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ABSTRACT

Context. The quiet Sun magnetic field probability density function (PDF) remains poorly known. Modeling this field also introduces
a magnetic filling factor that is also poorly known. With these two quantities, PDF and filling factor, the statistical description of the
quiet Sun magnetic field is complex and needs to be clarified.
Aims. In the present paper, we propose a procedure that combines direct determinations and inversion results to derive the magnetic
field vector and filling factor, and their PDFs.
Methods. We used spectro-polarimetric observations taken with the ZIMPOL polarimeter mounted on the THEMIS telescope. The
target was a quiet region at disk center. We analyzed the data by means of the UNNOFIT inversion code, with which we inferred the
distribution of the mean magnetic field αB, α being the magnetic filling factor. The distribution of α was derived by an independent
method, directly from the spectro-polarimetric data. The magnetic field PDF p(B) could then be inferred. By introducing a joint PDF
for the filling factor and the magnetic field strength, we have clarified the definition of the PDF of the quiet Sun magnetic field when
the latter is assumed not to be volume-filling.
Results. The most frequent local average magnetic field strength is found to be 13 G. We find that the magnetic filling factor is related
to the magnetic field strength by the simple law α = B1/B with B1 = 15 G. This result is compatible with the Hanle weak-field
determinations, as well as with the stronger field determinations from the Zeeman effect (kGauss field filling 1–2% of space). From
linear fits, we obtain the analytical dependence of the magnetic field PDF. Our analysis has also revealed that the magnetic field in the
quiet Sun is isotropically distributed in direction.
Conclusions. We conclude that the quiet Sun is a complex medium where magnetic fields having different field strengths and filling
factors coexist. Further observations with a better polarimetric accuracy are, however, needed to confirm the results obtained in the
present work.
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1. Introduction

The solar magnetic field is divided into two classes: the network
field, and the internetwork field. The network field is the one of
sunspots and active regions (plages or faculae), but it appears
also in quiet regions as pepper-and-salt grains scattered in lon-
gitudinal magnetograms, indicating a stronger field than in their
surroundings. These grains delineate the frontiers of a network

⋆ Based on observations made with the French-Italian telescope
THEMIS operated by the CNRS and CNR on the island of Tenerife
in the Spanish Observatorio del Teide of the Instituto de Astrofísica de
Canarias.
⋆⋆ Present address: Instituto de Astrofísica de Canarias, vía Láctea s/n,
38205 La Laguna, Tenerife, Spain.

of so-called supergranules, each supergranule having a width of
about 30 000 km. The internetwork field lies inside the super-
granules. A map of spectropolarimetric data, including active
and quiet regions (and a filament) was analyzed by Bommier
et al. (2007) in terms of vector magnetic field, by applying the
UNNOFIT inversion code. It was found that these two classes
of magnetic fields are characterized by different field strengths
and directions: while the network field is found rather vertical
with a field strength of 100 G or higher (spatially averaged), the
internetwork is found to be far weaker (in spatial average) and
turbulent in direction. In quiet regions, the solar magnetic field
appears then as vertical “trees” standing in places (on the su-
pergranules frontiers) out of the “carpet” of the turbulent inter-
network field.
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However, the internetwork magnetic field had already been
investigated. The first attempt to measure the internetwork field
comes from Stenflo (1982), who established the first and found-
ing results: some lines observed near the solar limb are found
linearly polarized, and this polarization stems from radiative
scattering near the surface, because the incident radiation is
anisotropic due to limb darkening. But the observed polarization
degree is found to be lower than the theoretical one in a pure
scattering model. Thus, Stenflo was led to introduce a possible
magnetic depolarization, the Hanle effect. Stenflo (1982) evalu-
ates the order of magnitudes, resulting in the range 10–100 G for
the internetwork field strength. This order of magnitude was later
confirmed by a detailed theoretical calculation by Faurobert-
Scholl (1992). The Hanle effect is sensitive to the magnetic
field strength when the Larmor pulsation ω is comparable to the
upper-level inverse lifetime τ−1, i.e. when ωτ ∼ 1. For permitted
visible lines where τ ∼ 10−7–10−8 s (in the UV or IR domains,
this order of magnitude differs), this leads to B ∼ 1–10 G. For
100 times higher field strengths, the Hanle effect saturates and
only the sensitivity to the field direction remains. In the Hanle
field range, the sensitivity of the Zeeman effect is weak, and the
Hanle effect observed in visible lines is then revealed as the well-
adapted tool for the weak field measurements. Moreover, the
rotation of the polarization direction, which would also be ob-
served for the Hanle effect in a deterministic field, has remained
undetectable, leading Stenflo to conclude that there is a turbulent
field (in direction). As the Hanle effect is highly nonlinear, it is
also well-adapted to the detection of a turbulent field, whereas
the Zeeman effect would remain globally insensitive because it
is linear.

Later on, however, strong kG fields were also detected in
quiet regions (Grossmann-Doerth et al. 1996), on small scales,
smaller than the resolution element. Thus, a magnetic filling fac-
tor α < 1 was to be introduced to interpret the observations, as
earlier done in the network case (Stenflo 1973). And, time pass-
ing, the spatial resolution of both ground-based (VTT, THEMIS)
and spaceborne (HINODE) instruments increased, raising the
possibility of Zeeman detection of the weak fields. The IR win-
dow opened also, where the Zeeman effect is relatively more
sensitive. We provide the references to the related new measure-
ments later on in this paper. But, depending on the presence or
absence of a magnetic filling factor in the models, the situation
seems to us to be rather involved in discussions of the quiet Sun
magnetic field probability density function (PDF), in particular
with respect to its definition and evaluation.

From ground-based telescopes, the spatial resolution of
spectro-polarimetric data is about 0.5−1′′. At this stage, the
only reliable results concerning the magnetic field strength in
the quiet Sun have been performed in the near-IR (Khomenko
et al. 2003; Martínez González et al. 2008a) or by using spectral
lines with hyperfine structure (López Ariste et al. 2006; Ramírez
Vélez et al. 2008) or spectral lines sensitive to the Hanle effect
(Trujillo Bueno et al. 2004, and Refs. therein). The studies us-
ing the visible Fe  6301.5 Å and 6302.5 Å spectral lines, which
show stronger field in the kG range (Socas-Navarro & Sánchez
Almeida 2002; Domínguez Cerdeña et al. 2003a; Socas-Navarro
et al. 2004; Lites & Socas-Navarro 2004), have been put in
doubt (Martínez González et al. 2006; López Ariste et al. 2007;
Khomenko & Collados 2007).

Khomenko et al. (2003) and Martínez González et al.
(2008a) have derived the PDF of the magnetic field on the quiet
Sun using the 1.5 µm Fe  spectral lines. The magnetic field
strengths inferred by both analyses were in the hG regime, with
values around the equipartition field in the photosphere. They

obtained a magnetic field PDF that could be reproduced by a de-
creasing exponential law. This exponential form for the PDF was
then used by Trujillo Bueno et al. (2004, 2006) to interpret sec-
ond solar spectrum observations (from various authors and in-
struments) in terms of Hanle depolarization due to a turbulent
field. From these observations, these authors propose that the
mean magnetic field is 130 G.

