

I −G2 −H2

0 I −F2

0 0 I

−1

Strian = [P2, R2 − P2G2, Q2 − P2H2 −R2F2]−1 and

T := Ttrian

I G1 H1

0 I F1

0 0 I

 = [P1, R1 + P1G1, Q1 + P1H1 +R1F1].

Then S ∈ Glm(K) and T ∈ Gln(K) put sE −A in quasi-Kronecker form

(SET, SAT ) =

EP 0 0
0 ER 0
0 0 EQ

 ,
AP 0 0

0 AR 0
0 0 AQ

 , (2.5)

where the block diagonal entries are the same as for the quasi-Kronecker triangular form (2.3). In particular,
the quasi-Kronecker form (without the transformation matrices S and T ) can be obtained only with the Wong
sequences (i.e. without solving (2.4)). �
The proof is carried out in Section 5.

Remark 2.6. Matrix equations of the form

0 = M + PX + Y Q

0 = R+ SX + Y T

for given matrices M,P,Q,R, S, T of appropriate size can be written equivalently as a standard linear system[
I ⊗ P Q> ⊗ I
I ⊗ S T> ⊗ I

](
vec(X)
vec(Y )

)
= −

(
vec(M)
vec(R)

)
,

where ⊗ denotes the Kronecker product of matrices and vec(H) denotes the vectorization of the matrix H
obtained by stacking all columns of H over each other. �
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For our example (1.2) we already know the quasi-Kronecker form, because as mentioned in Theorem 2.5 the
diagonal blocks are the same as for the quasi-Kronecker triangular form. However, we do not yet know the final
transformation matrices which yield the quasi-Kronecker form. Therefore, we have to find solutions of (2.4):

F1 =


0
0
0
0
0
0
0
0
0
0

, F2 =


0 - 1

K
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

, G1 =

[
0 0 1

R 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

]
,

G2 = [ -1
RG

-1
RG

0 0 0 -1 1
RG

1 -1 0 ],

H1 =
[

0
0
0

]
,

H2 = [ 0 0 ] .

The transformation matrices S and T which put our example into a quasi-Kronecker form are then

T =



0 0 0
0 0 0
0 0 0
R 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 -1 1
-1 1 -1

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 1

R 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 -1

R 0 0 0 0 0 0 1

0
0
0
0
1
0
0
0
0
0
0
0
0
0


and S =



0 1 -1
RGK

-1
RGK 0 0 -1

K 0 0 1
K -1 0 1

RGK

0 0
-RF
RGK

1
K 0 0

-RF
K 1 0

RF
K 0 0 -1

K

0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0

K 0
RF
RG

-1 0 0 RF -K 0 -RF 0 0 1


.

Finally, an analysis of the matrix pencils sEP −AP and sEQ −AQ in (2.5) with the property that rankλEP −
AP = mP and rankλEQ − AQ = nQ for all λ ∈ C ∪ {∞} (see Lemma 4.14 and Corollary 4.15) together with
Theorem 2.2 allows now to obtain the Kronecker canonical form as a corollary.

Corollary 2.7. For every matrix pencil sE − A ∈ Km×n[s] there exist transformation matrices S ∈ Glm(C)
and T ∈ Gln(C) such that, for a, b, c, d ∈ N and ε1, . . . , εa, η1, . . . , ηb, ρ1, . . . , ρc, σ1, . . . , σd ∈ N,

S(sE −A)T = diag(Pε1(s), . . . ,Pεa(s),Jρ1(s), . . . ,Jρb(s),Nσ1
(s), . . . ,Nσc

(s),Qη1(s), . . . ,Qηd(s)),

where

Pε(s) = s

0 1
. . .

. . .

0 1

−
1 0

. . .
. . .

1 0

 ∈ Kε×(ε+1)[s], ε ∈ N,

Jρ(s) = sI −


λ 1

. . .
. . .

. . . 1
λ

 ∈ Cρ×ρ[s], ρ ∈ N, λ ∈ C,

Nσ(s) = s


0 1

. . .
. . .

. . . 1
0

− I ∈ Kσ×σ[s], σ ∈ N,

Qη(s) = s


0

1
. . .

. . . 0
1

−


1

0
. . .

. . . 1
0

 ∈ K(η+1)×η[s], η ∈ N.

�

3. Application of the quasi-Kronecker (triangular) form to DAE solution theory. In this section
we study the DAE (1.1)

Eẋ = Ax+ f

corresponding to the matrix pencil sE −A ∈ Rm×n[s]. Note that we restrict ourselves here to the field K = R,
becaue 1) the vast majority of DAEs arising from modeling physical phenomena are not complex-valued, 2) all
the results for K = R carry over to K = C without modification (the converse is not true in general), 3) the
case K = Q is rather artificial when considering solutions of the DAE (1.1), because then we had to consider
functions f : R→ Q or even f : Q→ Q.
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We first have to decide in which (function) space we actually consider the DAE (1.1). To avoid problems with
differentiability one suitable choice is the space of smooth functions C∞, i.e. we consider smooth inhomogeneities
f ∈ (C∞)m and smooth x ∈ (C∞)n. Unfortunately, this excludes the possibility to consider step functions
as inhomogeneities which occur rather frequently. It is well known that the solutions of DAEs might involve
derivatives of the inhomogeneities, hence jumps in the inhomogeneity might lead to non-existence of solutions due
to a lack of differentiability. However, this is not a “structural non-existence” since every smooth approximation
of the jump could lead to well defined solutions. Therefore, one might extend the solution space by considering
distributions (or generalized functions) as formally introduced by Schwartz [17]. The advantage of this larger
solution space is that each distribution is smooth, in particular the unit step function (Heaviside function) has
a derivative: the Dirac impulse. Unfortunately, the whole space of distributions is too large, for example it is
in general not possible to speak of an initial value, because evaluation of a distribution at a specific time is not
defined. To overcome this obstacle we consider the smaller space of piecewise-smooth distributions DpwC∞ as
introduced in [19, 20]. For piecewise-smooth distributions a left- and right-sided evaluation is possible, i.e. for
D ∈ DpwC∞ the values D(t−) ∈ R and D(t+) ∈ R are well defined for all t ∈ R.

Altogether, we will formulate all results for both solution spaces S = C∞ and S = DpwC∞ , so that readers who
feel uneasy about the distributional solution framework can ignore it.

Before stating our main results concerning the solution theory of the DAE (1.1), we need the following result
about polynomial matrices which is proved in Section 4.4. A (square) polynomial matrix U(s) ∈ Kn×n[s] is
called unimodular if, and only if, it is invertible within the ring Kn×n[s], i.e. there exists V (s) ∈ Kn×n[s] such
that U(s)V (s) = I.

