The Query-flow Graph: Model and Applications

Paolo Boldi'*
boldi@dsi.unimi.it

Debora Donato?
debora@yahoo-inc.com

'DSI, Universita degli
Studi di Milano, Italy

ABSTRACT

Query logs record the queries and the actions of the users of
search engines, and as such they contain valuable informa-
tion about the interests, the preferences, and the behavior
of the users, as well as their implicit feedback to search-
engine results. Mining the wealth of information available
in the query logs has many important applications including
query-log analysis, user profiling and personalization, adver-
tising, query recommendation, and more.

In this paper we introduce the query-flow graph, a graph

representation of the interesting knowledge about latent query-

ing behavior. Intuitively, in the query-flow graph a directed
edge from query g; to query g; means that the two queries
are likely to be part of the same “search mission”. Any path
over the query-flow graph may be seen as a searching behav-
ior, whose likelihood is given by the strength of the edges
along the path.

The query-flow graph is an outcome of query-log mining
and, at the same time, a useful tool for it. We propose
a methodology that builds such a graph by mining time
and textual information as well as aggregating queries from
different users. Using this approach we build a real-world
query-flow graph from a large-scale query log and we demon-
strate its utility in concrete applications, namely, finding
logical sessions, and query recommendation. We believe,
however, that the usefulness of the query-flow graph goes
beyond these two applications.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data Mining

H.4.3 [Information Systems Applications]: Communications
Applications

General Terms Algorithms

Keywords Query Flow Graph, Query Recommendation,
Session Segmentation.

“Part of this work was done while the authors were visiting
Yahoo! Research Labs, Barcelona

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

Francesco Bonchi?
bonchi@yahoo-inc.com

~ Aristides Gionis?
gionis@yahoo-inc.com

Carlos Castillo?
chato@yahoo-inc.com

Sebastiano Vigna'*
vigna@dsi.unimi.it

2Yahoo! Research Labs

Barcelona, Spain

1. INTRODUCTION

The huge volume of information recorded daily in query
logs contains a wealth of valuable knowledge about how
web users interact with search engines as well as informa-
tion about the interests and the preferences of those users.
Extracting behavioral patterns from this wealth of informa-
tion is a key step towards improving the service provided
by search engines and towards developing innovative web-
search paradigms. Unfortunately, mining query logs poses
many technical challenges that arise due to the very large
volume of data, the high level of noise, poorly formulated
queries, ambiguity, and sparsity, among others.

In this paper we introduce the concept of the query-flow
graph, which is a graph modeling user behavioral patterns
and query dependencies. The query-flow graph is an action-
able, aggregated representation of the interesting informa-
tion contained in a large query-log. In particular, the phe-
nomenon of interest is the sequentiality of similar queries:
the fundamental two dimensions that drive the construction
of the query-flow graph are the temporal order of queries
and their similarity.

Given a query log, the nodes of the query-flow graph are
all the queries contained in the log, and a directed edge
between two queries ¢;, q; has a weight w(g¢;, g;). We propose
two weighting schemes, one that represents the probability
that the two queries are part of the same search mission
given that they appear in the same session, and another
that represents the probability that query ¢; follows query
g;. In both cases, when w(q;, ¢;) is high, we may think of ¢,
as a typical reformulation of ¢;, thus a step ahead towards
the successful completion of a possible search mission.

The main contribution of this paper is introducing the
query-flow graph and providing a methodology for construct-
ing such a graph based on mining query logs. Besides this,
we demonstrate the usefulness of the query-flow graph in
two applications: finding logical sessions and query recom-
mendation.

With respect to finding logical sessions, we allow them
to be intertwined, thus modeling the behavior of users who
have a number of interests/goals and submit queries related
to the information needs of those interests/goals but in an
interleaved fashion. We also address this problem starting

not made or distributed for profit or commercial advantage and that copies from the entire query history of users and not from timeout-
bear this notice and the full citation on the first page. To copy otherwise, to driven sessions. To our knowledge, this is the first time
republish, to post on servers or to redistribute to lists, requires prior specific that the modeling of the problem of finding query chains

permission and/or a fee.
CIKM’08, October 26-30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

allows for such a complexity. We formulate the problem of
finding intertwined query chains as an asymmetric traveling

salesman problem (ATSP), which we approximate with a
greedy heuristic.

For the problem of query recommendation we propose an
algorithm that builds on the concept of query-flow graph and
allows leveraging not only similarity between queries but the
overall complex structure in a neighborhood of the graph.
Our recommendation algorithm is based on performing a
random walk with restart to the original query of the user
or to a small set of queries representing the recent querying
history.

This paper is summarized as follows. Section 2 is an
overview of the related work. In Section 3 we define our
notation and concepts and in Section 4 we discuss our al-
gorithm for constructing the query-flow graph. Then we
describe two applications: finding query chains in Section 5,
and query recommendations in Section 6. Finally, Section 7
includes a few concluding remarks.

2. RELATED WORK

Query logs are widely considered as a very rich source of
knowledge on user behavior. The main challenge in ana-
lyzing query logs lies in extracting interesting relations from
the raw lists of user actions. Many different approaches have
been proposed in order to discover essential features or hid-
den relations in query logs.

