
~Workshop 12 (16)

Theory and Models for
Parallel Computing

The Queue-Read Queue-Write Asynchronous
PRAM Model

Phillip B. Gibbons* Yossi Matins* Vijaya Ramachandran ~*

Abs t rac t . This paper presents results for the queue-read, queue-write
asynchronous parallel random access machine (QRQW ASYNCHRONOUS
PRAM) model, which is the asynchronous variant of the QRQW PRAM
family of models, introduced earlier by the authors.

1 I n t r o d u c t i o n

The Parallel Random Access Machine (PRAM) model of computation (see, e.g.,
[KR90, Js Rei93]) consists of a number of processors operating in lock-step
and communicating by reading and writing locations in a shared memory. Stan-
dard PRAM models can be distinguished by their rules regarding contention for
shared memory locations. These rules are generMly classified into the exclusive
read/wri te rule in which each location can be read or written by at most one
processor in each unit-time PRAM step, and the concurrent read/wri te rule in
which each location can be read or written by any number of processors in each
unit-t ime PRAM step. These two rules can be applied independently to reads and
writes; the resulting models are denoted in the literature as the EREW, CREW,
ERCW, and c r e w PRAM models.

In a previous paper [GMR96b], we argued that neither the exclusive nor the
concurrent rules accurately reflect the contention capabilities of most commercial
and research multiprocessors: The exclusive rule is too strict, and the concurrent
rule ignores the large performance penalty of high contention steps. We proposed
instead the queue rule, in which each memory location can be read or written
by any number of processors in each step, but concurrent reads or writes to a
location are serviced one-at-a-time. Thus the worst case t ime to read or write
a location is linear in the number of concurrent readers or writers to the same
location. As discussed in [GMR96b], the contention properties of most existing
multiprocessors are well-approximated by the queue-read, queue-write rule.

In this paper we consider the Queue-Read Queue- Write (QRQW) ASYNCHRO-
NOUS PRAM model. The QRQW ASYNCHRONOUS PRAM [GMR93] was introduced
by the authors as the asynchronous variant of the QRQW PRAM family of mod-
els [GMR96b], suitable for designing algorithms for asynchronous (MIMD) multi-
processors. The QRQW family of models includes the SIMD-QRQW PRAM model,
the QRQW PRAM model and the QRQW ASYNCHRONOUS PRAM model. All models

* Bell Laboratories, 600 Mountain Avenue, Murray Hill NJ 07974;
{gibbons,matins} ~research.bell-labs.com.

** Dept. of Computer Sciences University of Texas at Austin Austin TX 78712;
vlr@cs.utexas.edu. Supported in part by NSF grant CCR-90-23059 and Texas Ad-
vanced Research Projects Grant 003658480.

280

in the QRQW family incorporate the queue rule described above, and permit con-
current reading and writing of shared memory locations at a cost that is linear
in the number of such readers and writers. Each memory location is viewed as
having a queue which can service at most one request at a time. Unlike related
models accounting for contention (e.g. [DHW93, LAB93]), the QRQW PRAM and
the QRQW ASYNCHRONOUS PRAM models permit pipelining: individual proces-
sors may have multiple requests in progress concurrently. Some of the results
presented here are mentioned without any details in earlier extended abstracts
by the authors on QRQW PRAM results.

The QRQw PRAM model is the basic model in the QRQW family of models
and is well suited for the design and analysis of bulk-synchronous algorithms on
machines such as the Cray C90, the Cray J90, and the forthcoming Tera MTA
multiprocessor. An extensive study of algorithms and results for the QRQW PRAM
can be found in [GMR96b, GMR96a]. In addition, experimental results for the
QRQW PRAM on the Cray C90 and J90 can be found in [BGMZ95].

The model we study in this paper, the QRQW ASYNCHRONOUS PRAM model,
permits more asynchronous behavior than the bulk-synchrony imposed by the
QRQW PRAM. Thus it can be used to design and analyze algorithms for ma-
chines such as the MTA in contexts in which bulk-synchrony is not employed.
Indeed, Burton Smith, Chairman and Chief Scientist of Tera Computer, refers
to the MTA as "roughly a QRQW ASYNCHRONOUS PRAM" [Smi95] (and to our
knowledge makes no such claims about other models).

We present a simple deterministic algorithm for computing the OR of n bits
on the QRQW ASYNCHRONOUS PRAM that exploits the lack of bulk-synchrony
and runs in O(lgn/lglgn) time, linear work. A similar algorithm was found
independently by Armen and Johnson [AJ96]. We also present a matching lower
bound. In contrast, no o(lgn) time QRQW PRAM algorithm is known, and even
on a Concurrent-Read Queue-Write (CRQW) PRAM, no deterministic o(lg n) time
algorithm is known for this problem.

