The ~Major Index

DoN RAWLINGS

The r-major index is a new permutation statistic that is suggested by the work af
Carlitz and Gansner on Foulkes' skew-hook rule for computing the r-Eulerian
pumtbers. The new statistic ¢1} generalizes both the major index and the inversion
number of a permuration and {2) leads to a g-analog of the r-Eulerian numbers.

1. INTRODUCTION

Let G(n) denote the symmetric group on {1, 2., #} and W(a) the set of
words w = w, W, --- W, with letters w; € {0, 1,..., i — 1}. For an integer r 2 1,
the r-major index of a permutation ¢ € G(n}, denoted by r maj o, is defined
to be the sum of the elements of the set

o 2o+ D+n1<i<n—1} (L1)

plus the cardinality of the set

(G 7 1 S E <G mald) > a(f) > o) — ri. (1.2)

Let s{w) be the sum of the letters in the word w. The primary objective of
this paper is lo construct a bijection It G(n) — W(n) with the property that

if Mey=w then rmajg=s{w). (1.3)

The correspoudence I is refetred to as the #maj coding of G(r).

There are a number of motives for and consequences of defining the -
major index and constructing I'. First, the r-major index generalizes both of
the classic permutation statistics known as the major index and the inversion
number. Indeed, the rmajor index reduces to the major index when r=1



and to the inversion number when r > . Furthermore, if the g-analog and
the g-factorial of & non-negative integer # are respectively defined as

(&) [rf=14+g+--+g4"""

(14)
() [rl!=1[1j[2] - [n],
then it is immediate from (1.3) that
S g = [n]! (1.5)

T

summed aver G{x). Rodriguez [15} derived (1.5} for the inversion case as
carly as 1836, Idemtity (1.5) also includes MacMahon's [§1] observation
that the major index and the inversion number have the same generating
function. Incidentally, Foata [4} provided a combinaterial proof of
MacMahon's discovery by constructing a bijection @: G{r) — G(n} with the
property that the major index of o € G(n) is equal to the inversion number of
Pia).

Second, the special cases r=1 and r=n of F are common and useful
tools in working with the major index and the inversion number. In the
inversion case, {(a) is known as the inversion table {see Knuth [10, p. 12])
or the Lehmer code of 5. The major index case of I is implicit in the work of
Carlitz [2). In fact, the labeling used in Section 4 of this paper to construct I
was used by Carlitz for r=1. The two cases r=1 and r=rn of I were
further considered and developed by Gerard Viennot in an unpublished work.
Viennot combined the two cases to provide another combinatorial proof of
the fact that the major index and the inversion number are identically
distributed over G(n).

Third, the rmaj coding unifies and extends the work of Carlitz [3] and
Gansner [7| on Foulkes' [6] skew-hook formula for computing the r-
Eulerian numbers. The g-analog of Foulkes® formula obtained by Cartitz for
r=1 will be extended to all r > 1 using the r-major index. Also, the skew-
hoocks which appear in the bijection that Gansner developed will be
constructed from the word /o). In fact, I" is a modification of Gansner’s
correspondence.

Finally, the r-major index also leads to a g-analog of Foulkes’ observation
that the skew-hook formula is a kind of scalar product of Stirling numbers,
The g-analog of the Stirling numbers that arises in this connection agrees
with the one introduced by Gould [9] and further considered by Milne [12]
and Garsia [8]. :

2. TuE r-EULERIAN NUMBERS

The elements of set {1.1) are referred to as the r-descents of o. The number
of r-descents is denoted by rdeso. Then, as in |5, 14|, the r-Eulerian
numbers A(r, k; r) may be interpreted as the number of permutations in G(n)
having & r-descents. They satisfy the recurrence

Aln ki) =(k+An— L+ r+1-k—riAin—1Lk— L;r). (2.1}

where A(r, 0; r}=rl.

Foulkes’ skew-hook rule provides an alternative for computing 4 (#, &3 7).
Let H(n, k,r) denote the set of (",7) paths in an (n + 1 —k —r} row by
(k4 1) column rectangle of nodes that proceed from the bottom left-hand
corner to the top right-hand corner by a sequence of steps, either upward or
to the right. In any such path, attach the label i to any herizontal step in the
fth row from the bottom, and attach the label { + ¢ — 1 to any vertical step in
the ith column from the left. As an example, for r=13 the labels of the steps
in the path

— ! 2.2)

of H(8, 3, 3) are from bottom to top 3, 2, 2, 5, 3. Let [] (k) denote the
product of the n — » labels of the path & &€ H{n. k, r). Then Foulkes showed
that

Ak =n Y 1) 23)

summed over H(n, &, ¥).

