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Abs t rac t .  This paper presents results for the queue-read, queue-write 
asynchronous parallel random access machine (QRQW ASYNCHRONOUS 
PRAM) model, which is the asynchronous variant of the QRQW PRAM 
family of models, introduced earlier by the authors. 

1 I n t r o d u c t i o n  

The Parallel Random Access Machine (PRAM) model of computation (see, e.g., 
[KR90, Js Rei93]) consists of a number of processors operating in lock-step 
and communicating by reading and writing locations in a shared memory. Stan- 
dard PRAM models can be distinguished by their rules regarding contention for 
shared memory locations. These rules are generMly classified into the exclusive 
read/wri te  rule in which each location can be read or written by at most one 
processor in each unit-time PRAM step, and the concurrent read/wri te  rule in 
which each location can be read or written by any number of processors in each 
unit-t ime PRAM step. These two rules can be applied independently to reads and 
writes; the resulting models are denoted in the literature as the EREW, CREW, 
ERCW, and c r e w  PRAM models. 

In a previous paper [GMR96b], we argued that  neither the exclusive nor the 
concurrent rules accurately reflect the contention capabilities of most commercial 
and research multiprocessors: The exclusive rule is too strict, and the concurrent 
rule ignores the large performance penalty of high contention steps. We proposed 
instead the queue rule, in which each memory location can be read or written 
by any number of processors in each step, but  concurrent reads or writes to a 
location are serviced one-at-a-time. Thus the worst case t ime to read or write 
a location is linear in the number of concurrent readers or writers to the same 
location. As discussed in [GMR96b], the contention properties of most existing 
multiprocessors are well-approximated by the queue-read, queue-write rule. 

In this paper we consider the Queue-Read Queue- Write (QRQW) ASYNCHRO- 
NOUS PRAM model. The QRQW ASYNCHRONOUS PRAM [GMR93] was introduced 
by the authors as the asynchronous variant of the QRQW PRAM family of mod- 
els [GMR96b], suitable for designing algorithms for asynchronous (MIMD) multi- 
processors. The QRQW family of models includes the SIMD-QRQW PRAM model, 
the QRQW PRAM model and the QRQW ASYNCHRONOUS PRAM model. All models 
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in the QRQW family incorporate the queue rule described above, and permit con- 
current reading and writing of shared memory locations at a cost that  is linear 
in the number of such readers and writers. Each memory location is viewed as 
having a queue which can service at most one request at a time. Unlike related 
models accounting for contention (e.g. [DHW93, LAB93]), the QRQW PRAM and 
the QRQW ASYNCHRONOUS PRAM models permit pipelining: individual proces- 
sors may have multiple requests in progress concurrently. Some of the results 
presented here are mentioned without any details in earlier extended abstracts 
by the authors on QRQW PRAM results. 

The QRQw PRAM model is the basic model in the QRQW family of models 
and is well suited for the design and analysis of bulk-synchronous algorithms on 
machines such as the Cray C90, the Cray J90, and the forthcoming Tera MTA 
multiprocessor. An extensive study of algorithms and results for the QRQW PRAM 
can be found in [GMR96b, GMR96a]. In addition, experimental results for the 
QRQW PRAM on the Cray C90 and J90 can be found in [BGMZ95]. 

The model we study in this paper, the QRQW ASYNCHRONOUS PRAM model, 
permits more asynchronous behavior than the bulk-synchrony imposed by the 
QRQW PRAM. Thus it can be used to design and analyze algorithms for ma- 
chines such as the MTA in contexts in which bulk-synchrony is not employed. 
Indeed, Burton Smith, Chairman and Chief Scientist of Tera Computer,  refers 
to the MTA as "roughly a QRQW ASYNCHRONOUS PRAM" [Smi95] (and to our 
knowledge makes no such claims about other models). 

We present a simple deterministic algorithm for computing the OR of n bits 
on the QRQW ASYNCHRONOUS PRAM that  exploits the lack of bulk-synchrony 
and runs in O(lgn/lglgn) time, linear work. A similar algorithm was found 
independently by Armen and Johnson [AJ96]. We also present a matching lower 
bound. In contrast, no o(lgn) time QRQW PRAM algorithm is known, and even 
on a Concurrent-Read Queue-Write (CRQW) PRAM, no deterministic o(lg n) time 
algorithm is known for this problem. 