Next, we present a simple randomized O(lg n) time, O(n lg n) work QRQW
ASYNCHRONOUS PRAM algorithm to sort an array of n elements. The algorithm
is almost exactly the same as the O(lg 2 n~ lg lg n) time randomized sorting al-
gorithm we developed earlier for the QRQW PRAM [GMR96a], but we exploit
asynchrony by allowing elements to flow through the 'binary search fat tree'
data structures employed by the sorting algorithm at their own pace. We de-
scribe here a new analysis that is interesting in its simplicity; it is based on a
repeated use of a seemingly quite useful lemma, regarding the sum of Poisson-like
random variables.

Finally, we show that one step of an n-processor FETCH~ADD PRAM, and
hence also a CRCW PRAM, can be emulated on an n-processor QRQW ASYN-
CHRONOUS PRAM in O(lgn/lglgn + k) t ime w.h.p., where k is the maximum
memory contention of the CRCW PRAM step; in this emulation, the value of k is
not known to the emulating algorithm.

Due to space constraints, many of the details are omit ted and can be found
in the full paper [GMR96c].

281

2 The QRQW Asynchronous P R A M

In this section, we present the definition of the QRQW ASYNCHRONOUS PRAM
model, and some observations on the algorithmic power of the model.

A variety of ASYNCHRONOUS PRAM models have been studied in the literature
(c.f. [Gib89, CZ89, MPS92, Nis90, And02]). These models account for contention
in a manner most like a CRCW PRAM, with no penalty assessed for large con-
tention to a location. 3 An EREW contention rule was not considered, since most
asynchronous algorithms cannot avoid scenarios in which concurrent reading or
writing occur. Since most existing parallel machines permit contention, but at
a cost, the QRQW rule is a better choice for an asynchronous model than either
the CRCW or the EREW rule.

The QRQW rule can be incorporated into these previous models in a natural
way. Instead, we define what we believe to be a better model for asynchronous
parallel machines.

2.1 The model

An important feature of the QRQW ASYNCHRONOUS PRAM model is that the
model separates correctness issues from analysis issues: Algorithms must be cor-
rect under worst case assumptions on the finite delays incurred by the proces-
sors and in processing memory requests, but the running times of algorithms
are analyzed using an optimistic (synchronous) time metric. We elaborate on
the correctness issues and analysis issues below, and then proceed to define the
model.

Functionality and correctness. A shared memory multiprocessor supports
a consistency condition on its memory system. The most widely-used memory
consistency condition is sequential consistency [Lain79, ABM93], in which the
memory system appears to be a serial memory, processing one read or write at a
time, in an order consistent with the individual program orders at each processor.
The SGI Challenge and the (now defunct) KSR machines are examples of mul-
tiprocessors supporting sequential consistency. Relaxed consistency conditions
such as release consistency [GLL+90, GMG91] support sequential consistency
for PL programs; these are programs with two types of accesses, synchroniza-
tion and data, such that there are no race conditions between data accesses.
The Stanford DASH machine and the Tera MTA are examples of multiproces-
sors supporting release consistency. In the QRQW ASYNCHRONOUS PRAM, the
memory system is assumed to be sequentially consistent. As any program can
be made PL by labeling sufficiently many accesses as "synchronization", our
algorithms will work as well on machines providing release consistency.

Typically, the only other guarantee on inter-processor communication pro-
vided by a real multiprocessor is that no request is delayed indefinitely. (We

a For example, models based on "time slots" permit an arbitrary number of
reads/writes to a location in one time slot. Models based on "interleaving" or
"rounds" charge the same for an interleaving of reads/writes to the same address as
for an interleaving of reads/writes to different addresses.

282

are assuming that the multiprocessor is executing without failures.) Thus algo-
r i thms must be correct under worst case assumptions on the delays incurred by
processors and in processing memory requests, and the QRQW ASYNCHRONOUS
PRAM reflects this reality.

Most asynchronous shared memory models of computat ion assume that a
processor can have at most one pending memory request at a t ime (e.g. [CZ89,
MPS92, Nis90, And92, DHW93]). 4 On the other hand, high-performance shared
memory machines such as the Tera MTA permit the pipelining of memory ac-
cesses by a processor, in order to amortize the round-trip t ime to memory over a
collection of accesses. In the QRQW ASYNCHRONOUS PRAM, pipelining of memory
accesses is permitted; a processor may have multiple shared memory operations
in progress at a time. A formal definition of a sequentially consistent shared
memory that permits pipelining is given by Gibbons and Merritt [GM92].

Each processor has a private local memory, and the following types of instruc-
tions: local operations, shared memory reads, shared memory writes, and shared
memory Test&Set operations. A Test&Set operation reads and returns the old
value and writes a 1; the location is assumed to be initialized to 0. Other syn-
chronization constructs such as barriers can be constructed using shared memory
reads, writes, and Test&;Sets.

A n a l y s i s . In defining how algorithms are analyzed in the model, the QRQW
ASYNCHRONOUS PRAM aims for a simple cost model that captures impor tant re-
alities of multiprocessors. As in Gibbons ' ASYNCHRONOUS PRAM model [Gib89],
our cost model assumes that processors issue instructions at the same speed, as
this is presumed to be the typical scenario in a multiprocessor. A local operation
takes unit time.

