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B" 1 2 6 7 11 12 17 20 22 25 27 30 36 38 39 40
B" 2 3 7 8 12 13 18 16 23 21 28 26 37 39 40 36
Bn 3 4 8 9 I] 14 19 17 24 22 29 27 38 40 36 37
B.w 4 5 9 10 14 15 20 18 25 23 30 28 39 36 37 38

B" 5 [ 10 6 15 11 16 19 21 24 26 29 40 37 38 39.

Collineations on points

U= (X)(123 4 5) (6 78910)(11 (2131415) (1617 18 1920)
(2122 24 25) (26 27 28 29 30) (313233 34 35) (36 37 38 39 40),

p= (X)(l 6 1l}(2 7 12)(3 813) (4 914)(510 15)(16 21 26)
(172227) (18 23 28) (19 24 29) (20 25 30) (3]) (32) (33) (34)
(35) (361 (37) (38) (39) (40).

Eric Verheiden has made a tally of the code of this design and it is the
case of (5.1) with A 4 = 0, A)6 = 1.

REFERENCES

'I

1. R. P. ANSTEE. M. HALL JR., AND J. G, THOMPSON, Planes of order to do nO! have a
oollin<:ation of order 5, J. Combin. Theory Se'. A 29 (1980), 39-58.

2, M. ASCHBACHER, On collineation groups of symmetri~ block designs, J. Combin. Theory
Ser. A II (1971),272-281.

3. M. HALL, JR., ~Combina\Orial Theory." Wiley, New York/London, 1967,
4. D, R. HUGHES, Collineations and g"""rali~ed incidence matrices. Trans. Amer Mark.

SIX- 86 (1957), 2B4-296.
5 F, 1. MACWILLlA.MS, N. 1. A_ SLOA~·E. "NO J. G. THOMPSON, On the existence of a pro­

jective plane of order 10, J, Combin, Them}' Sa. A 14 (1973). 66-78.
6, F, J, MACWILLIAMS AND /-'-. J. A. SLOANE, "The Theory or Error-Correcting Codes."

North-Holland, ArnSlerdam/:-Iew York/Oxrord. 1977.
7. R. McEuECE, "The Theory of Information and Codin@. Encyclopedia of Mathemalj~s

and lis ·"'IJP[j~ation~" Vol. 3, Addison-Wesley, Rea(li~g, Mass., 1977,
8. H. J. RYSER, "Combinatorial Mathematks," Cares Mathemalical Monograph No. 14,

Wiley', New York, 1963.

9. !,>'. J. A. SLOM'E, Weight enumerators of codes, i~ ~Combinatori~s Proceeding, of the
NATO Advanced Study Institute held at Nijenrode Castle, Breukelen, The Netherlands
8-20 July 1974," Reidel. Dordrech1;/Boston.

10. J. H. VAN LINT, "Coding Theory," Lecture NOles in Mathematics No, 201, Springer­
Verlag, Berlin/Heidelberg/New York, 1971.

,;:

t

I
r
 

The r-major index is a new permlltation smti,tic that is £uggested by the work of 
Carlitl and Gausner on Foulke£' slew·hook rule for computing the r-Eulerian 
Dumbers. The new statistic (1 I generalize, both the major index and the inversion 
number of a permu,atioll and (2) lead, to a q-allalog of the r-Ellleriall numbers. 

I. INTRODVCTION 

Let G(n) denote the symmetric group on {I, 2"", nl and W(n) the set of 
words w = W, w

1 
... h'n with letters Wi E (0, 1,.." i-I}. For an integer r): 1, 

the ,-major index of a permutation a E G(n), denoted by ,maj a, is defined 
to be the sum of the elements of the set 

F: a(i)):a(i + l)+r, l(;i(;n-ll (l.l ) 

plus the cardinality of the set 

f(i, j): I <, i <j (; 11, a(i) >aU) > a(i) - rl· (1.2) 

Let sew) be the sum of the letters in the word h'. The primary objective of 
this paper is Lo construct a bijection F: G(n) ..... W(n) with the property that 

if r(a)=w then rmaja=s(h'). (1.3) 

The correspondence F is referred to as the rmaj coding of G(n). 
There are a number of motives for and consequences of defining the r­

major index and coru;tructing F. First, the ,-major index generalizes both of 
the classic permutation statistics known as the major index and the inversion 
number. Indeed. the r-major index reduces to the major index when r = I 
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and to the inversion number when r ~  n. Furthermore, if the q-analog and 
the q-factorial of a non-negative integer n are respectively defined as 

(a) [nl=l+q+ ... +qn-l 
( 1.4) 

(b) ['I' ~  [II [21··· [,I, 

then it is immediate from (1.3) that 

~qrmaJa=  [nlt (1.5) 

" 
summed over G(n). Rodriguez 1I5j derived (1.5) for the inversion case as 
early as 1839. Identity (1.5) also includes MacMahon's [11 J observation 
thaI the major index and the inversion number have the same generating 
function. Incidentally, Foata [4) provided a combinatorial proof of 
MacMahon's disco~'ery  by constructing a bijection rfJ; G(n) ~  G(n) with the 
property that the major index of a E C(n) is equal to the inversion number of 
<P(a ). 