Next, we present a simple randomized O(lg n) time, O(n lg n) work QRQW 
ASYNCHRONOUS PRAM algorithm to sort an array of n elements. The algorithm 
is almost exactly the same as the O(lg 2 n~ lg lg n) time randomized sorting al- 
gorithm we developed earlier for the QRQW PRAM [GMR96a], but we exploit 
asynchrony by allowing elements to flow through the 'binary search fat tree' 
data  structures employed by the sorting algorithm at their own pace. We de- 
scribe here a new analysis that is interesting in its simplicity; it is based on a 
repeated use of a seemingly quite useful lemma, regarding the sum of Poisson-like 
random variables. 

Finally, we show that one step of an n-processor FETCH~ADD PRAM, and 
hence also a CRCW PRAM, can be emulated on an n-processor QRQW ASYN- 
CHRONOUS PRAM in O(lgn/lglgn + k) t ime w.h.p., where k is the maximum 
memory contention of the CRCW PRAM step; in this emulation, the value of k is 
not known to the emulating algorithm. 

Due to space constraints, many of the details are omit ted and can be found 
in the full paper [GMR96c]. 
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2 The QRQW Asynchronous P R A M  

In this section, we present the definition of the QRQW ASYNCHRONOUS PRAM 
model, and some observations on the algorithmic power of the model. 

A variety of ASYNCHRONOUS PRAM models have been studied in the literature 
(c.f. [Gib89, CZ89, MPS92, Nis90, And02]). These models account for contention 
in a manner most like a CRCW PRAM, with no penalty assessed for large con- 
tention to a location. 3 An EREW contention rule was not considered, since most 
asynchronous algorithms cannot avoid scenarios in which concurrent reading or 
writing occur. Since most existing parallel machines permit contention, but at 
a cost, the QRQW rule is a better choice for an asynchronous model than either 
the CRCW or the EREW rule. 

The QRQW rule can be incorporated into these previous models in a natural 
way. Instead, we define what we believe to be a better model for asynchronous 
parallel machines. 

2.1 The model 

An important  feature of the QRQW ASYNCHRONOUS PRAM model is that  the 
model separates correctness issues from analysis issues: Algorithms must be cor- 
rect under worst case assumptions on the finite delays incurred by the proces- 
sors and in processing memory requests, but the running times of algorithms 
are analyzed using an optimistic (synchronous) time metric. We elaborate on 
the correctness issues and analysis issues below, and then proceed to define the 
model. 

Functionality and correctness. A shared memory multiprocessor supports 
a consistency condition on its memory system. The most widely-used memory 
consistency condition is sequential consistency [Lain79, ABM93], in which the 
memory system appears to be a serial memory, processing one read or write at a 
time, in an order consistent with the individual program orders at each processor. 
The SGI Challenge and the (now defunct) KSR machines are examples of mul- 
tiprocessors supporting sequential consistency. Relaxed consistency conditions 
such as release consistency [GLL+90, GMG91] support sequential consistency 
for PL programs; these are programs with two types of accesses, synchroniza- 
tion and data, such that there are no race conditions between data accesses. 
The Stanford DASH machine and the Tera MTA are examples of multiproces- 
sors supporting release consistency. In the QRQW ASYNCHRONOUS PRAM, the 
memory system is assumed to be sequentially consistent. As any program can 
be made PL by labeling sufficiently many accesses as "synchronization", our 
algorithms will work as well on machines providing release consistency. 

Typically, the only other guarantee on inter-processor communication pro- 
vided by a real multiprocessor is that no request is delayed indefinitely. (We 

a For example, models based on "time slots" permit an arbitrary number of 
reads/writes to a location in one time slot. Models based on "interleaving" or 
"rounds" charge the same for an interleaving of reads/writes to the same address as 
for an interleaving of reads/writes to different addresses. 
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are assuming that  the multiprocessor is executing without failures.) Thus algo- 
r i thms must  be correct under worst case assumptions on the delays incurred by 
processors and in processing memory  requests, and the QRQW ASYNCHRONOUS 
PRAM reflects this reality. 