The HINODE satellite has provided spectro-polarimetric
data in the 6302.5 Å spectral range with a spatial resolution of
about 0.32′′. The validity of the analysis of this kind of data has
been studied by Orozco Suárez et al. (2007a). The inversion of
quiet Sun HINODE data has resulted in a PDF containing hG
fields, as pointed out by the infrared measurements but in dis-
agreement with the previous 6302.5 Å studies mentioned above
(Orozco Suárez et al. 2007b).

In this paper, we deal with 6302.5 Å spectro-polarimetric
data to infer the magnetic field PDF in the quiet Sun. The obser-
vations were taken with the ZIMPOL polarimeter mounted on
the THEMIS telescope and are described in Sect. 2. To overcome
the difficulties with the 6302.5 Å interpretation, we propose an
analysis procedure that combines the results of the UNNOFIT
inversion code (first step, determination of the local average
field, Sect. 3) and direct observables of the polarized profiles
(second step, direct determination of the magnetic filling fac-
tor, Sect. 4). It is then possible to derive the PDF (Sect. 5), but
we had to return to the basic statistical definitions to clarify the
role played by the magnetic filling factor in the PDF definition
(see also Appendix A). In Sect. 5 we compare our results with
the previous ones, which leads us to clarify the notion of PDF
applied to the quiet Sun magnetic field and to reexamine the
validity conditions of the Fe  6302.5 Å inversion. Our analy-
sis is compatible with previous quiet Sun studies, revealing that
the greater the magnetic field strength the less the filling fac-
tor. We provide analytical fits of our histograms, leading to an
analytical PDF.

Our aim in writing this paper is to get a statistical approach
to the quiet Sun magnetic field and to disentangle the notions of
magnetic field strength distribution and filling factor. Our main
contribution is to directly determine the magnetic filling factor,
which is independent of the data inversion.

2. Observations

The observations were performed on the 5 and 6 July 2008, with
the ZIMPOL polarimeter mounted on the THEMIS telescope
(ZIMPOL II, see Gandorfer & Povel 1997). The aim of these
observations was to investigate the quiet Sun magnetic field at
different atmospheric layers. In this prospect, two ZIMPOL cam-
eras were installed, one observing the Cr  5781.8 Å line (line
center formation height 85 km), and the other one observing
the Fe  6301.5 Å and 6302.5 Å lines (line center formation
height 330 km and 260 km, respectively). We recall that the
ZIMPOL system requires one unmasked pixel every four pixels
of the camera chip. The camera centered on the 6302 Å spec-
tral range was equipped with a microlens system that focuses
the solar light in the unmasked pixel. The 5782 Å camera was
not equipped with this system. The integration time was thus
significantly shorter for the 6302 Å camera. The unmasked pix-
elsize was 0.13 arcsec, but the observation pixelsize results in
0.53 arcsec because of the microlens system. The spectral pixel
was 7.18 mÅ. The slit width was 0.5 arcsec.

The observations were performed with the slit fixed at disk
center. The disk center was quiet. The slit was oriented solar
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Table 1. Information on the averaged data. Each line of the table corre-
sponds to one average.

Date Number of Number of Polarimetric Total
images accumulations accuracy duration

per image (s)
5.7.2008 10 16 2.5E-04 189
5.7.2008 8 16 2.8E-04 151
5.7.2008 8 16 2.8E-04 151
5.7.2008 21 16 1.7E-04 397
5.7.2008 21 16 1.7E-04 397
5.7.2008 9 16 2.6E-04 170
5.7.2008 25 16 1.6E-04 473
5.7.2008 14 16 2.1E-04 265
5.7.2008 19 16 1.8E-04 359
6.7.2008 15 32 1.4E-04 500
6.7.2008 15 32 1.4E-04 500
6.7.2008 15 32 1.4E-04 500

north. The exposure time was 320 ms (per accumulation), but
we determined that 10 accumulations were needed to get a po-
larimetric accuracy of 1 × 10−3. Due to the actuation (camera
readout, analyzer plates rotation), the total duration was 0.9 s
per accumulation. Several accumulations were averaged before
being stored on the disk, the storage process taking about 4.5 s.
Actually, the polarimetric accuracy of 1×10−3 (for 10 accumula-
tions) was insufficient to get a signal in linear polarization, so we
were obliged to average series of images. The polarimetric ac-
curacy level was derived from the noise level along the observed
profiles. The detail of the observations (number of averaged im-
ages, resulting polarimetric accuracy, total duration) is given in
Table 1. On 5 July the TIP-TILT stabilization system was ON,
but some jumps occurred and we averaged the images between
the jumps. On 6 July the TIP-TILT stabilization system was OFF
but the seeing was excellent. We averaged the data by series of
15 images. Such a series corresponds to a total duration of less
than 600 s. We retained this limit because we observed that the
linear polarization signal-to-noise ratio decreases if the total in-
tegration time is longer than the typical granule lifetime, which
is around 600 s. When the TIP-TILT was OFF, no alternative
correction was applied for the seeing effect. We thus got a total
of 12 different observations of the 140 pixels slit, which results
in 1680 observed profiles on which we can perform a statistical
analysis.

The magnetic field values given in the present paper were
derived from the Fe  6302.5 Å observations. The ZIMPOL data
reduction package was used (Gandorfer et al. 2004).

2.1. Evaluation of the line center height of formation

The temperature, electron pressure and gas pressure were taken
from the Maltby et al. quiet Sun photospheric reference model
(Maltby et al. 1986), extrapolated downwards beyond −70 km
to −450 km below the τ5000 = 1 level. Above −70 km, this
model is very similar to the quiet Sun VAL C (Vernazza et al.
1981). The continuum absorption coefficient was evaluated as in
the MALIP code of Landi Degl’Innocenti (1976), i.e. by includ-
ing H− bound-free, H− free-free, neutral hydrogen atom opac-
ity, Rayleigh scattering on H atoms and Thompson scattering
on free electrons. The line absorption coefficient was derived
from the Boltzmann and Saha equilibrium laws, taking the two
first ions of iron into account. The atomic data were taken from
Wiese or Moore and the partition functions from Wittmann.
The iron abundance was assumed to be 7.60 (in the usual

logarithmic scale where the abundance of hydrogen is 12). A
depth-independent microturbulent velocity field of 1 km s−1 was
introduced. Finally, for layers above τ5000 = 0.1, departures from
LTE in the ionization equilibrium were simulated by applying
Saha’s law with a constant “radiation temperature” of 5100 K
instead of the electron temperature provided by the atmosphere
model.

To get the result, the line center optical depth grid was scaled
to the continuum one, by using their respective absorption coef-
ficients. The continuum optical depth grid was the one provided
with the atmosphere model and the transfer equation was not ex-
plicitely solved again. The height of formation of the line center
(the one given above) was then determined as follows. Given the
grid of line center optical depths, the height of formation of the
line center is the one for which the optical depth along the line
of sight is unity (Eddington-Barbier approximation), i.e. the one
for which τ/µ = 1, where τ is the line center optical depth along
the vertical, and µ the cosine of the heliocentric angle θ (here
taken at 0).