Lemma 3.1 (Existence of unimodular inverse). Consider a matrix pencil sE − A ∈ Km×n[s], m 6= n, such
that rankλE − A = min{m,n} for all λ ∈ C. Then there exist polynomial matrices M(s) ∈ Kn×m[s] and
K(s) ∈ Kn′×m′ [s], n′,m′ ∈ N, such that, if m < n, [M(s),K(s)] is unimodular and

(sE −A)[M(s),K(s)] = [Im, 0],

or, if m > n,
[
M(s)
K(s)

]
is unimodular and [

M(s)
K(s)

]
(sE −A) =

[
In
0

]
. �

Theorem 3.2 (Complete characterization of solutions of the DAE). Let sE − A ∈ Rm×n[s] and use the
notation from Theorem 2.5. Consider the solution space S = C∞ or S = DpwC∞ and let f ∈ Sm. According to
Theorem 2.2 let SR, TR ∈ GlnR

(R) be the matrices which transform sER −AR in quasi-Weierstraß form, i.e.I 0 0
0 SR 0
0 0 I

S(sE −A)T

I 0 0
0 TR 0
0 0 I

 =


sEP −AP 0 0 0

0 sI − J 0 0
0 0 sN − I 0
0 0 0 sEQ −AQ

 (3.1)

and let (f>P , f
>
J , f

>
N , f

>
Q )> :=

[
I 0 0
0 SR 0
0 0 I

]
Sf , where the splitting corresponds to the block sizes in (3.1). Ac-

cording to Lemma 3.1 choose unimodular matrices [MP (s),KP (s)] ∈ RnP×(mP +(nP−mP ))[s] and
[
MQ(s)
KQ(s)

]
∈

R(nQ+(mQ−nQ))×mQ [s] such that

(sEP −AP )[MP (s),KP (s)] = [I, 0] and

[
MQ(s)
KQ(s)

]
(sEQ −AQ) =

[
I
0

]
.

Then there exist solutions of the DAE Eẋ = Ax+ f if, and only if,

KQ( d
dt )(fQ) = 0 .

If this is the case, then an initial value x0 = T
[
I 0 0
0 TR 0
0 0 I

] (
x0
P
>
, x0
J
>
, x0
N
>
, x0
Q
>
)>

is consistent at t0 ∈ R, i.e.

there exists a solution of the initial value problem

Eẋ = Ax+ f, x(t0−) = x0, (3.2)

if, and only if,

x0
Q =

(
MQ( d

dt )(fQ)
)

(t0−) and x0
N = −

(
nN−1∑
k=0

Nk( d
dt )

k(fN )

)
(t0−) . (3.3)
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If (3.3) holds, then any solution x = T
[
I 0 0
0 TR 0
0 0 I

] (
xP
>, xJ

>, xN
>, xQ

>)> of the initial value problem (3.2) has

the form

xP = MP ( d
dt )(fP ) +KP ( d

dt )(ux0
P

),

xJ = eJ(·−t0)x0
J + eJ·

∫
t0

(
e−J·fJ

)
,

xN = −∑nN−1
k=0 Nk( d

dt )
k(fN ),

xQ = MQ( d
dt )(fQ),

where ux0
P
∈ SnP−mP is such that the initial condition at t0 for xP is satisfied (which is always possible due to

Lemma 4.18), but apart from that arbitrary. �
The proof is carried out in Section 5.

Note that the antiderivative operator
∫
t0

: S → S, f 7→ F as used in Theorem 3.2 is uniquely defined by the

two properties d
dtF = f and F (t0−) = 0 (for S = C∞ this is well known, whilst for S = DpwC∞ this is shown in

[20, Prop. 3], see also [19, Prop. 2.3.6]).

We want to use Theorem 3.2 to characterize the solutions of our example DAE (1.2). We first observe that the
regular part can be brought into quasi-Weierstraß form s0−I by pre-multiplying with SR = A−1

R . In particular,
the J-part is non-existent, which means that the circuit contains no classical dynamics. We choose

[MP (s),KP (s)] =

 0 1 0
0 0 1
−1 CRs 1

 and

[
MQ(s)
KQ(s)

]
=

[
1 0

−LKs 1

]
.

Furthermore, TR = I, fP = V
RG+RF

, fJ = [], fN = V
K [−1,−1,−K, 0, 0,− 1

RG
,− 1

RG
, 0,− 1

RG
, 1
RG

]>, fQ = [I, V ]>,
hence the DAE (1.2) is solvable if, and only if,

0 = KQ( d
dt )(fQ) = −LK d

dtI + V or, equivalently, V = LK d
dtI ,

i.e. the voltage source must be proportional to the change of current provided by the current source. In that
case, the initial value must fulfill

x(0−) = T [∗, ∗, ∗,−fN (0−)>,MQ( d
dt )(fQ)(0−)]>,

i.e., recalling x = (p+, p−, po, pT , iL, ip, im, iG, iF , iR, io, iV , iC , iT )>, iR(0−), io(0−), iV (0−) are arbitrary and

p−(0−) = V (0−)
K , p+(0−) = V (0−)

K , po(0−) = V (0−), pT (0−) = RiR(0−), iL(0−) = I(0−), ip(0−) = 0,

im(0−) = 0, iG = V (0−)
RF +RG

, iF = V (0−)
RF +RG

, iC(0−) = iV (0−) − io(0−) + V (0−)
RF +RG

, iT (0−) = io(0−) − iR(0−) −
iV (0−)− V (0−)

RF +RG
. If these conditions are satisfied, then all solutions of the initial value problem corresponding

to our example DAE (1.2) are given by

x = T [u1, u2,
−V

RG+RF
+RCu̇1 + u2,

V
K ,

V
K , V, 0, 0,

V
RF +RG

, V
RF +RG

, 0, V
RF +RG

, −V
RF +RG

, I]>,

= [ VK ,
V
K , V, pT (u1), I, 0, 0, V

RF +RG
, V
RF +RG

, iR(u1), io(u2), iV (u1, u2), iC(u1), iT (u1)]>,

where u1, u2 ∈ S are arbitrary, apart from the initial conditions

u1(0−) = iR(0−)− V (0−)
R , u̇1(0−) = 1

CR

(
iV (0−) + V (0−)

RF +RG
− io(0−)

)
and u2(0−) = io(0−)

and

pT (u1) = V +Ru1, iR(u1) = u1 + V
R , io(u2) = u2,

iV (u1, u2) = u2 − V
RF +RG

+ CRu̇1, iC(u1) = CRu̇1, iT (u1) = −u1 − V
R − CRu̇1.

Remark 3.3. A similar statement as in Theorem 3.2 is also possible if we only consider the quasi-Kronecker
triangular form (2.3), i.e. instead of (3.1) we consider

[
I 0 0
0 SR 0
0 0 I

]
Strian(sE −A)Ttrian

[
I 0 0
0 TR 0
0 0 I

]
=


sEP −AP sEPJ −APJ sEPN −APN sEPQ −APQ

0 sI − J 0 sEJQ −AJQ
0 0 sN − I sENQ −ANQ
0 0 0 sEQ −AQ


The corresponding conditions for the Q-part remain the same, in the condition for the N -part the inhomogeneity
fN is replaced by fN − (ENQ

d
dt −ANQ)(xQ), in the J-part the inhomogeneity fJ is replaced by fJ − (EJQ

d
dt −

AJQ)(xQ) and in the P -part the inhomogeneity fP is replaced by fP−(EPJ
d
dt−APJ)(xJ)−(EPN

d
dt−APN )(xN )−

(EPQ
d
dt −APQ)(xQ). �
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4. Useful Lemmas. In this section we collect several lemmas which are needed to prove the main results.
Since we use results from different areas we group the lemmas accordingly into subsections.

4.1. Standard results from linear algebra.

Lemma 4.1 (Orthogonal complements and (pre-)images). For any matrix M ∈ Kp×q we have:

(i) for all subspaces S ⊆ Kq it holds (MS)⊥ = M−>(S⊥).

