THE QUENCHING BEHAVIOR OF A SEMILINEAR HEAT EQUATION WITH A SINGULAR BOUNDARY OUTFLUX

Βy

BURHAN SELCUK (Department of Computer Engineering, Karabuk University, Balıklarkayası Mevkii, 78050, Turkey)

AND

NURI OZALP (Department of Mathematics, Ankara University, Besevler, 06100, Turkey)

Abstract. In this paper, we study the quenching behavior of the solution of a semilinear heat equation with a singular boundary outflux. We prove a finite-time quenching for the solution. Further, we show that quenching occurs on the boundary under certain conditions and we show that the time derivative blows up at a quenching point. Finally, we get a quenching rate and a lower bound for the quenching time.

1. Introduction. In this paper, we study the quenching behavior of solutions of the following semilinear heat equation with a singular boundary outflux:

$$\begin{cases} u_t = u_{xx} + (1-u)^{-p}, \ 0 < x < 1, \ 0 < t < T, \\ u_x (0,t) = 0, \ u_x (1,t) = -u^{-q}(1,t), \ 0 < t < T, \\ u (x,0) = u_0 (x), \ 0 \le x \le 1, \end{cases}$$
(1)

where p, q are positive constants and $T \leq \infty$. The initial function $u_0 : [0,1] \rightarrow (0,1)$ satisfies the compatibility conditions

$$u_0'(0) = 0, \ u_0'(1) = -u_0^{-q}(1).$$

Throughout this paper, we also assume that the initial function u_0 satisfies the inequalities

$$u_{xx}(x,0) + (1 - u(x,0))^{-p} \ge 0,$$
(2)

$$u_x(x,0) \leq 0. \tag{3}$$

Our main purpose is to examine the quenching behavior of the solutions of problem (1) having two singular heat sources. A solution u(x,t) of problem (1) is said to quench

O2014 Brown University

Received November 28, 2012 and, in revised form, April 23, 2013.

²⁰⁰⁰ Mathematics Subject Classification. Primary 35K55, 35K60, 35B35, 35Q60.

Key words and phrases. Semilinear heat equation, singular boundary outflux, quenching, quenching point, quenching time, maximum principles.

E-mail address: bselcuk@karabuk.edu.tr

E-mail address: nozalp@science.ankara.edu.tr

if there exists a finite time T such that

$$\lim_{t \to T^{-}} \max\{u(x,t) : 0 \le x \le 1\} \to 1 \text{ or } \lim_{t \to T^{-}} \min\{u(x,t) : 0 \le x \le 1\} \to 0.$$

From now on, we denote the quenching time of problem (1) with T.

Since 1975, quenching problems with various boundary conditions have been studied extensively (cf. the surveys by Chan [1,2] and Kirk and Roberts [14] and [3,4,6–9,11–13, 15–18]). In the literature, quenching problems have been less studied with two nonlinear heat sources. We give as examples two of these papers. Chan and Yuen [5] considered the problem

$$\begin{split} & u_t = u_{xx}, \text{ in } \Omega, \\ & u_x \left(0, t \right) = (1 - u(0, t))^{-p}, \ u_x \left(a, t \right) = (1 - u(a, t))^{-q}, \ 0 < t < T, \\ & u \left(x, 0 \right) = u_0 \left(x \right), \ 0 \leq u_0 \left(x \right) < 1, \text{ in } \bar{D}, \end{split}$$

where $a, p, q > 0, T \leq \infty, D = (0, a), \Omega = D \times (0, T)$. They showed that x = a is the unique quenching point in finite time if u_0 is a lower solution, and that u_t blows up at quenching. Further, they obtained criteria for nonquenching and quenching by using the positive steady states. Zhi and Mu [19] considered the problem

$$u_t = u_{xx} + (1 - u)^{-p}, \ 0 < x < 1, \ 0 < t < T, u_x (0, t) = u^{-q}(0, t), \ u_x (1, t) = 0, \ 0 < t < T, u (x, 0) = u_0 (x), \ 0 < u_0 (x) < 1, \ 0 \le x \le 1,$$

where p, q > 0 and $T \leq \infty$. They showed that x = 0 is the unique quenching point in finite time if u_0 satisfies $u_0''(x) + (1 - u_0(x))^{-p} \leq 0$ and $u_0'(x) \geq 0$. Further, they obtained the quenching rate estimate which is $(T - t)^{1/2(q+1)}$ if T denotes the quenching time.

Here in this paper, a quenching problem with two types of singularity terms, namely, a source term $(1-u)^{-p}$ and the boundary outflux term $-u^{-q}$, is considered. In Section 2, we first show that quenching occurs in finite time under condition (2). Then, we show that the only quenching point is x = 0 under conditions (2) and (3). Further, we show that u_t blows up at quenching time. In Section 3, we get a quenching rate and a lower bound for quenching time.