Most asynchronous shared memory  models of computat ion assume that  a 
processor can have at most one pending memory  request at a t ime (e.g. [CZ89, 
MPS92, Nis90, And92, DHW93]). 4 On the other hand, high-performance shared 
memory  machines such as the Tera MTA permit  the pipelining of memory  ac- 
cesses by a processor, in order to amortize the round-trip t ime to memory  over a 
collection of accesses. In the QRQW ASYNCHRONOUS PRAM, pipelining of memory  
accesses is permitted;  a processor may  have multiple shared memory  operations 
in progress at a time. A formal definition of a sequentially consistent shared 
memory  that  permits  pipelining is given by Gibbons and Merritt  [GM92]. 

Each processor has a private local memory,  and the following types of instruc- 
tions: local operations, shared memory  reads, shared memory  writes, and shared 
memory  Test&Set operations. A Test&Set operation reads and returns the old 
value and writes a 1; the location is assumed to be initialized to 0. Other syn- 
chronization constructs such as barriers can be constructed using shared memory  
reads, writes, and Test&;Sets. 

A n a l y s i s .  In defining how algorithms are analyzed in the model, the QRQW 
ASYNCHRONOUS PRAM aims for a simple cost model that  captures impor tant  re- 
alities of multiprocessors. As in Gibbons '  ASYNCHRONOUS PRAM model [Gib89], 
our cost model assumes that  processors issue instructions at the same speed, as 
this is presumed to be the typical scenario in a multiprocessor. A local operation 
takes unit time. 

There is a FIFO queue associated with each memory  location; only the re- 
quest at the head of the queue is processed in a step. Thus requests to a location 
can pile up, causing a delay in their processing. If  k processors issue a request 
to the same location at step t of an algorithm, and the queue for this location is 
empty  at the beginning of step t, then one such request completes step t, another 
step t + 1, another step t + 2, and so forth, until the last one completes at step 
t + k - 1. If  additional requests to the location arrive before step t + k - 1, these 
are appended to the tail of the queue: if there are two such requests, they will 
complete at steps t + k and t + k + 1, respectively, regardless of the exact step 
at which they are requested. 

Note tha t  the cost model makes optimistic assumptions on the delays encoun- 
tered by shared memory  requests, e.g. that  requests issued earlier are queued 
before requests issued later; these assumptions are not a part  of the correctness 
model. The philosophy behind models in which analysis makes optimistic as- 
sumptions while correctness does not is that  (1) it makes sense to measure the 
complexity of an algorithm according to a typical performance of a machine, 
since this reflects directly in real life efficiency, while (2) we must  be strict and 
assume worst case situations for correctness, since otherwise a single unexpected 
event may  cause the entire computat ion to fail. 

4 Note that when all memory accesses take unit time in a model, there is no need for 
pipelining. 
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M o d e l  d e f i n i t i o n .  The QRQW ASYNCHRONOUS PRAM model consists of a col- 
lection of processors operating asynchronously and communicating via a global 
shared memory.  The shared memory  is sequentially consistent and supports  the 
pipelining of memory  requests by processors (i.e. each processor is permi t ted  to 
have multiple pending shared memory  requests; see [GM92] for a formal defi- 
nition). Each processor has a private local memory,  and the following types of 
instructions: RAM operations involving only its private state and private mem-  
ory, requests to read the contents of a shared memory  location into a private 
memory  location, requests to write the contents of a private memory  location 
to a shared memory  location, and requests to perform a Test&Set operation on 
a shared memory  location. A processor can execute any of the shared memory  
requests and continue without waiting for them to complete (pipelining). How- 
ever, the first subsequent RAM operation that  uses the result of such a shared 
memory  request will wait for the value to be returned. Algorithms must  be cor- 
rect under worst case assumptions on the finite delays incurred by processors 
and in processing memory  requests. 

Time is defined as follows. There is a FIFO queue associated with each 
memory  location. A single t ime step consists of two substeps: 

1. Each processor issues an instruction. Local operations complete this step. 
Shared memory  requests are appended to the tails of the queues for the 
requested locations, with requests to the same location enqueued in an ar- 
b i t rary  order. 

2. Shared memory  requests at the head of nonempty queues are dequeued and 
performed (at most  one per queue), and either a return value or an acknowl- 
edgement is received by the processor responsible for the request. 