3. THE (¢, r)-STIRLING NUMBERS
Let P{n, k) denote the collection of partitions p = (B, B, ..., &,) of the set

{1, 2...., n} into k parts with min B, < min B, < --- < min B,. For p € P(n, k}
define

m(p)= i (i—1) | By, (3.1)
(=1

where |B,| denotes the cardinality of B,. Further, let P,(n k,r) and



Poin. k. r) respectively denote the subsets of P(mk-+r) and
Pla,n+ | —k —r) defined by

(a) (B,.B,...B,EP (k7] if 7B, for 1<igr
. 3.2)
(b) (B, BynBoys ¢ JEPMER O {1 2., CB. (3-2)
Then, for i =1, 2, the (g, r)-Stirting numbers are defined as
Sin kv =N g"@ 3.3
£

summed over Pyn, &, ).

As elements of P,(n. k, r) are either of the form (p, {n}) with
pEP(n—1,k—1,r) or obiained by inserting # into a set of some
pEP(n— I kr)it follows that

S\ mkr]l=¢ 8 n— Lk—1r] 4+ [k+7] S,a—Lkir] (3.4)

with ,[r, 0; 7] = g{2). Similarly,
Smkir)=¢"" S n— Liir|+[n+1—k—r] $yfn—1 k—1:7](3.3)

with S,[r, 0;7] = I. The case r=1 is discussed in [8, 9, 12].

4. THE INSERTION LEMMA

The construction of I is based on the insertion proof of (2.1). To observe
the effect that inserting r into a permutation § € G(n — 1) has on the r-major
index and the r-descent number, the insertion positions between the letters of
the word 8 = (1) 8(2) --- &n — 1) are labeled as follows. Using the labels O,
1,.., n— 1 in order, first read from right to left and label the positions that
will nof result in the creation of a new r-descent. Then, reading back from
lelt to right the positions that will create a new r-descent are labeled. For
instance, if r=3 and 8 =5176324 € G(7), then the labels in the top and
bottom rows of

g= 5 1 7 6 3 2 4 (4.1)

ST

respectively indicate the positions that will not and that will result in a new
J-descent.

Let (8, {) denote the permutation obtained by inserting » into position 1
From (4.1), (8 6)=751763824 € G(8). Note that Jdes(d. 68)=1+ 3des ¢
and that 3maj(d, 6) = 6 + 3maj 6. This demonstrates the

INSERTION LEMMA. For e Gla— 1y and 0<i<n — 1

(a) rdes{f,l)=rdesé
=1+ rdes @

if 0gL!Ig<r—1+vdes @
otherwise,
(b) rmaj(@ ) =1+ rmaj &

Progf. For (a), note that there are r+ rdes @ insertion positions that
will not result in a new r-descent: preceeding any of the r — | integers greater
than n — r, in any of the r-descents, or ai the extreme right end of f. As these
positions are labeled first, (a) is immediate. '

For (b}, let m be the number of r-descents and integers greater than n—r
that are to the right of position /. In the case 0<{/<{r — 1 + rdes &, from
(1.1} and (1.2) it follows that inserting 7 into position 7 will increase the r-
major index by m. But by the labeling, /=m. For the case r -+ rdes 8 <<
7 — 1, note that there are { —m — 1 integers in 8 to the left of position 1. As a
new r-descent is created in this case, the r-major index will be increased by
f—my+m=Ii

5. THE rmaj CODING

To define I'{o)= w, note that for o € G{r) there is a unigue pair (8,1)
such that A€ Gn—1), 0<I<n—1, and o = (4. /). Let w,=1/ Induction
then delermines the remaining letters w,, wy..., w,_, of w, and it follows
from the insertion lemma that rmaje=w,+rmajd=w, +w,_ + -+
w, = s{w). From example (4.1), for r =3 and 0 = 51763824 € G(8) one sees
that 8 = 5176324 € G(7} and w, = 6. Iteration leads to

o) = 00103426 € W(8),

3maj g = 16 = s{w) 1)

Besides the r-major index, the r-descent number of o may also be deter-
mined directly from w. As no r-descents are created by the first r insertions,
the word w will-be factorized as the juxtaposition product uv, where u =
wow, e w, and v=w,, W. ., - W, Let U(r) and Fia, r) respectively



denote the sets of such factors. Now for a word 7z and a letter { inductively
define i

efzh) = elz) ir 0gIgr—1+ei2)
_ i (5.2)
=1 -e(z) otherwise,
where clempty word) = 0. Comparison of (5.2} with (a} of the inscrtion
femma leads to the conclusion that rdes 0 = (). In examble (5.1). u =001,
p = 03426, and c(t) =3 = Ides a. -