Query graphs. One main research line attempts to infer
the hidden semantics of user interactions with search en-
gines by projecting the data over different types of graphs.
Baeza-Yates [1] identifies five different types of graphs. In
all cases, the nodes are queries; a link is introduced between
two nodes respectively if: (i) the queries contain the same
word(s) (word graph), (ii) the queries belong to the same
session (session graph), (i) users clicked on the same urls
in the list of their results (url cover graph), (iv) there is a link
between the two clicked urls (url link graph) (v) there are [
common terms in the content of the two urls (link graph).
In [1], it is suggested that one application of these graphs
is session segmentation which is one of the applications we
study in this paper.

Baeza-Yates and Tiberi [2] study a weighted version of the
cover graph. Their analysis provides information not only
about how people query but also about how they behave
after a query and the content distribution of what they look
at. Moreover the authors study several characteristics of
click graphs, i.e., bipartite graphs of queries and urls, where
a query and a url are connected if a user clicked on a url that
was an answer for a query. This framework is used to infer
semantic relations among queries and to detect multitopical
urls, i.e., urls that cover either several topics or a single very
general topic.

A concept similar to our query flow graph is introduced
by Levene and Loizou [17]: “Hypertext Probabilistic Au-
tomatat’t’ are automata where the arcs of the reachability
relations are labelled with probabilities that are computed
from statistical information related to the frequency that
users choose to navigate trough two states. The work how-
ever is focussed on browsing behavior inside a Web site and
not on querying behavior. Borges and Levene later intro-
duced an improved method for measuring the ability of a
variable-length Markov model to summarize user Web nav-
igation sessions up to a given lenght [6].

Query recommendation. Query recommendation is a
core task for large industrial search engines. Most of the
work on query recommendation is focused on measures of
query similarity [23, 11] that can be used for query expan-
sion [3] or query clustering [3, 22]. A first attempt to model
the users’ sequential search behavior is presented by Zhang
and Nasraoui [23]: the arcs between consecutive queries in
the same session are weighted by a dumping factor d, mean-
while the similarity values for non consecutive queries are
calculated by multiplying the values of arcs that join them.
Instead, Fonseca et al. [11] discover related queries with a
method based on association rules. Each transaction in the
query log is seen as a session in which a single user submits
a sequence of related queries in a time interval. Their notion
of session is similar to the one we use in this paper.

Reference [3] studies the problem of suggesting related
queries issued by other users and query expansion meth-
ods to construct artificial queries. Their method is used
to recommend queries that are related to the input query
but may search for different issues. The clustering is based
on a term-weight vector representation of queries, obtained
from the aggregation of the term-weight vectors of the urls
clicked after the query. Wen et al. [22] also present a clus-
tering method for query recommendation that is centered
around four notions of query distance: the first notion is
based on keywords or phrases of the query; the second on
string matching of keywords; the third on common clicked
urls; and the fourth on the distance of the clicked documents
in some pre-defined hierarchy.

Jones et al. introduced the notion of query substitution.
Similar queries can be obtained by replacing the query as a
whole, or by substituting constituent phrases [16]. Similar
queries and phrases are derived from user query sessions,
and they proposed models for query re-ranking based on
the similarity of the new query to the original query.

Query Segmentation. Segmenting the query stream into
sets of related information-seeking queries, i.e., logical ses-
sions, has many applications: apart for query recommenda-
tion, since logical session can help in understanding the rela-
tionship between queries given the user intent, they are valu-
able for user profiling and personalization. He and Goker [12]
studied different timeouts to segment user sessions, and later
extended their work [13] to consider other features such
as the overlap between terms in two consecutive queries.
Radlinski and Joachims [19] observe that users often per-
form a sequence, or chain, of queries with a similar informa-
tion need; they refer to this sequence of reformulated queries
as query chains. Their paper presents a simple method for
automatically detecting query chains in query and click-
through logs and show how to learn better retrieval func-
tions using evidence of query chains. Recently the problem
of query session detection was also considered by Jones and
Klinkner [15] where a method for automated segmentation
is proposed and evaluated.

Temporal classification. Considering time features might
have other applications beyond segmenting query stream.
Jones and Diaz [14] introduce a model to measure the dis-
tribution of documents retrieved in response to a query over
the time domain in order to create a temporal profile for
a query. They show that such a temporal profile can pro-
vide valuable information about the likely quality of query
results.

Random walk models. Craswell and Szummer [9] de-
scribe a Markov random walk model for ranking documents.
A backward random walk is performed over the click graph,
leading to a method for retrieving relevant documents that
have not yet been clicked for a predefined query and rank
those effectively. The random walk we introduce is per-
formed over a completely different graph and with the ob-
jective of ranking queries instead of documents. Collins-
Thompson and Callan [8] use a Markov random model for
query expansion. Their setting is also different from ours:
the stationary distribution of the model is used to obtain
probability estimates that a potential expansion term re-
flects aspects of the original query.

3. BASIC CONCEPTS

In this section we provide the basic idea behind the query-
flow graph. In summary the query-flow graph is an usage-
oriented, actionable, compact representation of the informa-
tion contained in a query log, and it is aimed at facilitating
the analysis of user behavior.

Query log. A query log records information about the
search actions of the users of a search engine. Such infor-
mation includes the queries submitted by the users, doc-
uments viewed as a result to each query, and documents
clicked by the users. A typical query log L is a set of records
(qi, us, ts, Vi, Cs), where: ¢; is the submitted query, u; is an
anonymized identifier for the user who submitted the query,
t; is a timestamp, V; is the set of documents returned as
results to the query, and C; is the set of documents clicked
by the user.

In the above representation, we assume that if U is the set
of users to the search engine and D is the set of documents
indexed by the search engine, then u; € U and C; C V; C D.
For the purposes of this paper, we do not use any infor-
mation from the results of the queries (C; and V;)—we are
only mentioning them above for completeness. Thus, subse-
quently we denote query logs by L = { {gi, ui, ;) }.

