
The Quotient Image: Class Based Re-rendering and Recognition With Varying

Illuminations�

Tammy Riklin-Raviv and Amnon Shashua

Institute of Computer Science,

The Hebrew University,

Jerusalem 91904, Israel

e-mail: ftammy, shashuag@cs.huji.ac.il

Abstract

The paper addresses the problem of “class-based” image-

based recognition and rendering with varying illumination.

The rendering problem is defined as follows: given a single

input image of an object, and a sample of images with varying

illumination conditions of other objects of the same general

class, re-render the input image to simulate new illumination

conditions. The class-based recognition problem is similarly

defined: given a single image of an object in a database of im-

ages of other objects, some of them are multiply sampled under

varying illumination, identify (match) any novel image of that

object under varying illumination with the single image of that

object in the database.

We focus on Lambertian surface classes, and in particu-

lar the class of human faces. The key result in our approach is

based on a definition of an illumination invariant signature im-

age which enables an analytic generation of the image space

with varying illumination. We show that a small database of

objects — in our experiments as few as two objects — is suffi-

cient for generating the image space with varying illumination

of any new object of the class from a single input image of that

object. In many cases the recognition results outperform by

far conventional methods and the re-rendering is of remark-

able quality considering the size of the database of example

images and the mild pre-process required for making the algo-

rithm work.

1 Introduction

Consider the image space generated by applying a source of

variability, say changing illumination or changing viewing po-

sitions, on a 3D object or scene. Under certain circumstances

the images generated by varying the parameters of the source

can be represented as a function of a small number of sample

images from the image space. For example, the image space

of a 3D Lambertian surface is determined by a basis of three

images, ignoring cast-shadows [17, 18, 9, 4, 12, 16]. In this

case, the low dimensionality of the image space under light-

ing variations is useful for synthesizing novel images given a

small number of model images, or in other words, provides

�The full reference of this manuscript is “The Hebrew University of

Jerusalem, Computer Science TR-99-1, January 1999”.

the means for an “image-based rendering” process in which

sampled images replace geometric entities formed by textured

micro-polygons for rendering new images.

Visual recognition and image re-rendering (synthesis) are

intimately related. Recognizing a familiar object from a sin-

gle picture under some source of variation requires a handle on

how to capture the image space created by that source of vari-

ation. In other words, the process of visual recognition entails

an ability to capture an equivalence class relationship that is

either “generative”, i.e., create a new image from a number of

example images of an object, or “invariant”, i.e., create a “sig-

nature” of the object that remains invariant under the source

of variation under consideration. For example, in a generative

process a set of basis images may form a compact represen-

tation of the image space. A novel input image is then con-

sidered part of the image space if it can be synthesized from

the set of basis images. In a process based on invariance, on

the other hand, the signature may be a “neutral” image, say

the object under a canonical lighting condition or viewing po-

sition. A novel image is first transformed into its neutral form

and then matched against the data base of (neutral) images.

In this paper we focus on recognition and image re-

rendering under lighting condition variability of a class of ob-

jects, i.e., objects that belong to a general class, such as the

class of faces. In other words, for the re-rendering task, given

a sample images of members of a class of objects, and a sin-

gle image of a new object of the class, we wish to render new

images of the new object that simulate changing lighting con-

ditions.

Our approach is based on a new result showing that the set

of all images generated by varying lighting conditions on a

collection of Lambertian objects all having the same shape but

differing in their surface texture (albedo) can be characterized

analytically using images of a prototype object and a (illumi-

nation invariant) “signature” image per object of the class. The

Cartesian product between the signature image of an object y

and the linear subspace determined by the images of the pro-

totype object generates the image space of y (Proposition 1).

The second result is on how to obtain the signature image from

a data base of example images of several objects while proving

that the the signature image obtained is invariant to illumina-
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tion conditions (Theorems 1,2).

Our method has two advantages. First and foremost, the

method works remarkably well on real images (of faces) using

a very small set of example objects — as few as two exam-

ple objects (see Fig. 7). The re-rendering results are in many

cases indistinguishable from the “real” thing and the recogni-

tion results outperform by far conventional methods. Second,

since our approach is based on a simple and clean theoretical

foundation, the limitations and breaking points can be clearly

distinguished thus further increasing this algorithm’s practical

use.

1.1 Related work

The basic result about the low dimensionality of the im-

age space under varying lighting conditions was originally re-

ported in [17, 18] in the case of Lambertian objects. Appli-

cations and related systems were reported in [9, 4, 8]. Re-

rendering under more general assumptions, yet exploiting lin-

earity of light transport was reported in [12, 16].