2. Quenching on the boundary and blow-up of u_t .

REMARK 1. We assume that the conditions (2) and (3) are proper. Namely, we can easily construct such an initial function satisfying (2), (3) and compatibility conditions. Let $u_0(x) = 0.9 - \frac{2}{3}x^{4.5}$. For example, for p = 9 and $q = \log_{30/7} 3$, $u_0(x)$ satisfies (2), (3) and compatibility conditions.

REMARK 2. If u_0 satisfies (3), then we get $u_x < 0$ in $(0,1] \times (0,T)$ by the maximum principle. Thus we get $u(0,t) = \max_{0 \le x \le 1} u(x,t)$.

LEMMA 1. If u_0 satisfies (2), then $u_t(x,t) \ge 0$ in $[0,1] \times [0,T)$.

748

Proof. We give the proof by utilizing Lemma 3.1 in [10]. Let $v = u_t(x, t)$. Then v(x, t) satisfies

$$v_t = v_{xx} + p (1 - u)^{-p-1} v, \ 0 < x < 1, \ 0 < t < T,$$

$$v_x (0, t) = 0, \ v_x (1, t) = q u^{-q-1} (1, t) v (1, t), \ 0 < t < T$$

$$v (x, 0) = u_{xx} (x, 0) + (1 - u (x, 0))^{-p} \ge 0, \ 0 \le x \le 1.$$

For any fixed $\tau \in (0, T)$, let

$$L = \max_{0 \le x \le 1, \ 0 \le t \le \tau} \left(\frac{1}{2} q u^{-q-1}(x,t) \right),$$

$$M = 2L + 4L^2 + \max_{0 \le x \le 1, \ 0 \le t \le \tau} \left(p \left(1 - u(x,t) \right)^{-p-1} \right).$$

Set $w(x,t) = e^{-Mt - Lx^2}v(x,t)$. Then w satisfies

$$w_t = w_{xx} + 4Lxw_x + cw, \ 0 < x < 1, \ 0 < t \le \tau, w_x(0,t) = 0, \ w_x(1,t) = d(t)w(1,t), \ 0 < t \le \tau, w(x,0) \ge 0, \ 0 \le x \le 1,$$

where

$$c = c(x,t) = 4L^{2}(x^{2}-1) + p\left(1 - u(x,t)\right)^{-p-1} - \max_{0 \le x \le 1, \ 0 \le t \le \tau} \left(p\left(1 - u(x,t)\right)^{-p-1}\right) \le 0$$

and

$$d(t) = -\max_{0 \le x \le 1, \ 0 \le t \le \tau} \left(q u^{-q-1}(x,t) \right) + q u^{-q-1}(1,t) \le 0$$

By the maximum principle and the Hopf lemma, we obtain that $w \ge 0$ in $[0,1] \times [0,\tau]$. Thus, $u_t(x,t) \ge 0$ in $[0,1] \times [0,T)$.

THEOREM 1. If u_0 satisfies (2), then there exists a finite time T such that the solution u of problem (1) quenches at time T.

Proof. Assume that u_0 satisfies (2). Then we get

$$\omega = -u^{-q} (1,0) + \int_0^1 \left(1 - u (x,0)\right)^{-p} dx > 0.$$

Introduce a mass function: $m(t) = \int_0^1 (1 - u(x, t)) dx, 0 < t < T$. Then

$$m'(t) = u^{-q}(1,t) - \int_0^1 (1 - u(x,t))^{-p} dx \le -\omega,$$

by Lemma 1. Thus, $m(t) \le m(0) - \omega t$, which means that $m(T_0) = 0$ for some $T_0(0 < T \le T_0)$, which means that u quenches in a finite time.

THEOREM 2. If u_0 satisfies (2) and (3), then x = 0 is the only quenching point.

Proof. Define

$$J(x,t) = u_x + \varepsilon (b_2 - x) \text{ in } [b_1, b_2] \times [\tau, T),$$

where $b_2 \in (0, 1]$, $b_1 \in (0, b_2)$, $\tau \in [0, T)$ and ε is a positive constant to be specified later. Then, J(x, t) satisfies

$$J_t - J_{xx} = p(1-u)^{-p-1}u_x < 0$$
 in $(b_1, b_2) \times [\tau, T),$

since $u_x(x,t) < 0$ in $(0,1] \times [0,T)$. Thus, J(x,t) cannot attain a positive interior maximum by the maximum principle. Further, if ε is small enough, $J(x,\tau) < 0$ since $u_x(x,t) < 0$ in $(0,1] \times [0,T)$. Furthermore, if ε is small enough,

$$\begin{aligned} J(b_1,t) &= u_x(b_1,t) + \varepsilon \left(b_2 - b_1 \right) < 0, \\ J(b_2,t) &= u_x(b_2,t) < 0, \end{aligned}$$

for $t \in (\tau, T)$. By the maximum principle, we obtain that J(x, t) < 0, i.e., $u_x < -\varepsilon (b_2 - x)$ for $(x, t) \in [b_1, b_2] \times [\tau, T)$. Integrating this with respect to x from b_1 to b_2 , we have

$$u(b_2,t) < u(b_1,t) - \frac{\varepsilon(b_2 - b_1)^2}{2} < 1 - \frac{\varepsilon(b_2 - b_1)^2}{2} < 1.$$