3. First step: full Stokes inversion

3.1. Results on the quiet Sun magnetic field strength
and direction

The magnetic field vector was determined by applying the
UNNOFIT inversion (Bommier et al. 2007; Landolfi et al.
1984), which is based on the Milne-Eddington approximation.
A 2-component atmosphere is assumed: one magnetic (with fill-
ing factor α) and one non-magnetic (with filling factor 1 − α).
These two atmospheres are assumed to have all their other pa-
rameters identical, except for the presence/absence of the mag-
netic field. Only the information of the 6302.5 Å spectral line
is taken into account. The four Stokes parameters are inverted
simultaneously. An example of observed profile and the best fit
obtained with UNNOFIT is shown in Fig. 1. In the examination
of the differences between the theoretical and observed profiles
in this figure, it can first be pointed out that the noise level, mea-
surable in the continuum, is non negligible with respect to the
signal order of magnitude, especially in Q/I and U/I. Second, it
has to be considered that the four Stokes profiles are simultane-
ously fitted, by using a rather simple atmosphere model (Milne-
Eddington): thus, departures may not be surprising. However,
we find that the theoretical profile shape corresponds to the ob-
served one, in terms of sign and components. Thus we conclude
that, under the ME hypothesis, we are able to retrieve the field
vector within an uncertainty that is clarified in the following.

The neighboring Fe  6301.5 Å line was also observed, but
its inversion fails in a number of pixels that we estimate too
high. This comes from its lower sensitivity to the magnetic field:
first because its Landé factors are smaller, and second because
it is not a normal Zeeman triplet line (J = 1 ↔ J = 0) con-
trary to 6302.5. Its Zeeman polarization is more entangled along
the spectrum, resulting in a lower global sensitivity. We applied
UNNOFIT2, the inversion code adapted to lines that are not nor-
mal Zeeman triplet and got this unsatisfactory result. Besides,
both lines 6302.5 and 6301.5 could be inverted together, but as
pointed out by Martínez González et al. (2006), they are not
formed at the same depth, on the one hand, and one line is
enough for Milne-Eddington inversion in terms of number of
researched parameters, on the other.

As shown by Bommier et al. (2007), the 2-component in-
version of Fe  6302.5 Å is unable to separately determine the
magnetic filling factor α and the magnetic field strength B, but
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Fig. 1. UNNOFIT fit (dotted line) of a typi-
cal observation (full line). The main spectral
line (centered at pixel 38), that is polarized, is
Fe  6302.5 Å, and the other line, unpolarized,
is a telluric line. 10 pixels are 72 mÅ and blue is
towards the left. Derived magnetic field param-
eters: local average field strength αB 11.7 G,
inclination 115◦ from the line-of-sight, az-
imuth 123◦ from the slit direction which is the
reference axis for the Stokes parameters. The
line strength η0 parameter is found to be 2.6,
and the Doppler width 35.8 mÅ.

Fig. 2. Histogram of the local average longitudinal magnetic field (the
product of the longitudinal magnetic field Bz with the magnetic filling
factor α), from the UNNOFIT inversion.

only their productαB, which we call the “local average magnetic
field strength”. Figures 2–5 display histograms constructed from
the UNNOFIT inversion of the 1680 observed profiles. Figure 2
displays the histogram of the local average longitudinal mag-
negtic field αBz, which is the magnetic flux. The unsigned aver-
age magnetic flux is found to be 11 Mx/cm2. Figure 3 displays
the histogram of the local average magnetic field strength αB for
all the observed profiles. The most probable value is αB = 13 G,
the probability for stronger fields decreasing very fast. The mean
value is αB = 18 G and the standard deviation is 14 G.

Figure 4 displays the histogram of the magnetic field vector
inclination. First we recall that an isotropic distribution of field

Fig. 3. Histogram of the local average magnetic field strength (the prod-
uct of the magnetic field strength B with the magnetic filling factor α),
from the UNNOFIT inversion.

directions leads to a histogram for the inclination that has a sinu-
soidal shape because the elementary surface on the unit sphere is
sin θdθdϕ. Such a shape was obtained in previous THEMIS ob-
servations (Bommier et al. 2007), but it was wrongly concluded
that the magnetic field tends to be horizontal because the incli-
nation angles were also predominantly ranging between 35◦ and
145◦. Disregarding the central hollow, the histogram in Fig. 4
displays the sinusoidal shape expected for the inclination angles
of an isotropic distribution. This central void is the result of the
presence of V profiles in all the observed pixels. Simultaneous
non-zero Q, U and V is not surprising if many magnetic fields
with different inclinations actually coexist in each resolution

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=3


V. Bommier et al.: The quiet Sun magnetic field: I. The PDF 1419

Fig. 4. Histogram of the magnetic field inclination with respect to the
line-of-sight, from the UNNOFIT inversion. The line-of-sight is also
the solar vertical with the observation performed at disk center.

element. The central hollow could stem from our modeling by
a single magnetic field per element. Another explanation for the
presence of Stokes V could be some misalignment problem in
the data reduction. We note here that the inclination histogram
of HINODE data by Ishikawa & Tsuneta (2009, see their Fig. 5)
also displays a central hollow, although not as marked as here.
From the accuracy test described further, the inclination angle
is determined within ±10◦. Considering also the small average
number of analyzed profiles per bin (see the discussion in the
next paragraph), it is impossible to ascertain a departure from
the isotropic distribution in the last four bins at the extremities
where the envelope tangent seems to be horizontal, in contrast to
a sin θ envelope.

Figure 5 displays the histogram of the azimuth, which is de-
fined with respect to the slit direction. As the fundamental (180◦)
ambiguity is not resolved, the azimuth is defined modulo π be-
tween 0◦ and 180◦. This histogram displays a flat shape on av-
erage, also corresponding to the azimuths of an isotropic distri-
bution. More precisely, the average number of counts per bin is
about N ≃ 40. Assuming a Gaussian noise, the noise level per
bin is

√
N ≃ 6.5. In the figure, the deviations from bin to bin

generally agree with this value, except in some cases where it
is higher. In these cases a positive deviation is, however, most
often immediately followed by a negative one of the same or-
der of magntitude, and there is no case where this deviation is
greater than 3

√
N ≃ 20, which would be really significant. Thus,

we conclude that in a first approximation our observations in-
dicate an isotropic distribution of the quiet Sun magnetic field
azimuths.

We conclude from the THEMIS observations (Bommier
et al. 2007) and from these new ZIMPOL observations that the
quiet Sun magnetic field has most likely an isotropic distribu-
tion of directions. Observations performed at different limb dis-
tances by Martínez González et al. (2008b) also conclude on
an isotropic distribution of the quiet Sun magnetic field direc-
tion. Such observations at different limb distances are indeed

Fig. 5. Histogram of the magnetic field azimuth with respect to the slit
direction, from the UNNOFIT inversion (ambiguity is not resolved).
The observation was performed at disk center and the slit was solar
north, so that this is also the histogram of the horizontal field component
azimuth.

needed to thoroughly investigate the field direction distribution.
We performed them with ZIMPOL on THEMIS, and we shall
discuss them in a future paper of this series. On the basis of our
present observations, we do not confirm the horizontal trend of
the internetwork magnetic field recently observed by HINODE
(Lites et al. 2007, 2008) and derived from HINODE inclina-
tion histograms by Orozco Suárez et al. (2007b) and Ishikawa
& Tsuneta (2009), who could have also been unaware of the si-
nusoidal shape of the inclination histogram from an isotropical
distribution.

