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Abstract. In this paper, we study the quenching behavior of the solution of a semi-

linear heat equation with a singular boundary outflux. We prove a finite-time quenching

for the solution. Further, we show that quenching occurs on the boundary under certain

conditions and we show that the time derivative blows up at a quenching point. Finally,

we get a quenching rate and a lower bound for the quenching time.

1. Introduction. In this paper, we study the quenching behavior of solutions of the

following semilinear heat equation with a singular boundary outflux:⎧⎨
⎩

ut = uxx + (1− u)−p , 0 < x < 1, 0 < t < T,

ux (0, t) = 0, ux (1, t) = −u−q(1, t), 0 < t < T,

u (x, 0) = u0 (x) , 0 ≤ x ≤ 1,

(1)

where p, q are positive constants and T ≤ ∞. The initial function u0 : [0, 1] →
(0, 1) satisfies the compatibility conditions

u′
0 (0) = 0, u′

0 (1) = −u−q
0 (1).

Throughout this paper, we also assume that the initial function u0 satisfies the inequal-

ities

uxx(x, 0) + (1− u(x, 0))−p ≥ 0, (2)

ux(x, 0) ≤ 0. (3)

Our main purpose is to examine the quenching behavior of the solutions of problem

(1) having two singular heat sources. A solution u(x, t) of problem (1) is said to quench

Received November 28, 2012 and, in revised form, April 23, 2013.
2000 Mathematics Subject Classification. Primary 35K55, 35K60, 35B35, 35Q60.
Key words and phrases. Semilinear heat equation, singular boundary outflux, quenching, quenching
point, quenching time, maximum principles.
E-mail address: bselcuk@karabuk.edu.tr
E-mail address: nozalp@science.ankara.edu.tr

c©2014 Brown University

747

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf

http://www.ams.org/qam/
http://www.ams.org/jourcgi/jour-getitem?pii=S0033-569X-2014-01367-9


748 BURHAN SELCUK AND NURI OZALP

if there exists a finite time T such that

lim
t→T−

max{u(x, t) : 0 ≤ x ≤ 1} → 1 or lim
t→T−

min{u(x, t) : 0 ≤ x ≤ 1} → 0.

From now on, we denote the quenching time of problem (1) with T .

Since 1975, quenching problems with various boundary conditions have been studied

extensively (cf. the surveys by Chan [1,2] and Kirk and Roberts [14] and [3,4,6–9,11–13,

15–18]). In the literature, quenching problems have been less studied with two nonlinear

heat sources. We give as examples two of these papers. Chan and Yuen [5] considered

the problem

ut = uxx, in Ω,

ux (0, t) = (1− u(0, t))−p, ux (a, t) = (1− u(a, t))−q, 0 < t < T,

u (x, 0) = u0 (x) , 0 ≤ u0 (x) < 1, in D,

where a, p, q > 0, T ≤ ∞, D = (0, a),Ω = D × (0, T ). They showed that x = a is the

unique quenching point in finite time if u0 is a lower solution, and that ut blows up at

quenching. Further, they obtained criteria for nonquenching and quenching by using the

positive steady states. Zhi and Mu [19] considered the problem

ut = uxx + (1− u)−p, 0 < x < 1, 0 < t < T,

ux (0, t) = u−q(0, t), ux (1, t) = 0, 0 < t < T,

u (x, 0) = u0 (x) , 0 < u0 (x) < 1, 0 ≤ x ≤ 1,

where p, q > 0 and T ≤ ∞. They showed that x = 0 is the unique quenching point

in finite time if u0 satisfies u′′
0(x) + (1 − u0(x))

−p ≤ 0 and u′
0(x) ≥ 0 . Further, they

obtained the quenching rate estimate which is (T − t)1/2(q+1) if T denotes the quenching

time.

