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Abstract
The QUT-NOISE-TIMIT corpus consists of 600 hours of noisy
speech sequences designed to enable a thorough evaluation of
voice activity detection (VAD) algorithms across a wide variety
of common background noise scenarios. In order to construct
the final mixed-speech database, a collection of over 10 hours
of background noise was conducted across 10 unique locations
covering 5 common noise scenarios, to create the QUT-NOISE
corpus. This background noise corpus was then mixed with
speech events chosen from the TIMIT clean speech corpus over
a wide variety of noise lengths, signal-to-noise ratios (SNRs)
and active speech proportions to form the mixed-speech QUT-
NOISE-TIMIT corpus. The evaluation of five baseline VAD
systems on the QUT-NOISE-TIMIT corpus is conducted to val-
idate the data and show that the variety of noise available will
allow for better evaluation of VAD systems than existing ap-
proaches in the literature.
Index Terms: voice activity detection, speech databases, eval-
uation protocols

1. Introduction
Voice activity detection (VAD) is the process of detecting which
portions of a given audio file contain conversational speech.
The VAD process acts as a crucial front-end stage on many
related speech processing algorithms, such as speech enhance-
ment, speech coding, and automatic speech and speaker recog-
nition.

One of the main unsolved issues in evaluating VAD algo-
rithms is the lack of a suitable large corpus of noisy speech
available covering many speakers in a variety of noisy environ-
ments, and with a wide range of noise levels. In order to be-
gin to approach the volume required to properly evaluate VAD
systems, many approaches have mixed existing clean speech
databases with background noise data collected separately at the
required noise level. However, while the large speech corpora
available to researchers through this approach allow a wide va-
riety of speakers to be evaluated for VAD, the short recordings,
typically less than 5 minutes, of existing popular noise datasets
such as NOISEX-92 [1] or AURORA-2 [2] have limited the
ability to adequately test VAD algorithms in a wide range of
background noise conditions.

To attempt to alleviate this shortcoming in the existing VAD
literature, we have collected a large corpus consisting of over
10 hours of background noise in a wide variety of locations
covering common noise scenarios. In addition, the reverberant
response of the environment was also collected in some loca-
tions in order to allow equivalent reverberation to be applied to
the inserted speech. By combining our noise recordings with

the clean-speech TIMIT [3] database, we created 600 hours of
noisy recordings, covering 24,000 individual files over a wide
range of noise levels and speech utilisation percentages. By us-
ing the large volume of noisy speech available in the resulting
QUT-NOISE-TIMIT corpus1, VAD algorithms can be readily
tested against a wide range of common noise scenarios.

2. The QUT-NOISE background noise
corpus

This section will outline the construction of the QUT-NOISE
background noise corpus, which will be used to provide the
background noise for the construction of the mixed speech
QUT-NOISE-TIMIT corpus in Section 3.

2.1. Scenarios

In order to provide a simulation of noisy speech in a wide va-
riety of typical background noise conditions, we conducted a
collection of 20 noise sessions of at least 30 minutes duration
each. Two separate noise recordings, separated by at least one
day in all but the CAR scenario, were conducted in 10 separate
locations over 5 separate common background noise scenarios.

2.1.1. CAFE

The two locations of the CAFE scenario were a typical outdoor
cafe environment (CAFE-CAFE) and a typical indoor shopping
centre food-court (CAFE-FOODCOURTB). These recordings
are typified by medium to high levels of background speech
babble, and kitchen noises from the cafe environment.

2.1.2. HOME

The two locations for the HOME scenario were in the kitchen
(HOME-KITCHEN) and living-room (HOME-LIVINGB) of
the primary author during typical home activities. The kitchen
recordings consist of sections of relative silence interrupted oc-
casionally by typical kitchen noises. The living room record-
ings consist of children singing, talking and playing alongside
television or music noise.

2.1.3. STREET

The two locations for the STREET scenario were at the
roadside near typical inner-city (STREET-CITY) and outer-
city (STREET-KG) traffic-light controlled intersections. Both
recordings largely consist of road traffic noise, with the inner-
city recordings also having significant pedestrian traffic as well

1For further information regarding the database contact Sridha Srid-
haran at s.sridharan@qut.edu.au.



as bird noise from a nearby park, while the outer-city recordings
mostly consisting of cycles of traffic noise as the traffic lights
changed.