There is a FIFO queue associated with each memory location; only the re-
quest at the head of the queue is processed in a step. Thus requests to a location
can pile up, causing a delay in their processing. If k processors issue a request
to the same location at step t of an algorithm, and the queue for this location is
empty at the beginning of step t, then one such request completes step t, another
step t + 1, another step t + 2, and so forth, until the last one completes at step
t + k - 1. If additional requests to the location arrive before step t + k - 1, these
are appended to the tail of the queue: if there are two such requests, they will
complete at steps t + k and t + k + 1, respectively, regardless of the exact step
at which they are requested.

Note tha t the cost model makes optimistic assumptions on the delays encoun-
tered by shared memory requests, e.g. that requests issued earlier are queued
before requests issued later; these assumptions are not a part of the correctness
model. The philosophy behind models in which analysis makes optimistic as-
sumptions while correctness does not is that (1) it makes sense to measure the
complexity of an algorithm according to a typical performance of a machine,
since this reflects directly in real life efficiency, while (2) we must be strict and
assume worst case situations for correctness, since otherwise a single unexpected
event may cause the entire computat ion to fail.

4 Note that when all memory accesses take unit time in a model, there is no need for
pipelining.

283

M o d e l d e f i n i t i o n . The QRQW ASYNCHRONOUS PRAM model consists of a col-
lection of processors operating asynchronously and communicating via a global
shared memory. The shared memory is sequentially consistent and supports the
pipelining of memory requests by processors (i.e. each processor is permi t ted to
have multiple pending shared memory requests; see [GM92] for a formal defi-
nition). Each processor has a private local memory, and the following types of
instructions: RAM operations involving only its private state and private mem-
ory, requests to read the contents of a shared memory location into a private
memory location, requests to write the contents of a private memory location
to a shared memory location, and requests to perform a Test&Set operation on
a shared memory location. A processor can execute any of the shared memory
requests and continue without waiting for them to complete (pipelining). How-
ever, the first subsequent RAM operation that uses the result of such a shared
memory request will wait for the value to be returned. Algorithms must be cor-
rect under worst case assumptions on the finite delays incurred by processors
and in processing memory requests.

Time is defined as follows. There is a FIFO queue associated with each
memory location. A single t ime step consists of two substeps:

1. Each processor issues an instruction. Local operations complete this step.
Shared memory requests are appended to the tails of the queues for the
requested locations, with requests to the same location enqueued in an ar-
b i t rary order.

2. Shared memory requests at the head of nonempty queues are dequeued and
performed (at most one per queue), and either a return value or an acknowl-
edgement is received by the processor responsible for the request.

Work is defined as the time-processor product.
Some comments on the definition follow. Because an algorithm must be cor-

rect regardless of the delays, a processor can not safely "time-out" after a cer-
tain period of t ime or a certain amount of polling and assume tha t no further
reads/wri tes to a location are forthcoming. A processor can not make inferences
on the queue length encountered based on the delay incurred. Once issued, a
memory request can not be withdrawn; a processor has not completed its par-
t icipation in an algori thm until all of its memory requests have been processed.

In addition to the QRQW ASYNCHRONOUS PRAM model, one can also define
hybrid models such as the CRQW ASYNCHRONOUS PRAM, which permits unit
t ime concurrent reading but applies the above queue rule for concurrent writing.
The stronger CRQW ASYNCHRONOUS PRAM model is used primari ly to prove
stronger lower bounds.

Two other asynchronous models of parallel computat ion that focus on con-
tention are the atomic message passing model of Liu, Aiello and Bhat t and
the "stall" model of Dwork, Herlihy and Waarts. These interesting models were
developed independently of the QRQW ASYNCHRONOUS PRAM and differ in sev-
eral impor tan t ways. The atomic message passing model [LAB93] is a message-
passing model in which messages destined for the same processor are serviced
one-at -a- t ime in an arbi trary order. The m o d e l p e r m i t s general asynchronous
algorithms, but each processor can have at most one message outstanding at

284

a time. Dwork, Herlihy and Waarts [DHW93] defined an asynchronous shared
memory model with a stall metric: If several processes have reads or writes
pending to a location, v, and one of them receives a response, then all the oth-
ers incur a stall. Hence the charge for contention is linear in the contention,
with requests to a location being serviced one-at-a-time. Their model permits
general asynchronous algorithms, but each processor can have at most one read
or write outstanding at a time. Unlike their model, the QRQW ASYNCHRONOUS
PRAM model captures directly how the contention delays the overall running
t ime of the algorithm, and are proposed as alternatives to other PRAM models
for high-level algorithm design.