So u does not quench in (0, 1]. The theorem is proved.

THEOREM 3. If $p \ge 1$, then u_t blows up at the quenching point x = 0.

Proof. Suppose that u_t is bounded on $[0,1] \times [0,T)$. Then, there exists a positive constant M such that $u_t < M$. That is,

$$u_{xx} + (1 - u)^{-p} < M.$$

Multiplying this inequality by u_x , and integrating with respect to x from 0 to x, we have

$$\ln\left[1 - u(0,t)\right] > \frac{-1}{2}u_x^2 + \ln\left[1 - u(x,t)\right] + M\left[u(x,t) - u(0,t)\right]$$

for p = 1 and

$$\frac{(1-u(0,t))^{-p+1}}{-p+1} > \frac{-1}{2}u_x^2 + \frac{(1-u(x,t))^{-p+1}}{-p+1} + M\left[u(x,t) - u(0,t)\right]$$

for $p \neq 1$. We have, as $t \to T^-$ and $p \geq 1$, that the left-hand side tends to negative infinity, while the right-hand side is finite. This contradiction shows that u_t blows up at the quenching point x = 0.

3. A quenching rate and a lower bound for the quenching time. In this section, we get a quenching rate and a lower bound for the quenching time. Throughout this section, we assume that

$$u_x(x,0) \leq -xu^{-q}(x,0), 0 \leq x \leq 1,$$
(4)

$$u_t(0,t) = u_{xx}(0,t) + (1 - u(0,t))^{-p}, 0 < t < T.$$
(5)

THEOREM 4. If u_0 satisfies (2), (3), (4) and (5), then there exists a positive constant C_1 such that

$$u(0,t) \ge 1 - C_1(T-t)^{1/(p+1)}$$

for t sufficiently close to T.

Proof. Define
$$J(x,t) = u_x + xu^{-q}$$
 in $[0,1] \times [0,T)$. Then, $J(x,t)$ satisfies
 $J_t - J_{xx} = \left[p(1-u)^{-p-1} + 2qu^{-q-1} \right] u_x - qxu^{-q-1}(1-u)^{-p} - q(q+1)xu^{-q-2}u_x^2$,

since $u_x < 0$, J(x,t) cannot attain a positive interior maximum. On the other hand, $J(x,0) \le 0$ by (4) and

$$J(0,t) = 0, \ J(1,t) = 0,$$

for $t \in (0,T)$. By the maximum principle, we obtain that $J(x,t) \leq 0$ for $(x,t) \in [0,1] \times [0,T)$. Therefore

$$J_x(0,t) = \lim_{h \to 0^+} \frac{J(h,t) - J(0,t)}{h} = \lim_{h \to 0^+} \frac{J(h,t)}{h} \le 0.$$

From (5), we get

$$J_x(0,t) = u_{xx}(0,t) + u^{-q}(0,t)$$

= $u_t(0,t) - (1 - u(0,t))^{-p} + u^{-q}(0,t) \le 0$

and

$$u_t(0,t) \le (1-u(0,t))^{-p}.$$

Integrating for t from t to T we get

$$u(0,t) \ge 1 - C_1(T-t)^{1/(p+1)},$$

where $C_1 = (p+1)^{1/(p+1)}$.

REMARK 3. We can calculate a lower bound for the quenching time. From Theorem 4, a lower bound is $(1 - u_0(0))^{p+1}/(p+1)$ for quenching time T. If we choose, as in Remark 1, $u_0(x) = 0.9 - \frac{2}{3}x^{4.5}$, then we have $T = 10^{-11}$ for p = 9.

Acknowledgment. The authors are very grateful to the referees for their valuable suggestions, which helped to improve the paper significantly.