Here in this paper, a quenching problem with two types of singularity terms, namely,

a source term (1− u)−p and the boundary outflux term −u−q, is considered. In Section

2, we first show that quenching occurs in finite time under condition (2). Then, we show

that the only quenching point is x = 0 under conditions (2) and (3). Further, we show

that ut blows up at quenching time. In Section 3, we get a quenching rate and a lower

bound for quenching time.

2. Quenching on the boundary and blow-up of ut.

Remark 1. We assume that the conditions (2) and (3) are proper. Namely, we can eas-

ily construct such an initial function satisfying (2), (3) and compatibility conditions. Let

u0(x) = 0.9− 2
3x

4.5. For example, for p = 9 and q = log30/7 3, u0(x) satisfies (2), (3) and

compatibility conditions.

Remark 2. If u0 satisfies (3), then we get ux < 0 in (0, 1]× (0, T ) by the maximum

principle. Thus we get u(0, t) = max0≤x≤1 u(x, t).

Lemma 1. If u0 satisfies (2), then ut(x, t) ≥ 0 in [0, 1]× [0, T ).
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Proof. We give the proof by utilizing Lemma 3.1 in [10]. Let v = ut(x, t). Then v(x, t)

satisfies
vt = vxx + p (1− u)−p−1 v, 0 < x < 1, 0 < t < T,

vx (0, t) = 0, vx (1, t) = qu−q−1(1, t)v(1, t), 0 < t < T,

v (x, 0) = uxx (x, 0) + (1− u (x, 0))−p ≥ 0, 0 ≤ x ≤ 1.

For any fixed τ ∈ (0, T ), let

L = max
0≤x≤1, 0≤t≤τ

(
1

2
qu−q−1(x, t)

)
,

M = 2L+ 4L2 + max
0≤x≤1, 0≤t≤τ

(
p (1− u(x, t))−p−1

)
.

Set w(x, t) = e−Mt−Lx2

v(x, t). Then w satisfies

wt = wxx + 4Lxwx + cw, 0 < x < 1, 0 < t ≤ τ,

wx(0, t) = 0, wx(1, t) = d(t)w(1, t), 0 < t ≤ τ,

w(x, 0) ≥ 0, 0 ≤ x ≤ 1,

where

c = c(x, t) = 4L2(x2 − 1) + p (1− u(x, t))−p−1 − max
0≤x≤1, 0≤t≤τ

(
p (1− u(x, t))−p−1

)
≤ 0

and

d(t) = − max
0≤x≤1, 0≤t≤τ

(
qu−q−1(x, t)

)
+ qu−q−1(1, t) ≤ 0.

By the maximum principle and the Hopf lemma, we obtain that w ≥ 0 in [0, 1] ×
[0, τ ]. Thus, ut(x, t) ≥ 0 in [0, 1]× [0, T ). �

Theorem 1. If u0 satisfies (2), then there exists a finite time T such that the solution

u of problem (1) quenches at time T.

Proof. Assume that u0 satisfies (2). Then we get

ω = −u−q (1, 0) +

∫ 1

0

(1− u (x, 0))
−p

dx > 0.

Introduce a mass function: m (t) =
∫ 1

0
(1− u (x, t)) dx, 0 < t < T . Then

m′ (t) = u−q (1, t)−
∫ 1

0

(1− u (x, t))−p dx ≤ −ω,

by Lemma 1. Thus, m (t) ≤ m(0) − ωt, which means that m (T0) = 0 for some T0(0 <

T ≤ T0), which means that u quenches in a finite time. �

Theorem 2. If u0 satisfies (2) and (3), then x = 0 is the only quenching point.

Proof. Define

J(x, t) = ux + ε (b2 − x) in [b1, b2]× [τ, T ),

where b2 ∈ (0, 1], b1 ∈ (0, b2), τ ∈ [0, T ) and ε is a positive constant to be specified later.