2.2 P r e l i m i n a r y o b s e r v a t i o n s

The computational power of the QRQw PRAM and the QRQW ASYNCHRONOUS
PRAM are incomparable: the QRQW PRAM has the advantage of free global syn-
chronization, but is restricted to bulk-synchronous operation. The naive simula-
tion of the QRQW PRAM on the QRQW ASYNCHRONOUS PRAM performs a barrier
synchronization at each step, at a cost of O(lgp) for p processors per barrier.
The goal in adapting algorithms designed for the QRQW PRAM to the QRQW
ASYNCHRONOUS PRAM is to make do with less synchronization so as to maintain
the same complexity bounds.

It turns out that many of the algorithms we developed for the QRQW PRAM

algorithms in [GMR96b, GMR96a] can be adapted to the QRQW ASYNCHRO-

NOUS PRAM to run with the same work-time bounds. Details of these results
can be found in [GMR96c]. In particular, we mention here that the QRQW PRAM

algorithm for multiple compaction can be adapted to the QRQW ASYNCHRONOUS

PRAM to run with the same bounds of linear work and logarithmic time. This
result is used in Section 4.

Even more interesting than adapting QRQW PRAM algorithms to the QRQW
ASYNCHRONOUS PRAM are examples of algorithms for the QRQW ASYNCHRONOUS
PRAM that achieve better t ime bounds than the best known QRQW PRAM algo-
rithms. Such algorithms exploit the computational advantage the QRQw ASYN-

CHRONOUS PRAM has by not being restricted to bulk-synchronous operation. In
the remainder of this paper, we discuss three such examples.

3 L e a d e r e l e c t i o n a n d c o m p u t i n g t h e O R

Given a Boolean array of n bits, the oR function is the problem of determining
if there is a bit with value 1 among the n input bits. The leader election problem
is the problem of electing a leader bit from among the k out of n bits that are 1
(k unknown). The output is the index in [1..n] of the bit, if k > 0, or 0, if k = 0.
This generalizes the oR function, as long as k = 0 is possible.

By having each processor whose input bit is 1 write the index of the bit in
the output memory cell, we obtain a simple deterministic QRQW ASYNCHRONOUS
PRAM algorithm for leader election (and similarly for the oR function) that runs
in max{l , k} time using n processors, where k is the number of input bits that
are 1 (k unknown). This is a fast algorithm if we know in advance that the value

285

of k is small. However, for the general leader election problem, a better algorithm
is to mimic the EREW PRAM parallel prefix algorithm to compute the location of
the first 1 in the input; since only pairwise synchronizations are used, this takes
O(lgn) t ime and O(n) work on a QRQW ASYNCHRONOUS PRAM.

In this section, we present a faster (O(lg n/lglg n) time) deterministic QRQW
ASYNCHRONOUS PRAM algorithm for leader election and computing the oR func-
tion, and a matching lower bound for the stronger CRQW ASYNCHRONOUS PRAM.
A similar algorithm was found independently by Armen and Johnson [A J96].

T h e o r e m l . There is a deterministic QRQW ASYNCHRONOUS PRAM algorithm
for the leader election problem (and the oR function) that runs in O(lg n~ lg lg n)
time and linear work.

Proof. Let s = lg n/ lg lg n. We describe the algorithm for n/s processors. Each
processor is assigned s inputs, and elects as leader the first 1-input among its
inputs (if any). Consider a s-ary tree, T, with one leaf per processor, with each
location corresponding to a node in T initialized to zero. Each processor that
elected a leader begins to greedily traverse the path in T from its leaf to the
root. At each node on the path, it a t tempts to claim the node using a T E S T ~ S E T

operation. If it returns a zero, the processor has succeeded in claiming the node,
and it continues on to the next node in its path. Else it drops out. The leader
elected is according to the processor claiming the root node. No processor spends
more than s steps being the first in the queue for a node (and hence claiming
the node) and no more than s steps stuck in the queue for a node (when it drops
out). Thus the time is O(s) as claimed. �9

We can derive a matching/2(lg n~ lg lg n) lower bound for the OR function
on the (more powerful) cRqw ASYNCHRONOUS PRAM using a lower bound result
of Dietzfelbinger, Kutylowski and Reischuk [DKR94] for the few-write PRAM.
Recall tha t the few-write PRAM models are parameterized by the number of
concurrent writes to a location permitted in a unit-time step. (Exceeding this
number is not permitted.) Let the n-write PRAM denote the few-write PRAM
model that permits concurrent writing of up to ~ writes to a location, as well as
unlimited concurrent reading. The proof of the following lemma is omit ted due
to space limitation. It can be found in [GMR96c].

L e m m a 2. A p-processor cRQw ASYNCHRONOUS PRAM deterministic algorithm
running in time t can be emulated on a p-processor t-write PRAM in time O(t).

The above lemma leads to the following theorem that gives the desired lower
bound.

T h e o r e m 3 . Any deterministic algorithm for computing the oR function on
a CRQW ASYNCHRONOUS PRAM with arbitrarily many processors requires
~2(lg n~ lglg n) time.