Work is defined as the time-processor product. 
Some comments  on the definition follow. Because an algorithm must  be cor- 

rect regardless of the delays, a processor can not safely "time-out" after a cer- 
tain period of t ime or a certain amount  of polling and assume tha t  no further 
reads/wri tes  to a location are forthcoming. A processor can not make inferences 
on the queue length encountered based on the delay incurred. Once issued, a 
memory  request can not be withdrawn; a processor has not completed its par- 
t icipation in an algori thm until all of its memory  requests have been processed. 

In addition to the QRQW ASYNCHRONOUS PRAM model, one can also define 
hybrid models such as the CRQW ASYNCHRONOUS PRAM, which permits  unit 
t ime concurrent reading but  applies the above queue rule for concurrent writing. 
The stronger CRQW ASYNCHRONOUS PRAM model is used primari ly to prove 
stronger lower bounds. 

Two other asynchronous models of parallel computat ion that  focus on con- 
tention are the atomic message passing model of Liu, Aiello and Bhat t  and 
the "stall" model of Dwork, Herlihy and Waarts.  These interesting models were 
developed independently of the QRQW ASYNCHRONOUS PRAM and differ in sev- 
eral impor tan t  ways. The atomic message passing model [LAB93] is a message- 
passing model in which messages destined for the same processor are serviced 
one-at -a- t ime in an arbi trary order. The m o d e l p e r m i t s  general asynchronous 
algorithms, but each processor can have at most  one message outstanding at 
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a time. Dwork, Herlihy and Waarts [DHW93] defined an asynchronous shared 
memory model with a stall metric: If several processes have reads or writes 
pending to a location, v, and one of them receives a response, then all the oth- 
ers incur a stall. Hence the charge for contention is linear in the contention, 
with requests to a location being serviced one-at-a-time. Their  model permits 
general asynchronous algorithms, but each processor can have at most one read 
or write outstanding at a time. Unlike their model, the QRQW ASYNCHRONOUS 
PRAM model captures directly how the contention delays the overall running 
t ime of the algorithm, and are proposed as alternatives to other PRAM models 
for high-level algorithm design. 

2.2 P r e l i m i n a r y  o b s e r v a t i o n s  

The computational power of the QRQw PRAM and the QRQW ASYNCHRONOUS 
PRAM are incomparable: the QRQW PRAM has the advantage of free global syn- 
chronization, but  is restricted to bulk-synchronous operation. The naive simula- 
tion of the QRQW PRAM on the QRQW ASYNCHRONOUS PRAM performs a barrier 
synchronization at each step, at a cost of O(lgp) for p processors per barrier. 
The goal in adapting algorithms designed for the QRQW PRAM to the QRQW 
ASYNCHRONOUS PRAM is to make do with less synchronization so as to maintain 
the same complexity bounds. 

It turns out that  many of the algorithms we developed for the QRQW PRAM 

algorithms in [GMR96b, GMR96a] can be adapted to the QRQW ASYNCHRO- 

NOUS PRAM to run with the same work-time bounds. Details of these results 
can be found in [GMR96c]. In particular, we mention here that  the QRQW PRAM 

algorithm for multiple compaction can be adapted to the QRQW ASYNCHRONOUS 

PRAM to run with the same bounds of linear work and logarithmic time. This 
result is used in Section 4. 

Even more interesting than adapting QRQW PRAM algorithms to the QRQW 
ASYNCHRONOUS PRAM are examples of algorithms for the QRQW ASYNCHRONOUS 
PRAM that  achieve better t ime bounds than the best known QRQW PRAM algo- 
rithms. Such algorithms exploit the computational advantage the QRQw ASYN- 

CHRONOUS PRAM has by not being restricted to bulk-synchronous operation. In 
the remainder of this paper, we discuss three such examples. 

3 L e a d e r  e l e c t i o n  a n d  c o m p u t i n g  t h e  O R  

Given a Boolean array of n bits, the oR function is the problem of determining 
if there is a bit with value 1 among the n input bits. The leader election problem 
is the problem of electing a leader bit from among the k out of n bits that are 1 
(k unknown). The output  is the index in [1..n] of the bit, if k > 0, or 0, if k = 0. 
This generalizes the oR function, as long as k = 0 is possible. 

