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In 1993 two novel distance-based topological indices were put forward. In the case of acyclic molecular
graphs both are equal to the Wiener index, but both differ from it if the graphs contain cycles. One index
is defined (Mohar, B.; Babic´, D.; Trinajstić, N. J. Chem. Inf. Comput. Sci. 1993, 33, 153-154) in terms of
eigenvalues of the Laplacian matrix, whereas the other is conceived (Klein, D. J.; Randic´, M. J. Math.
Chem. 1993, 12, 81-95) as the sum of resistances between all pairs of vertices, assuming that the molecule
corresponds to an electrical network, in which the resistance between adjacent vertices is unity. Eventually,
the former quantity was named quasi-Wiener index and the latter Kirchhoff index. We now demonstrate
that the quasi-Wiener and Kirchhoff indices of all graphs coincide.

1. INTRODUCTION

The study of topological indices based on distances
between the vertices of the molecular graph has been
undergoing rapid expansion in the last few years. A large
number of such indices was recently introduced and exam-
ined in due detail. Here we are concerned with two of them,
namely with the quasi-Wiener index,W*, and the Kirchhoff
index, Kf. These have been conceived and investigated
independently of each other, and, until now, no relation
between them seems to have been noticed in the published
chemical or mathematical literature.1 We now show thatW*
and Kf are, in fact, one and the same topological index, i.e.,
that the equality W*) Kf holds for all molecular graphs.
LetG be a molecular graph, possessingn vertices,V1, V2,

..., Vn. By δi we denote the degree () number of first
neighbors) of the vertexVi and by∆ the diagonal matrix of
ordern, whose diagonal elements areδ1, δ2, ..., δn. Then
the Laplacian matrix ofG is defined as

whereA is the adjacency matrix. The eigenvalues ofL ,
denoted byλ1, λ2, ...,λn, form the so-called Laplacian graph
spectrum. Conventionally, these eigenvalues are labeled so
thatλ1 g λ2 g ...g λn-1 g λn. The Laplacian spectrum has
been extensively studied by mathematicians.2-5 Of the
numerous properties known for this spectrum we mention
the following:

(a) The Laplacian eigenvalues are non-negative numbers.
(b) The eigenvalueλn is always equal to zero.
(c) The eigenvalueλn-1 is greater than zero if and only
if the graphG is connected.

Because of (b), the Laplacian matrixL is singular and,
consequently, has no inverse. Molecular graphs are neces-
sarily connected. Properties (a) and (c) imply that for such
graphs the eigenvaluesλ1, λ2, ...,λn-1 are positive numbers.

The following interesting result seems to have been
discovered in the late 1980s by Brendan McKay3,6-8 (and
later rediscovered by Merris6,9)

whereW stands for the Wiener index, i.e., for the sum of
distances between all pairs of vertices of the graphG.
Formula 1 holds only in the case of acyclic graphs.
The chemical community was made acquainted with

formula 1 by means of the paper10 and review.11 Some
chemical applications of (1) were also reported.12

In the case of graphs containing cycles, the right-hand side
of eq 1 is not equal to the Wiener index but is otherwise a
well-defined quantity. The name “quasi-Wiener index” was
proposed for it13 as well as the symbolW*. The correlation
betweenW andW* was studied in the case of benzenoid
molecules13 and found to be linear, but not particularly good.
Klein and Randic´14 considered recently the so-called

resistance distance between the vertices of a (molecular)
graph G, which is equal to the resistance between two
respective vertices of an electrical network, constructed so
as to correspond toG, and having the property that the
resistance of each bond joining adjacent vertices is unity.
Then, in analogy to the Wiener index, one may examine the
sum of resistance distances between all pairs of vertices. In
the case of acyclic graphs this sum is, evidently, equal to
the Wiener index, but in the case of graphs possessing cycles
it differs fromW. In the original work of Klein and Randic´14

no name was given to the sum of resistance distances, but
in a later article15 the very appropriate name “Kirchhoff
index” was proposed,16 together with the symbol Kf. (Recall
that the resistances as well as other fundamental properties
of electrical networks are determined by the two classical
laws of Kirchhoff.17,18)
Using the theory of electrical networks17,18 the authors of

ref 14 showed that
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where Tr stands for the trace () sum of diagonal entries) of
L† and whereL† is the so-called Moore-Penrose generalized
inverse19,20 of the Laplacian matrixL .21

The aim of this paper is to demonstrate that the right-
hand sides of eqs 1 and 2 always coincide.