Proof. Dietzfelbinger, Kutylowski and Reischuk [DKR94] proved an/2(lg n~ lg to)
lower bound for the OR function on the n-write PRAM. Let T be the t ime
for the oR function on the r ASYNCHRONOUS PRAM. Then by Lemma2,
the oR function can be computed on the T-write PRAM in O(T) time. Thus
T e /2 (l g n~ lg T), and hence T E/2(lg n~ lg lg n).

286

4 S o r t i n g

We consider the problem of general sorting, i.e. sorting an array of n keys from
a totally-ordered set. On the EREW PRAM, there are two known O(lgn) time,
O(n lg n) work algorithms for general sorting [AKS83, Co188]; these deterministic
algorithms match the asymptotic lower bounds for general sorting on the EREW
and CREW PRAM models. Unfortunately, these two algorithms are not as simple
and practical as one would like.

Another relatively simple parallel sorting algorithm is a randomized x/~-
sample sort algorithm for the CREW PRAM that runs in O(lg n) time, O(n lg n)
work, and O(n 1+~) space [Rei85]. This algorithm consists of the following high-
level steps: (1) randomly sample v ~ keys, (2) sort the sample by comparing all
pairs of keys, (3) each item determines by binary search its position among the
sorted sample and labels itself accordingly, (4) sort the items based on their labels
using integer sorting, and (5) recursively sort within groups with the same label.
When the size of a group is at most lg n, finish sorting the group by comparing
all pairs of items.

In an earlier paper [GMR96a] we build on this V~-sample sort algori thm
and obtained an O(lg 2 n/lglg n) time, O(n lg n) work, O(n) space randomized
sorting algorithm, on the QRQW PRAM.

In this section, we present a simple sorting algorithm on the QRQW ASYN-

CHRONOUS PRAM that runs in O(lgn) time with O(nlgn) work w.h.p. The
algorithm is almost the same as the O(n lgn)-work algorithm for the QRQw
PRAM given in [GMR96a], but we are able to bring down the running time from
O(lg 2 n~ lg lg n) to O(lg n) by making effective use of asynchrony. In particular we
analyze the progress of elements through the binary search fat-trees and establish
that the time taken by all elements to proceed through the binary search fat trees
at all recursive levels is O(lg n) w.h.p. Our algorithm uses O(n lg n) space.

We start by reviewing the high-level algorithm, which is the same for the
QRQW PRAM and the QRQW ASYNCHRONOUS PRAM.

Algo r i t hm .4.
Let c be any constant such that 0 < e < 1/2. Let n -- no be the number of

input items, and for i _> 1, let ni (1 + 1/lgn) �89 = �9 hi_ 1 . W.h.p., ni is an upper
bound on the number of items in each subproblem at the ith recursive call to
,4 [GMR96a].
For subproblems at the ith level of recursion:

1. Let S be the set of at most ni items in this subproblem. Select in parallel
x / ~ items drawn uniformly at random from S.

2. Sort these sample items by comparing all pairs of items, using summation
computations to compute the ranks of each item, and then storing the items
in an array B in sorted order. Move every (n~)th item in B to an array B ~.

3. For each item v E S, determine the largest item, w, in B ~ that is smaller
than v, using a binary search on B ~. Label v with the index of w in B ~.

4. Place all items with the same label into a subarray of size O(n~/2+~) desig-
nated for the labeli using "heavy" multiple compaction [GMR96a]. W.h.p.,
the number of items with the same label is at most ni+l and thus the heavy

287

multiple compaction succeeds in placing all items in each such group into its
designated subarray.

5. Recursively sort the items within each group, for all groups in parallel. When

ni+l is at most 20g n)1/2, finish sorting the group using the EREW PRAM

bitonic sort algorithm [3s This cut-off point suffices for n sufficiently

for general n, the cut-off point ismax~2(lgn)i/~,lgCn~, f o r e > 6 / c a large;

suitable constant.

In step 4 we use a heavy multiple compaction algorithm which reports failure if
a set size exceeds its upper bound count [GMR96a]. If failure is reported for any
subproblem, we restart the algorithm from the beginning.

To implement Algorithm .4 on a QRQW PRAM or QRQW ASYNCHRONOUS
PRAM, we must incorporate techniques that use only low-contention steps. The
main obstacle is step 3, in which each item needs to learn its position relative to
the sorted sample. A straightforward binary search on B' would encounter O(n)
contention. Instead, we employed the following data structure:

B i n a r y s e a r c h f a t - t r e e . In a binary search fat-tree, there are n copies of the
root node, n/2 copies of the two children of the root node, and in general, n/2J
copies of each of the 2J distinct nodes at level j down from the root of the tree.
The added fatness over a traditional binary search tree ensures that, if n searches
are performed in parallel such that not too many searches result in the same leaf
of the (non-fat) tree, then each step of the search will encounter low contention.