(ii) for all subspaces S ⊆ Kp it holds (M−1S)⊥ = M>(S⊥). �

Proof. The following equivalence holds for all x ∈ Kq:

x ∈ (MS)⊥ ⇔ ∀s ∈ S : 0 = x>Ms = (M>x)>s ⇔ M>x ∈ S⊥ ⇔ x ∈M−>(S⊥),

hence 4.1 is shown. Property 4.1 follows from considering the orthogonal complements and

(M>S⊥)⊥
(i)
= M−1S.

Lemma 4.2 (Rank of matrices). Let A,B ∈ Km×n with imB ⊆ imA. Then for almost all c ∈ K:

rankA = rank(A+ cB),

or, equivalently,

imA = im(A+ cB).

In fact, rankA < rank(A+ cB) can only hold for at most r = rankA many values of c. �

Proof. Consider the Smith form ([18]) of A:

UAV =

[
Σr 0
0 0

]
with invertible matrices U ∈ Km×m and V ∈ Kn×n and Σr = diag(σ1, σ2, . . . , σr), σi ∈ K \ {0}, r = rankA.
Write

UBV =

[
B11 B12

B21 B22

]
,

where B11 ∈ Kr×r. Since imB ⊆ imA it follows that B21 = 0 and B22 = 0. Hence we obtain the following
implications:

rank(A+ cB) < rankA ⇒ rank[Σr + cB11, cB12] < rank[Σr, 0] = r ⇒ rank(Σr + cB11) < r

⇒ det(Σr + cB11) = 0.

Since det(Σr + cB11) is a polynomial in c of degree at most r but not the zero polynomial (since det(Σr) 6= 0)
it can have at most r zeros. This proves the claim.

Lemma 4.3 (Dimension formulae). Let S ⊆ Kn be any linear subspace of Kn and M ∈ Km×n. Then

dimMS = dimS − dim(kerM ∩ S).

Furthermore, for any two linear subspaces S, T of Kn we have

dim(S + T ) = dimS + dim T − dim(S ∩ T ).

�

Proof. See any textbook on linear algebra.
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4.2. The Wong sequences. The next lemma highlights an important property of the intersection of the
limits of the Wong sequences.

Lemma 4.4 (Property of V∗ ∩ W∗). Let sE − A ∈ Km×n[s] and V∗, W∗ be the limits of the corresponding
Wong sequences. Then

E(V∗ ∩W∗) = EV∗ ∩AW∗ = A(V∗ ∩W∗).
�

Proof. Clearly, invoking AV∗ ⊆ EV∗ and EW∗ ⊆ AW∗ (see (2.2)),

E(V∗ ∩W∗) ⊆ EV∗ ∩ EW∗ ⊆ EV∗ ∩AW∗ and A(V∗ ∩W∗) ⊆ AV∗ ∩AW∗ ⊆ EV∗ ∩AW∗,

hence it remains to show the converse subspace relationship. To this end choose x ∈ EV∗∩AW∗, which implies
existence of v ∈ V∗ and w ∈ W∗ such that

Ev = x = Aw,

hence

v ∈ E−1{Aw} ⊆ E−1(AW∗) =W∗, w ∈ A−1{Ev} ⊆ A−1(EV∗) = V∗.

Therefore v, w ∈ V∗ ∩W∗ and x = Ev ∈ E(V∗ ∩W∗) as well as x = Aw ∈ A(V∗ ∩W∗) which concludes the
proof.

For the proof of the main result we briefly consider the Wong sequences of the (conjugate) transposed matrix
pencil sE> −A>; these are connected to the original Wong sequences as follows.

Lemma 4.5 (Wong-sequences of the transposed matrix pencil). Consider a matrix pencil sE − A ∈ Km×n[s]

with corresponding limits of the Wong sequences V∗ and W∗. Denote with V̂∗ and Ŵ∗ the limits of the Wong
sequences of the (conjugate) transposed matrix pencil sE> −A>. Then the following holds

Ŵ∗ = (EV∗)⊥ and V̂∗ = (AW∗)⊥.
�

Proof. We show that for all i ∈ N

(EVi)⊥ = Ŵi+1 and (AWi)
⊥ = V̂i, (4.1)

from which the claim follows. For i = 0 this follows from

(EV0)⊥ = (imE)⊥ = kerE> = E−>(A>{0}) = Ŵ1

and

(AW0)⊥ = {0}⊥ = Rm = V̂0.

Now suppose that (4.1) holds for some i ∈ N. Then

(EVi+1)⊥ =
(
EA−1(EVi)

)⊥
Lem. 4.1(i)

= E−>(A−1(EVi))⊥
Lem. 4.1(ii)

= E−>
(
A>(EVi)⊥

)
= E−>

(
A>Ŵi+1

)
= Ŵi+2,

and analogously it follows (AWi+1)⊥ = V̂i+1, hence we have inductively shown (4.1).

4.3. Singular chains. In this subsection we introduce the notion of singular chains for matrix pencils.
This notion is inspired by the theory of linear relations, see [16], where they are a vital tool for analyzing the
structure of linear relations. We use them here to determine the structure of the intersection V∗ ∩W∗ of the
limits of the Wong sequences.

Definition 4.6 (Singular chain). Let sE −A ∈ Km×n[s]. For k ∈ N the tuple (x0, . . . , xk) ∈ (Kn)k+1 is called
singular chain of the matrix pencil sE −A if, and only if,

0 = Ax0, Ex0 = Ax1, . . . , Exk−1 = Axk, Exk = 0
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or, equivalently, the polynomial vector x(s) = x0 + x1s+ . . .+ xks
k ∈ Kn[s] satisfies (sE −A)x(s) = 0. �

Note that with every singular chain (x0, x1, . . . , xk) also the tuple (0, . . . , 0, x0, . . . , xk, 0, . . . , 0) is a singular
chain of sE − A. Furthermore, with every singular chain, each scalar multiple is a singular chain and for two
singular chains of the same length the sum of both is a singular chain. A singular chain (x0, . . . , xk) is called
linearly independent if the vectors x0, . . . , xk are linearly independent.

Lemma 4.7 (Linear independency of singular chains). Let sE − A ∈ Km×n[s]. For every non-trivial singular
chain (x0, x1, . . . , xk), k ∈ N, of sE − A there exists m ∈ N, m ≤ k, and a linearly independent singular chain
(y0, y1, . . . , ym) with span{x0, x1, . . . , xk} = span{y0, y1, . . . , ym}. �
Proof. This result is an extension of [16, Lem. 3.1], hence our proof resembles some ideas of the latter.

If (x0, x1, . . . , xk) is already a linearly independent singular chain nothing is to show, therefore, assume existence
of a minimal m ∈ {0, 1, . . . , k − 1} such that xm+1 =

∑m
i=0 αixi for some αi ∈ K, i = 0, . . . ,m. Consider the

chains

α0 (0, 0, . . . , 0, 0, x0, x1, . . . , xm, xm+1, . . . , xk−1, xk)
α1 (0, 0, . . . , 0, x0, x1, . . . , xm, xm+1, . . . , xk−1, xk, 0)
α2 (0, 0, . . . , x0, x1, . . . , xm, xm+1, . . . , xk−1, xk, 0, 0)

...
αm−1 (0, x0, x1, . . . , xm−2, xm−1, xm, xm+1, . . . xk, 0, . . . , 0)
αm (x0, x1, . . . , xm−2, xm−1, xm, xm+1, . . . xk, 0, . . . , 0, 0)

and denote its sum by (z0, z1, . . . , zk+m). Note that by construction zm =
∑m
i=0 αixi = xm+1. Now consider

the singular chain (v0, v1, . . . , vk+m+1) := (x0, x1, . . . , xk, 0, . . . , 0)− (0, z0, z1, . . . , zm+k) which has the property
that vm+1 = xm+1 − zm = 0. In particular (v0, v1, . . . , vm) and (vm+2, vm+3 . . . , vk+m+1) are both singular
chains. Furthermore, (we abbreviate αiI with αi)

v0

v1

v2

...
vk
vk+1

...
vk+m+1


=



I 0 ··· 0
-αm I 0 ··· 0

-αm-1 -αm I 0 ··· 0

. . .