By having each processor whose input bit is 1 write the index of the bit in 
the output  memory cell, we obtain a simple deterministic QRQW ASYNCHRONOUS 
PRAM algorithm for leader election (and similarly for the oR function) that runs 
in max{l ,  k} time using n processors, where k is the number of input bits that  
are 1 (k unknown). This is a fast algorithm if we know in advance that  the value 
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of k is small. However, for the general leader election problem, a better  algorithm 
is to mimic the EREW PRAM parallel prefix algorithm to compute the location of 
the first 1 in the input; since only pairwise synchronizations are used, this takes 
O(lgn)  t ime and O(n) work on a QRQW ASYNCHRONOUS PRAM. 

In this section, we present a faster (O(lg n/lglg n) time) deterministic QRQW 
ASYNCHRONOUS PRAM algorithm for leader election and computing the oR func- 
tion, and a matching lower bound for the stronger CRQW ASYNCHRONOUS PRAM. 
A similar algorithm was found independently by Armen and Johnson [A J96]. 

T h e o r e m l .  There is a deterministic QRQW ASYNCHRONOUS PRAM algorithm 
for the leader election problem (and the oR function) that runs in O(lg n~ lg lg n) 
time and linear work. 

Proof. Let s = lg n/ lg  lg n. We describe the algorithm for n/s  processors. Each 
processor is assigned s inputs, and elects as leader the first 1-input among its 
inputs (if any). Consider a s-ary tree, T, with one leaf per processor, with each 
location corresponding to a node in T initialized to zero. Each processor that  
elected a leader begins to greedily traverse the path in T from its leaf to the 
root. At each node on the path, it a t tempts to claim the node using a T E S T ~ S E T  

operation. If it returns a zero, the processor has succeeded in claiming the node, 
and it continues on to the next node in its path. Else it drops out. The leader 
elected is according to the processor claiming the root node. No processor spends 
more than s steps being the first in the queue for a node (and hence claiming 
the node) and no more than s steps stuck in the queue for a node (when it drops 
out). Thus the time is O(s) as claimed. �9 

We can derive a matching/2(lg n~ lg lg n) lower bound for the OR function 
on the (more powerful) cRqw ASYNCHRONOUS PRAM using a lower bound result 
of Dietzfelbinger, Kutylowski and Reischuk [DKR94] for the few-write PRAM. 
Recall tha t  the few-write PRAM models are parameterized by the number of 
concurrent writes to a location permitted in a unit-time step. (Exceeding this 
number is not permitted.) Let the n-write PRAM denote the few-write PRAM 
model that  permits concurrent writing of up to ~ writes to a location, as well as 
unlimited concurrent reading. The proof of the following lemma is omit ted due 
to space limitation. It can be found in [GMR96c]. 

L e m m a  2. A p-processor cRQw ASYNCHRONOUS PRAM deterministic algorithm 
running in time t can be emulated on a p-processor t-write PRAM in time O(t). 

The above lemma leads to the following theorem that  gives the desired lower 
bound. 

T h e o r e m 3 .  Any deterministic algorithm for computing the oR function on 
a CRQW ASYNCHRONOUS PRAM with arbitrarily many processors requires 
~2(lg n~ lglg n) time. 

Proof. Dietzfelbinger, Kutylowski and Reischuk [DKR94] proved an/2(lg n~ lg to) 
lower bound for the OR function on the n-write PRAM. Let T be the t ime 
for the oR function on the r ASYNCHRONOUS PRAM. Then by Lemma2,  
the oR function can be computed on the T-write PRAM in O(T) time. Thus 
T e /2 ( l g  n~ lg T),  and hence T E/2(lg n~ lg lg n). 
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4 S o r t i n g  

We consider the problem of general sorting, i.e. sorting an array of n keys from 
a totally-ordered set. On the EREW PRAM, there are two known O(lgn) time, 
O(n lg n) work algorithms for general sorting [AKS83, Co188]; these deterministic 
algorithms match the asymptotic lower bounds for general sorting on the EREW 
and CREW PRAM models. Unfortunately, these two algorithms are not as simple 
and practical as one would like. 

Another relatively simple parallel sorting algorithm is a randomized x/~- 
sample sort algorithm for the CREW PRAM that runs in O(lg n) time, O(n lg n) 
work, and O(n 1+~) space [Rei85]. This algorithm consists of the following high- 
level steps: (1) randomly sample v ~ keys, (2) sort the sample by comparing all 
pairs of keys, (3) each item determines by binary search its position among the 
sorted sample and labels itself accordingly, (4) sort the items based on their labels 
using integer sorting, and (5) recursively sort within groups with the same label. 
When the size of a group is at most lg n, finish sorting the group by comparing 
all pairs of items. 