The process of fattening a search tree can be done in O(lgn) t ime and
O(n lg n) work using binary broadcasting.

In the case of our QRQW ASYNCHRONOUS PRAM sorting algorithm, at the ith
level of recursion we make 213ni copies of the median splitter, 213ni/2 copies of

the 1/4 and 3/4 splitters, and so forth, down to 213n~/2+" copies of the n~/2-~
splitters in the leaves of the tree, for 13 > 2 a suitable constant. We will continue
to call this a 'binary search fat-tree' although the number of copies in each level
differs by a constant factor from the number in the original definition.

The key to our O(lgn) time implementation of algorithm .4 on the QRQW
ASYNCHRONOUS PRAM is that, in the QRQW ASYNCHRONOUS PRAM, processors
can proceed through the binary search fat-tree at their own pace. To obtain our
result, we show that for each element, the sum of the contentions it encounters
during the binary search process is O(lg n), as shown below.

L e m m a 4 . Let t3 > 2, c > 13- 1, a > O, and ~ = lgc/lg(13/2). Let xl ,xm
be independent random variables over the positive integers so that P r (xi = u) <_
c13 -~ for all u > O. Let Srn = xl + " " + Xm, for m > 1 and So = O. Then,

P r (S m > _ c ~ m + a) < (~) -a (1)

Proof. The proof is by induction on m.

The base case i s m = 0 : I f a = 0 t h e n P r (S 0 > a) = 1 = I f a > 0

t h e n P r (S o > a) = O < (~) -~.

288

We assume inductively that (1) holds for m - 1 and proof the induction step
for m > 0.

P r (S m >c~m+a)= ~ Pr(xm=iASm-l >am+a-i)
i=-c~

oo
by independence E P r (x m = i) . P r (S ~ _ I >_am+a-i)

i=-oo
(~--l)mWa+l

since ~i > 0 E Pr (xm=i) 'Pr (Sm-1 > a m + a - i)
i=1

by assumption (a-1)m+a+l
< E c~ -!. P r (S m - 1 >_ crm+ a - i)

i=1
(a-1)m+a+l

~-- E c ~ - i . P r (S m _ l) a (m - 1) + a W c ~ - i)
i=1

by induction__~ (a--1)m+a+lE C]~-i" (~) (aq-a .)

i=1
--a --a (a-- 1)m+a+l i

i=1

i=1

< .C.

c~=lgc/lg(~/2)~ (~) - a

Consider an input element e in the sorting algorithm. Let xi,j be the number
of other elements accessing the same memory location as the location accessed
by e in the ith step of the search through the binary search fat tree in the j th
level of re cursion, i = 1 , . . . , lg n j /2 , j = 0 , . . . , co lg lg n, where co is chosen so
that co lg lg n corresponds to the last level of recursion before we switch to bitonic
sort.

L e m m a 5 . There exist ~ > 2 and c > f l - 1 such that for i = 1 , . . . , l gn j /2 ,
j = 0 , . . . , c 0 1 g l g n , Pr(x i , j > u) < c~ -u for allu > O.

Proof. Let n' be the number of elements in the subproblem. W.h.p., n' <_ 2nj.
Also, size of the fat tree array for the ith level is 2 �9]~nj. We choose fl > 2 and
e : ~ .

Pr(z i , j >_ u) <_ C(n',u)(1/2flnj) ~ w.h.p.

289

< ((2nj) '`/ul)(1/2/3nj) '` = (1/ul)(1//3)'` < c . /3 - "

We now consider the cumulative delay of any element through fat trees at
all levels of recursion.

L e m m a 6 . The cumulative delay of any element through fat trees at all levels
of recursion is O(lg n) w.h.p.

Proof. Consider an element k in a subproblem in the j th level of recursion. Let
Yi = xi,j be the contention of element k in the /th level of the fat tree in this
subproblem. By Lemma 5, P r (Yi > u) < /3./3-'` (where we have set c = /3).
This assumes that the splitters are good, which is true w.h.p. We also assume

> 2.
The delay of element k through all levels of the fat tree in the subproblem at

~--~lg n j the j t h level of recursion is z_~=l Yi. Let c~ = lg/3/1g(/3/2). Then, by Lemma 4 _/""')
P r ~(/--~1Yi) > (a + 2) lgnj + a < (/~/2) -(a+21gnj)

Let rj be the time for all elements in the subproblem to complete their search
through the fat tree in a subproblem at level j .

P r (7-j > c~lgnj + a) < n j . (t~/2) -(a+21gnj) < (1~/2) -(a+lgnj)

The cumulative delay for element k through all levels of reeursion is tk =

E co lg lg n j=l rj.
~'~Co lg lg n t Let rj = rj - a l g n j . Let t~ = z-,j=1 rj. Thus

Co l g l g n Co l g l g n Co l g l g n

t k = E rj = E r j + E (a l g n j) < (w . h . p .) t ~ + 2 a l g n .
j = l j=l j = l

Now,

P r (rj > a) < (/3/2) -a

and by Lemma 4, we have

P r (t~ > ac0 lg lg n + a) < (fl/2) -a

and therefore

P r (t~ > a c o l g l g n + b . l g n) < (/3/2) -big" < n -b

since fl > 4. This implies that

P r (3 t t > c~c0 lg lgn + (b+ 2a) lgn) < n - (b-D .