-α1 -α2 ··· -αm I
-α0 -α1 -α2 ··· -αm I
0 -α0 -α1 -α3 ··· -αm I

. . .
. . .

0 ··· 0 -α0 -α1 -α3 ··· -αm I





x0

x1

x2

...
xk
0
...
0


,

hence span{v0, v1, . . . , vk+m+1} = span{x0, x1, . . . , xk} = span{v0, v1, . . . , vk}. In particular

span{vk+1, vk+2, . . . , vk+m+1} ⊆ span{v0, v1, . . . , vk},

hence, by applying Lemma 4.2, there exists c 6= 0 such that (note that m < k)

im[v0, v1, . . . , vk] = im([v0, v1, . . . , vk] + c [vk+1, vk+2, . . . , vk+m+1, 0, . . . , 0]). (4.2)

Therefore, the singular chain

(w0, w1, . . . , wk−1) := c (vm+2, . . . , vk | vk+1, vk+2, . . . , vk+m+1) + (0, . . . , 0 | v0, v1, . . . , vm)

has the property

span{w0, w1, . . . , wk−1} = span{vm+2, vm+3, . . . , vk}
+ span{cvk+1 + v0, cvk+2 + v1, . . . , cvk+m+1 + vm}

vm+1=0
= im([v0, v1, . . . , vk] + c [vk+1, vk+2, . . . , vk+m+1, 0, . . . , 0])

(4.2)
= im[v0, v1, . . . , vk]

= span{v0, v1, . . . , vk} = span{x0, x1, . . . , xk}.

Therefore, we have obtained a shorter singular chain which spans the same subspace as the original singular
chain. Repeating this procedure until one obtains a linearly independent singular chain proves the claim.

Corollary 4.8 (Basis of the singular chain manifold). Consider a matrix pencil sE − A ∈ Km×n[s] and let
the singular chain manifold be given by

K :=
{
x ∈ Rn

∣∣ ∃ k, i ∈ N ∃ singular chain (x0, . . . , xi−1, x = xi, xi+1, . . . , xk) ∈ (Kn)k+1
}
,
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i.e. K is the set of all vectors x appearing somewhere in some singular chain of sE − A. Then there exists a
linearly independent singular chain (x0, x1, . . . , xk) of sE −A such that

K = span{x0, . . . , xk}.
�

Proof. First note that K is indeed a linear subspace of Kn, since with every chain its scalar multiple is also a
chain and the sum of two chains (extending the chains appropriately with zero vectors) is again a chain.
Let y0, y1, . . . , yk be any basis of K. By the definition of K, for each i = 0, 1, . . . , k there exist chains
(yi0, y

i
1, . . . , y

i
ki

) which contain yi. Let (v0, v1, . . . , vk̂) with k̂ = k0 + k1 + . . . + kk be the chain which re-

sults by concatenating the chains (yi0, y
i
1, . . . , y

i
ki

). Clearly, span{v0, . . . , vk̂} = K, hence Lemma 4.7 yields the
claim.

The following result can, in substance, be found in [2]. However, the proof therein is difficult to follow, involving
quotient spaces and additional sequences of subspaces. Our presentation is much more straightforward and
simpler.

Lemma 4.9 (Singular chain manifold and the Wong sequences). Consider a matrix pencil sE − A ∈ Km×n[s]
with the limits V∗ andW∗ of the Wong sequences. Let the singular chain manifold K be given as in Corollary 4.8,
then

V∗ ∩W∗ = K.
�

Proof. Step 1: We show K ⊆ V∗ ∩W∗.
Let (x0, . . . , xk) be a singular chain. Clearly we have x0 ∈ A−1(E{0}) = kerA ⊆ V∗ and xk ∈ E−1(A{0}) =
kerE ⊆ W∗ , hence inductively we have, for i = 0, 1, . . . , k − 1 and j = k, k − 1, . . . , 1

xi+1 ∈ A−1(E{xi}) ⊆ A−1(EV∗) = V∗ and xj−1 ∈ E−1(A{xj}) ⊆ E−1(AW∗) =W∗.

Therefore,

x0, . . . , xk ∈ V∗ ∩W∗.

Step 2: We show V∗ ∩W∗ ⊆ K.
Let x ∈ V∗∩W∗. Then, in particular, x ∈ W∗ and with l∗ ∈ N such thatWl∗ =W∗ there exist x1 ∈ Wl∗−1, x2 ∈
Wl∗−2, . . . , xl∗ ∈ W0 = {0}, such that, for x0 := x,

Ex0 = Ax1, Ex1 = Ax2, . . . , Exl∗−1 = Axl∗ , Exl∗ = 0.

Furthermore, since E(V∗ ∩W∗) = A(V∗ ∩W∗) there exist x−1, x−2, . . . , x−(l∗+1) ∈ V∗ ∩W∗ such that

Ax0 = Ex−1, Ax−1 = Ex−2, . . . , Ax−(l∗−1) = Ex−l∗ , Ax−l∗ = Ex−(l∗+1).

Let ∆x−(l∗+1) := −x−(l∗+1) ∈ V∗ ∩ W∗ ⊆ W∗ then (with the same argument as above) there exist ∆x−l∗ ,
∆x−(l∗−1), . . ., ∆x−1 ∈ W∗ such that

E∆x−(l∗+1) = A∆x−l∗ , E∆x−l∗ = A∆x−(l∗−1) . . . , E∆x−2 = A∆x−1, E∆x−1 = 0,

and thus, defining x̂−i = x−i + ∆x−i, i = 1, . . . , l∗ + 1, in particular x̂−(l∗+1) = 0, we obtain

0 = Ex̂−(l∗+1) = Ax̂−l∗ , Ex̂−l∗ = Ax̂−(l∗−1) . . . , Ex̂−2 = Ax̂−1, Ex̂−1 = Ex−1 = Ax0.

This shows that (x̂−l∗ , x̂−(l∗−1), . . . , x̂−1, x0, x1, . . . , xl∗) is a singular chain and x = x0 ∈ K.

The last result in this section relates singular chains with the spectrum spec(sE − A) of the matrix pencil
sE −A.

Lemma 4.10 (Infinite spectrum implies singular chains). Let sE −A ∈ Km×n[s]. If spec(sE −A) = C ∪ {∞},
then there exists a non-trivial singular chain of sE −A.

Proof. It suffices to observe that Definition 4.6 coincides (modulo a reversed indexing) with the notion of singular
chains in [16] applied to the linear relation E−1A := { (x, y) ∈ Kn ×Kn | Ax = Ey }. Then the claim follows
for K = C from [16, Thm. 4.4]. The main idea of the proof there is to choose any m + 1 different eigenvalues
and corresponding eigenvectors. This is also possible for K = R and K = Q, hence the proof in [16] is also valid
for K = R and K = Q.
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4.4. Polynomial matrices.