In an earlier paper [GMR96a] we build on this V~-sample sort algori thm 
and obtained an O(lg 2 n/lglg n) time, O(n lg n) work, O(n) space randomized 
sorting algorithm, on the QRQW PRAM. 

In this section, we present a simple sorting algorithm on the QRQW ASYN- 

CHRONOUS PRAM that runs in O(lgn) time with O(nlgn) work w.h.p. The 
algorithm is almost the same as the O(n lgn)-work algorithm for the QRQw 
PRAM given in [GMR96a], but we are able to bring down the running time from 
O(lg 2 n~ lg lg n) to O(lg n) by making effective use of asynchrony. In particular we 
analyze the progress of elements through the binary search fat-trees and establish 
that the time taken by all elements to proceed through the binary search fat trees 
at all recursive levels is O(lg n) w.h.p. Our algorithm uses O(n lg n) space. 

We start by reviewing the high-level algorithm, which is the same for the 
QRQW PRAM and the QRQW ASYNCHRONOUS PRAM. 

Algo r i t hm .4. 
Let c be any constant such that 0 < e < 1/2. Let n -- no be the number of 

input items, and for i _> 1, let ni (1 + 1/lgn) �89 = �9 hi_ 1 . W.h.p., ni is an upper 
bound on the number of items in each subproblem at the ith recursive call to 
,4 [GMR96a]. 
For subproblems at the ith level of recursion: 

1. Let S be the set of at most ni items in this subproblem. Select in parallel 
x / ~  items drawn uniformly at random from S. 

2. Sort these sample items by comparing all pairs of items, using summation 
computations to compute the ranks of each item, and then storing the items 
in an array B in sorted order. Move every (n~)th item in B to an array B ~. 

3. For each item v E S, determine the largest item, w, in B ~ that is smaller 
than v, using a binary search on B ~. Label v with the index of w in B ~. 

4. Place all items with the same label into a subarray of size O(n~/2+~) desig- 
nated for the labeli using "heavy" multiple compaction [GMR96a]. W.h.p., 
the number of items with the same label is at most ni+l and thus the heavy 
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multiple compaction succeeds in placing all items in each such group into its 
designated subarray. 

5. Recursively sort the items within each group, for all groups in parallel. When 

ni+l is at most 20g n)1/2, finish sorting the group using the EREW PRAM 

bitonic sort algorithm [3s This cut-off point suffices for n sufficiently 

for general n, the cut-off point ismax~2(lgn)i/~,lgCn~, f o r e  > 6 / c a  large; 

suitable constant. 

In step 4 we use a heavy multiple compaction algorithm which reports failure if 
a set size exceeds its upper bound count [GMR96a]. If failure is reported for any 
subproblem, we restart the algorithm from the beginning. 

To implement Algorithm .4 on a QRQW PRAM or QRQW ASYNCHRONOUS 
PRAM, we must incorporate techniques that  use only low-contention steps. The 
main obstacle is step 3, in which each item needs to learn its position relative to 
the sorted sample. A straightforward binary search on B'  would encounter O(n) 
contention. Instead, we employed the following data  structure: 

B i n a r y  s e a r c h  f a t - t r e e .  In a binary search fat-tree, there are n copies of the 
root node, n/2  copies of the two children of the root node, and in general, n/2J 
copies of each of the 2J distinct nodes at level j down from the root of the tree. 
The added fatness over a traditional binary search tree ensures that,  if n searches 
are performed in parallel such that not too many searches result in the same leaf 
of the (non-fat) tree, then each step of the search will encounter low contention. 

The process of fattening a search tree can be done in O(lgn)  t ime and 
O(n lg n) work using binary broadcasting. 

In the case of our QRQW ASYNCHRONOUS PRAM sorting algorithm, at the ith 
level of recursion we make 213ni copies of the median splitter, 213ni/2 copies of 

the 1/4 and 3/4 splitters, and so forth, down to 213n~/2+" copies of the n~/2-~ 
splitters in the leaves of the tree, for 13 > 2 a suitable constant. We will continue 
to call this a 'binary search fat-tree' although the number of copies in each level 
differs by a constant factor from the number in the original definition. 