Thus the cumulative delay of any element through fat trees at Ml levels of
recursion is O(lg n) w.h.p. �9

Hence the QRQW ASYNCHRONOUS PttAM sorting algorithm terminates in
O(lg n) time w.h.p.

290

5 Emulat ing Fetch&Add P R A M on Q R Q W
Asynchronous PRAM

The FETCH~ADD PRAM model [GGK+83, Vis83] is a strong, non-standard vari-
ant of the CRCW PRAM. In this model, if two or more processors a t t empt to
write to the same cell in a given step, then their values are added to the value
already written in the shared memory location and all prefix sums obtained
in the (virtual) serial process are recorded. The FETCH~SADD PRAM is strictly
stronger than the standard variants of the CHCW PRAM.

In this section we give an emulation of one FETCH~iADD PRAM step on a
QRQW ASYNCHRONOUS PRAM that takes sub-logarithmic t ime for modera te con-
tention. Our emulation result is:

T h e o r e m 7. One step of an n-processor FETCH~SADD PRAM, and hence of an
n-processor CRCW PRAM, c a n be emulated on an n-processor QRQW ASYNCHRO-
NOUS PRAM in O(lgn / lg lgn + lgk) time with high probability, where k is the
maximum contention (k unknown).

The emulation algorithm can be found in the full paper [GMR96e].

6 Conclusions

In this paper we have defined the QRQW ASYNCHRONOUS PRAM and presented
some algorithmic results for the model. In particular, we have shown two in-
stances in which we have better algorithms for the QRQW ASYNCHRONOUS PRAM
than those known for the QRQW PRAM. The first is for computing the OR of n
bits for which we described a simple deterministic linear work algorithm that
runs in O(lg n~ lglg n) time; we also showed that this bound is tight. In con-
trast, no deterministic sub-logarithmic t ime algorithm for this problem is known
for the QRQW PRAM. The second result is an implementat ion of the randomized
sample sort algorithm that runs in O(lg n) t ime and O(n lg n) work on the QRQW
ASYNCHRONOUS PRAM; the fastest implementat ion known for this problem on
the QRQW PRAM runs in O(lg 2 n / lg lgn) time. Full details of these results and
others reported in this paper, including adaptat ion of several QRQW PRAM al-
gori thms to the QRQW ASYNCHRONOUS PRAM with the same work-time bounds
and a simulation of a FETCH~;ADD PRAM on the QRQW ASYNCHRONOUS PRAM,
may be found in [GMR96c].

Additional results for the QRQW ASYNCHRONOUS PRAM can be found in a
recent paper by Adler [Adl96]. Tha t paper presents interesting results on low-
contention search structures, beyond the binary search fat tree considered in this
paper.

One interesting direction for future work is to develop a good emulation of
the QRQW ASYNCHRONOUS PRAM on a distributed memory machine such as the
BsP. In [GMR96b] we presented an opt imal work emulation of the QRQW PRAM
on the HSP with only a logarithmic slowdown. It appears that the s t rategy used
in that emulat ion does not carry over directly to the QRQW ASYNCHRONOUS
PRAM and new insights are needed. Alternatively, one could consider developing
good emulat ion results by imposing suitable restrictions on the QRQW ASYN-
CHRONOUS PRAM.

291

R e f e r e n c e s

[ABM93]

[Ad196]

[A J96]

[AKS83]

[And92]

[BGMZ95]

[Co188]

[CZ89]

[DHW93]

[DKR94]

[GGK+83]

[Gib89]

[GLL+90]

[GM92]

[GMG91]

[GMR93]

[GMR96a]

Y. Afek, G. M. Brown, and M. Merritt. Lazy caching. ACM Trans. on
Programming Languages and Systems, 15(1):182-205, 1993.
M. Adler. Asynchronous shared memory search structures. In Proc. 8th
ACM Syrup. on Parallel Algorithms and Architectures, June 1996. To ap-
pear.
C. Armen and D. B. Johnson. Deterministic leader election on the Asyn-
chronous QRQW PRAM. Parallel Processing Letters, 1996. To appear.
M. Ajta~, J. Komlos, and E. Szemeredi. Sorting in clgn parallel steps.
Combinatorica, 3(1):1-19, 1983.
R. J. Anderson. Primitives for asynchronous list compression. In Proc.
4th ACM Syrup. on Parallel Algorithms and Architectures, pages 199-208,
June-July 1992.
G. E. Blelloch, P. B. Gibbons, Y. Matias, and M. Zagha. Accounting for