3.2. Accuracy of the inversion

To determine the accuracy of the magnetic inversion, we per-
formed the same test as in Bommier et al. (2007), but for the
ZIMPOL/THEMIS polarimetric accuracy (2 × 10−4 in the con-
tinuum under the conditions described in Sect. 2) and spectral
sampling. As in that paper, a series of theoretical profiles was
generated from the Unno-Rachkovsky solution applied to the
2-component atmosphere, for a set of magnetic field strength,
inclination, azimuth, and filling factor values. These profiles
were then noised at the observed level and submitted to the
UNNOFIT inversion. The test consists in comparing the output
values with the known input ones. The main result is presented
in Fig. 6, which is analogous to Fig. 4 of Bommier et al. (2007),
and it shows analogously that the local average magnetic field
strength αB (the product of the field strength by the filling factor)
is correctly determined by the inversion. The bottom figure is a
zoom of the top figure near the axis origin, and shows the disper-
sion of the results about the first diagonal that represents equal
input and output. This dispersion is on the order of 10 G, which
we retain as the accuracy on the local average magnetic field
strength determination. This dispersion includes both longitudi-
nal and transverse fields. Moreover, the bottom figure shows that,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=5
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Fig. 6. Test of the determination of the local average magnetic field
strength (the product of the magnetic field strength B with the magnetic
filling factor α) by the UNNOFIT inversion. A series of theoretical pro-
files are computed under the conditions of the ZIMPOL observations
(spectral and polarimetric resolutions), and then submitted to the in-
verter. In abscissae are the input known values, in ordonnae are the out-
put recovered values. The bottom figure is a zoom of the top figure near
the axis origin.

when the input local average magnetic field strength decreases
to zero, the output saturates at 10 G. In Fig. 4 of Bommier et al.
(2007), the saturation level is 25 G for a polarimetric accuracy
of only 1.5 × 10−3. It thus appears that the saturation level is di-
rectly related to the polarimetric accuracy. The regular pattern
detectable in the lower part of Fig. 6 is a consequence of the reg-
ular spacing of the input theoretical data. The number of input
points is 183 600 and the number of output points that depart
from more than about 10 G from the diagonal is about 5% of the
total number of points.

Fig. 7. Fit of the local average longitudinal magnetic field histogram of
Fig. 2 by a Gaussian exp (−((x − x0)/w)2) of half-width w = 13.5 G.

The observed profile asymmetries, which are visible in
Fig. 1, are taken into account neither in the test nor in the inver-
sion. Such asymmetries may be due to vertical gradient of the
radial velocity. A new version of our inversion code UNNOFIT
is under development, which takes into account such gradients
and is able to properly fit asymmetric profiles. At first sight the
magnetic field strength would not be highly modified. Besides, it
may be noted that the asymmetries’ order of magnitude is com-
parable to the polarimetric noise in Fig. 1, at least in Q/I and
U/I.

Figures 7 and 8 display Gaussian fits of the histograms of
Figs. 2 and 3, corresponding respectively to the local average
longitudinal magnetic field and to the local average magnetic
field strength. The histogram of Fig. 2 can be fitted with the
usual Gaussian exp (−((x− x0)/w)2). The histogram in Fig. 3 can
be fitted by the Maxwell distribution 4πx2 exp(−(x/w)2). These
fits show that the magnetic field vector has a Gaussian distri-
bution, since a Gaussian distribution leads to a Maxwell distri-
bution after angle averaging. The width w of the Gaussian and
Maxwellian are 13.5 G and 11 G, respectively. Since these val-
ues are not significantly higher than the 10 G corresponding to
the inversion accuracy, we cannot conclude that the local aver-
age magnetic field truly has a Gaussian PDF, so we attribute the
Gaussian shape of these histogram envelopes to the polarimetric
noise.

4. Second step: direct determination

of the magnetic filling factor

From the weak field laws, which express the emerging polariza-
tion Stokes parameters in terms of the derivatives of the intensity
profile, Landi Degl’Innocenti & Landolfi (2004, pp. 405–407)
derive the approximate expressions

|V |max

Ic
≃ α∆λB

∆λD
cos θ ḡdc, (1)

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=7
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Fig. 8. Fit of the local average magnetic field strength histogram of
Fig. 3 by a Maxwellian 4πx2exp (−(x/w)2) of half-width w = 11 G.

( √

Q2 + U2
)

max

Ic
≃ α
(

∆λB

∆λD

)2

sin2 θ Ḡ dc. (2)

We have introduced here the magnetic filling factor α, which is
not in Landi Degl’Innocenti & Landolfi (2004, pp. 405–407).
Here, ∆λD is the Doppler width and θ the magnetic field vector
inclination with respect to the line-of-sight. ∆λB is the Zeeman
splitting in wavelength units, defined by

∆λB = λ
2
0
νL

c
, (3)

where νL is the Larmor frequency (Landi Degl’Innocenti &
Landolfi 2004, p. 78). In numerical values, this is

∆λB = 4.6686× 10−10λ2
0B , (4)

where ∆λB is in mÅ, λ0 is in Å and B in G. ḡ is the effective
Landé factor, and Ḡ is the second order effective Landé factor
introduced by Landi Degl’Innocenti & Landolfi (2004), that is
equal to ḡ2 in the case of Zeeman triplet lines like Fe I 6302.5 Å.
dc is the line depth

dc =
Ic − I0

Ic
, (5)

where Ic is the continuum intensity near the line and I0 is the line
center intensity.

We now note that the linear polarization depends quadrati-
cally on the magnetic field strength and direction, but linearly
on the magnetic filling factor. Taking the square of Eq. (1) and
dividing by Eq. (2), we find

α ≃
|V |2max tan2 θ

(√

Q2 + U2
)

max
(Ic − I0)

· (6)

Figure 9 displays a test of this approximation. The Stokes pa-
rameters are first computed with the Unno-Rachkovsky solu-
tion applied to a 2-component atmosphere with a given value

Fig. 9. Test of the determination of the magnetic filling factor by ap-
plying Eq. (6) to the polarimetric data. For the test, the polarimetric
data were theoretical profiles computed from the Unno-Rachkovsky so-
lution, weighted by a theoretical input magnetic filling factor α(input).
Equation (6) is then applied, leading to α(output). The figure displays
their ratio, for a series of magnetic field inclination angles and strengths
(in Doppler width units). This plot is valid for any α value.

of α (α input). The other parameters needed to compute the
line profile are taken from the average values resulting from the
UNNOFIT inversion applied to our Fe  6302.5 Å data. In partic-
ular the line strength is η0 = 2. The output values of α are com-
puted with Eq. (6). Figure 9 was plotted for a series of magnetic
field strengths and inclinations. The field strengths are given
in Doppler width units ḡ ∆λB/∆λD. The different values 0.25,
0.50, 1, and 2 Doppler widths correspond to 236, 472, 944, and
1888 G, respectively, in the case of the Fe  6302.5 Å line formed
in the quiet Sun. This figure is the same for any input α value.

In Fig. 10, we plotted the histogram derived from the appli-
cation of Eq. (6) to our data. The inclination angle value θ was
taken from the UNNOFIT inversion results. We thus obtain a
filling factor α ranging between 3 × 10−3 (logα = −2.5) and
1 (logα = 0), with a maximum probability at 8 × 10−3 (logα =
−2.1). The mean value is 1.5 × 10−2 (logα = −1.8). The stan-
dard deviation of logα is 0.5. The values higher than unity have
no physical meaning and come from the fact that for a quasi-
horizontal field, when θ is close to 90◦, tan θ becomes very large.