Second, the special cases r = 1 and r = n of r are common and useful 
tools in working with the major index and the inversion number. In the 
in\'ersion case, rea) is known as the inversion table (see Knuth [10, p. 12]) 
or the Lehmer code of (J, The major index case of r is implicit in the work of 
Carlitz [21. In fact, the labeling used in Section 4 of this paper to construct r 
was used by Caditz for r = I. The two cases r = I and r = n of r were 
further considered and developed by Gerard Viennot in an unpublished work, 
Viennot combined the two cases to provide another combinatorial proof of 
the fact that the major index and the inversion number are identically 
distributed over G(n), 

Third, the rmaj coding unifies and extends the work of Carlitz [3J and 
Gammer [7J on Foulkes' [61 skew-hook formula for computing the r­
Eulerian numbers. The q-analog of Foulkes' formula obtained by Carlitz for 
r= I will be extended to all r)-I using the r-major index, Also, the skew· 
hooks which appear in the bijection thai Gansner developed will be 
constructed from the word rca). In fact, r is a modification of Gansner's 
correspondence. 

Finally, the r-major index also leads to a q-analog of Foulkes' obsen-alion 
that the skew-hook formula is a kind of scalar product of Stirling numbers. 
The q-analog of the Stirling numbers that arises in this connection agrees 
with the one introduced by Gould [9J and further considered by Milne [12) 
and Garsia [8 J. 

2. nlE r-EULERIA:-l NUMBERS 

The elements of set (1.1) are referred to as the r-descents of G. The number 
of r-descents is denoted b:y rdesG. Then, as in [5, 141, the r-Eulerian 
numbers A(n, k; r) may be interpreted as the number of permutations in G(n) 
having k r-descents. They satisfy the recurrence 

A(Il, k; r) = (k + r)A(n - I, k; r) + (n + 1 - k - r:IA(n - I, k- I; r), (2.1) 

where A(r, 0; r) = r1. 
Foulkes' skew-hook rule provides an alternative for computing A(n, k; r). 

Let H(n, k, r) denote the set of (~;;r)  paths in an (II + l-k-r) row by 
(k + l) column rectangle of nodes that proceed from the bottom left-hand 
corner to the top right-hand corner by a sequence of steps, either upward or 
to the right. In any such path, attach the label i to any horizontal step in the 
ith row from the bottom, and attach the lahel i + r- 1 to any vertical step in 
the ith column from the left. As an example, for r = 3 the labels of the steps 
in the path 

!---' (2.2) 

of H(8, 3, 3) are from bottom to top 3, 2, 2, 5, 3. Let TI (h) denote the 
product of the n - r labels of the path hE H(n, k, r). Then Foulkes showed 
that 

/len, k; r)= rJ)', n (h) (2.3) 

summed over H(n. k, r). 

3. THE (q, r)-STIRUNG NUMBERS 

Let P{n, k) denote the collection of partitions p = (B" B 2 .... ' Bk) of the set 
{I, 2,..., n} into k parts with min HI < min 8 1 < ... < min Bk • For p E pen, k) 
define 

• 
m(p)~ I (i-I) IB;I_ (3.1 ) 

(~l 

where IB;[ denotes the cardinality of Hi' Further, let PI(n, k, r) and 
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PAn, k, r) respectively denote the subsets of pen, k -+- r) and 
pen, n + I - k - r) defined by i 

.I 
(a) (B,.B1,···,BH,jEPj(n,k,r) if iEB, for l~i"::J  

.;' 

if lI,2,...,rlcB (3.2)(b) (8"B:, ... ,8"-11 k r)EP2(n,k,r) • 
L 'I 

Then, for i = I, 2, the (q, r)-Stirling numbers are defined as 

5;[n, k; rl = ~  qffllp' (3.3 ) , 
summed over P;(n, k, r). 