Lemma 4.11 (Unimodular extension). A matrix P (s) ∈ Km×n[s] can be extended to a square unimodular
matrix if, and only if, rankC P (λ) = min{m,n} for all λ ∈ C. �
Proof. Necessity is clear, hence it remains to show that under the full rank assumption a unimodular extension
is possible. Note that K[s] is a principal ideal domain, hence we can consider the Smith normal form [18] of
P (s) given by

P (s) = U(s)

[
Σr(s) 0

0 0

]
V (s),

where U(s), V (s) are unimodular matrices and Σ(s) = diag(σ1(s), . . . , σr(s)), r ∈ N, with non-zero diagonal
entries. Note that rankP (λ) = rank Σ(λ) for all λ ∈ C, hence the full rank condition implies r = min{m,n}
and σ1(s), . . . , σr(s) are constant (non-zero) polynomials. For m = n this already shows the claim. For m > n,
i.e. P (s) = U(s)

[
Σn(s)

0

]
V (s), the sought unimodular extension is given by

[P (s), Q(s)] = U(s)

[
Σn(s) 0

0 I

] [
V (s) 0

0 I

]
and, for m < n, [

P (s)
Q(s)

]
=

[
U(s) 0

0 I

] [
Σm(s) 0

0 I

]
V (s).

Proof of Lemma 3.1. Let Q(s) be any unimodular extension of sE − A according to Lemma 4.11. If m < n,

choose [M(s),K(s)] =

[
sE −A
Q(s)

]−1

and if m > n, let
[
M(s)
K(s)

]
:= [sE −A,Q(s)]−1.

4.5. Solvability of linear matrix equations. In generalization of the method presented in [6, Sec. 6]
we reduce the problem of solvability of (2.4) to the problem of solving a generalized Sylvester equation

AXB − CXD = E. (4.3)

To this end the following lemma is crucial.

Lemma 4.12. Let A,C ∈ Km×n, B,D ∈ Kp×q, E,F ∈ Km×q and consider the system of matrix equations with
“unknowns” Y ∈ Kn×q and Z ∈ Km×p

0 = E +AY + ZD,

0 = F + CY + ZB.
(4.4)

Suppose there exists λ ∈ K and Mλ ∈ Kq×p such that Mλ(B − λD) = I, in particular p ≥ q. Then, for any
solution X ∈ Kn×p of the matrix equation

AXB − CXD = −E − (λE − F )MλD,

the matrices

Y = X(B − λD)

Z = −(C − λA)X − (F − λE)Mλ

solve (4.4). �
Proof. We calculate

E +AY + ZD = E +AX(B − λD)− (C − λA)XD − (F − λE)MλD

= E −AXλD + λAXD − (F − λE)MλD − E − (λE − F )MλD

= 0,

F + CY + ZB = F + CX(B − λD)− (C − λA)XB − (F − λE)MλB

= F + CXB − CXB − (F − λE)MλB − λ (E + (λE − F )MλD)

= (F − λE)− (F − λE)MλB − λ(λE − F )MλD

= (F − λE)
(
Iq −Mλ(B − λD)

)
= 0.
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It is well known [9] that the generalized Sylvester equation (4.3) is solvable if, for all λ ∈ C, λC − A is right
invertible, λB −D is left invertible and spec(sC − A) ∩ spec(sB −D) = ∅. However, the proof in [9] uses the
Kronecker canonical form which we want to obtain as a corollary of our analysis. In our situation we actually
do not need to solve an arbitrary generalized Sylvester equation (4.3), because the matrices in (2.4) already
have special properties. The following lemma takes this into account.

Lemma 4.13 (Solvability of the generalized Sylvester equation). Let A,C ∈ Km×n, m ≤ n, B,D ∈ Kp×q, p ≥ q,
E ∈ Km×q and consider the generalized Sylvester equation (4.3). Assume there exists λ ∈ K, Mλ ∈ Kn×m and
Nλ ∈ Kq×p such that (λC −A)Mλ = I and Nλ(λB −D) = I. If spec(sC −A) ∩ spec(sB −D) = ∅, then (4.3)
has a solution X ∈ Kn×p. �
Proof. Clearly, (4.3) is equivalent to

(λC −A)XB − CX(λB −D) = −E, (4.5)

and for Y ∈ Km×q let X = MλY Nλ. Then (4.5) reduces to the Sylvester equation

Y NλB − CMλY = −E (4.6)

and each solution Y of (4.6) yields a solution X = MλY Nλ of (4.3). It is well known (see e.g. [11]), that a
disjoint set of eigenvalues of NλB and CMλ yields existence of a solution Y of (4.6). Seeking a contradiction,
assume existence of µ ∈ C such that rank(µI − NλB) < q and rank(µI − CMλ) < m. Using the defining
properties of Mλ and Nλ it follows that

µI −NλB = Nλ
(
µ(λB −D)−B)

)
= Nλ

(
(µλ− 1)B − µD

)
,

µI − CMλ =
(
µ(λC −A)− C)

)
Mλ =

(
(µλ− 1)C − µA

)
Mλ.

Since rankNλ = q and rankMλ = m the assumption that rank(µI − NλB) < q and rank(µI − CMλ) < m
implies

rank
(
(µλ− 1)B − µD

)
< q and rank

(
(µλ− 1)C − µA

)
< m.

This implies either, if µ 6= 0, that λ− 1/µ is a common eigenvalue of sB −D and sC − A or, if µ = 0, infinity
is a common eigenvalue of sB −D and sC −A. In both cases this contradicts the assumption.

4.6. Kronecker canonical form for full rank pencils. In order to derive the Kronecker canonical
form as a corollary of the quasi-Kronecker form we need the following lemma, which shows how to obtain the
Kronecker canonical form for the special case of full rank pencils.

Lemma 4.14 (Kronecker form of full rank rectangular pencil). Let sE −A ∈ Km×n[s] such that m < n and let
l := n −m. Then rankC(λE − A) = m for all λ ∈ C ∪ {∞} if, and only if, there exist numbers ε1, . . . , εl ∈ N
and matrices S ∈ Glm(K), T ∈ Gln(K) such that

S(sE −A)T = diag(Pε1(s), . . . ,Pεl(s)),

where Pε(s), ε ∈ N, is as in Corollary 2.7. �
Proof. Sufficiency is clear, hence it remains to show necessity.

If m = 0 and n > 0, then nothing is to show since sE − A is already in the “diagonal form” with k1 = k2 =
. . . = kl = 0. Hence assume m > 0 in the following. The main idea is to reduce the problem to a smaller pencil
sE′ − A′ ∈ Km′×n′ [s] with rankλE′ − A′ = m′ < n′ < n for all λ ∈ C ∪ {∞}. Then we can inductively use
the transformation to the desired block diagonal structure for the smaller pencil to obtain the block diagonal
structure for the original pencil.

By assumption E does not have full column rank, hence there exists a column operation T1 ∈ Gln(K) such that

ET1 =

0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗


There are two cases now: Either the first column of AT1 is zero or not. We consider the two cases separately.

Case 1: The first column of AT1 is zero.
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Let ET1 =: [0, E′] and AT1 =: [0, A′]. Then, clearly, rankC(λE − A) = rankC(λE′ − A′) = m′ := m for all
λ ∈ C∪ {∞}. Furthermore, with n′ := n− 1, it follows that n′ ≥ m′. Seeking a contradiction, assume n′ = m′.