From the polarimetric accuracy ∆S = 2 × 10−4Ic of our
ZIMPOL/THEMIS data (S being any of the Stokes parameters
I,Q,U,V), we find that the relative error predicted by Eq. (6) is

∆α

α
=

2∆S

|V |max
+

∆S
(√

Q2 + U2
)

max

≈ 0.5. (7)

Because log 0.5 = −0.3, we find that the inaccuracy is not neg-
ligible but nevertheless lower than the standard deviation of the
α values displayed in the histogram of Fig. 10. We conclude that
the dispersion we observe has a physical meaning, but that fur-
ther observations with better polarimetric accuracy are needed to
confirm this result.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=8
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Fig. 10. Histogram of the filling factor, determined from the polariza-
tion data complemented by the UNNOFIT inversion results on the field
inclination (see Eq. (6)). The abscissa is in logarithmic scale.

5. The magnetic field probability density function

For each of the 1680 observed solar pixels (determined by the slit
width and the camera pixel size along the slit), the local average
magnetic field strength αB was obtained from the UNNOFIT
inversion (Sect. 3), and the magnetic filling factor α was di-
rectly and independently determined from the spectropolarimet-
ric data (Sect. 4). The magnetic field strength value is then ob-
tained by performing the ratio αB/α for each pixel, and the
magnetic field strength B histogram follows (Fig. 11). The PDF
of the magnetic field strength is then the envelope of this his-
togram. The tail of very strong fields that appears in the his-
togram stems from the noise contribution, but detecting strong
fields associated to small filling factors is not new (see for in-
stance Grossmann-Doerth et al. 1996; Socas-Navarro & Sánchez
Almeida 2002; Domínguez Cerdeña et al. 2003a,b). Khomenko
et al. (2003) obtained a B histogram similar in shape to ours,
but with lower field strengths. Their histogram is devoid of any
filling factor effect, because it results from direct Zeeman split-
ting measurement in IR profiles, where the Zeeman effect is
stronger. However, as clearly shown by their Figs. 2 and 4, the
Zeeman components are not yet completely resolved (in the near
IR range), so that the real situation is probably inbetween the
weak field approximation described by our Eq. (1) where the
component separation does not depend on the field strength but
instead on the derivative of the intensity profile and the com-
pletely resolved Zeeman effect. This circumstance could explain
the lowest field strengths reported by these authors.

Thus, for each pixel, we find one α and one B value. These
values can be used to place a point representing the pixel in
the logα-log B axes, thus giving a scatter plot where all the
1680 pixels are represented (Fig. 12). We find that these data
are well-fitted (in the log-log coordinates) by the linear function

logα = 1.18 − log B, (8)

Fig. 11. Histogram of the magnetic field strength, derived by dividing
the local average magnetic field strength αB by the independently de-
termined magnetic filling factor α, in each solar pixel. The envelope of
this histogram is the magnetic field probability density function (PDF),
apart from a normalization factor. Actually, this PDF is a marginal den-
sity function of the joint density function p(α, B) of the two random
variables α and B, represented in Fig. 13. The abscissa is on a linear
scale.

which is

α =
B1

B
, (9)

with B1 = 15 G. The form of this very simple relation partly
comes from the αB histogram of Fig. 3 being rather narrow,
whereas the α histogram of Fig. 10 has a fairly extended range.

A 2D histogram can be built from Fig. 12 by defining 2D bins
and counting the number of points falling inside each 2D bin.
This histogram is represented in Fig. 13. Its envelope is the joint
PDF of the two random variables α and B, that we denote as
p(α, B). The shape of the envelope (and Fig. 12) shows that these
two variables are strongly correlated. The magnetic field PDF
(the envelope of the histogram of Fig. 11) is the marginal PDF

p(B) =
∫

p(α, B) dα. (10)

Similarly, the envelope of Fig. 10 is the other marginal PDF,
p(α).

For the benefit of the reader, we give the definition of the
joint PDF of two random variables in Appendix A, and the re-
lated marginal PDFs (see also Papoulis 1965, Chap. 6).

5.1. Discussion of the magnetic field PDF

Confusion is encountered in the literature about the definition
of the magnetic field PDF. This comes from the quiet Sun mag-
netic field being a complex quantity, having a PDF for both its
field strength and magnetic filling factor, at least in data interpre-
tation where these two quantities are determined in each pixel,

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=10
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V. Bommier et al.: The quiet Sun magnetic field: I. The PDF 1423

Fig. 12. Behavior of the magnetic filling factor α as a function of
the magnetic field strength B. The linear fit can also be expressed as
α = B1/B, with B1 = 15 G.

Fig. 13. 2D histogram of the magnetic filling factor and of the magnetic
field strength B, each pair of them known in each solar pixel. This figure
is a 3D representation of the number of points in Fig. 12. The joint
PDF p(α, B) is the envelope of the 2D histogram. The two marginal
density functions p(α) and p(B) for each of the two random variables α
and B are the envelopes of the two histograms given in Figs. 10 and 11
respectively.

the magnetic filling factor α representing the fraction of the res-
olution element covered by the magnetic field B. From the mod-
eling point of view, the necessity of introducing the magnetic
filling factor α is less evident, and one has to carefully examine
the modeling conditions, i.e. with or without filling factor, before
comparing the magnetic field PDFs. Thus, the following discus-
sion will be divided into several parts corresponding to different
approaches.

Fig. 14. Weighted histogram of the magnetic field strength. For each bin
of the magnetic field strength histogram of Fig. 11, the count number
has been multiplied by the average magnetic field filling factor for this
magnetic field strength α = B1/B, with B1 = 15 G following the lin-
ear fit in Fig. 12. The envelope of this histogram is then ᾱB p(B), where
ᾱB is the average filling factor conditioned by B, and p(B) is the mag-
netic field PDF of Fig. 11. The linear fit corresponds to an exponential
decrease of ᾱB p(B) as exp(−B/B0), with B0 = 660 G.

5.1.1. Comparison with Sánchez Almeida’s definition

For the interpretation of observations concerning the solar in-
ternetwork, Sánchez Almeida et al. (2003) introduce a quantity
referred to as “magnetic field PDF” and defined as being “pro-
portional to the sum of filling factors of all those measurements
(i.e. of field strength B) in the bin [B, B + dB]”. In Sánchez
Almeida (2007), this definition is rephrased as “the fraction of
quiet Sun occupied by magnetic field of each strength”. The
same definition is used in Domínguez Cerdeña et al. (2006a,b).
An explicit definition of this quantity is given in Eq. (14) of
Martínez González et al. (2008a). Starting from this equation,
we find that this so-called PDF can be written as ᾱB p(B),
with p(B) the magnetic field marginal PDF introduced above and

ᾱB = EB(α) =
∫

αp(α|B) dα. (11)

Here, p(α |B) is the PDF of α, conditioned by the value of B.
Hence, ᾱB is the average magnetic filling factor, conditioned by
the value of B. We recall that we have the relation

p(α, B) = p(α|B)p(B), (12)

Martínez González et al. (2008a) rightly mention that their PDF
“takes into account the filling factor”. We think that it is not a
good idea to call the product ᾱB p(B) a PDF. It certainly does not
have the normalization property that one expects from a PDF.