Sessions. A user query session, or session, is defined as the
sequence of queries of one particular user within a specific
time limit. More formally, if ¢¢ is a timeout threshold, a user
query session S is a mazimal ordered sequence

S = <<qi17ui13t11>7-~~7<qikauik7tik>>a

where u;; = --- < &, and

t

P41 _tij Ste, for allj: 1,2,...,]{—1.
Given a query log L, the corresponding set of sessions can
be constructed by sorting all records of the query log first
by userid u;, and then by timestamp ¢;, and by performing
one additional pass to split sessions of the same user when-
ever the time difference of two queries exceeds the timeout
threshold. Whenever we used a timeout threshold for split-
ting sessions, we set ty = 30 minutes, as this is the typical
timeout that is often used in web log analysis [7, 21, 18].

Supersessions. The sequence of all the queries of a user
in the querylog, ordered by timestamp, is called a super-
session. Thus, a supersession is a sequence of sessions in
which consecutive sessions have time difference larger than
to.

Chains. A chain is a topically coherent sequence of queries
of one user. Radlinski and Joachims [19] defined a chain
as “a sequence of queries with a similar information need”.

For instance, a query chain may contain the following se-

quence of queries [15]: “brake pads”; “auto repair”; “auto

body shop”; “batteries”; “car batteries”; “buy car bat-
tery online”. The concept of chain is also referred to in the
literature with the terms mission [15] and logical session [1].
Unlike the concept of session, chains involve relating queries
based on the user information need, which is an extremely
hard problem, so we do not try to formally define chains
here.

We note that for chains we do not impose any timeout
constraint. Therefore, as an example, all the queries of a user
who is interested in planning a trip to a far-away destination
and searches for tickets, hotels, and other tourist information
over a period of several weeks should be grouped in the same
chain. Additionally, for the queries composing a chain we do
not require them to be consecutive. Following the previous
example, the user who is planning the far-away trip may
search for tickets in one day, then make some other queries
related to a newly released movie, and then return to trip
planning the next day by searching for a hotel. Thus, a
session may contain queries from many chains, and inversely,
a chain may contain queries from many sessions.

The query-flow graph. The final concept we define is
the query-flow graph, which is a central contribution in our
paper. The query-flow graph Gy is a directed graph Gqf =
(V, E,w) where:

e the set of nodes is V = Q U {s, t}, i.e., the distinct set
of queries Q submitted to the search engine and two
special nodes s and t, representing a starting state and
a terminal state which can be seen as the begin and
the end of a chain;

e [CV xV is the set of directed edges;

e w:E — (0..1] is a weighting function that assigns to
every pair of queries (¢,¢') € E a weight w(q,q’) .

In our setting, even if a query has been submitted multiple
times to the search engine, possibly by many different users,
it is anyway represented by a single node in the query-flow
graph. The two special nodes s and t are used to capture
the begin and the end of query chains. In other words,
the existence of an edge (s,q;) represents that ¢; may be
potentially a starting query in a chain, and an edge (g;,t)
indicates that g; may be a terminal query in a chain.

Different applications may lead to different weighting sche-
mes; the algorithms for two weighting schemes are described
in the following section.

4. BUILDING THE QUERY-FLOW GRAPH

In this section we describe our approach for building the
query-flow graph Gq¢ = (V,E,w). Our algorithm takes
as input a set of sessions S(L) = {Si,...,Sm}, which in
our case are extracted from a query log L from the Yahoo!
UK search engine in early 2008. As we already mentioned,
the set of sessions can be easily constructed by sorting the
queries by userid and by timestamp, and splitting them us-
ing the timeout threshold.

As stated in the previous section, the set of nodes V in
the query-flow graph is the set of distinct queries @ in L
plus the two special nodes s and t. For the moment we
leave apart the two special nodes s and ¢: we will discuss
later about how to connect them with the other nodes of the

graph. Given two queries q,q¢ € Q we tentatively connect
them with an edge if there is at least one session in S(L) in
which ¢ and ¢’ are consecutive. In other words, we form the
set of tentative edges T as:

T ={(q,q') | 35; €S(L) s.t. g=qi € S; Aq = qiy1 € S5}

The key aspect of the construction of the query-flow graph
is to define the weighting function w : E — (0..1]. We
study two weighting schemes. The first one is based on the
chaining probability: the probability that ¢ and ¢’ belong to
the same chain (or search mission) given that they belong
to the same session. The second one is based on the relative
frequencies of the pair (g, q’) and the query g.

4.1 Weights based on chaining probabilities

We compute chaining probabilities using a machine learn-
ing method. The first step is to extract for each edge (¢,q’) €
T a set of features associated with the edge. Those fea-
tures are computed over all sessions in S(L) that contain
the queries ¢ and ¢’ appearing in this order and consecu-
tively. The features we use aggregate, among other, infor-
mation about the time difference in which the queries are
submitted [12], textual similarity of the queries [13, 15], and
the number of sessions in which they appear. We shortly
describe the features in more detail.

For learning the weighting function from these features,
we use training data. This training data is created by pick-
ing at random a set of edges (q,q’) (excluding the edges
where ¢ = s or ¢’ = t) and manually assigning them a label
same_chain. This label, or target variable, is assigned by
human editors and is 0 if ¢ and ¢’ are not part of the same
chain, and it is 1 if they are part of the same chain. The
probability of having an edge included in the training set is
proportional to the number of times the queries forming that
edge occur in that order and consecutively in the query log.