Then the full rank matrix E′ is square and hence invertible. Let λ ∈ C be any eigenvalue of the matrix E′
−1
A′,

thus 0 = det(λI−E′−1
A′) = det(E′)−1 det(λE′−A′), hence rank(λE′−A′) < m′, a contradiction. Altogether,

this shows that sE′ −A′ ∈ Km′×n′ [s] is a smaller pencil which satisfies the assumption of the lemma, hence we
can inductively use the result of the lemma for sE′ − A′ with transformation matrices S′ and T ′. Let S := S′

and T := T1

[
1 0
0 T ′

]
, then S(sE − A)T has the desired block diagonal structure which coincides with the block

structure of sE′ −A′ apart from one additional P0 block.

Case 2: The first column of AT1 is not zero.

Since E has full row rank, the first row of ET1 cannot be the zero row, hence there exists a second column
operation T2 ∈ Gln(n) which does not change the fist column such that

(ET1)T2 =


0 1 0 · · · 0
0 ∗ ∗ · · · ∗
...

...
...

0 ∗ ∗ · · · ∗

 .
The first column of AT1 and AT1T2 are the same and not the zero column, hence there exists a row operation
S1 ∈ Glm(K) such that

S1(AT1T2) =


1 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

0 ∗ ∗ · · · ∗

 .
Now let T3 ∈ Gln(K) be a column operation which adds multiples of the first column to the remaining columns
such that

(S1AT1T2)T3 =


1 0 0 · · · 0
0 ∗ ∗ · · · ∗
...

...
...

0 ∗ ∗ · · · ∗

 .
Since the first column of S1ET1T2 is zero, the column operation T3 has no effect on the matrix S1ET1T2. Let

S1ET1T2T3 =:


0 1 0 · · · 0
0
... E′

0

 and S1AT1T2T3 =:


1 0 0 · · · 0
0
... A′

0

 ,

with sE′ − A′ ∈ Km′×n′ [s] and m′ := m − 1, n′ := n − 1, in particular m′ < n′. Seeking a contradiction,
assume rankC λE

′ − A′ < m′ for some λ ∈ C ∪ {∞}. If λ = ∞ then this implies that E′ does not have full
row rank which would also imply that E does not have full row rank, which is not the case. Hence we may
choose a vector v′ ∈ Cm′ such that v′(λE′ − A′) = 0. Let v := [0, v′]S1. Then a simple calculation reveals
v(λE−A) = [0, v′(λE′−A′)](T1T2T3)−1 = 0, which contradicts full rank of λE−A. As in the first case we can
now inductively use the result of the lemma for the smaller matrix pencil sE′−A′ to obtain transformations S′

and T ′ which put sE′ −A′ in the desired block diagonal form. With S :=
[

1 0
0 S′

]
S1 and T := T1T2T3

[
1 0
0 T ′

]
we

obtain the same block diagonal structure for sE − A as for sE′ − A′ apart from the first block which is Pε1+1

instead of Pε1 .

Corollary 4.15. Let sE − A ∈ Km×n[s] be such that m > n and let l := m − n. Then rankC(λE − A) = n
for all λ ∈ C ∪ {∞} if, and only if, there exist numbers η1, . . . , ηl ∈ N and matrices S ∈ Glm(K), T ∈ Gln(K)
such that

S(sE −A)T = diag(Qη1(s), . . . ,Qηl(s)),

where Qη(s), η ∈ N, is as in Corollary 2.7. �
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4.7. Solutions of DAEs. In order to prove Theorem 3.2 we need the following lemmas, which characterize
the solutions of DAEs in the case of full rank pencils. As in Section 3 we restrict ourselves to the case K = R.

Lemma 4.16 (Full row rank pencils). Let sE − A ∈ Rm×n[s] such that m < n and rankC(λE − A) = m
for all λ ∈ C ∪ {∞}. According to Lemma 3.1 choose M(s) ∈ Rn×m[s] and K(s) ∈ Rn×(n−m)[s] such that
(sE − A)[M(s),K(s)] = [I, 0] and [M(s),K(s)] is unimodular. Consider the DAE Eẋ = Ax + f and the
associated solution space S = C∞ or S = DpwC∞ . Then, for all inhomogeneities f ∈ Sm, x ∈ Sn is a solution
if, and only if, there exists u ∈ Sn−m such that

x = M( d
dt )(f) +K( d

dt )(u).

Furthermore, all initial values problems have a solution, i.e. for all x0 ∈ Rn, t0 ∈ R and all f ∈ Sm there exists
a solution x ∈ Sn such that

x(t0−) = x0. �
Proof. Step 1: We show that x = M( d

dt )(f) +K( d
dt )(u) solves Eẋ = Ax+ f for any u ∈ Sn−m.

This is clear since

(E d
dt −A)

(
M( d

dt )(f) +K( d
dt )(u)

)
= f + 0 = f.

Step 2: We show that any solution x of the DAE can be represented as above.
To this end let u := [0, I][M( d

dt ),K( d
dt )]
−1x ∈ Sn−m, which is well-defined due to the unimodularity of

[M(s),K(s)]. Then

f = (E d
dt −A)x = (E d

dt −A)[M( d
dt ),K( d

dt )]

[
[I, 0][M( d

dt ),K( d
dt )]
−1x

[0, I][M( d
dt ),K( d

dt )]
−1x

]
= [I, 0][M( d

dt ),K( d
dt )]
−1x,

and therefore it follows that

M( d
dt )f +K( d

dt )u = [M( d
dt ),K( d

dt )]

[
[I, 0][M( d

dt ),K( d
dt )]
−1x

[0, I][M( d
dt ),K( d

dt )]
−1x

]
= x.

Step 3: We show that every initial value is possible.
Write K(s) = K0 +K1s+ . . .+Kks

k, k ∈ N, and let K be the singular chain manifold of sE−A as in Corollary
4.8.
Step 3a: We show im[K0,K1, . . . ,Kk] = K = Rn.
Remark 2.4 and Lemma 4.9 yields Rn = V∗ ∩W∗ = K. From (sE −A)K(s) = 0 it follows that

0 = AK0, EK0 = AK1, . . . , EKk−1 = AKk, EKk = 0,

hence the i-th column vectors of K0,K1, . . . ,Kk, i = 1, . . . , n − m, form a singular chain. This shows
im[K0,K1, . . . ,Kk] ⊆ K.
For showing the converse inclusion, we first prove imK0 = kerA. From AK0 = (λE − A)K(λ)

∣∣
λ=0

= 0 it
follows that imK0 ⊆ kerA. By unimodularity of [M(s),K(s)] it follows that K(0) = K0 must have full rank,
i.e. dim imK0 = n−m. Full rank of (sE−A) for all s ∈ C also implies full rank of A, hence dim kerA = n−m
and imK0 = kerA is shown.
Let (x0, x1, . . . , xl), l ∈ N, be a singular chain. Then Ax0 = 0, i.e. x0 ∈ kerA = imK0. Proceeding inductively,
assume x0, x1, . . . , xi ∈ im[K0,K1, . . . ,Ki], for some i ∈ N with 0 ≤ i < l. For notational convenience set
Kj = 0 for all j > k. From Axi+1 = Exi ∈ im[EK0, EK1, . . . , EKi] = im[AK1, AK2, . . . , AKi+1] it follows that
xi+1 ∈ kerA+ im[K1,K2, . . . ,Ki+1] = im[K0,K1, . . . ,Ki+1]. This shows that each singular chain is contained
in im[K0,K1, . . . ,Kk].
Step 3b: We show existence of u ∈ Sn−m such that x(t0−) = x0.
By Step 3a there exist u0, u1, . . . , uk ∈ Rn−m such that

K0u0 +K1u1 + . . .+Kkuk = x0 −M( d
dt )(f)(t0−). (4.7)

Let

u(t) := u0 + (t− t0)u1 +
(t− t0)2

2
u2 + . . .+

(t− t0)k

k!
uk, t ∈ R.