AJ:; elements of Pt(n, k, r) are either of the form (p, fnl) with 
PEPI(n-l,k-l,r) or obtained by inserting n into a set of some 
PEPI(n- Lk,r) it follows that 

SI[n, k; rl = qk+r-1S,ln - 1, k -I; r] + [k + rJ Sl[n - 1, k: rl (3.4) 

with Sdr, 0; r] = q( ~). Similarly, 

S2[n, k; r] = q"-l-'Sl[n - 1, k; rj + In -+- 1 - k -r] S.fn - 1, k- 1: rJ(3.5) 

with S11,., 0; r] = I. The case r = 1 is discussed in [8,9, 12]. 

4. THE INSERTION LEMMA 

The construction of r is based on the insertion proof of (2.1). To observe 
the effect that inserting n into a permutation (j E G(n - I) has on the r-major 
index and the r-descent number, the insertion positions between the letters of 
the word 8= 8(1) 8(2) ... B(n - I) are labeled as follows. Using the labels O. 
1,... , n ~ 1 in order, first read from right to left and label the positions that 
wii! noL result in the creation of a new r-descent. Then, reading back. from 
left to right the positions that will create a new y-descent are labeled. For 
instance, if r = 3 and () = 5176324 E GP). then the labels in the top and 
bottom rows of 

4 3 2 1 o 
I I I I I 

0= 5 7 6 3 2 4 (4. L) 

1 T T 
5 6 1 

respectively indicate the positions that will not and that will result in a new 
3·de5ccnt. 

Let (61, l) denote the permutation obtained by inserting n into position I. 
From (4.1). (O,6)=51763824EG{8). Note that 3des(8,6)=I+3dc58 
and that 3maj(0, 6) = 6 + 3 maj 8. This demonstrates the 

!)';SERTION LEM~A.  For 8E G(n- 1) and 0 ,;;;t';;;n-1 

(a) rdes(O, I) = rdes 8 if O';;;[';;;r-l +rdes 8 

= I +rdes e otherwise, 

(b) rmaj(e,/)=I+ rmaj e. 

Proof For (a). note that there are r + rdes e insertion positions that 
will not result in a new r-descent: preceeding any of the r - J integen greater 
than n - r, in any of the r-descents. or at the extreme right end of 8. As these 
positions are labeled first, (a) is immediate. 

For (b), let m be the number of r-descents and integers greater than n - r 
that are to the right of position l. In the case 0';;; l" r - 1 + rdes e, from 
(1.1) and (1.2) it follows that inserting n into position l will increase the r­
major index by m. But by the labeling, 1= m. For the case r +- rdes 0" i"';: 
n - 1, note that there are l- m - 1 integers in 8 to the left of position l. As a 
new r·descent is created in this case, the r-major index will be increased by 
([-m)+m=l. 

5. THE rmaj CODI~G  

To define r(a) = w, note that for a E G(n) there is a unique pair (8, 1) 
such that eE G(n -1), 0" [" n - I, and a = (0, l). Let "-'n = t. Induction 
then determines the remaining letters w" w1 •••• , w _ of w, and it followsn 1 

from the insertion lemma that rmaja=w.+rmaje=w.+w._ 1 +···+ 
WI = s("'). From example (4. J), for r = 3 and a = 51763824 E G(g) one sees 
that 8 = 5176324 E G(7) and Ws = 6. Iteration leads to 

r(a) = 00103426 E W(8), 
(5.1 )

3maj a= 16=s(",). 

Besides Ihe r-major index, the r-descent number of a may also be deter­
mined directly from w. As no r·descents are created by the firsl r insertions, 
the word w will· be factorized as the juxtaposition produci uv. where u = 
WI wl ... w, and v = Wr+ 1 "'r+! ... 11'•• Let U(r) and V(n, r) respectively 



~
:I

~
i~

"j:
"

,
i
,~

~,t,

I:'

denote the sets of such factors. :-Tow for a word z and a letter I inductively 
define 

c(zl) = c(z) if O<l<.r-l+c(z) 
(5.2) 

= I -e(z) otherwise, 

where c(empty word) = 0, Comparison of (5.2) with (a) of the in5ertion 
lemma leads to the conclusion that rde5 IJ =c(v). In example (5,1), u = 001, 
~'=  03426, and c(~)  = J = Jdes 0, 

6. THE (q, r)-ECLER!."'!'> 'hjMBEllS 

Let G(n, k, r) = 10 E G(n); rdes IJ = k} and V(n, k, r) = It' E V(n, r); 
c(v) = kJ. Set 

(a) A(n,k;rJ=yqcm.jo, 

(6.1 ) 
(b) Bin, k; rl = ~ qSlO) 

summed respectively over G(n, k, r) and V(n, k, r). These polynomials satisfy 
the identities 

(a) B[n,k;rJ= [r-r-kIB[n-l,k;r] 

+qktr-'In+ 1.-k-r]Bln-l,k-l;r], 

(b) A[n,k;rJ=[r]fB[n,k;r], (6.2) 

(c) A[n,k;r]=[r+k]A[n-l,k;r] 

+qH'-l[n + l-k-rIAln-l,k-l;r], 

where B[r, 0; rJ = 1 and A [r, 0; rl = [r]!. Part (c) gives a q-analog of (2.1). 