We now explain why this quantity ᾱB p(B) is very useful for
solar polarization modeling, although it is not a true magnetic
field PDF. For this purpose, let us recall that the first Stokes pa-
rameter I is the specific intensity of radiation in erg/cm2/s/sr/Hz.
This means that the energy dW emitted by the elementary sur-
face dS during the elementary time interval dt in the elementary
solid angle dΩ and frequency interval dν is

dW = I dS dt dΩ dν. (13)

The other Stokes parameters Q,U,V have the same unit. For this
reason, when computing, say, the average emitted Q̄, starting

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=12
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from the known Q(B) corresponding to the magnetic field B, we
must take into account that only a fraction α of the elementary
surface is occupied by the magnetic field, leading to

Q̄ =

∫

αQ(B)p(α, B) dα dB. (14)

For simplicity we assume that Stokes Q only depends on the
magnetic field strength. Using Eq. (12), we obtain

Q̄ =

∫

Q(B)ᾱBp(B) dB , (15)

which demonstrates the exact physical meaning of the quantity
ᾱB p(B). But as discussed above this quantity is not the magnetic
field PDF, a denomination that has to be reserved to p(B). We
suggest calling the product ᾱB p(B) the “magnetic field contribu-
tion function” and denoting it as C(B) (see also Appendix A).

5.1.2. Analytical fit giving the magnetic field PDF

In Fig. 14 we have plotted the histogram that has ᾱB p(B) as en-
velope, for comparison with Fig. 6 (right) of Martínez González
et al. (2008a) and with Fig. 3 of Sánchez Almeida et al. (2003)
(although this last figure concerns longitudinal magnetic fields).
It can be seen that the agreement with the IR data recommended
by Martínez González et al. (2008a) is fairly good, although our
field strengths are a bit higher. We agree with Martínez González
et al. (2008a) on the linear behavior of the histogram (in log-lin
coordinates). The linear fit of our data is

ᾱB p(B) = Ae−
B

B0 , (16)

where A is a constant to be determined by normalization, and
B0 = 660 G. Assuming that ᾱB = B1/B (see Eq. (9)), imposing
α ≤ 1, i.e. B ≥ B1, since α > 1 is unphysical, we obtain

A =
1

B0(1 + B0/B1)
e

B1
B0 , (17)

so that finally

p(B) =
B

B1B0(1 + B0/B1)
e

B1−B

B0 , (18)

with B1 = 15 G, B0 = 660 G, and B ≥ B1. Figure 15 displays
the histogram of Fig. 11 fitted with this function.

5.1.3. Comparison with volume-filling PDFs

Let us call “volume-filling PDF”, the PDF of a magnetic field
present everywhere in the medium. In this case α = 1 and the
PDFs proposed in the literature have to be compared with the en-
velope of our local average magnetic field αB histograms. One
also has to carefully examine whether the proposed PDF con-
cerns the absolute field strength or the longitudinal field that is
one component only of the field vector. We note that the consid-
eration of the volume-filling longitudinal field is quite relevant,
because this is the magnetic flux. We also note that in the case
of a volume-filling magnetic field, the magnetic field PDF p(B)
is indeed the fraction of the solar surface occupied by fields with
values between B and B + dB (see the detailed discussion in
Appendix A).

In this category, one finds the determination of the magnetic
flux PDF by Stenflo & Holzreuter (2003). As the flux distribu-
tion is derived from magnetograms, it has to be compared with

Fig. 15. Fit of magnetic field strength histogram of Fig. 11 by the mag-
netic field PDF p(B) derived from the linear fits of Figs. 12 and 14. This
magnetic field PDF is given by Eq. (18).

our Figs. 2 and 7. The widths of the distributions (13.5 G ours,
17.0 G theirs) are comparable and in good agreement with the
polarimetric accuracy of the corresponding measurements. The
authors consider the wings of the distribution in detail. Probably,
the wings are caused by network pixels that bear a stronger
field and are visible in their magnetograms (Fig. 1). Such pix-
els cannot be avoided in the measurements. Our distribution also
has broader wings than Gaussian, visible in logarithmic scale in
Fig. 16, but we have a much lower pixel number in our analysis.
In the same category one finds the theoretical study by Berrilli
et al. (2008). This is also a longitudinal flux PDF to be com-
pared with our Figs. 2 and 7. As is visible in Fig. 16, we do not
have enough pixels to validate or invalidate this model with our
observations.

We now turn to the field strength distribution. Inspired
by the exponential PDF obtained by Martínez González et al.
(2008a), Trujillo Bueno et al. (2004) introduced an ex-
ponential distribution for the volume-filling field strength,
p(B) = exp (−B/B0)/B0, to fit a series of Hanle effect measure-
ments of the turbulent quiet Sun magnetic field. In addition, the
field is assumed to be microturbulent with an isotropic angular
distribution. With B0 = 130 G, the fit is rather satisfactory. It
should also be mentioned that the same data can be fitted almost
equally well with a single-valued magnetic field (PDF in the
form of a Dirac distribution) with a strength of B = 60 G. Our B0
value of 660 G differs notably, however, from this 130 G value,
because they assume α = 1 (volume-filling magnetic field) in
their simulation. This may also be due to the shape of our PDF
that decreases towards zero at the axis origin, as well as our
αB histogram in Figs. 3 and 8, as does the Maxwellian distri-
bution function, whereas their theoretical distribution does not.
Considering our result of α = B1/B with B1 = 15 G, the filling
factor remains close to unity for weak fields as those detected by
Hanle effect interpretation, so that their hypothesis of volume-
filling may be found coherent with our results for weak fields.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200811373&pdf_id=15
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Fig. 16. Same as Fig. 7, but with the number of pixels per bin (counts)
plotted on a logarithmic scale to highlight the distribution in the wings.

As mentioned in our conclusion, the derived PDF may depend on
the sensitivity of the magnetic field measurement method (Hanle
effect is sensitive to weak and unresolved fields, Zeeman effect is
sensitive to the strongest fields). The mean value B = 60 G that
they derive under the hypothesis of volume-filling and single-
valued microturbulent field remains comparable to our mean
value αB = 15 G.

5.1.4. Comparison with HINODE results

We now discuss the results by Orozco Suárez et al. (2007b) and
Ishikawa & Tsuneta (2009). Both papers show a magnetic field
strength PDF with a maximum in the hG range. A careful exam-
ination shows that their PDF definition is correct and is the same
as ours, and that the differences in the results (our PDF peaks
at higher field strengths) have to be assigned to a difference in
the measurement of the magnetic filling factor. All these stud-
ies apply a Milne-Eddington inversion to the spectropolarime-
teric data, with filling factor. As mentioned in Bommier et al.
(2007), only the local average magnetic field strength αB can be
retrieved from this inversion. It can be verified that both works
agree when looking at this product αB: their field strengths are
lower than ours, but their filling factor are higher than ours, so
that the order of magnitude of their product is the same. We em-
phasize that their filling factor α is defined by the rate of stray
light, which is also assumed to be the proportion of light com-
ing from the unmagnetic region (note that their α corresponds to
our 1 − α)

The question lies in the filling factor method of measure-
ment. Ours is described above and is performed independently
of the Milne-Eddington inversion. They derive the filling factor
by comparing, in a first step, local intensity profiles (no polariza-
tion at that step) with average intensity profiles assumed to rep-
resent the zero field situation. This is the method introduced by
Skumanich & Lites (1987) and discussed by Lites & Skumanich
(1990). Depending of the activity level of the map under study,
this average profile is evaluated either by a global average or by

a local average on the less active part on the map. In the present
case of quiet Sun studies, this profile is determined by a local
average evaluated around the pixel of interest. Considering that
this approach gives a different result from ours, we are led to
raise the question to know whether such a method really deter-
mines the nonmagnetic profile. If this average profile is taken
from the whole map (global average) or from a less active but
wide part of it, we note that the local physical parameters at the
pixel under study (temperature, density) may not be fully taken
into account in the nonmagnetic global profile. And if this av-
erage is performed on the neighbor pixels only as in the above-
mentioned studies, we raise the question: is the local average
really nonmagnetic with respect to the considered pixel?