2.1.4. CAR

As only one car was available for the CAR scenario, in lieu
of two separate locations, the scenario was divided into driv-
ing with the windows down (CAR-WINDOWNB) or with the
windows up (CAR-WINUPB). Because the car used was only
available for a short time, all recordings were conducted on a
single day. For both ‘locations’ the first session was recorded as
highway driving, and the second was recorded based upon driv-
ing in city and suburban areas. All recordings are characterised
by road (and wind for CAR-WINDOWNB) noise and typical
car-interior noises (such as indicator, key or luggage-movement
noise) but with no radio or speech noise.

2.1.5. REVERB

The two locations for the REVERB scenario were an en-
closed indoor pool (REVERB-POOL) and an partially enclosed
carpark (REVERB-CARPARK). Both locations were chosen as
environments that were expected to produce a large reverber-
ant response. In addition to the large levels of reverberation,
the pool environment is characterised by splashing and running
noise, while the carpark environment is characterised by nearby
road noise and occasional carpark vehicular noise.

2.2. Recording setup

2.2.1. Equipment

The background noise corpus recording was accomplished
with a prosumer-quality Zoom H2 handheld stereo microphone
recorder. This device was chosen as the quality of the back-
ground noise recordings should be higher than typical recording
scenarios, allowing any expected recording quality to be easily
synthesised.

In order to calculate the room response in the reverber-
ant environments (CAR and REVERB), a single studio-quality
KRK RP5 studio monitor was used to play an number of fre-
quency sweeps. This particular studio monitor was chosen as
it had a good linear frequency response allowing for the best
reproduction of the frequency sweeps used for calculating the
room response. Further detail on calculating the room reverber-
ant response is provided in Section 2.3.

2.2.2. Noise recording

Each of the 20 noise sessions were recorded with the Zoom H2
set to record raw stereo WAV output with a sampling rate of 48
kHz, and 16 bits per sample. The recordings were conducted
using the rear microphone pair of the Zoom H2, as the greater
microphone angular separation (when compared to the front mi-
crophone pair) could potentially allow for more useful compar-
isons to be made between the two channels in future research.

In order to calculate the room response in the reverberant
CAR and REVERB scenarios, 10 second frequency sweeps
were played with the studio monitor positioned several me-
tres away from the microphone. Each reverberant session con-
tained 12 frequency sweeps, with 6 before the main 30+ minute
recording session and 6 after.

Each of the noise sessions collected was manually labeled
with the boundaries of the main 30+ minute recording session,
as well as the rough locations of each individual frequency

sweep in the reverberant sessions. In addition, the locations
of any bad portions of data (such as microphone failure) were
labeled to allow them to be avoided.

2.3. Calculating the reverberant response

Based on the work of Farina [4], the multiple frequency sweeps
used to measure the environment’s reverberant response were
constructed using a sine wave with the instantaneous frequency
varying exponentially from 100 Hz to 20 kHz over a period of
10 seconds. An exponential amplitude modulation term is also
added to compensate for the differing energy generated between
the low and high frequencies of the raw sweep.

As the six recorded sweeps had been roughly labeled along-
side the original noise recordings, the recorded sweeps could
then be deconvolved with a clean sweep to arrive at an estimate
of the environment’s reverberant response. As the response is
located through a deconvolution process, precise labeling of the
end point of the frequency sweeps was not required. All six
impulse response were then averaged in order to attenuate envi-
ronmental noise captured alongside the sweeps to arrive at the
final estimate of the environmental reverberant response, which
was then saved alongside the noise recording for future use.

3. The QUT-NOISE-TIMIT mixed speech
corpus

This section will outline the construction of the QUT-NOISE-
TIMIT mixed speech corpus by mixing background noise ses-
sions chosen from the QUT-NOISE corpus outlined in Section 2
with clean speech chosen from the TIMIT corpus [3].

An overview of the speech sequences available in the final
constructed database is shown in Figure 1. In total 600 hours of
noisy speech sequences were created over 24,000 files, consist-
ing of 100 files for each of 6 SNRs by 2 noise lengths for each
of the 20 recording sessions in the QUT-NOISE corpus.