We then use this training data to learn the function w(—, —),
given the set of features and the label for each edge in T'.
We use 18 features to compute the function w(—,—) for

each edge in T. Several of these features were shown to
be effective for query segmentation [12, 13, 15] and can be
summarized as follows:

e Textual features. We compute the textual similarity
of queries ¢ and ¢’ using various similarity measures,
including cosine similarity, Jaccard coefficient, and size
of intersection. Those measures are computed on sets
of stemmed words and on character-level 3-grams.

e Session features. We compute the number of ses-
sions in which the pair (q,q’) appears. We also com-
pute other statistics of those sessions, such as, average
session length, average number of clicks in the sessions,
average position of the queries in the sessions, etc.

e Time-related features. We compute average time
difference between ¢ and ¢’ in the sessions in which
(¢,q') appears, and the sum of reciprocals of time dif-
ference over all appearances of the pair (q,q’).

The next step for constructing the query-flow graph is to

train a machine learning model to predict the label same_chain.

The training dataset consists of approximately 5, 000 labeled
examples; the labels were assigned by the authors of this pa-

per.

o
—
?
(]
—
- o]
o
=
[o
2 o
g g %
3 OOOO
o, @
09 o
OOGDO o
0 oo O o
?7 CDMAP GO O 0O o
3 T T T T T T T I
12 5 10 20 50 100 200

Count

Figure 1: The distribution of counts (number of
times a given pair of query appears consecutively
in that order in S(L)); it is a power law with a spike
at 1 (most pairs being hapax).

We tested and compared many different machine learn-
ing approaches. As shown in Figure 1, the frequency of
query pairs follows a power-law with a spike at 1. After
experimenting with different settings, we decided to divide
the classification problem into two subproblems, and thus
the data were also partitioned into two training sets 77 and
T», by distinguishing between pairs of queries appearing to-
gether only once (we name this set 771, which contain ap-
proximately 50% of the cases), and pairs appearing together
more than once (we name this 75). The distribution of the
target variable same_chain is 66% positive and 34% negative
in Ty, and 70% positive and 30% negative in T5.

After various comparisons we selected the best models for
Ty and T» with respect to classification accuracy and sim-
plicity of the model. For 71 we adopted a very simple yet
accurate logistic regression model using only 3 of the fea-
tures available, namely (a) the Jaccard coefficient between
sets of stemmed words, (b) the number of n-grams in com-
mon between the two queries, and (c) the time between the
two queries in seconds. For T, instead we adopted a rule-
based model consisting of a total of 8 simple rules (4 for each
class).

We use the model we selected to assign the weight w(q, q’)
to each edge (q,q’). In particular, we label each edge which
has been classified as being in class 1 same_chain, with the
conviction with which the model makes the prediction. All
the edges that are classified in class 0, are labelled by 0, that
corresponds to removing the edge from the query-flow graph
Gys.

The edges starting from s or ending in ¢ can be given
an arbitrary weight w(s,q) = w(q,t) = 1 for all ¢, or left
undefined.

4.2 Weights based on relative frequencies

The second weighting scheme we consider turns the query
flow graph into a Markov chain. Let f(q) be the number
of times query g appears in the query log, and f(q,q’) the
number of times query ¢’ follows immediately ¢ in a session.

Figure 2: A portion of the query flow graph using
the weighting scheme based on relative frequencies,
described on Section 4.

Let f(s,q) and f(g,t) indicate the number of times query ¢
is the first and last query of a session, respectively.
The weight we use is:

wia.q)y= | T f@ed)>0Via=sVva=1
0 otherwise,

which uses the chaining probabilities w(q,q’) basically to
discard pairs that have a probability of less than 6 to be
part of the same chain.

By construction, the sum of the weights of the edges go-
ing out from each node is equal to 1. The result of such a
normalization can be viewed as the transition matrix P of a
Markov chain.

In Figure 2 we show a small snapshot of the query flow
graph we produce with this weighting scheme. This contains
the query “barcelona” and some of its followers up to a
depth of 2, selected in decreasing order of count. Also the
terminal node ¢ is present in the figure. Note that the sum of
outgoing edges from each node does not reach 1 just because
not all outgoing edges (and relative destination nodes) are
reported.

5. FINDING CHAINS

In this section we describe our first application of the
query-flow graph: finding chains of queries in user sessions.
As we have already mentioned, finding chains is a very im-
portant problem as it allows improving query-log analysis,
user profiling, mining user behavior, and more. For this
application we use the first weighing scheme described in
Section 4 based on chaining probabilities.

The problem we consider is the following. We are given a
supersession S = (q1, g2, ..., qx) of one particular user. We

are also given the query-flow graph, which has been com-
puted with the sessions of S as part of its input. The chain-
finding problem can also be defined in the case that the
sessions of S have not participated in the construction of
the query-flow graph. However, in this paper we focus on
the former case and we leave the latter for future work.

One of the challenges of the problem we consider arises
from our definition of chains: we allow chains not to be con-
secutive in the supersession S; in other words, the super-
session S may contain many intertwined chains such as the
ones shown in the Table 1. Previous work has mostly focused
on the case where all chains are consecutive.

Chain #1 Chain #2

pointui forum
audi ipswich
golfers elbow
cox ipswich

football results january 2nd
royal carribean cruises
holidays

motherwell football club

Table 1: Two fragments from actual sessions con-
taining non-consecutive chains.