Work on “class-based” synthesis and recognition of im-

ages (mostly with varying viewing positions) was reported in

[5, 3, 7, 25, 24, 22, 23, 6, 2, 14]. These methods adopt a “re-

constructionist” approach (see also Section 3) in which a nec-

essary condition for the process of synthesis is that the original

novel image be generated, reconstructed, from the database of

examples. For example, the “linear class” of [25, 13] works

under the assumption that 3D shapes of objects in a class are

closed under linear combinations (in 3D). Recently, [15] have

proposed to carry an additive error term, the difference be-

tween the novel image and the reconstructed image from the

example database. During the synthesis process, the error term

is modified as well, thus compensating for the difference be-

tween the image space that can be generated from the database

of examples and the desired images. Their error term is some-

what analogous to our signature image. However, instead of

an error term, we look for an illumination invariant term (sig-

nature image) that makes for the difference (in a multiplicative

sense) between the image space spanned by a single prototype

(or reference) object and the novel image. The database of ex-

amples is used for recovering a number of parameters required

for generating the signature image.

2 Background and Definitions

We will restrict our consideration to objects with a Lam-

bertian reflectance function, i.e., the image can be described

by the product of the albedo (texture) and the cosine an-

gle between a point light source and the surface normal:

�(x; y)n(x; y)>s where 0 � �(x; y) � 1 is the surface re-

flectance (grey-level) associated with point x; y in the image,

n(x; y) is the surface normal direction associated with point

x; y in the image, and s is the (white) light source direction

(point light source) and whose magnitude is the light source

intensity.

The basic result we will use in this paper is that the image

space generated by varying the light source vector s lives in

a three-dimensional linear subspace [17, 18]. To see why this

is so consider three images I1; I2; I3 of the same object (�; n

are fixed) taken under linearly independent light source vec-

tors s1; s2; s3, respectively. The linear combination
P

j �jIj

is an image I = �n>s where s =
P

j �jsj . Thus, ignoring

shadows, three images are sufficient for generating the image

space of the object. The basic principle can be extended to

deal with shadows, color images, non-white light sources, and

non-Lambertian surfaces [18, 12, 8], but will not be considered

here as our approach can be likewise extended. This principle

has been proven robust and successfully integrated in recogni-

tion schemes [18, 8, 4]. See Fig. 7 for an example of using this

principle for image synthesis.

We define next what is meant by a “class” of objects. In or-

der to get a precise definition with which we can base analytic

methods on we define what we call an “ideal” class as follows:

Definition 1 (Ideal Class of Objects) An ideal class is a col-

lection of 3D objects that have the same shape but differ in the

surface albedo function. The image space of such a class is

represented by:

�i(x; y)n(x; y)
T sj

where �i(x; y) is the albedo (surface texture) of object i of

the class, n(x; y) is the surface normal (shape) of the object

(the same for all objects of the class), and sj is the point light

source direction, which can vary arbitrarily.

In practice, objects of a class do have shape variations, al-

though to some coarse level the shape is similar, otherwise we

would not refer to them as a “class”. The ideal class could be

satisfied if we perform pixel-wise dense correspondence be-

tween images (say frontal images) of the class. The dense cor-

respondence compensates for the shape variation and leaves

only the texture variation. For example, Poggio and colleagues

[23] have adopted such an approach in which the flow field and

the texture variation were estimated simultaneously during the

process of synthesizing novel views from a single image and

a (pixel-wise pre-aligned) data base. The question we will ad-

dress during the experimental section is what is the degree of

sensitivity of our approach to deviations from the ideal class

assumption. Results demonstrate that one can tolerate signif-

icant shape changes without noticeable degradation in perfor-

mance, or in other words, there is no need to establish any

dense alignment among the images beyond alignment of cen-

ter of mass and scale.

From now on when we refer to a class of objects we mean

an “ideal” class of objects as defined above. We will develop

our algorithms and correctness proofs under the ideal class as-

sumption. We define next the “recognition” and “synthesis”

(re-rendering) problems.

Definition 2 (Recognition Problem) Given N � 3 images of

N objects under 3 lighting conditions and M � N other ob-

jects of the same class illuminated under some arbitrary light

conditions (each), identify the M + N objects from a single

image illuminated by some novel lighting conditions.

Note that we require a small number N of objects, 3 images

per object, in order to “bootstrap” the process. We will refer to

the 3N images as the “bootstrap set”. The synthesis problem

is defined similarly,
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Definition 3 (Synthesis (Re-rendering) Problem) Given

N � 3 images of N objects of the same class, illuminated

under 3 distinct lighting conditions and a single image of

a novel object of the class illuminated by some arbitrary

lighting condition, synthesize new images of the object under

new lighting conditions.

To summarize up to this point, given the ideal class and the

synthesis/recognition problem definitions above, our goal is:

we wish to extend the linear subspace result of [18] that deals

with spanning the image space �n>s where only s varies, to

the case where both � and s vary. We will do so by showing

that it is possible to map the image space of one object of the

class onto any other object, via the use of an illumination in-

variant signature image. The recovery of the signature image

requires a bootstrap set of example images, albeit a relatively

small one (as small as images generated from two objects in

our experiments). The remainder of the paper deals with ex-

actly this problem. We first describe a “brute-force” approach

for addressing the inherent bilinearity of the problem, detailed

next, and then proceed to the main body of this paper.