In order to allow for repeatable division of the QUT-
NOISE-TIMIT corpus, two location groups have additionally
been defined covering one location for each scenario. These
location groups are labelled in Figure 1 as groups A and B.

3.1. Construction

3.1.1. Background noise

Given a particular noise sessions from the QUT-NOISE corpus,
for each specified noise length and SNR, 100 background au-
dio scenes were extracted from the recorded noise session. The
starting point of each scene was randomly chosen from the la-
beled main portion of the recording session, excluding the first
five minutes2, and restricted in such a way as to avoid any por-
tion of the recording session labeled as bad data.

Once the location of the 60 or 120 second background au-
dio scene was chosen from the noise session, the left-hand chan-
nel was taken and low-pass filtered and down-sampled from the
original 48 kHz to the desired 16 kHz sample rate of the final
speech sequence files.

3.1.2. Speech events

Once 100 audio scenes had been selected for a particular noise
session, length and SNR, speech events were randomly cho-
sen from the TIMIT corpus such that 25 sessions contained less

2The first five minutes were excluded to allow for the possibility of
training models on noise not used in the final noisy speech corpus.
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Figure 1: An overview of the speech sequences available in the QUT-NOISE-TIMIT corpus.

than 25% speech (including no speech), 50 sessions had be-
tween 25% and 75%, and the remaining 25 sessions had more
than 75% speech. In order to ensure that the speech utterances
could remain different during training and testing of VAD sys-
tems, the full list of TIMIT speech files (covering both the train
and test portions of the corpus) were divided into 4 equal sized
lists, which were chosen based on which location group (A or
B) and session (first or second) each noise recording session
belonged to.

In order to allow for longer speech events than the 2-3 sec-
onds of a typical TIMIT utterance, each speech event was ran-
domly combined with it’s previous partner with a probability of
50%. In order to emulate the effects of co-talking, if two ut-
terances were combined, they were also overlapped by a time
period chosen from a uniform random distribution between 0
and 1 second. Finally, the silence-lengths between the different
combined speech events were randomly distributed between 0
and 1 second, then scaled up to fill the remaining space in the
background noise sequence.

In order to simulate the reverberant environmental re-
sponse, speech events intended for combination with the re-
verberant CAR and REVERB background noise sessions were
convolved with the saved reverberant responses of the environ-
ment in which they were to be inserted.

3.1.3. Combining speech with background noise

Before the clean TIMIT speech files and selected back-
ground noise sequence could be combined to form the final
noisy speech sequences in the QUT-NOISE-TIMIT corpus, the
speech events and background noise were scaled to match the
desired SNR. This process was performed by first scaling the
individual speech events to a ITU-T standard (P830) reference
signal level of -26 dBov, and then scaling the background noise
energy in relation to the reference speech level according to the
desired SNR. This approach ensured that all background noise
events had a well defined signal level, even in files in which no
speech events had been inserted.

Once the background noise levels and speech events had
been scaled appropriately, the final noisy speech sequences
were obtained by a sample-by-sample summing of the speech
and background noise sessions where they overlapped. While
this approach has resulted in some clipping at low SNR lev-

els due to high noise energy, it was deemed more important to
maintain a consistent reference energy level in similar SNR se-
quences.

3.2. Metadata

Alongside each of the constructed audio files created for the
QUT-NOISE-TIMIT corpus, two label files are also provided
indicating both the locations of the original TIMIT speech files,
and the location of the distinct non-overlapping speech events
contained within. The latter event labeling method was deter-
mined using by removing the outside-silence periods from the
TIMIT speech files (using the word-level labeling provided with
TIMIT) and combining overlapping speech into a single labeled
’speech’. Remaining non-speech events were then labeled as
’nonspeech’. These event-label files will serve as the ground
truth for speech detection experiments.

4. Voice activity detection experiments
In order to provide a common reference to facilitate simple re-
sults comparison and also to validate the collected data, five
baseline VAD systems have been evaluated using the QUT-
NOISE-TIMIT corpus.

4.1. Baseline systems

Five baseline VAD systems were chosen for evaluation using
the QUT-NOISE-TIMIT corpus. These VAD systems were

• ITU G729 Annex B [5] (G729B),

• ETSI Advanced Front-end VAD [6] (ETSI),

• Ramirez’s long-term spectral divergence [7] (LTSD),

• Sohn’s model-based likelihood ratio [8] (Sohn), and

• A GMM based learning approach using MFCC features
(GMM-MFCC).