5.1.5. What can be expected from Fe I 6302.5
measurements?

When the quiet Sun magnetic field strength B is discussed, this
magnetic field also has a magnetic filling factor α. The ques-
tion is how to determine α and B separately. As discussed in
Bommier et al. (2007), it is not possible to determine α and B

separately from inversion of Fe  6302.5 Å data, but only their
product αB. This is because, for solar magnetic field strengths
and for a visible line like Fe  6302.5 Å, the Zeeman splitting
unit ∆λB remains smaller or close to the Doppler width ∆λD.
This behavior can be expected for any line in the visible range.
On the contrary, when the Zeeman components are separated,
determining α and B separately, by inversion, becomes possible.
This is partly true at infrared wavelengths (see the discussion at
the beginning of Sect. 5). That is why Martínez González et al.
(2008a) are able to get reliable results by inverting infrared lines,
and we get results in agreement with theirs by applying our di-
rect α determination complementing the inversion of the visible
Fe  6302.5 Å line. Examining the work of Martínez González
et al. (2008a), it can be seen that they are not confident in the
Fe  6302.5 Å results in separate α and B, because they find that
these results depend on the initialization of the inversion; how-
ever, it can be seen in their paper that the magnetic flux, which
is the longitudinal counterpart of the product αB, remains un-
changed whatever the initialization be. This confirms that the
inversion of visible Fe  6302.5 Å data accurately recovers the
local average magnetic field strength αB, though it is not able to
recover α and B separately.

6. Conclusions

We find that the magnetic field filling factor α is related to
the magnetic field strength B by the simple approximate law
α = B1/B with B1 = 15 G. Moreover, we find that the
magnetic field PDF can be expressed by the analytical law of
Eq. (18). This means that the medium is complex and various
field strengths may be encountered: (i) the 1500 Gauss field
filling 1% of space as seen in the tails of the magnetic field
distributions by Khomenko et al. (2003), Martínez González
et al. (2006), Orozco Suárez et al. (2007b), Martínez González
et al. (2008a), as also detected by Domínguez Cerdeña et al.
(2003a,b, 2006a,b); (ii) the 150 Gauss field filling 10% of space
as seen from incomplete Paschen-Back effect interpretation by
López Ariste et al. (2007) and Sánchez Almeida et al. (2008);
(iii) 20–50 Gauss field filling the major part of space, as seen
from the Hanle effect interpretation (see the measurement review
by Trujillo Bueno et al. (2004) and Trujillo Bueno et al. (2006)
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for the Sr I 4607 line, see also Bommier et al. (2006) for a series
of MgH lines).

Because the kG internetwork field with very small fill-
ing factors were previously detected (Grossmann-Doerth et al.
1996; Sánchez Almeida & Lites 2000), recent magnetoconvec-
tion modeling (Bushby et al. 2008) shows that fields stronger
than the equipartition value could result from localized concen-
trations due to convective intergranular downflows. However, it
should be noted that our results have to be taken with care be-
cause our field determination is based on a 2-component inver-
sion, whereas we arrive at the vision of a complex medium where
all the field strengths coexist.

Actually, each magnetic field determination (Zeeman, hyper-
fine structure, Hanle) has its own sensitivity domain. Because it
is a linear effect, the Zeeman effect detects the stronger fields
better even if they do not fill the whole space. In contrast, the
Hanle effect, being highly nonlinear, cannot detect the strong
fields. To prove this point, let us assume a 2-component atmo-
sphere with a 2000 Gauss field filling 2% of space: 98% of the
scattered radiation will not be depolarized, while 2% will only be
depolarized by the Hanle effect. As a 2000 G field corresponds
to the saturation regime of the Hanle effect, the corresponding
linear polarization is 1/5 of the zero field one. As a result, the
global polarization remains almost insensitive to strong inter-
mittent magnetic fields. In contrast, the Hanle effect is sensi-
tive to weak field filling the major part of space. The incomplete
Paschen-Back effect is sensitive to hG fields, but also is unable
to detect kG fields. The result of our paper is that the strong, in-
termediate, and weak fields cohabit, with different filling factors
obeying the simple approximate law α = B1/B with B1 = 15 G.

In a later paper of this series, we will analyze the center-
to-limb variation of the quiet Sun polarization with ZIMPOL
on THEMIS observations, in order to thoroughly investigate the
field direction distribution function. Further observations with a
better polarimetric accuracy are, however, needed to confirm the
results obtained in the present work.
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Appendix A: Statistical definitions

The question of the magnetic field PDF of the solar internetwork
is still a hot subject of discussion, with different observations
leading to somewhat different answers. The meaning of mag-
netic field PDF is not always clear, in particular when the mag-
netic field is not present everywhere in the medium. We show
here how an unambiguous definition of the magnetic field PDF
can be given in this latter case.

We assume that we have some area at our disposal on the
solar surface divided into a number N of pixels. In each pixel,
a value for the magnetic field vector B and a value for a filling
factor α, with 0 ≤ α ≤ 1, were determined by some inversion
method. In each pixel, this factor yields the fraction of the sur-
face where the magnetic field is present. In a quiet internetwork
region, the values of B and α are changing from pixel to pixel
in a way that cannot be predicted with certainty. This suggests
treating these two quantities as random variables. If the value
of N is sufficiently high, we can hope to deduce from the data
set statistical properties of the magnetic field and of the filling
factor. This type of analysis is the purpose of the present pa-
per, based on spectro-polarimetric data obtained with ZIMPOL
on THEMIS. In the following we would like to give an over-
all picture of the basic definitions. All the concepts that are in-
troduced below are standard elements in probability theory. We
recommend Papoulis (1965) for a rigorous, yet easily readable,
introduction to probability theory.

For simplicity in notation, we consider amplitude B of the
magnetic field instead of vector B. We also assume that the



V. Bommier et al.: The quiet Sun magnetic field: I. The PDF 1427

random variables B and α have a continuous range of values
with B ≥ 0 and 0 ≤ α ≤ 1. Henceforth, random variables are
denoted with boldface characters to distinguish them from the
outcome values of a given event. The continuity assumption im-
plies that N is infinite. The case of finite N is considered below.
We introduce the joint PDF p(α, B) defined by

p(α, B)dαdB =

P {α ≤ α ≤ α + dα, B ≤ B ≤ B + dB} . (A.1)

As is clear from the definition, p(α, B)dαdB is the probability
that α has a value in the interval [α, α+ dα] and B a value in the
interval [B, B + dB]. We recall that p(α, B) is the second deriva-
tive, assumed to exist, of the joint probability distribution func-
tion F(α, B), i.e.

p(α, B) =
∂2F(α, B)
∂α∂B

, (A.2)

with

F(α, B) = P {α ≤ α, B ≤ B} . (A.3)

The joint distribution function satisfies F(α, B) ≥ 0 and
F(1,∞) = 1.