3 A Reconstructionist Approach and its Short-

comings

We wish to span the image space �n>s where both � and s
vary. Let s1; s2; s3 be a basis of three linearly independent vec-

tors, thus s =
P

j xjsj for some coefficients x = (x1; x2; x3).
Let �1; :::; �N be a basis for spanning all possible albedo func-

tions of the class of objects, thus � =
P

i �i�i for some coef-

ficients �1; :::; �N. Let ys be the image of some new object y

of the class with albedo �y and illuminated by illumination s,

i.e.,

ys = �yn
>s = (

NX
i=1

�i�i)n
>(

3X
j=1

xjsj):

Let A1; :::; AN be m � 3 matrices whose columns are the

images of object i, i.e., the columns of Ai are the images

�in
>s1; �in

>s2; �in
>s3. We assume that all images are of

the same size and contain m pixels. We have therefore,

min
x;�i

j ys �

NX
i=1

�iAix j
2; (1)

which is a bilinear problem in the N + 3 unknowns x; �i
(which can be determined up to a uniform scale). Clearly, if

we solve for these unknowns, we can then generate the im-

age space of object y from any desired illumination condition

simply by keeping �i fixed and varying x.

One way to solve for the unknowns is first to solve for

the pairwise product of x and �i, i.e., a set of 3N variables

z = (�1x; :::; �Nx). LetA = [A1; :::; AN] be them�3N ma-

trix (we assume m >> 3N ) obtained by stacking the matrices

Ai column-wise. Thus, the vector z can be obtained by the

pseudo-inverse A# = (A>A)�1A> as the least-squares solu-

tion z = A#ys. From z we can decouple x and �i as follows.

Since the system is determined up to scale, let
P

i �i = 1.

Then, group the entries of z into z = (z1; :::; zN) where zi is

a vector of size three. We have,

x =
NX
i=1

zi

and,

�i =
1

3

3X
j=1

zij
xj

:

There are a number of observations that are worth making.

First, this approach is a “reconstructionist” one in the sense

that one is attempting to reconstruct the image ys from the

data set of example images, the bootstrap set (for example,

[23, 22, 7]). In practice, especially when the size of the boot-

strap set is relatively small, Az 6= ys. Moreover, for the same

reasons, the decoupling of the variables xj and �i from the

vector z adds another source of error. Therefore, before we

begin creating synthetic images (by varying xj) we are faced

with the problem of having only some approximate rendering

of the original image ys. This problem is acute for small boot-

strap sets, and therefore this approach makes practical sense

only for large example sets. The second point to note is that

there is some lack of ”elegance” (which inevitably contributes

to lack of numerical stability and statistical bias due to over-

fitting1) in blowing up the parameter space from N + 3 to 3N
in order to obtain a linear least-squares solution.

We illustrate the reconstructionist approach in practice in

Fig. 1. We use a bootstrap set of 10 objects (30 images) dis-

played in Fig. 2, and a bootstrap set of 20 objects (not dis-

played here). The results of reconstruction are poor for both

sets, although one notices some improvement with the larger

set of 20 objects. The poor reconstruction is attributed to two

main sources. First, is the size of the data base. A data base

of 10 (or 20) objects is apparently not sufficient for capturing

the variation among objects in the class. Second, and proba-

bly a more dominant source, is the lack of dense pixel-wise

alignment among the database and the novel image. Previous

work by [24, 22, 23] demonstrate very good results with large

databases (around 100 objects) under pixel-wise alignment.

In our approach, detailed below, we achieve two major

goals: first, we do not make a reconstructionist assumption

and thereby tolerate small databases without pixel-wise align-

ment, second we solve (linearly) for a system of N + 3 pa-

rameters (instead of 3N ). As a byproduct of the method of

optimization we obtain an intermediate image, an illumination

invariant signature image, which can also be used for purposes

of visual recognition.

4 The Quotient Image Method

Given two objects a;b, we define the quotient image Q by

the ratio of their albedo functions �a=�b. Clearly, Q is illu-

mination invariant. In the absence of any direct access to the

albedo functions, we show that Q can nevertheless be recov-

ered, analytically, given a bootstrap set of images. Once Q is

1Numerical problems due to “blowing” up parameter space for purpose of

linearization can be reduced by solving a heteroscedastic optimization prob-

lem [10], which could be quite unwieldy for large systems.
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Figure 1. Illustration of the “reconstructionist” approach. (a) original image, (b) image reconstructed from the the bootstrap set of Fig. 2,

and (c) image reconstructed from a larger bootstrap set of 20 objects (60 images). The reconstruction is poor in both cases. See text for

further details.

recovered, the entire image space (under varying lighting con-

ditions) of object a can be generated by Q and three images of

object b. The details are below.