The G729 and ETSI VAD systems are performed directly using
the publicly available VAD code released as part of those stan-
dards and were run as-is without any training. The LTSD and
Sohn approaches use frame-by-frame speech-likelihood scores
calculated using similar approaches to the published algorithms
in [7] and [8]. Finally, the GMM-MFCC system uses the ground
truth event labeling in the training divisions to train speech and



nonspeech models on MFCC-based speech features. The frame-
by-frame speech-likelihood scores for the GMM-MFCC system
are then given as the difference between the log-likelihoods of
the speech and nonspeech GMM models.

The LTSD, Sohn and GMM systems were further smoothed
by a 1-second median filter to attenuate short-term variation,
and then thresholded using thresholds tuned using the training-
divisions outlined in the evaluation protocol.

4.2. Evaluation protocol

The QUT-NOISE-TIMIT corpus is suitable for division for the
training and testing of VAD systems over a large range of op-
erating conditions. For the particular set of VAD experiments
conducted here, we have chosen to assume knowledge of the
broad SNR level of the target environment, but no knowledge
of the actual location or even the scenario of the target envi-
ronment. Accordingly, for each of the three broad SNR levels
chosen (low: 15, 10 dB; medium: 0, 5 dB; high: -10, -5 dB)
the VAD systems were trained on one location group (A or B)
and tested on the other (B or A) and vice-versa. In this way
the VAD systems were trained and tested over all scenarios at a
particular broad noise level, but with no prior knowledge of the
actual locations they were tested in.

Performance of the final VAD segmentation results were
measured by comparing the segmentation results to the ground
truth event-label files created alongside the QUT-NOISE-
TIMIT corpus. VAD segmentation results were measured ac-
cording to the miss rate (MR) measuring the proportion of true-
speech frames not detected as speech, and the false-alarm rate
(FAR) measuring the proportion of non-speech frames incor-
rectly detected at speech. These two error rates were combined
in the half-total-error rate (HTER), being the average of the MR
and FAR. The segmentation-tuning performed for the LTSD,
Sohn and GMM-MFCC systems were also based on minimis-
ing the HTER in the training partitions.

4.3. Experimental results

The performance of the five VAD systems is shown according
to the HTER in Figure 2 for each of the three broad noise levels.
Each of the results is shown as a stacked bar indicating the pro-
portions of the MR (bottom, darker) and the FAR (top, lighter)
to the total HTER. Accordingly, the height of the MR and FAR
sections is half of the actual levels of that error type.

From an analysis of the results shown in Figure 2, it can be
seen that the GMM-MFCC, LTSD and Sohn systems typically
outperform the standards-based ETSI and G729B VAD sys-
tems. The large volume of noisy speech available in the QUT-
NOISE-TIMIT over a wide range of scenarios has allowed for
the choice of relatively robust segmentation thresholds for these
systems in comparison to the built-in threshold approaches of
the standards-based systems. In particular, the ability of the
GMM-MFCC VAD system to learn the cross-scenario charac-
teristics of speech and nonspeech provided the best performance
across all noise levels.

5. Conclusion
Within this paper, we have outlined the development of the
QUT-NOISE-TIMIT corpus, an extensive noisy speech corpus
for the evaluation of automatic VAD systems. This corpus con-
sists of 600 hours of noisy speech sequences constructed from
over 20 hours of background noise collected over a wide vari-
ety of typical VAD scenarios, including environment reverber-
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Figure 2: HTER performance of all VAD systems over the three
broad noise levels. Each bar is divided according to the contri-
bution of the MR (bottom, darker) and the FAR (top, lighter) to
the overall HTER.

ant responses, combined with the TIMIT clean speech corpus.
We have also demonstrated the use of the QUT-NOISE-TIMIT
corpus for the evaluation of a number of baseline VAD algo-
rithms.

We believe that this database will form a solid basis for the
development and evaluation of robust VAD algorithms that can
operate across a wide variety of noise scenarios. For further
information regarding the database contact Sridha Sridharan at
s.sridharan@qut.edu.au.
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