2. ON THE GENERALIZED INVERSE OF A SINGULAR
MATRIX

As already pointed out, the Laplacian matrixL is singular
and therefore has no inverse. In other words, it is not
possible to find a matrixL-1, such thatL L -1 ) L-1 L )
I , whereI is the unit matrix.
In the case of singular matrices, instead of inverses (which

do not exist) one can sometimes use so-called generalized
inverses. Several types of generalized inverses are known
in the mathematical literature.19,20 In the theory of electrical
networks the Moore-Penrose generalized inverse is encoun-
tered.22 Because this matter is not widely known among
chemists, we outline it in some detail.
LetM be a real, symmetric square matrix of ordern. Then

the eigenvalues ofM are real numbers. LetS0 be the vector
space, spanned by those eigenvectors ofM whose eigen-
values are equal to zero. LetS+ be the vector space, spanned
by the eigenvectors ofM whose eigenvalues are nonzero.
The Moore-Penrose generalized inverse of a matrixM

is denoted byM†. In the case of symmetric square matrices,
M† is defined19,20 so thatM M † ) M† M is an orthogonal
projector on the vector spaceS+. This means that it is
required:

Conditions 3 and 4 uniquely determineM†.

3. THE GENERALIZED INVERSE OF THE LAPLACIAN
MATRIX

In what follows, the superscript T will indicate transposi-
tion. Thus, ifM ) ||Mij|| , thenMT ) ||Mji|| . Further, if
c is a column-vector

thencT ) (c1, c2, ..., cn) is a row-vector.
A square matrix of ordern, whose diagonal elements are

b1, b2, ...,bn, and whose off-diagonal elements are zero will
be denoted by diag(b1, b2, ..., bn). In particular,∆ ) diag-
(δ1, δ2, ..., δn).
Consider the Laplacian matrixL of a connected graph.

Let x1, x2, ...,xn-1 be the eigenvectors23 of L corresponding
to the positive eigenvaluesλ1, λ2, ..., λn-1. Let e be the
eigenvector23 of L corresponding to the (unique) zero
eigenvalueλn of L . In this caseS+ is an (n-1)-dimensional
vector space, spanned byx1, x2, ..., xn-1 . Because the
eigenvectors ofL are mutually orthogonal,e is orthogonal
to any element ofS+ . Thus, if y ε S+ , then the scalar
product ofe andy, denoted byeT‚y, is equal to zero.

The Laplacian matrix is a real symmetric square matrix.
Therefore, conditions 3 and 4 are applicable to its generalized
inverseL†, namely

It is easy to verify that

where, as before,I stands for the unit matrix of ordern.
Indeed,

Let U ) (x1, x2, ..., xn-1, e) be the unitary matrix,
diagonalizingL . Thus,

and

Then

because of

The main result on which the proof of the identityW* )
Kf is based is the following formula

where

We now proceed to verify eq 6. Combining (5) and (6)
we obtain

where

It now remains to demonstrate thatU J UT is an orthogonal
projector on the spaceS+, i.e., thatU J UT ) I - eT e. For

(L L †) e) (L† L ) e) 0

(L L †) y ) (L† L ) y ) y for all vectorsy, y E S+ .

L L † ) I - e eT

(I - e eT) e) I e - (e eT) e) e- e (eT‚e) )
e- e‚1) 0

(I - e eT) y ) I y - (e eT) y ) y - e (eT‚y) )
y - e‚0) y

U UT ) UT U ) I

UT L U ) Λ ) diag(λ1, λ2, ...,λn-1, λn)

L ) U Λ UT (5)

U Λ UT ) U (UT L U ) UT ) (U UT) L (U UT) )
I L I ) L

L† ) U Λ† UT (6)

Λ† ) diag( 1λ1, 1λ2, ..., 1
λn-1

, 0)

L L † ) (U Λ UT)(U Λ† UT) ) U Λ (UT U) Λ† UT )
U Λ I Λ† UT

) U Λ Λ† UT ) U J UT

J ) diag(1,1,...,1,0)

(M M †) u ) (M†M ) u ) 0 for all vectorsu E S0 (3)

(M M †) v ) (M†M ) v ) v for all vectorsv E S+ (4)

c) (c1c2l
cn

)
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this we have to show that

and

Proof of Eq 7. Becausee is orthogonal to the other
eigenvectors ofL , we have23

Therefore,

and

which shows that condition 7 is obeyed.
Proof of Eq 8. Any vector belonging to the spaceS+

can be presented in the form

whereR1, R2, ...,Rn-1 are scalar multipliers. Because of the
orthogonality of the eigenvectors ofL

Therefore,

Then

and the validity of condition 8 is verified too.

By this we proved thatL† has the form 6.

From (6) is evident that the eigenvalues ofL† are

Therefore,

The fact that the Kirchhoff and the quasi-Wiener indices
coincide follows now immediately from eqs 1 and 2.
By proving the identityW* ) Kf we gained a very easy

method for computing the Kirchhoff index, namely via the
eigenvalues of the Laplacian matrix, eq 1. The same identity
reveals the hitherto obscure physical meaning of the quasi-
Wiener index. However, in the time of rapid proliferation
of topological indices, the main merit of the present work
might be in reducing their number by one.
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