Then, J(x, t) satisfies

Jt − Jxx = p(1− u)−p−1ux < 0 in (b1, b2)× [τ, T ),
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since ux(x, t) < 0 in (0, 1] × [0, T ). Thus, J(x, t) cannot attain a positive interior max-

imum by the maximum principle. Further, if ε is small enough, J(x, τ ) < 0 since

ux(x, t) < 0 in (0, 1]× [0, T ). Furthermore, if ε is small enough,

J(b1, t) = ux(b1, t) + ε (b2 − b1) < 0,

J(b2, t) = ux(b2, t) < 0,

for t ∈ (τ, T ). By the maximum principle, we obtain that J(x, t) < 0, i.e., ux <

−ε (b2 − x) for (x, t) ∈ [b1, b2] × [τ, T ). Integrating this with respect to x from b1 to

b2, we have

u(b2, t) < u(b1, t)−
ε(b2 − b1)

2

2
< 1− ε(b2 − b1)

2

2
< 1.

So u does not quench in (0, 1]. The theorem is proved. �

Theorem 3. If p ≥ 1, then ut blows up at the quenching point x = 0.

Proof. Suppose that ut is bounded on [0, 1] × [0, T ). Then, there exists a positive

constant M such that ut < M . That is,

uxx + (1− u)−p < M.

Multiplying this inequality by ux, and integrating with respect to x from 0 to x, we have

ln [1− u(0, t)] >
−1

2
u2
x + ln [1− u(x, t)] +M [u(x, t)− u(0, t)]

for p = 1 and

(1− u(0, t))−p+1

−p+ 1
>

−1

2
u2
x +

(1− u(x, t))−p+1

−p+ 1
+M [u(x, t)− u(0, t)]

for p �= 1. We have, as t → T− and p ≥ 1, that the left-hand side tends to negative

infinity, while the right-hand side is finite. This contradiction shows that ut blows up at

the quenching point x = 0. �

3. A quenching rate and a lower bound for the quenching time. In this

section, we get a quenching rate and a lower bound for the quenching time. Throughout

this section, we assume that

ux(x, 0) ≤ −xu−q(x, 0), 0 ≤ x ≤ 1, (4)

ut(0, t) = uxx(0, t) + (1− u(0, t))−p, 0 < t < T. (5)

Theorem 4. If u0 satisfies (2), (3), (4) and (5), then there exists a positive constant C1

such that

u(0, t) ≥ 1− C1(T − t)1/(p+1),

for t sufficiently close to T .

Proof. Define J(x, t) = ux + xu−q in [0, 1]× [0, T ). Then, J(x, t) satisfies

Jt − Jxx =
[
p(1− u)−p−1 + 2qu−q−1

]
ux − qxu−q−1(1− u)−p − q(q + 1)xu−q−2u2

x,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



THE QUENCHING BEHAVIOR OF A SEMILINEAR HEAT EQUATION 751

since ux < 0, J(x, t) cannot attain a positive interior maximum. On the other hand,

J(x, 0) ≤ 0 by (4) and

J(0, t) = 0, J(1, t) = 0,

for t ∈ (0, T ). By the maximum principle, we obtain that J(x, t) ≤ 0 for (x, t) ∈
[0, 1]× [0, T ). Therefore

Jx(0, t) = lim
h→0+

J(h, t)− J(0, t)

h
= lim

h→0+

J(h, t)

h
≤ 0.

From (5), we get

Jx(0, t) = uxx(0, t) + u−q(0, t)

= ut(0, t)− (1− u(0, t))−p + u−q(0, t) ≤ 0

and

ut(0, t) ≤ (1− u(0, t))−p.

Integrating for t from t to T we get

u(0, t) ≥ 1− C1(T − t)1/(p+1),

where C1 = (p+ 1)1/(p+1). �
Remark 3. We can calculate a lower bound for the quenching time. From Theorem

4, a lower bound is (1 − u0(0))
p+1/(p + 1) for quenching time T . If we choose, as in

Remark 1, u0(x) = 0.9− 2
3x

4.5, then we have T = 10−11 for p = 9.
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