The chain-finding problem can be formalized as follows:
let us define a chain cover of S = (qi1,q2,...qx) as a par-
tition of the set {1,...,k} into subsets Ci,...,C). Each
set Cu = {if < --- < i, } is thought of as a chain C\, =
(5, qivs .-, iy t), that is associated the probability

)
u

P(Cu) = P(s,qiy)P(qiv, qig) - Paiy _» qig)P(qiy ;1)
and we want to find a chain cover maximizing P(C1) ... P(Ch).

When a query appears more than once, “duplicate” nodes
for that query are added to the formulation, which makes the
description of the algorithm slightly more complicated than
what is presented here. For simplicity of the presentation we
omit the details related to queries appearing more than once
below, which are not fundamental to the understanding of
the algorithm.

We separate this problem into two subproblems: session
reordering and session breaking. The session reordering prob-
lem is to ensure that all the queries belonging to the same
search mission are consecutive. Then, the session breaking
problem is much easier as it only needs to deal with non-
intertwined chains.

5.1 Session re-ordering by ATSP

We formulate the session re-ordering problem as an in-
stance of the Assymmetric Traveler Salesman Problem (ATSP).
Let w(q,q") be a weight defined as a chaining probability
from Section 4. Given the session S = (¢1, g2, ... qx), con-
sider a directed weighted graph Gs = (V, E, h) with nodes
V = {s,q1,...,qk,t}, edges F and edge weights h defined
as h(q,q;) = —logw(qi,q;) . An edge (gi,q;) exists in E if
w(gi, q;) > 0.

An optimal ordering is a permutation 7 of (1,2,...k) that
maximizes

k—1
H w(qw(z)v qﬁ(i+1))-
=1

This is equivalent to finding a Hamiltonian path of minimum
weight in this graph.

It is well known that min-TSP is NP-hard even when
weights are symmetric; exact branch-and-bound solutions
exist, but are anyway rather slow and work reasonably only
for few tens of nodes. Instead of trying to produce exact
solutions, we content ourselves of a greedy heuristics that
simply chooses every time the arc with minimum weight go-
ing out of the current node: in the following, we shall refer
to this heuristic algorithm simply as the ATSP algorithm.
The ATSP algorithm works in time O(k?), where k is the
size of the supersession. It would be interesting to know how
far the solution produced by this algorithm is from the exact
solution on real data; on a more theoretical side, it would
be nice to determine if our problem is still NP-hard, or if it
is actually simpler, maybe polynomial. Both questions are
left for future work.

5.2 Session breaking

Session breaking is an easier task once the session has
been re-ordered. It correspond to the determination of a
series of cut-off points in the re-ordered session. It can be
done, for example, by determining a threshold 7 in a valida-
tion dataset, and then deciding to break a reordered session
whenever w(qx(;), ¢ri+1)) < n . Other strategies are pos-
sible and can be studied as future work, including using a
different threshold for different parts of the session, e.g. by
finding local minima in the chaining probabilities along the
re-ordered session.

5.3 Experimental evaluation

In this section we describe our experiments for evaluating
the chain-finding algorithm we propose, and compare it with
a simple timeout-based method.

The query-flow graph is created as described in Section 4.
For creating a training set for evaluating the session-breaking
task, we sampled uniformly at random a set of 586 super-
sessions containing 2 queries or more—if there is only one
query the task is trivial. Each of these 586 supersessions is
classified by human editors using the following methodology:
(7) first duplicate queries are eliminated, (i7) each query is
assigned by the human editors to one chain (possibly non-
consecutive), (i7i) some queries remained unassigned in this
process (due to the impossibility, by the human editor, to
clearly map a query to one chain). The chains obtained
in the above process constitute the “golden standard” with
which we compare our algorithm.

We then apply the ATSP algorithm to re-order followed by
the session breaking by threshold that we described above,
for splitting the 586 supersessions into chains. For com-
parison we also implemented a “baseline” algorithm, which
splits each supersession into sessions (using only the timeout
threshold ¢¢) and considers each resulting session as a chain.

Given a supersession S, the chains produced for S by the
human evaluation or by the algorithms we test define a par-
tition of S. We evaluate our algorithm and the baseline by
comparing the chains they produce with the chains produced
by the human evaluation using the Rand index [20], a com-
monly employed measure of similarity between partitions.

Notice that the chains produced by the human evaluation
do not contain duplicate queries, while the chains produced
by these methods mat contain duplicates, so before comput-
ing the Rand index we remove duplicate queries.

We can also evaluate the performance of the ATSP re-
ordering part of our algorithm separatedly. For that, we can

compute the optimal Rand index of the re-ordered sequence
with respect to the golden standard. The optimal Rand
index of a sequence with respect to a particion is the maxi-
mum Rand index among the given partition and a partition
that respect the sequence (i.e., whose equivalence classes are
convex sets with respect to the sequence).

Results. The results are summarized in Table 2.

Table 2: Rand index distributions for ATSP and
Baseline.

Session re-ordering Optimal Rand Index

Original sequence 0.97
ATSP re-ordering 0.99
Shuffled sequence 0.93
Session breaking Rand Index
ATSP re-ordering + thresh. break 0.90
Baseline 0.85

Taking a closer look at the results reveals that the seem-
ingly similar performance is caused by many easy supers-
essions, e.g., supersessions consisting of one or two queries
that the Baseline is able of handling correctly. A more de-
tailed analysis reveals that the ATSP algorithm followed by
the threshold-based breaking is able of handling better than
the baseline the more difficult supersessions.