6. THE (g, r}-EULERIAN NUMBEHRS

Lt Glnk.r)={c€Gn): rdeso=4k) and Vimk,r)= {v € ¥Fin,r)
clv) = k). Set

[a'j A[n. k; rl :E qrmajo‘

6.1)
(t) Blnkirj=Ng"

summed respectively over G{n, &, #) and F(n, &, #). These polynomials satisfy
the identities
(@) Blankirj=[r+k]B[n—1,kr]
gt L~k —r)1Bln— Lk — 157,
(b) Alm kir]=[r]! Bl k; 1], (6.2}
(e} Almkir]=[r+k]Aln—1,k;r]
+@ " I+ L —k—r|Afn— Lk —1;r],
where B[r, 0. r| =1 and A[r, 0; r] = |r]l. Part {c) gives a g-analog of (2.1,

Proafof (6.2). For (a), note that F{n, &, r) is the disjoint union of the
wwo sets {phv€V(n—Lkr) OIKr—1+k} and {ol: vE€V(n—1,
k—1,r), r—14k<gig<a—1}. This observaton, the fact that
s(vl) = s(v} + 1 and definition (b} of (6.1) imply (a). Part (b) follows from
an application of I along with the calculation

Al ks r] =353 g =3 g N gt
H P u v

the sums being respectively over U(r) and V{n, k, 7). Part (c} is a conse-
quence of combining {(a) and (b).

7. THE SKEW Hooxs

To cxpose the relationship between (2.3} and {b) of (6.2), the skew-hook is
now constructed from the factor v of w and glabeled. For v=
W,y W,z W, S Vim k, r) the {th step of the corresponding skew-hook £ =
H(n k,r) is vectical if elw,_,w, ., wi=c(w,, w,, ,---w,_,) and
horizontal otherwise. In other words, the horizomal steps of k correspond to
insertions that create r-descents. Note that the skew-hook corresponding to
the word in (5.1) is given in (2.2)

Now for h € H(n, k, r) attach the labe] |i} 10 any harizontal step in the ith
row from the bottom, and attach |{ +r — 1] to any vertical step in the ith
column from the left. Further, attach the label q(g) to the left bottom node of
k. to a node at the end of a horizontal step in the ith column attach g7+~ 2,
and to a node at the end of a vertical step in the fth row attack ¢'~'. For
instance. the labels of the nodes and steps of the path in (2.2), in order from
hottom to top, are ¢, [3], 4. [2]. ¢% [2}. ¢ [5] 45 [31, 4

Respectively define the row, column., end horizontal, and end vertical
polynomials of & to be

(a) R[k] = product of horizontal step labels,
{b} Cl[Aa}=product of vertical step labels,
{c) EH][h] = product of node labels at the end of horizontal steps,
{d) EV[k]=product of node labels at the end of vertical steps.
(1.1)
For the trivial path consisting of a single node they are all set equal to 1.

The polvnomials of (7.1) are related to B|n, k7] and to the (g, r}-Stirling
numbers by the identities

{8) B[nm kir] =) R{k) Cik] EH|R],
) Siln ks r] =42} Cla] EHIAL (1.2)
h

© Silmkir]=Y R[H)EViA]

alt summed over H{x, k, r). Combining (a} of (7.2) with {b) of (6.2) yiclds a
g-anafog of the skew-hock formula (2.3). Furthermore, in view of (b) and (c)
of (7.2), part {a) is a kind of scalar product of the (g, »)-Stirling numbers.

Proofof (7.2). For the initial case n=r, H(r,0,r) consisis of a single
node and R[4] =C|k|=EH[h]=EV|h]=1. Thus, the initial conditions
Bir0;r]=1, §,[r0;r}=¢'2), and §,[r, 0;r] =1 are all satisfied in (7.2).



Since every 2 € H(n, k, r} is obtained by adding a vertical step 1o some h, €
Hi{n— 1,k r) or horizontal step to some h, € H(n — 1,k — 1,7} it follows
that

DRI} Clh| EH ] = [k +7| Y R[4} Clh,] EH[R]
L L

+ @ nd L~k —r] Y R[A,] Clh,] EH[h,).
LH

This recurrence and (a) of (6.2) imply (a) of (7.2). Similar reasoning along
with recurrences (3.4} and (3.5) yields parts (b) and (c) of (7.2).

Remarks. In [13] the definition of the rmajor index is extended from
G{n) to arbitrary finite sequences. This leads to a (g, r}Simon Newcomb
problem.
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