We will start with the case N = 1, i.e., there is a single

object (3 images) in the bootstrap set. Let the albedo function

of that object a be denoted by �a, and let the three images be

denoted by a1; a2; a3, therefore, aj = �an
>sj , j = 1; 2; 3.

Let y be another object of the class with albedo �y and let ys
be an image of y illuminated by some lighting condition s,

i.e., ys = �yn
>s. We define below an illumination invariant

signature image Qy of y against the bootstrap set (in this case

against a):

Definition 4 (Quotient Image) The quotient imageQy of ob-

ject y against object a is defined by

Qy(u; v) =
�y(u; v)

�a(u; v)
;

where u; v range over the image.

Thus, the image Qy depends only on the relative surface

texture information, and thus is independent of illumination.

The reason we represent the relative change between objects

by the ratio of surface albedos becomes clear from the propo-

sition below:

Proposition 1 Given three images a1; a2; a3 of object a illu-

minated by any three linearly independent lighting conditions,

and an image ys of object y illuminated by some light source

s, then there exists coefficients x1; x2; x3 that satisfy,

ys = (
X
j

xjaj)
 Qy;

where 
 denotes the Cartesian product (pixel by pixel multi-

plication). Moreover, the image space of object y is spanned

by varying the coefficients.

Proof: Let xj be the coefficients that satisfy s =
P

j xjsj .

The claim ys = (
P

j xjaj)
Qy follows by substitution. Since

s is arbitrary, the image space of object y under changing il-

lumination conditions is generated by varying the coefficients

xj.

We see that once Qy is given, we can generate ys (the novel

image) and all other images of the image space of y. The key

is obtaining the quotient image Qy. Given ys, if somehow we

were also given the coefficients xj that satisfy s =
P

j
xjsj ,

then Qy readily follows: Qy = ys=(
P

j
xjaj), thus the key is

to obtain the correct coefficients xj. For that reason, and that

reason only, we need the bootstrap set — otherwise, a single

object a would suffice (as we see above).

Let the bootstrap set of 3N pictures be taken from three

fixed (linearly independent) light sources s1; s2; s3 (the light

sources are not known). Let Ai, i = 1; :::; N , be a matrix

whose columns are the three pictures of object ai with albedo

function �i. Thus, A1; :::; AN represent the bootstrap set of

N matrices, each is a m � 3 matrix, where m is the number

of pixels of the image (assuming that all images are of the

same size). Let ys be an image of some novel object y (not

part of the bootstrap set) illuminated by some light source s =P
j xjsj . We wish to recover x = (x1; x2; x3) given the N

matrices A1; :::; AN and the vector ys.

We define the normalized albedo function � of the bootstrap

set as:

�(u; v) =
NX
i=1

�2i (u; v)

which is the sum of squares of the albedos of the bootstrap set.

In case where there exist coefficients �1; :::; �N such that

�(u; v)

�y(u; v)
= �1�1(u; v) + :::+ �N�N (u; v)

where �y is the albedo of the novel object y, we say that �y is

in the rational span of the bootstrap set of albedos. With these

definitions we show the major result of this paper: if the albedo

of the novel object is in the rational span of the bootstrap set,

we describe an energy function f(x̂) whose global minimum

is at x, i.e., x = argmin f(x̂).

Theorem 1 The energy function

f(x̂) =
1

2

NX
i=1

j Aix̂� �iys j
2 (2)
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has a (global) minimum x̂ = x, if the albedo �y of object y

is rationally spanned by the bootstrap set, i.e., if there exist

�1; :::; �N such that

�

�y
= �1�1 + :::+ �N�N

Proof: Let ŝ =
P

j x̂jsj , thus, Aix̂ = �in
>ŝ. In vectorized

form:

Aix̂ =

2
6666664

�i1n
>
1

�i2n
>
2

:
:
:

�imn
>

m

3
7777775
ŝ = Wiŝ

where �i1; :::; �im are the entries of �i in vector format. The

optimization function f(x̂) can be rewritten as a function g(ŝ)
of ŝ:

g(ŝ) =
1

2

NX
i=1

jWiŝ� �iWysj
2

=
X
i

1

2
ŝ>W>

i Wiŝ+
X
i

�iŝ
>W>

i Wys

+
X
i

1

2
�2i s

>W>

y Wys

where Wy is defined similarly to Wi by replacing the albedo

�i by �y. Because the variables of optimization x̂; ŝ in f(x̂)
and in g(ŝ) are linearly related, it is sufficient to show that the

global minimum of g(ŝ) is achieved when ŝ = s. We have,

0 =
@g

@ŝ
= (
X
i

W>

i Wi)ŝ� (
X
i

�iW
>

i )Wys:

Hence, we need to show that

X
i

W>

i Wi = (
X
i

�iW
>

i )Wy:

We note that,

W>

i Wi = �2i1n1n
>

1 + :::+ �2imnmn
>

m

Thus, we need to show,

(
X
i

�2i1)n1n
>

1 + :::+ (
X
i

�2im)nmn
>

m =

(
X
i

�i�i1)�y1n1n
>

1 + :::+ (
X
i

�i�im)�ymnmn
>

m

Note that the coefficients of the left hand side are the entries of

the normalized albedo �. Thus, we need to show that

NX
i=1

�2ik = (
NX
i=1

�i�ik)�yk

for all k = 1; :::;m. But this holds, by definition, because �y
is rationally spanned by �1; :::; �N.