Given a supersession S, let R4(S) be the Rand index of
comparing the chains produced for S by our algorithm with
the “golden standard” chains for S, and let Rg(S) be the
Rand index of comparing the chains produced for S by the
Baseline algorithm with the “golden standard” chains for S.
We observe that in the 92% of the cases in which Rp(S) =1
we also have Ra(S) = 1. In the cases in which Rg(S) < 1
(supersession difficult for the Baseline) the average Rp score
is 0.71, while the average R4 score is 0.85.

In other words, we can say that simple cases are treated
comparatively well by our algorithm and the Baseline, while
in difficult cases our algorithm clearly outperforms the Base-
line; in Figure 3 we show the situation for the case Rg(S) <
1 through a scatter plot.

We note again that the our algorithm has the ability to
find intertwined chains, which, to our knowledge, is a sig-
nificant novelty with respect to the current state of the art.
We also note that given a supersession, our algorithm does
not utilize at all the timestamp information of the queries in
the particular session being analyzed, which, in fact, is the
information exploited by the Baseline algorithm.

6. QUERY RECOMMENDATIONS

Most modern search engines include some form of auto-
matic query recommendation, to suggest new queries that
may be relevant to the current user’s mission. Using query-
log massive information to this purpose was suggested in [23].
Here we obtain query recommendations as an application of
the query flow graph.

The query recommendation task is different from the ses-
sion breaking task described in Section 5; while we can use
the same query flow graph, we find that for the algorithm
we propose it is better to use the weighting scheme based
on relative frequencies described in Section 4.

o
o 0 0 oo 00 @O o
) ﬁ
o
o 0q °
o o0oo ,%’
@ e, e
IS)
oO 0©° L 29%° o
[¢] O&P ° o
o © 8 o,
© | 0 © 40
IS} 9
o (]) o

0.4
|
o
(<]
o
® o
oo
A
o
o
HJU_/-_/—I_|

0.4 0.6 0.8 1.0

Figure 3: Every point in this plot corresponds to
a supersession S with Rp(S) < 1; its coordinates
are (Rp(S),Ra(S)). The fact that the points in the
upper-left corner are denser than in the lower-right
corner supports further the evidence that the ATSP
algorithm outperforms the Baseline when Rp(S) < 1.

For the query recommendation task we use weights w’(q, q")
defined as

W) = L H@ad)>0Va=9Vig=1
’ 0 otherwise,

where f(q,q’) is the number of times query ¢ is followed by
query ¢', the factor f(q) = >_., f(¢,q') is used for normal-
ization, w(q, q') is the chaining probability of pair (g, q’) and
0 a threshold uses to discard pairs unlikely to be part of the
same session.

It is worth noting here, that intuitively the problem of
query recommendation may benefit for handling query sim-
ilarities in an non-symmetric way, and indeed, the query
flow graph is strongly non-symmetric. Excluding the s and
t nodes whose arcs are obviously not symmetric, 93% of
the arcs in the graph do not have a reciprocal arc. More-
over, even for the few arcs that possess a reciprocal, the
weights in both directions w(q, ¢’) and w(q’, q) are uncorre-
lated (Kendall’s 7 is about 0.26), and the same is true of w’
(Kendall’s 7 is 0.16).

6.1 Recommendation by maximum weight

A simple recommendation scheme that uses the query flow
graph is to pick, for an input query g, the node having the
largest w'(q,q’). An example output from this scheme is
shown on the first column of Table 3 for the queries “apple”
and “jeep”.

An issue with this method, that we observed for several
test queries, is that it tends to “drift” towards those queries
that are popular in the query log, but unrelated with the
query at hand.

6.2 Recommendation by random walk

A recommendation algorithm can be built upon a measure
of relative importance: when a user submits a query ¢ to the

Max. weight Sq 34 5q

t t apple apple

apple ipod apple apple fruit apple ipod

apple store apple ipod apple ipod apple trailers
apple trailers | apple store apple belgium apple store
amazon apple trailers | eating apple apple mac

apple mac google apple.nl apple fruit
itunes amazon apple monitor apple usa

pc world argos apple usa apple ipod nano
argos itunes apple jobs apple.com/ipod...
currys pc world apple movie ... t

t t jeep jeep

jeep cherokee | jeep jeep trails jeep cherokee
jeep grand ... | jeep cherokee | jeep kinderk... jeep trails

jeep wrangler | jeep grand ... | jeep compass jeep compass
land rover bmw jeep cherokee jeep kinderkled...
landrover jeep wrangler | swain and jon... jeep grand ...
ebay land rover jeep bag jeep wrangler
chrysler landrover country living ... | chryslar

bmw chrysler buy range rov... jeepcj7

nissan google craviotto snare buses to Knowl...

Table 3: Top 10 recommendation for the queries
q =*“apple”, and q =*“jeep” according to the baseline,
and to the various random-walk scores proposed.

engine, the recommendation that the engine provides should
be the most important query ¢’ relatively to q.

If we look at the problem under this point of view, we are
naturally led to apply a form of personalized PageRank [10],
where the preference vector is concentrated in a single node.
Alternatively, this can be described as a random walk with
restart to a single node [5]: a random surfer starts at the
initial query g¢; then, at each step, with probability a < 1
the surfer follows one of the outlinks from the current node
chosen proportionally to the weights present on the arcs,
and with probability 1 — « (s)he instead jumps back to q.