Proojof(6.2). For (a), note that V(n, k, r) is the disjoint union of the 
two sets fvl;~'EV(n-l,k,r),  O<;l<;r-I+kl and lvl; vEV(n-l, 
k - I, r), r- 1 + k <; I <; n - I}. This observation, the fact that 
s(vl)=s(~')+l,  and definition (b) of (6.1) imply (a). Part (b) follows from 
an application of r along with the calculation 

Aln k· rJ '= "\' '\' q'lud = '\' q'l"' '\' q'('"
"L...L... L........' 

" " " v 

the sums being respectively over VCr) and V{n, k, r). Part (c) is a conse­
quence of combining (a) and (b). 

7. THE SKEW HOOKS 

To expose the relationship between (2.3) and (b) of (6.2), the skew-hook is 
now constructed from the factor I' of wand q-Iabeled. For v = 

wr+ I »'c+! ... WnE V(n, k, r) the Itb step of the corresponding skew-hook h E 
H(n,k,r) is vertical if c(wr_,wr+2",,,,,)=c(w"jW,u"'w, J ami 
horizontal otherwise. In other words, the horizontal steps of h correspond to 
insertions that create r-descents. NOle that the skew-hook corresponding to 
the word in (5.11 is given in (2.2). 

Now for hE H(n, k, r) attach the label Ii] to any horizontal step in the Hh 
row from the boltom. and attach Ii + r - I] to any vertical step in the i th 
column from the left. 'Further, attach the label qG) to the left bottom node of 
h, to a node at the end of a horizontal step in the ith column attach qi+r-l, 

and to a node at the end of a vertical step in the ith row attach qi-', For 
instance, the labels of the nodes and steps of the path in (2.2), in order from 
bottom to top, are ql, 13], q, [2], qJ, [21, q" [5J, q2, [31, q~, 

Respectively define the row, column, end horizontal, and end vertical 
polynomials of h to be 

(a) R[h] = product of horizontal step labels, 

(b) C[hJ = product of vertical step labels, 

(c) EH[h] = product of node labels at the end of horizontal steps, 

(d) EV[hJ = product of node labels at the end of vertical steps. 

(7.1) 

For the trivial path consisting of a single node they are all set equal to I. 
The polynomials of (7.1) are related to B[n, k; r] and to the (q, r)-Stirling 
numbers by the identities 

(,) Bin. k; 'I ~  LRlh] C[h] ERik].
• 

(b) Slln,k;rJ=q(~)LC[h]EH[h],
• 

(7.2) 

(c) S2In,k;rl=I:R[h)EV[h]
• 

all summed over H(n, k, r). Combining (a) of (7.2) with (b) of (6.2) yields a 
q-analog of the skew"hook formula (2.3). Furthermore, in view of (b) and (c) 
of (7.2), part (a) is a kind of scalar product of the (q, r)-Stirling numbers. 

Proofof(7.2). For the initial case n=r, H(r,O,r) consists of a single 
node and R[h]=C[hl=EHJh]=EVlh]= I. Thus, the initial conditions 
B[r,O;r]= I, S\[r,O;r]=q(.), and S2[r,O;r]= 1 are all satisfied in (7,2). 
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Since every hE H(n, k, r) is obtained by adding a venical step to some h, E 
H(n - I, k, r) or boriwntal slep to some h2 E H(n - 1, k - I, r) it follows 
that 

L R[hJ C[hl ERlh] = [k + rl ~ R[h[J CrllJ IEH[h,J.	 " 
+ qk+r-l[n + I -k-r] IR[h,1 C[h)]EH[h21, 

" 
This recurrence and (a) of (6.2) imply (a) of (7.2). Similar reasoning along 
with recurrences (3.4) and (3.5) yields pans (b) and (c) of (7.2). 

Remarks, In [13] the definition of the r-major index is exlended from 
G(n) 10 arbitrary finite sequences. This leads to a (g, r)-Simon Newcomb 
problem. 
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