The proof above was not constructive, it only provided the

existence of the solution as the global minimum of the energy

function f(x̂). Finding minf(x̂) is a simple technicality (a

linear least-squares problem), but note that the system of equa-

tions is simplified due to substitutionwhile decoupling the role

of x̂ and the coefficients �i. This is shown below:

Theorem 2 The global minimaxo of the energy function f(x̂)
is:

xo =
NX
i=1

�ivi

where

vi = (
NX
r=1

A>r Ar)
�1A>i ys

and the coefficients �i are determined up to a uniform scale

as the solution of the symmetric homogeneous linear system of

equations:

�iy
>

s ys � (
NX
r=1

�rvr)
>A>i ys = 0

for i = 1; :::; N

Proof:

0 =
@f

@x̂
= (
X
i

A>i Ai)x̂� (
X
i

�iA
>

i )ys

from which it follows that:

x̂ = (
X
i

A>i Ai)
�1(
X
i

�iA
>

i )ys =
X
i

�ivi:

We also have:

0 =
@f

@�i
= �iy

>

s ys � x̂>A>i ys;

which following the substitution x̂ =
P

i�ivi we obtain a

homogeneous linear system for �1; :::; �N:

�iy
>

s ys � (
X
r

�rvr)
>A>i ys = 0

for i = 1; :::; N . Written explicitly,

�1(v>1 A
>

1 ys � y>s ys) +:::+ �Nv
>

NA
>

1 ys = 0
�1v

>
1 A

>
2 ys +:::+ �Nv

>

NA
>
2 ys = 0

: : : :
: : : :
: : : :
�1v

>

1 A
>

Nys +:::+ �N (v>NA
>

Nys � y>s ys) = 0
(3)

Let the estimation matrix (above) be denoted by F, we show

next that F is symmetric. The entries Fij, i 6= j, have the

form:

Fij = y>s Aj(
X
r

A>r Ar)
�TA>i ys = y>s AjBA

>

i ys:
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Note that B is a symmetric matrix (inverse of a sum of sym-

metric matrices). Let Eij = AjBA
>

i , then it is easy to notice

that Eji = E>

ij due to the symmetric property of B. Thus,

Fij = Fji because

Fij = y>s Eijys = (Eijys)
>ys = y>s E

>

ijys = Fji:

The energy function f(x̂) in eqn. 2 consists of a simul-

taneous projection of ys onto the subspaces spanned by the

columns of A1, columns of A2 and so on. In addition, during

the simultaneous projection there is a choice of overall scale

per subspace — these choices of scale, the �i, are directly re-

lated to the scaling of the axes represented by �1; :::; �N such

that the albedos of the bootstrap set span (rationally) the albedo

of the novel object. When N = 1, the minimum of f(x̂) co-

incides with x iff the albedo of the novel object is equal (up

to scale) to the albedo of bootstrap object. The more objects

in the bootstrap set the more freedom we have in representing

novel objects. If the albedos of the class of objects are random

signals, then at the limit a bootstrap set of m objects (3m im-

ages) would be required to represent all novel objects of the

class. In practice, the difference in the albedo functions do not

cover a large spectrum and instead occupy a relatively small

subspace of m, therefore a relatively small size N << m is

required, and that is tested empirically in Section 6.

Once the coefficients x have been recovered, the quotient

image Qy can be defined against the average object: Let A be

a m� 3 matrix defined by the average of the bootstrap set,

A =
1

N

NX
i=1

Ai;

and then the quotient image Qy is defined by:

Qy =
ys
Ax

:

To summarize, we describe below the algorithm for synthe-

sizing the image space of a novel object y, given the bootstrap

set and a single image ys of y.

1. We are given N matrices, A1; :::; AN, where each matrix

contains three images (as its columns). This is the boot-

strap set. We are also given a novel image ys (represented

as a vector of size m, where m is the number of pixels in

the image). For good results, make sure that the objects

in the images are roughly aligned (position of center of

mass and geometric scale).

2. Compute N vectors (of size 3) using the equation:

vi = (
NX
r=1

A>r Ar)
�1A>i ys;

where i = 1; :::; N .

3. Solve the homogeneous system of linear equations in

�1; :::; �N described in (3). Scale the solution such thatP
i �i = N .

4. Compute x =
P

i �ivi.