This process describes the transition matrix A of a Markov
chain that can be more formally defined as:

A=aP+(1-a)le!

where P is the row-normalized weight matrix of the query
flow graph, and e; is the vector whose entries are all zeroes,
except for the j-th whose value is 1.

Although A is not ergodic in general, as proven in [5] A
is unichain as long as « € [0..1), so it has a unique station-
ary distribution, namely, a unique distribution vector v such
that v'A = v. Such a distribution (called the random-walk
score relative to q) can be computed using the power itera-
tion method, and then employed to determine the relevance
of all queries with respect to ¢, as explained below.

In all our experiments, we chose o = 0.85, as it is custom-
ary in the PageRank literature [4], and used the ¢;-norm of
the difference of two successive iterates to decide when to
stop.

Recommendations can be deduced from the random-walk
score by taking either the single top-scored query, or the best
queries up to a certain lower score threshold. Notice that, in
particular, if the most relevant query for ¢ is ¢, this means
that it is wise for the engine not to give any suggestion,
because the query flow graph is showing that the chain at
that point is more likely to end than to continue.

Using just the random-walk score, though, can be mislead-
ing, because in many cases a query has a high random-walk
score simply because it is a very common query altogether;
the situation, here, is not dissimilar to what happens in the

classical weighting schemes used for document retrieval, like
tf-idf, where the term frequency within a document needs to
be discounted by the absolute importance of the term (the
idf part of the formula).

Instead of using the pure random-walk score sq(q’) of
the query ¢’ with respect to ¢, we can consider the ratio
34(¢") = sq(q")/r(¢") where r(g') is the absolute random-
walk score of ¢’ (i.e., the one computed using a uniform pref-
erence vector). Experiments performed show that indeed in
most cases 34(q’) produces rankings that are more reason-
able, but sometimes tend to boost too much scores having a
very low absolute score r(q’). To use a bigger denominator,
we also tried with 1/r(¢’) as r(¢’) < 1; this corresponds also
to the geometric mean between sq(g") and 34(q’), that is

Table 3 shows the output of the random-walk scoring and
the adjusted variants discussed above: note that, except for
the first few queries, the baseline soon “gets lost” in com-
pletely unrelated queries; s; works well, but as expected
popular queries (like “ebay”) pollute the results; on the other
hand §, tends to overpenalize common queries, and tends to
produce exotic recommendations (“apple belgium”), whereas
54 gives the most pertinent results.

6.3 Recommendation with history

A further step in the same direction is providing recom-
mendation that depends not only on the last query input
by the user, but on some of the last queries in the user’s
history. This approach may help to alleviate the data spar-
sity problem —the current query may be rare, but among the
previous queries there might be queries for which we have
enough information in the query flow graph. Basing the rec-
ommendation on the user’s query history may also help to
solve ambiguous queries, as we have more informative sug-
gestions based on what the user is doing during the current
session.

Using the same notation as before, suppose that qi, ..., qx
is the current query chain (ordered starting from the most
recent); then, we consider the Markov process whose transi-
tion matrix is defined by

A=aP+(1- a)lequiqu

where v = eg,,... 4, is a vector whose entries are such that
Vg > Vgy > -+ > Vg, > 0. Equivalently, the overall process
may be described using the random surfer metaphor, where
v is the distribution used to choose the teleportation node,
when teleportation is decided. Although other choices are
possible, we always fixed v to be such that v; = 0 for all
qZ{q,...,qx}, and vy, o< 3* for some 8 < 1.

Also in this case, we are not going to use the pure random-
walk score sq,,....q,(¢") of the query ¢ with respect to the
sequence qi,...,qx, but the adjusted score 3, ... q,(q") in-
stead.

It is interesting to compare the relevance score g, ... q, (¢')
that can provide recommendation using the whole history
with the score 54, (¢') that can only exploit the last query.
Table 4 shows the output for two hypothetical chains. In
the first one, the query ¢’ =“apple™ is preceded by the
query ¢ =“banana’”, or by the query ¢ =“beatles” (“Ap-
ple Records” is a record label founded by The Beatles).

Table 4: Recommendations for the query ¢ =*“apple”,

considering that the previous query was ‘“banana

bk

(top) or “beatles™ (bottom).

banana — apple banana

banana banana

apple eating bugs

usb no banana holiday
banana cs opening a banana

giant chocolate bar
where is the seed in anut
banana shoe

fruit banana

banana cloths

eating bugs

banana shoe

fruit banana
recipe 22 feb 08
banana jules oliver
banana cs

banana cloths

beatles — apple beatles

beatles beatles

apple scarring

apple ipod paul mcartney

scarring yarns from ireland

srg peppers artwork statutory instrument A55
ill get you silver beatles tribute band
bashles beatles mp3

dundee folk songs
the beatles love album
place lyrics beatles

GHOST’S
ill get you
fugees triger finger remix

Table 5: Recommendations for two actual query

chains.

music facebook — gabriella
— music

music music

yahoo music gabriella

music videos

music downloads
free music

yahoo music videos
music yahoo

free music videos
yahoo music launch
free music downloads

yahoo music

music videos

music downloads

free music

gabriella sweet like me
lighting bug rotherham
ccp npa ndf

gabriela lighting

evening dress

orion — orion dress
orion evening dress —
evening dress

evening dress

formal evening dress
red evening dress
myevening dress

prom 008 dresses

long dressess

evening dress uk
fashion women dress
dresses for the evening
1900evening dress

evening dress

orion evening dress
formal evening dress
red evening dress
long dressess
myevening dress
fashion women dress
prom 008 dresses
evening dress uk
1900evening dress

The parameter [is set to 0.8 and the scoring uses 54. In
Table 5, two actual query sessions are processed by the al-
gorithm.