References

- C. Y. Chan, Recent advances in quenching phenomena, Proceedings of Dynamic Systems and Applications, Vol. 2 (Atlanta, GA, 1995), Dynamic, Atlanta, GA, 1996, pp. 107–113. MR1419518 (98a:35065)
- C. Y. Chan, New results in quenching, World Congress of Nonlinear Analysts '92, Vol. I–IV (Tampa, FL, 1992), de Gruyter, Berlin, 1996, pp. 427–434. MR1389093
- [3] C. Y. Chan and X. O. Jiang, Quenching for a degenerate parabolic problem due to a concentrated nonlinear source, Quart. Appl. Math. 62 (2004), no. 3, 553–568. MR2086046 (2005e:35139)
- [4] C. Y. Chan and N. Ozalp, Singular reaction-diffusion mixed boundary-value quenching problems, Dynamical systems and applications, World Sci. Ser. Appl. Anal., vol. 4, World Sci. Publ., River Edge, NJ, 1995, pp. 127–137, DOI 10.1142/9789812796417_0010. MR1372958 (97a:35109)
- C. Y. Chan and S. I. Yuen, Parabolic problems with nonlinear absorptions and releases at the boundaries, Appl. Math. Comput. 121 (2001), no. 2-3, 203–209, DOI 10.1016/S0096-3003(99)00278-7. MR1830870 (2002a:35121)
- Keng Deng and Mingxi Xu, Quenching for a nonlinear diffusion equation with a singular boundary condition, Z. Angew. Math. Phys. 50 (1999), no. 4, 574–584, DOI 10.1007/s000330050167. MR1709705 (2000e:35110)
- Keng Deng and Cheng-Lin Zhao, Blow-up versus quenching, Commun. Appl. Anal. 7 (2003), no. 1, 87–100. MR1954906 (2003j:35170)
- [8] Nadejda E. Dyakevich, Existence, uniqueness, and quenching properties of solutions for degenerate semilinear parabolic problems with second boundary conditions, J. Math. Anal. Appl. 338 (2008), no. 2, 892–901, DOI 10.1016/j.jmaa.2007.05.077. MR2386469 (2009c:35223)
- Marek Fila and Howard A. Levine, Quenching on the boundary, Nonlinear Anal. 21 (1993), no. 10, 795–802, DOI 10.1016/0362-546X(93)90124-B. MR1246508 (95b:35028)

- [10] Sheng-Chen Fu, Jong-Shenq Guo, and Je-Chiang Tsai, Blow-up behavior for a semilinear heat equation with a nonlinear boundary condition, Tohoku Math. J. (2) 55 (2003), no. 4, 565–581. MR2017226 (2004h:35112)
- [11] Hideo Kawarada, On solutions of initial-boundary problem for $u_t = u_{xx} + 1/(1-u)$, Publ. Res. Inst. Math. Sci. **10** (1974/75), no. 3, 729–736. MR0385328 (52 #6192)
- [12] L. Ke and S. Ning, Quenching for degenerate parabolic equations, Nonlinear Anal. 34 (1998), no. 7, 1123–1135, DOI 10.1016/S0362-546X(98)00039-X. MR1637229 (2000b:35138)
- [13] C. M. Kirk and Catherine A. Roberts, A quenching problem for the heat equation, J. Integral Equations Appl. 14 (2002), no. 1, 53–72, DOI 10.1216/jiea/1031315434. MR1932536 (2003g:35129)
- [14] C. M. Kirk and Catherine A. Roberts, A review of quenching results in the context of nonlinear Volterra equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 10 (2003), no. 1-3, 343– 356. Second International Conference on Dynamics of Continuous, Discrete and Impulsive Systems (London, ON, 2001). MR1974255 (2004c:35216)
- [15] W. E. Olmstead and Catherine A. Roberts, *Critical speed for quenching*, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 8 (2001), no. 1, 77–88. Advances in quenching. MR1820667 (2002c:35159)
- [16] Timo Salin, On quenching with logarithmic singularity, Nonlinear Anal. 52 (2003), no. 1, 261–289, DOI 10.1016/S0362-546X(02)00110-4. MR1938660 (2003j:35182)
- [17] Runzhang Xu, Chunyan Jin, Tao Yu, and Yacheng Liu, On quenching for some parabolic problems with combined power-type nonlinearities, Nonlinear Anal. Real World Appl. 13 (2012), no. 1, 333– 339, DOI 10.1016/j.nonrwa.2011.07.040. MR2846843 (2012i:35205)
- [18] Ying Yang, Jingxue Yin, and Chunhua Jin, A quenching phenomenon for one-dimensional p-Laplacian with singular boundary flux, Appl. Math. Lett. 23 (2010), no. 9, 955–959, DOI 10.1016/j.aml.2010.04.001. MR2659118 (2011f:35175)
- [19] Yuanhong Zhi and Chunlai Mu, The quenching behavior of a nonlinear parabolic equation with nonlinear boundary outflux, Appl. Math. Comput. 184 (2007), no. 2, 624–630, DOI 10.1016/j.amc.2006.06.061. MR2294876 (2007k:35249)