The function p(α, B) satisfies p(α, B) ≥ 0 and the normaliza-
tion condition
∫ 1

0

∫ ∞

0
p(α, B)dαdB = 1 . (A.4)

Starting from p(α, B), we can define the two marginal PDFs

p(B) =
∫ 1

0
p(α, B)dα, (A.5)

p(α) =
∫ ∞

0
p(α, B)dB. (A.6)

These functions are the PDFs of B and α. It is easy to verify that
they are normalized to unity, namely
∫ ∞

0
p(B)dB = 1, (A.7)

∫ 1

0
p(α)dα = 1. (A.8)

They can be used to define the mean values

B̄ =

∫ ∞

0
Bp(B)dB, (A.9)

ᾱ =

∫ 1

0
αp(α)dα. (A.10)

Very useful are the conditional PDFs p(α|B) and p(B|α), which
are the PDF of α, knowing B, and the PDF of B, knowing α.
They are defined by

p(α|B) =
p(α, B)

p(B)
, (A.11)

p(B|α) =
p(α, B)

p(α)
· (A.12)

With these conditional PDFs, one can define conditional
averages,

ᾱB =

∫ 1

0
αp(α|B)dα , (A.13)

B̄α =

∫ ∞

0
Bp(B|α)dB. (A.14)

It is easy to verify that

ᾱ =

∫ ∞

0
ᾱB p(B)dB, (A.15)

B̄ =

∫ 1

0
B̄αp(α)dα. (A.16)

The conditional average ᾱB yields the mean value of the filling
factor for magnetic fields with a value between B and B+dB. The
product ᾱB p(B) can be interpreted as the fraction of the surface
occupied by magnetic fields between B and B + dB.

The concepts of joint PDF and conditional PDF are easy to
grasp with a graphic representation. We introduce a rectangular
coordinate system (α, B, z), with the axes α and B defining the
horizontal plane and z the vertical axis. The joint PDF defines
a surface z = p(α, B). If we intersect this surface by the verti-
cal plane B = B1, we obtain the profile of the conditional PDF
p(α|B1), as a function of α. Similarly, a cut by the vertical plane
α = α1 yields the profile of the conditional PDF p(B|α1), as a
function of B.

In some spectro-polarimetric analysis one considers that the
magnetic field is present everywhere in the medium. In this
case the random variable α takes only the value α = 1. All
the expressions given above hold with p(α, B) = δ(α − 1)p(B),
δ being the Dirac distribution. The conditional PDFs become
p(α|B) = δ(α − 1) and p(B|α) = p(B). For the Hanle effect, it is
always assumed that α = 1 and often that the magnetic strength
has a single value B = B0. The corresponding joint PDF reduces
to p(α, B) = δ(α − 1)δ(B− B0).

For simplicity in the notation, we have retained the
strength B of the magnetic field as random variable. It is clear
that all the definitions remain the same if we replace B by
the magnetic field vector B. The vector B corresponds actu-
ally to three random variables, one for the strength and two for
the direction. The differential element dB should be replaced
d3

B = B2 sin θdBdθdχ/4π, with θ and χ the polar angles of the
magnetic field direction in an appropriate reference frame.

An interesting quantity for the understanding of the Sun
global energy budget is the mean magnetic energy density in the
quiet internetwork. If the magnetic field is present everywhere,
this mean energy is

〈

B2
〉

/8π with

〈

B2
〉

=

∫ ∞

0
B2 p(B) dB. (A.17)

If the field is not volume-filling, one should use

〈

B2
〉

=

∫ 1

0

∫ ∞

0
αB2 p(α, B) dB dα. (A.18)

This expression can be written

〈

B2
〉

=

∫ ∞

0
C(B)B2 dB (A.19)

with

C(B) =
∫ 1

0
αp(α, B) dα

=

∫ 1

0
αp(α|B)p(B) dα (A.20)

= ᾱB p(B).

Here, ᾱB is the conditional mean value of α defined in
Eq. (A.13). The function C(B) also appears in the calculation
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of the mean Stokes parameters Q, U, and V , when the magnetic
field is not volume-filling (see Sect. 5). If the random variable
α only takes the value 1, C(B) is simply the PDF of the random
variable B. If not, as suggested by Eq. (A.19), C(B) could be re-
ferred to as the “magnetic field contribution function”. The name
“magnetic field PDF” should be reserved for the marginal PDF
p(B). One reason for not calling C(B) a “magnetic field PDF”
is that it is not normalized to unity. It is easy to check that the
integral of C(B) over B is equal to the mean value ᾱ.

In the analysis of real data, the number N of pixels is not in-
finite. Also the magnetic field and filling factor are determined
with some error bar. What is usually inferred from the data are
histograms of the “count number”, i.e. of the number of pix-
els n(Bi) in which the magnetic field strength takes a value be-
tween Bi and Bi+1 = Bi + ∆B. Similarly histograms are being
constructed with the number of pixels n(α j) in which the filling
factor takes a value between α j and α j+1 = α j + ∆α. The en-
velopes of these histograms, divided by N∆B and N∆α, yield
the marginal PDFs p(B) and p(α), in the limit N → ∞, ∆B→ 0,
∆α → 0 with N∆B and N∆α constants. One can also construct
2D-histograms corresponding to the joint PDF p(α, B). In each
cell [Bi, Bi+1]×

[

α j, α j+1

]

, one plots on the vertical axis, the num-
ber of pixels in which B has a value in the interval [Bi, Bi+1]
and α has a value in the interval

[

α j, α j+1

]

. As in the continu-
ous case, the conditional histograms are obtained by cutting the
2D-histogram with vertical planes. Examples of 1D and 2D his-
tograms can be found in the present paper.

The mean magnetic energy takes the form
〈

B2
〉

=
∑

i

C(Bi)B2
i∆B, (A.21)

with

C(Bi) =
1

N∆B

∑

j

α jn(α j, Bi) (A.22)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

j

α j

n(α j, Bi)

n(Bi)∆α
∆α

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

[

n(Bi)
N∆B

]

, (A.23)

where n(α j, Bi) is the number of pixels in which α j ≤ α < α j+1
and Bi ≤ B < Bi+1. The definition of C(Bi) in Eq. (A.23) is
identical to the definition of the “magnetic field PDF” given
in Eq. (14) in Martínez González et al. (2008a). We note here
that n(α j, Bi)/(n(Bi)∆α) is the discrete version of the conditional
PDF p(α|B), whereas n(Bi)/(N∆B), is the discrete version of the
marginal PDF p(B). The summation over j in the first square
bracket of Eq. (A.23) yields the conditional mean value of α
with B in the interval [Bi, Bi+1]. When α takes only the value
α = 1, n(Bi)/N∆B is the fraction of the surface occupied by
magnetic fields in the bin [Bi, Bi + ∆B], and this ratio is the dis-
crete version of the magnetic field PDF. When the magnetic field
is not present everywhere in the medium, the fraction of the sur-
face occupied by magnetic fields with a value of B in the bin
[Bi, Bi + ∆B] is given by C(Bi). As already stressed above, this
function is not a PDF.
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