Then we have that u ∈ S and

K( d
dt )(u)(t0−) = K0u0 +K1u1 + . . .+Kkuk

(4.7)
= x0 −M( d

dt )(f)(t0−), (4.8)
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which implies that the solution x = M( d
dt )(f) +K( d

dt )(u) satisfies

x(t0−) = M( d
dt )(f)(t0−) +K( d

dt )(u)(t0−)
(4.8)
= x0.

Remark 4.17. A careful analysis of the proof of Lemma 4.16 reveals that for the solution formula the full rank
of λE −A for λ =∞ is not necessary. The latter is only necessary to show that all initial value problems have
a solution.

Lemma 4.18 (Full column rank pencils). Let sE − A ∈ Rm×n[s] such that m > n and rankC(λE − A) = n
for all λ ∈ C ∪ {∞}. According to Lemma 3.1 choose M(s) ∈ Rn×m[s] and K(s) ∈ R(m−n)×m[s] such that[
M(s)
R(s)

]
(sE −A) = [ I0 ] and

[
M(s)
R(s)

]
is unimodular. Then, for f ∈ Sm, x ∈ Sn is a solution of Eẋ = Ax+ f if,

and only if,

x = M( d
dt )(f) ∧ K( d

dt )(f) = 0.

Furthermore, every component or linear combination of f is restricted in some way, more precisely K(s)F has
no zero column for any invertible F ∈ Rm×m.

Proof. The characterization of the solution follows from the equivalence

(E d
dt −A)x = f ⇐⇒

[
M( d

dt )
K( d

dt )

]
(E d

dt −A)︸ ︷︷ ︸
=[ I0 ]

x =

[
M( d

dt )f
K( d

dt )f

]
.

To show that K(s)F does not have any zero column, write K(s) = K0 + K1s + . . . + Kks
k. Since (sE> −

A>)K(s)> = 0 it follows with the same arguments as in Step 3a of Lemma 4.16 that im[K>0 ,K
>
1 , . . . ,K

>
k ] = Rm.

Hence, ker[K>0 ,K
>
1 , . . . ,K

>
k ]> = {0} which shows that the only v ∈ Rm with Kiv = 0 for all i = 1, . . . , k is

v = 0. This shows that K(s)F does not have a zero column for any invertible F ∈ Rm×m.

Remark 4.19. Analogously, as pointed out in Remark 4.17, the condition that λE − A must have full rank
for λ = ∞ is not needed to characterize the solution. It is only needed to show that the inhomogeneity is
“completely” restricted. �

5. Proofs of the main results.

Proof of Theorem 2.3: the quasi-Kronecker triangular form. We are now ready to proof our main result about
the quasi-Kronecker triangular form. We proceed in several steps.

Step 1: We show the block-triangular form (2.3).
By the choice of P1, R1, Q1 and P2, R2, Q2 it follows immediately that Ttrian and Strian are invertible. Note that
(2.3) is equivalent to the solvability (for given E,A and P1, R1, Q1, P2, R2, Q2) of

EP1 = P2EP , AP1 = P2AP ,

ER1 = P2EPR +R2ER, AR1 = P2APR +R2AR,

EQ1 = P2EPQ +R2ERQ +Q2EQ, AQ1 = P2APQ +R2ARQ +Q2AQ.

The solvability of the latter is implied by the following subspace inclusions

E(V∗ ∩W∗) ⊆ EV∗ ∩AW∗, A(V∗ ∩W∗) ⊆ EV∗ ∩AW∗,
E(V∗ +W∗) ⊆ EV∗ +AW∗, A(V∗ +W∗) ⊆ EV∗ +AW∗,

EKn ⊆ Km, AKn ⊆ Km,

which clearly hold due to (2.2).

Step 2: We show (i).
Step 2a: Full row rank of EP and AP .
From Lemma 4.4 it follows that

imP2EP = imEP1 = imP2 and imP2AP = imAP1 = imP2

hence, invoking the full column rank of P2, imEP = KmP = imAP , which implies full row rank of EP and AP .
In particular this shows full row rank of λEP −AP for λ = 0 and λ =∞.
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Step 2b: Full row rank of λEP −AP for all λ ∈ C \ {0}.
Seeking a contradiction, assume existence of λ ∈ C \ {0} with rankC(λEP − AP ) < mP . Then there exists
v ∈ CmP such that v>(λEP − AP ) = 0. Full column rank of P2 ∈ Km×mP implies existence of w ∈ Cm such
that w>P2 = v>, hence

0 = v>(λEP −AP ) = w>(λP2EP − P2AP ) = w>(λE −A)P1.

According to Lemma 4.9 there exists a linear independent singular chain (x0, x1, . . . , xk) such that

span{x0, x1, . . . , xk} = imP1 = V∗ ∩W∗.

Hence

∀i ∈ {0, 1, . . . , k} : w>(λE −A)xi = 0.

Since Exk = 0 it follows that w>Axk = 0 and inductively it follows

0 = w>(λExi−1 −Axi−1) = w>(λAxi −Axi−1) = −w>Axi−1

and, therefore,

0 = w>AP1 = w>P2AP = v>AP .

This shows that AP ∈ KmP×nP does not have full row rank over C which implies also a row rank defect over
K. This is the sought contradiction because the full row rank of AP was already shown in Step 2a.

Step 3: We show (ii).
For notational convenience let L∗ := V∗ ∩W∗.
Step 3a: We show that mR = nR.
Invoking

kerE ∩ L∗ = kerE ∩ V∗, kerA ∩ L∗ = kerA ∩W∗, (5.1)

and Lemma 4.3 the claim follows from

mR = rankR2 = dim(EV∗ +AW∗)− dim(EV∗ ∩AW∗)
= dimEV∗ + dimAW∗ − 2 dim(EV∗ ∩AW∗)

Lem. 4.4
= dimV∗ − dim(kerE ∩ V∗) + dimW∗ − dim(kerA ∩W∗)− dimEL∗ − dimAL∗
= dimV∗ − dim(kerE ∩ V∗) + dimW∗ − dim(kerA ∩W∗)− dimL∗

+ dim(kerE ∩ L∗)− dimL∗ + dim(kerA ∩ L∗)
(5.1)
= dimV∗ + dimW∗ − 2 dimL∗
= dim(V∗ +W∗)− dim(V∗ ∩W∗)
= rankR1 = nR.

Step 3b: We show that det(sER −AR) 6≡ 0.
Seeking a contradiction, assume det(sER − AR) is the zero polynomial. Then λER − AR has a column rank
defect for all λ ∈ C ∪ {∞}, hence

spec(sER −AR) = C ∪ {∞}.