5. Compute the quotient image Qy = ys=Ax, where A is

the average of A1; :::; AN. Replace divisions by zero by

small numbers.

6. The image space created by the novel object, under vary-

ing illumination, is spanned by the product of images Qy

and Az for all choices of z.

5 A Note About Color

The process described so far holds for black-and-white im-

ages, not color images. We describe a simple approach to han-

dle color images, while still maintaining a grey-value boot-

strap set. In other words, given a bootstrap set of grey-value

images, and a color image (represented by RGB channels) ys
of a novel object, we wish to create the color image space of

that object under varying illumination. To that end, we will

make the assumption that varying illumination does not affect

the saturation and hue composition of the image, only the grey-

value distribution (shades of color) of the image.

Given this assumption we first must decouple the hue, sat-

uration and grey-value (lightness) components of the image

ys from its RGB representation. This is achieved by adopt-

ing the Hue Saturation Value (HSV) color space [20] often

used for splitting color into meaningful conceptual categories.

The transformation (non-linear) from RGB to HSV and vice

versa can be found, for example, in MATLAB. The HSV rep-

resentation decouples the color information into three channels

(images): Hue (tint, or color bias), Saturation (amount of hue

present — decreasing saturation corresponds to adding white

pigment to a color), and Value (the luminance, or black-and-

white information; the diagonal from (1; 1; 1) to (0; 0; 0) of

the RGB cube). Saturation can vary from a maximum corre-

sponding to vivid color, to a minimum, which is equivalent to

black-and-white image. Once the H,S, and V images are cre-

ated (from the R,G,B images), the novel image we work with is

simply V . The algorithm above is applied and a synthetic im-

age V 0 is created (a new image of the object under some novel

illumination condition). The corresponding color image is the

original H,S and the new V’. Similar approaches for augment-

ing black-and-white images using a color prototype image can

be found in [14].

This approach allows using only grey-level images in the

bootstrap set, yet accommodates the synthesis of color images

from a novel color input image. Fig. 8 display examples on

synthesizing color images from a grey-value bootstrap set.

6 Experiments

We have conducted a wide range of experimentation on

the algorithm presented above. We first used a high qual-

ity database prepared by Thomas Vetter and his associates

[23, 22]. We have chosen a bootstrap collection of 10 objects

shown in Fig. 2. The images of the bootstrap set and the novel

images to be tested are “roughly” aligned, which means that

the center of mass was aligned and scale was corrected (man-

ually).
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 2. The bootstrap set of 10 objects from Vetter’s database of 200 objects.

Our first test, shown in Fig 3, was to empirically verify that

the quotient image is indeed invariant to illumination changes.

The Q-images where thresholded (above one standard devia-

tion) for display purposes. One can see that with a bootstrap

set of 10 objects one obtains a fairly invariant quotient image

in spite of the large variation in the illumination of the novel

images tested. The Q-images should also be invariant to the

choice of the light sources s1; s2; s3 used in the bootstrap set.

This is demonstrated in Fig. 5 where the quotient image was

generated against different choices of s1; s2; s3 for the boot-

strap object set (Vetter’s database includes 9 images per object

thus enabling us to experiment with various bootstrap sets of

the same 10 objects). Note that the novel image that was tested

was not part of Vetter’s database but an image of one of our lab

members.

The next experiment was designed to test the role of the

size of the bootstrap set on the accurate determination of the

coefficients x = (x1; x2; x3). The accuracy of the coefficient

vector x is measured by the invariance of the quotient image

against varying illumination, hence Fig. 4 displays Q-images

generated by various bootstrap sets, as follows. We have tested

the case N = 1, i.e., bootstrap set of a single object (row b),

compared to a bootstrap set of N = 10 but where the refer-

ence object is the same object used in case N = 1 (instead

of the average object), shown in row (f). Therefore, the dif-

ference between rows (c) and (f) is solely due to the effect of

Theorem 1 on computing the coefficient vector x. The result

supports the claim of Theorem 1 in the sense that the larger the

bootstrap set the more accurate is the recovery of x. In order

to rule out any special influence the average object has on the

process (recall that once x has been recovered it was suggested

to use the average object  as the reference object for the quo-

tient image) we have also tested the case N = 1 where the

images were deliberately blurred (to simulate an average ob-

ject), yet the Q-images (row d) have not improved (compared

to row c).

In Figs. 6 and 7 we demonstrate the results of image syn-

thesis from a single input image and the bootstrap set. Note

the quality and the comparison between results of bootstrap

size N = 10 and N = 2 (there are differences but relatively

small).

Figure 5. Q-images should be invariant to the 3 illumination

conditions of the database images, as long as they span a 3 Di-

mensional subspace. The 3 Q-images were generated against

different bootstrap sets of the same 10 objects but of different

triplets of light sources. Note that the novel object is not part

of the original database of 200 objects, but of a member of our

lab.