7. CONCLUSIONS

The query-flow graph summarizes a query log in a com-
pact representation. This representation can be obtained ef-
ficiently from the source data and enables several key search
and mining operations. The query-flow graph is sparse, and
about half of the query pairs appear only once in the query
log. Also, the graph is strongly non-symmetrical, as 93% of
the edges have no reciprocal edge.

In this paper, we have shown two key applications in usage
mining that are supported by the query-flow graph. We have
shown a method that exploits the information in the query-
flow graph for segmenting the user sessions into logically-
coherent query chains. We have also shown several methods
for generating query suggestions based on random walks in
the query-flow graph.

Extensive evaluation and tuning of these methods is nec-
essary to implement them effectively in practice. So far we
have shown that these tasks can be implemented efficiently
using the abstraction we have developed here. Specific as-
pects to look at in future work include: features for the
query segmentation model, weighting schemes for the rec-
ommendation systems, scoring methods for the output of
the random walks, and better evaluation methods.

8. REFERENCES

[1] R. Baeza-Yates. Graphs from search engine queries. In
Theory and Practice of Computer Science (SOFSEM),
volume 4362 of LNCS, pages 1-8, Harrachov, Czech
Republic, January 2007. Springer.

[2] R. Baeza-Yates and A. Tiberi. Extracting semantic
relations from query logs. In KDD ’07: Proceedings of
the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 7685,
New York, NY, USA, 2007. ACM Press.

[3] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza.
Query recommendation using query logs in search
engines. In EDBT Workshops, volume 3268 of LNCS,
pages 588-596. Springer, 2004.

[4] M. Bianchini, M. Gori, and F. Scarselli. Inside
pagerank. ACM Trans. Interet Technol., 5(1):92-128,
2005.

[5] P. Boldi, V. Lonati, M. Santini, and S. Vigna. Graph
fibrations, graph isomorphism, and PageRank. RAIRO
Inform. Théor., 40:227-253, 2006.

[6] J. Borges and M. Levene. Evaluating variable-length
markov chain models for analysis of user web
navigation sessions. IEEE Trans. Knowl. Data Eng.,
19(4):441-452, 2007.

[7] L. Catledge and J. Pitkow. Characterizing browsing
behaviors on the world wide web. Computer Networks
and ISDN Systems, 6(27), 1995.

[8] K. Collins-Thompson and J. Callan. Query expansion
using random walk models. In CIKM ’05: Proceedings
of the 14th ACM international conference on
Information and knowledge management, pages
704-711, New York, NY, USA, 2005. ACM.

[9] N. Craswell and M. Szummer. Random walks on the
click graph. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 239-246, New York, NY, USA, 2007. ACM
Press.

[10] K. Csalogany, D. Fogaras, B. Racz, and T. Sarlés.
Towards scaling fully personalized pagerank:
Algorithms, lower bounds, and experiments. Internet
Math., 2(3):333-358, 2005.

[11] B. M. Fonseca, P. B. Golgher, E. S. de Moura, and
N. Ziviani. Using association rules to discover search
engines related queries. In LA-WEB ’03: Proceedings
of the First Latin American Web Congress,
Washington, DC, USA, 2003. IEEE Computer Society.

[12] D. He and A. Goker. Detecting session boundaries
from web user logs. In Proceedings of the BCS-IRSG
22nd annual colloquium on information retrieval
research, pages 57-66, Cambridge, UK, 2000.

[13] D. He, A. Géker, and D. J. Harper. Combining
evidence for automatic web session identification. Inf.
Process. Manage., 38(5):727-742, September 2002.

[14] R. Jones and F. Diaz. Temporal profiles of queries.
ACM Trans. Inf. Syst., 25(3), July 2007.

[15] R. Jones and K. L. Klinkner. Beyond the session
timeout: automatic hierarchical segmentation of
search topics in query logs. In Conference on
Information and Knowledge Management (CIKM).
ACM Press, October 2008.

[16] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proceedings of the
15th international conference on World Wide Web,
WWW 2006, Edinburgh, Scotland, UK, May 23-26,
2006, pages 387-396, 2006.

[17] M. Levene and G. Loizou. A probabilistic approach to
navigation in hypertext. Inf. Sci., 114(1-4):165-186,
1999.

[18] B. Piwowarski and H. Zaragoza. Predictive user click
models based on click-through history. In CIKM ’07:
Proceedings of the sizteenth ACM conference on
Conference on information and knowledge
management, pages 175-182, New York, NY, USA,
2007. ACM.

[19] F. Radlinski and T. Joachims. Query chains: learning
to rank from implicit feedback. In KDD ’05:
Proceeding of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining, pages 239-248, New York, NY, USA,
2005. ACM Press.

[20] W. M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American
Statistical Association, 66:622—626, 1971.

[21] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts.
Information re-retrieval: repeat queries in yahoo’s
logs. In SIGIR °07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 151-158,
New York, NY, USA, 2007. ACM.

[22] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user
queries of a search engine. In WWW ’01: Proceedings
of the 10th international conference on World Wide
Web, pages 162-168, New York, NY, USA, 2001.
ACM.

[23] Z. Zhang and O. Nasraoui. Mining search engine
query logs for query recommendation. In WWW ’06:
Proceedings of the 15th international conference on
World Wide Web, pages 1039-1040, New York, NY,
USA, 2006. ACM.