The key to our O(lgn)  time implementation of algorithm .4 on the QRQW 
ASYNCHRONOUS PRAM is that,  in the QRQW ASYNCHRONOUS PRAM, processors 
can proceed through the binary search fat-tree at their own pace. To obtain our 
result, we show that  for each element, the sum of the contentions it encounters 
during the binary search process is O(lg n), as shown below. 

L e m m a 4 .  Let t3 > 2, c > 13- 1, a > O, and ~ = lgc/lg(13/2). Let xl  . . . .  ,xm 
be independent random variables over the positive integers so that P r  (xi = u) <_ 
c13 -~ for all u > O. Let Srn = xl + " " +  Xm, for m > 1 and So = O. Then, 

P r ( S m > _ c ~ m + a ) <  ( ~ )  -a (1) 

Proof. The proof is by induction on m. 

The base case i s m  = 0 : I f  a =  0 t h e n  P r ( S 0 > a )  = 1 = I f a  > 0 

t h e n P r ( S o > a ) = O <  ( ~ )  -~. 
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We assume inductively that (1) holds for m - 1 and proof the induction step 
for m > 0. 

P r ( S m  >c~m+a)= ~ Pr(xm=iASm-l >am+a-i) 
i=-c~ 

oo 
by independence E P r ( x m  = i ) . P r ( S ~ _ I  >_am+a-i) 

i=-oo 
(~--l)mWa+l 

since ~i > 0 E Pr (xm=i ) 'Pr (Sm-1  > a m + a - i )  
i=1 

by assumption (a-1)m+a+l 
< E c~ -!. P r ( S m - 1  >_ crm+ a -  i) 

i=1 
(a-1)m+a+l 

~-- E c ~ - i . P r ( S m _ l  ) a ( m - 1 ) + a W c ~ - i )  
i=1 

by induction__~ (a--1)m+a+lE C]~-i" ( ~ )  (aq-a .) 

i=1 
--a --a (a-- 1)m+a+l i 

i=1 

i=1 

< .C. 

c~=lgc/lg(~/2)~ ( ~ ) - a  

Consider an input element e in the sorting algorithm. Let xi,j be the number 
of other elements accessing the same memory location as the location accessed 
by e in the ith step of the search through the binary search fat tree in the j th  
level of re cursion, i = 1 , . . . ,  lg n j /2 ,  j = 0 , . . . ,  co lg lg n, where co is chosen so 
that co lg lg n corresponds to the last level of recursion before we switch to bitonic 
sort. 

L e m m a 5 .  There exist ~ > 2 and c > f l -  1 such that for i = 1 , . . . , l gn j /2 ,  
j = 0 , . . . , c 0 1 g l g n ,  Pr(x i , j  > u) < c~ -u for allu > O. 

Proof. Let n' be the number of elements in the subproblem. W.h.p.,  n' <_ 2nj. 
Also, size of the fat tree array for the ith level is 2 �9 ]~nj. We choose fl > 2 and 
e : ~ .  

Pr(z i , j  >_ u) <_ C(n',u)(1/2flnj) ~ w.h.p. 
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< ((2nj) '`/ul)(1/2/3nj) '`  = (1/ul)(1//3)'` < c . /3 - "  

We now consider the cumulative delay of any element through fat trees at 
all levels of recursion. 

L e m m a 6 .  The cumulative delay of any element through fat trees at all levels 
of recursion is O(lg n) w.h.p. 

Proof. Consider an element k in a subproblem in the j th  level of recursion. Let 
Yi = xi,j be the contention of element k in the /th level of the fat tree in this 
subproblem. By Lemma 5, P r  (Yi > u) < /3./3-'` (where we have set c = /3). 
This assumes that  the splitters are good, which is true w.h.p. We also assume 

> 2. 
The delay of element k through all levels of the fat tree in the subproblem at 

~--~lg n j  the j t h  level of recursion is z_~=l Yi. Let c~ = lg/3/1g(/3/2). Then, by Lemma 4 _/""' ) 
P r  ~(/--~1Yi) > (a + 2) lgnj  + a < (/~/2) -(a+21gnj) 

Let rj be the time for all elements in the subproblem to complete their search 
through the fat tree in a subproblem at level j .  