So far we have experimented with objects and their images

from the same database of 200 objects. Even though the input

image is of an object outside the bootstrap set, there is still an

advantage by having all the images taken with the same cam-

era, same conditions and same quality level. Our next exper-

iments were designed to test the algorithm on source images

taken from sporadic sources, such as from magazines or from

the Web. The bootstrap set in all experiments is the one dis-

played in Fig. 2.

Fig. 8 shows four novel (color) images of celebrity people

(from magazines) and the result of the synthesis procedure.

These images are clearly outside the circle of images of the

original database of Vetter, for example the images are not

cropped for hair adjustment and the facial details are markedly

different from those in the bootstrap set. Finally, we have

experimented with other bootstrap sets shown in Fig. 9a. A

bootstrap set of three objects varying in hair-style, uncropped,

and generally taken under much less attention compared to the

bootstrap set of Fig. 2 is sufficient, nevertheless, to generate

quite reasonable re-renderings as shown in Fig. 9d. The degra-

dation is indeed graceful and affects mainly the degree of il-

lumination changes, not as much the quality of the resulting

image (compared to the source image).

7 Other Routes for a Signature Image?

The quotient image approach is based on the idea that an

illumination invariant image Q = �y=�a can be used to map

7



�D�

�E�

Figure 3. Testing the invariance of the quotient image to varying illumination. (a) Original images of a novel face taken under 5 different

illuminations. (b) The Q-images corresponding to the novel images above computed with respect to the bootstrap set of Fig. 2.

�E�

�F�

�D�

�I�

�H�

�G�

Figure 4. Testing accuracy of Theorem 1 against the size of the bootstrap set. (a) Original images taken under 4 distinct light conditions.

(b) Bootstrap set of N = 1 objects used for generating the Q-images of (a) displayed in row (c). Note that the quotient images are not

strictly invariant as they change with the illumination. (d) Q-images of the bootstrap set (N = 1) displayed in (e). Note that the bootstrap

set is blurred in order to test whether using the “average” object whenN > 1 makes a difference compared to the machinery described in

Theorem 1. We see that blurred images do not improve the invariance of the Q-images. (f) Q-images of (a) against the object (b) but where

the coefficient vector x was recovered using theN = 10 bootstrap set of Fig. 2. The comparison should be made between rows (c) and (f).

Note that in (f) the images are invariant to changing illumination more so than in (c).

�D� �E� �F� �G� �H�

�I� �J� �K� �L� �M� �N�

Figure 6. Image Synthesis Example. (a) Original image and its quotient image (b) from theN = 10 bootstrap set. The quotient image

is generated relative to the average object of the bootstrap set shown in (c),(d) and (e). Images (f) through (k) are synthetic images created

from (b) and (c),(d), (e) using Proposition 1.
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�E�

�D�

�G�

�H� �I�

�F�

Figure 7. Image synthesis examples. (a) Original images under 3 distinct lighting conditions and the synthesized images (b) using linear

combinations of those 3 images. The synthesized images using the original single image (c) and a N = 10 bootstrap set are shown in (d).

Finally, (e) is anN = 2 bootstrap set for generating the synthesized images (f) from the single original image (c).

�D� �E� �F� �G� �H� �I� �J�

Figure 8. (a)original color images. (b) Q images(c)-(g) Synthesized images
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�D�

�E��F�

�G�

Figure 9. Image synthesis using other, lower quality, bootstrap sets (Yale data sets). The bootstrap set (N = 3) is shown in (a). Note

that the objects vary considerably in appearance (hair style and facial hair) and are thus less controlled as in Vetter’s data set. The source

image (b), its quotient image (c) and synthesized images (d).

the image space of object a to the image space of object y

using a single image ys of y. The equation (
P

j xjaj) 
 Q
generates the image space of y (Proposition 1). There are two

points worth making.

First, Q is analogous to an ”error correction term”. How-

ever, it is important to distinguish between error correction and

an illumination invariant term. For example, let ŷ be the re-

constructed image of ys from the bootstrap set (after solving

for x; �i that minimize eqn. 1 in the “reconstructionist” ap-

proach), and let �Q be defined such that ys = ŷ 
 �Q. There

is no reason to expect that �Q would be illumination invariant.

This is demonstrated in Fig. 10b showing that the �Q images

are not invariant to changing illumination. In other words, one

would not obtain an admissible image space of y, or correct

re-rendering, if we simply correct for the reconstruction error

by a Cartesian product with �Q.