memory bank contention and delay in high-bandwidth multiprocessors. In
Proc. 7th ACM Syrup. on Parallel Algorithms and Architectures, pages 84-
94, July 1995.
R. Cole, Parallel merge sort. SIAM Journal on Computing, 17(4):770-785,
1988.
R. Cole and O. Zajicek. The APRAM: Incorporating asynchrony into the
PRAM model. In Proc. Ist ACM Syrup. on Parallel Algorithms and Archi-
tectures, pages 169-178, June 1989.
C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algo-
rithms. In Proc. 25th ACM Syrup. on Theory of Computing, pages 174-183,
May 1993.
M. Dietzfelbinger, M. Kutytowski, and R. Reischuk. Exact lower time
bounds for computing boolean functions on CREW PRAMs. Journal of
Computer and System Sciences, 48(2):231-254, 1994.
A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAuliffe, L. Rudolph, and

M. Snir. The NYU Ultracomputer - designing an MIMD shared memory
parallel computer. IEEE Trans. on Computers, C-32(2):175-189, 1983.
P. B. Gibbons. A more practical PRAM model. In Proc. 1st ACM Syrup.
on Parallel Algorithms and Architectures, pages 158-168, June 1989. Full
version in The Asynchronous PRAM: A semi-synchronous model/or shared
memory MIMD machines, PhD thesis, U.C. Berkeley 1989.
K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory consistency and event ordering in scalable shared-
memory multiprocessors. In Proc. 17th International Syrup. on Computer
Architecture, pages 15-26, May 1990.
P. B. Gibbons and M. Merritt. Specifying nonblocking shared memories.
In Proc. 4th ACM Syrup. on Parallel Algorithms and Architectures, pages
306-315, June-July 1992.
P. B. Gibbons, M. Merritt, and K. Gharachorloo. Proving sequential con-
sistency of high-performance shared memories. In Proc. 3rd ACM Syrup. on
Parallel Algorithms and Architectures, pages 292-303, July 1991.
P. B. Gibbons, Y. Matias, and V. Ramachandran. QRQW: Accounting
for concurrency in PRAMs and Asynchronous PRAMs. Technical report,
AT&T Bell Laboratories, Murray Hill, N J, March 1993.
P. B. Gibbons, Y. Matias, and V. Ramachandran. Efficient low-contention
parallel algorithms. Journal ol Computer and System Sciences, 1996. To

292

[GMR96b]

[GMR96c]

[Js

[KR90I

[LAB93]

[Lam79]

[MPS92]

[Nis90]

[Rei85]

[Rei93]

[Smi95]

[Vis83]

appear. Preliminary version appears in Proc. 6th A C M Syrup. on Parallel
Algorithms and Architectures, pages 236-247, June 1994.
P.B. Gibbons, Y. Matins, and V. Ramachandran. The Queue-Read
Queue-Write PRAM model: Accounting for contention in parallel algo-
rithms. SIAM Journal on Computing, 1996. To appear. Preliminary version
appears in Proc. 5th A C M - S I A M Syrup. on Discrete Algorithms, pages 638-
648, January 1994.
P.B. Gibbons, Y. Matins, and V. Ramachandran. The queue-read queue-
write asynchronous PRAM model. Technical report, Bell Laboratories,
Murray Hill, N J, and Dept. of Comp. Sci., Univ. of Texas, Austin, TX,
June 1996.
J. Js163 An Introduction to Parallel Algorithms. Addison-Wesley, Reading,
MA, 1992.
R. M. Karp and V. Ramachandran. Parallel algorithms for shared-memory
machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume A, pages 869-941. Elsevier Science Publishers B.V., Ams-
terdam, The Netherlands, 1990.
P. Liu, W. Aiello, and S. Bhatt. An atomic model for message-passing. In
Proc. 5th A CM Syrup. on Parallel Algorithms and Architectures, pages 154-
163, June-July 1993.
L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs. IEEE Trans. on Computers, C-28(9):690-691,
1979.
C. Martel, A. Park, and R. Subramonian. Work-optimal asynchronous al-
gorithms for shared memory parallel computers. S I A M Journal on Com-
puting, 21(6):1070-1099, 1992.
N. Nishimura. Asynchronous shared memory parallel computation. In
Proc. Pnd A CM Symp. on Parallel Algorithms and Architectures, pages 76-
84, July 1990.
R. Reischuk. Probabilistic parallel algorithms for sorting and selection.
S l A M Journal on Computing, 14(2):396-409, May 1985.
J. H. Reif, editor. A Synthesis of Parallel Algorithms. Morgan-Kaufmann,
San Mateo, CA, 1993.
B. Smith. Invited lecture, 7th A C M Syrup. on Parallel Algorithms and Ar-
chitectures, July 1995.
U. Vishkin. On choice of a model of parallel computation. Technical Re-
port 61, Department of Computer Science, Courant Institute of Mathemat-
ical Sciences, New York University, 251 Mercer St., New York, NY 10012,
1983.