P r  (7-j > c~lgnj + a) < n j .  (t~/2) -(a+21gnj) < (1~/2) -(a+lgnj) 

The cumulative delay for element k through all levels of reeursion is tk = 

E co lg lg n j=l rj. 
~'~Co lg lg n t Let rj = rj - a l g n j .  Let t~ = z-,j=1 rj. Thus 

Co l g l g n  Co l g l g n  Co l g l g n  

t k =  E rj = E r j +  E ( a l g n j ) < ( w . h . p . )  t ~ + 2 a l g n  . 
j = l  j=l j = l  

Now, 

P r  (rj > a) < (/3/2) -a  

and by Lemma 4, we have 

P r  (t~ > ac0 lg lg n + a) < (fl/2) -a  

and therefore 

P r ( t~  > a c o l g l g n + b . l g n )  < (/3/2) -big" < n -b 

since fl > 4. This implies that  

P r ( 3 t t  > c~c0 lg lgn  + (b+  2a) lgn) < n - (b-D . 

Thus the cumulative delay of any element through fat trees at Ml levels of 
recursion is O(lg n) w.h.p. �9 

Hence the QRQW ASYNCHRONOUS PttAM sorting algorithm terminates in 
O(lg n) time w.h.p. 
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5 Emulat ing  Fetch&Add P R A M  on Q R Q W  
Asynchronous PRAM 

The FETCH~ADD PRAM model [GGK+83, Vis83] is a strong, non-standard vari- 
ant of the CRCW PRAM. In this model, if two or more processors a t t empt  to 
write to the same cell in a given step, then their values are added to the value 
already written in the shared memory  location and all prefix sums obtained 
in the (virtual) serial process are recorded. The FETCH~SADD PRAM is strictly 
stronger than the standard variants of the CHCW PRAM. 

In this section we give an emulation of one FETCH~iADD PRAM step on a 
QRQW ASYNCHRONOUS PRAM that  takes sub-logarithmic t ime for modera te  con- 
tention. Our emulation result is: 

T h e o r e m  7. One step of an n-processor FETCH~SADD PRAM, and hence of an 
n-processor CRCW PRAM, c a n  be emulated on an n-processor QRQW ASYNCHRO- 
NOUS PRAM in O( lgn / lg lgn  + lgk) time with high probability, where k is the 
maximum contention (k unknown). 

The emulation algorithm can be found in the full paper [GMR96e]. 

6 Conclusions 

In this paper  we have defined the QRQW ASYNCHRONOUS PRAM and presented 
some algorithmic results for the model. In particular, we have shown two in- 
stances in which we have better  algorithms for the QRQW ASYNCHRONOUS PRAM 
than  those known for the QRQW PRAM. The first is for computing the OR of n 
bits for which we described a simple deterministic linear work algorithm that  
runs in O(lg n~ lglg n) time; we also showed that  this bound is tight. In con- 
trast,  no deterministic sub-logarithmic t ime algorithm for this problem is known 
for the QRQW PRAM. The second result is an implementat ion of the randomized 
sample sort algorithm that  runs in O(lg n) t ime and O(n lg n) work on the QRQW 
ASYNCHRONOUS PRAM; the fastest implementat ion known for this problem on 
the QRQW PRAM runs in O(lg 2 n / lg lgn)  time. Full details of these results and 
others reported in this paper, including adaptat ion of several QRQW PRAM al- 
gori thms to the QRQW ASYNCHRONOUS PRAM with the same work-time bounds 
and a simulation of a FETCH~;ADD PRAM on the QRQW ASYNCHRONOUS PRAM, 
may  be found in [GMR96c]. 

Additional results for the QRQW ASYNCHRONOUS PRAM can be found in a 
recent paper  by Adler [Adl96]. Tha t  paper presents interesting results on low- 
contention search structures, beyond the binary search fat tree considered in this 
paper. 

One interesting direction for future work is to develop a good emulation of 
the QRQW ASYNCHRONOUS PRAM on a distributed memory  machine such as the 
BsP. In [GMR96b] we presented an opt imal  work emulation of the QRQW PRAM 
on the HSP with only a logarithmic slowdown. It  appears that  the s t rategy used 
in that  emulat ion does not carry over directly to the QRQW ASYNCHRONOUS 
PRAM and new insights are needed. Alternatively, one could consider developing 
good emulat ion results by imposing suitable restrictions on the QRQW ASYN- 
CHRONOUS PRAM. 
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