Second, notice that the optimization criteria described in

Theorem 1 involves a somewhat complex definition of what

constitutes a “family” of albedo functions (rational span). This

is unlike the more intuitive definition, that one would typi-

cally adopt under such circumstances, that albedo functions

are closed under linear combinations (the definition adopted

in the optimization criteria behind eqn. 1 for the “reconstruc-

tionist” approach). However, the rational span definition has

an important role because through it we were able to remove

of the intrinsic bilinearity among the illumination parameters

x = (x1; x2; x3) and the albedo parameters �1; :::; �N and ob-

tain a linear system for N + 3 variables (instead of 3N if the

linear span definition were to be adopted). The importance of

all this, depends on the numerical behavior of the system. In

principle, however, one could solve for x from eqn. 1 and use it

for obtaining the quotient image as defined in Proposition 1. In

other words, in the algorithm described in the previous section,

simply replace steps 2–4 with the procedure described in Sec-

tion 3 for obtainingx. We expect a degradation in performance

due to numerical considerations (due to the enlargement of

parameter space). The results of doing so are illustrated in

Fig. 10c. The quotient images clearly show a dependence on

illumination change, indicating that the parameters x1; x2; x3

were not recovered well.

In summary, the combination of an illumination invariant

correction term (the quotient image) and a simple optimization

criteria (eqn. 1) — with the price of somewhat complicating

the definition of when albedos form a “family” — gives rise to

both practical and a provenly correct procedure for class-based

re-rendering (under the terms stated of ideal class definition

and Lambertian surfaces).

8 Recognition

The Q-images are illumination invariant signatures of the

objects in the class. We can therefore make use of the invari-

ance property for purposes of recognition. Vetter’s data base

contains 200 faces each under 9 lighting conditions, making

a total of 1800 images. We used a bootstrap set of 20 ob-

jects (60 images) and created the Q-images of all the 200 ob-

jects — these 200 images serve as the database, we refer to

as Q-database, for purposes of recognition. Given any of the

1800 source images, its Q-image is created from the bootstrap

set and matched (by correlation) against the Q-database while

searching for the best match.

We made two tests (summarized in Fig. 11). In the first test

the Q-database was generated from images under the same il-

lumination (we have 9 images per object in Vetter’s database).

The results of recognition was compared to correlation where

the database for correlation where those images used for cre-

ating the Q-database. The match against the Q-database was

error free (0%). The match against the original images, instead

of the Q-images, had 142 mismatches (7:8%). In the second

test the images used for creating the Q-database were drawn

randomly from the set of 9 images (per object). The match

against the Q-database produced only 6 mismatches (0:33%),

whereas the match against the original images produced 565

mismatches (31:39%). The sharp increase in the rate of mis-

matches for the regular correlation approach is due to the dom-

inance of illumination effects on the overall brightness distri-

bution of the image (cf. [18, 1]).

We also made a comparison against the “eigenfaces” ap-

proach [19, 11] which involves representing the database by
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�D�

�E�

�F�

Figure 10. Alternatives approaches for a quotient image. (a) original images under varying illumination. (b) Quotient images defined as

a multiplicative ”error” image, i.e., the ratio of the original image and the least-squares reconstructed image from the bootstrap set. Note

that the resulting quotient images are not illumination invariant. (c) Quotient images defined by Proposition 1 where x is the minima of

eqn. 1 (instead of eqn. 2). Again the images are not illumination invariant.

its Principle Components (PCA). In the first test, the PCA was

applied to the bootstrap set (60 images) and 180 additional

images, one per object. In the first test the additional images

were all under the same illumination, and in the second test

they were drawn randomly from the set of 9 images per ob-

ject. The recognition performance depends on the number of

principle components. With 30 principle components (out of

240) the first test had 25 mismatches (1:4%), and the second

test 120 mismatches (6:6%). The performance peaks around

50 principle components in which case the first test was error

free (like in the Q-image method), and the second test had 18

mismatches (1%).

To summarize, in all recognition tests, except one test of

equal performance with PCA, the Q-image outperforms and in

some cases in a significant manner, conventional class-based

approaches.

9 Summary

We have presented a class-based, image-based, re-

rendering and recognition method. The key element of our

approach was to show that under fairly general circumstances

it is possible to extract from a small set of example images an

illumination invariant “signature” image per novel object of

the class from a single input image alone. We have proven our

results (under the ”imaginary” world of ideal class assump-

tion) and demonstrated the applicability of our algorithm on

the class of real pictures of human faces. In other words, we
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Figure 11. Recognition results on Vetter’s database of 1800

face images. We compare the Q-image method with correla-

tion and Eigenfaces. See text for details.

have shown that in practice a remarkably small number of sam-

ple images of human frontal faces (in some of our experiments

images of two objects were sufficient for making a database)

can generate photo-realistic re-rendering of new objects from

single images.

The ideas presented in this paper can, without too much

difficulty, be turned onto a system for image compositing and

relighting of general faces, with very high quality of perfor-

mance. To that end, further implementation elements may

be required, such as using collections of bootstrap sets (while

choosing among them manually or automatically using sparse

optimization approaches like Support Vector Machines [21]),

and automatic or semi-automatic tools for morphing the boot-

11



strap set onto the novel image in order to better compensate

for changes of shape (such as [23]).
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