Now, Lemma 4.10 ensures existence of a nontrivial singular chain (y0, y1, . . . , yk) of the matrix pencil sER−AR.
We show that there exists a singular chain (x0, x1, . . . , xk, xk+1, . . . , xk̂) of sE −A such that xi = [P1, R1] ( ziyi )
for i = 0, . . . , k. To this end denote some right inverse of AP (invoking full row rank of AP as shown in Step
2a) with A+

P and let

z0 = −A+
PAPRy0, zi+1 = A+

P (EP zi + EPRyi −APRyi+1), i = 0, . . . , k,

where yk+1 = 0. Then it follows that

Axi = A[P1, R1]

(
zi
yi

)
= ATtrian

ziyi
0

 = S−1
trian

AP APR APQ
0 AR ARQ
0 0 AQ

ziyi
0

 = S−1
trian

AP zi +APRyi
ARyi

0
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and, analogously,

Exi = S−1
trian

EP zi + EPRyi
ERyi

0

 ,

hence Ax0 = 0 and Exi = Axi+1 for i = 0, . . . , k. Note that xk+1 = P1zk+1, hence xk+1 ∈ V∗ ∩W∗ ⊆ W∗ and
identically as shown in the fist part of Step 2 of the proof of Lemma 4.9 there exist xk+2, . . . , xk̂, k̂ > k such
that Exk+1 = Axk+2, . . . , Exk̂−1 = Axk̂, Exk̂ = 0 and, therefore, (x0, x1, . . . , xk̂) is a singular chain of sE −A.
Lemma 4.9 implies that {x0, x1, . . . , xk̂} ⊆ imP1, hence xi = [P1, R1](zi/yi) implies yi = 0 for all i ∈ {0, . . . , k},
which contradicts non-triviality of (y0, . . . , yk).

Step 4: We show (iii).
We will consider the transposed matrix pencil sE>−A> with corresponding Wong-sequences and will show that
the block (E>Q , A

>
Q) will play the role of the block (EP , AP ). Therefore, denote the limits of the Wong-sequences

of sE> −A> by V̂∗ and Ŵ∗. Let

Q̂1 := ([0, 0, InQ
][P1, R1, Q1]−1)> and Q̂2 := ([0, 0, ImQ

][P2, R2, Q2]−1)>,

then

Q̂>i Qi = I and im Q̂i = (im[Pi, Ri])
⊥, for i = 1, 2.

In fact, the latter follows from n− nQ = nP + nR and

Q̂>1 [P1, R1] = [0, 0, InQ
]

InP
0

0 InR

0 0

 = 0

for i = 1 and analogously for i = 2. We will show in the following that

E>Q̂2 = Q̂1E
>
Q , A>Q̂2 = Q̂1A

>
Q,

im Q̂2 = V̂∗ ∩ Ŵ∗, im Q̂1 = E>V̂∗ ∩A>V̂∗,

then the arguments from Step 2 can be applied to sE>Q −A>Q and the claim is shown.

Step 4a: We show E>Q̂2 = Q̂1E
>
Q and A>Q̂2 = Q̂1A

>
Q.

Using (2.3) we obtain

Q̂>2 E = Q̂>2 [P2, R2, Q2]︸ ︷︷ ︸
=[0 0 I]

EP EPR EPQ
0 ER ERQ
0 0 EQ

 [P1, R1, Q1]−1 = [0 0 EQ][P1, R1, Q1]−1 = EQQ̂
>
1 ,

hence E>Q̂2 = Q̂1E
>
Q . Analog arguments show that A>Q̂2 = Q̂1A

>
Q.

Step 4b: We show im Q̂2 = V̂∗ ∩ Ŵ∗.
By construction and Lemma 4.5

im Q̂2 = (im[P2, R2])⊥ = (EV∗ +AW∗)⊥ = (EV∗)⊥ ∩ (AW∗)⊥ = V̂∗ ∩ Ŵ∗.

Step 4c: We show im Q̂1 = E>V̂∗ ∩A>V̂∗.
Lemma 4.5 applied to (E>, A>) gives

(E>V̂∗)⊥ =W∗ and (A>Ŵ∗)⊥ = V∗

or, equivalently,

E>V̂∗ =W∗⊥ and A>Ŵ∗ = V∗⊥.

Hence

im Q̂1 = (im[P1, R1])⊥ = (V∗ +W∗)⊥ = V∗⊥ ∩W∗⊥ = A>Ŵ∗ ∩ E>V̂∗.

This concludes the proof of our first main result.
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Proof of Theorem 2.5: the quasi-Kronecker form. By the properties of the pencils sEP − AP , sER − AR and
sEQ − AQ there exist λ ∈ K, NP

λ , NR
λ , MR

λ and MQ
λ such that (λEP − AP )NP

λ = I, (λER − AR)NR
λ = I

MR
λ (λER −AR) = I and MQ

λ (λEQ −AQ) = I. Hence Lemma 4.12 shows that it suffices to consider solvability
of the following generalized Sylvester equations

ERX1AQ −ARX1EQ = −ERQ − (λERQ −ARQ)MQ
λ EQ (5.2a)

EPX2AR −APX2ER = −EPR − (λEPR −APR)MR
λ ER (5.2b)

EPX3AQ −APX3EQ = −(EPQ + EPRF1)− (λ(EPQ + EPRF1)− (APQ +APRF1))MQ
λ EQ, (5.2c)

where F1 is any solution of (2.4a), whose existence will follow from solvability of (5.2a). Furthermore, the
properties of sEP − AP and sEQ − AQ imply that spec(sE>P − A>P ) = ∅ and spec(sEQ − AQ) = ∅. Hence
Lemma 4.13 is applicable to the equations (5.2) (where (5.2b) must be considered in the (conjugate) transposed
form) and ensures existence of solutions.
Finally, a simple calculation shows that for any solution of (2.4) the statement of Theorem 2.5 holds.

Proof of Theorem 3.2: characterization of the solutions of associated DAE. The claim is a simple consequence
of Lemma 4.16 and Lemma 4.18 together with the well known solution properties of a DAE corresponding to a
regular DAE in (quasi-) Weierstraß form (see e.g. [4]).

6. Conclusions. We have studied singular matrix pencils sE −A and the associated DAE Eẋ = Ax+ f .
With the help of the Wong sequences we were able to transform the matrix pencil into a quasi-Kronecker form.
The quasi-Kronecker form decouples the original matrix pencil into three parts: the underdetermined part, the
regular part and the overdetermined part. These blocks correspond to different solution behaviour: existence
but non-uniqueness (underdetermined part), existence and uniqueness (regular part) and possible non-existence
but uniqueness (overdetermined part).
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[9] Vicente Hernández and Maite Gassó, Explicit solution of the matrix equation AXB − CXD = E, Lin. Alg. Appl., 121

(1989), pp. 333–344.
[10] Satoru Iwata and Mizuyo Takamatsu, On the kronecker canonical form of mixed matrix pencils, SIAM J. Matrix. Anal.

& Appl., 32 (2011), pp. 44–71.
[11] Antony Jameson, Solution of the equation AX+XB = C by inversion of an m×m or n×n matrix, SIAM J. Appl. Math.,

16 (1968), pp. 1020–1023.
[12] Leopold Kronecker, Algebraische Reduction der Schaaren bilinearer Formen, Sitzungsberichte der Königlich Preußischen

Akademie der Wissenschaften zu Berlin, (1890), pp. 1225–1237.
[13] Margreet Kuijper, First-Order Representations of Linear Systems, Birkhäuser, Boston, 1994.
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