
Gene organization and evolutionary history
�e R-spondins are members of a superfamily of thrombo-
spondin type 1 repeat (TSR-1)-containing proteins. �e 

prototype member (discovered in 1971) was isolated 
from platelets that had been stimulated with thrombin, 
and was therefore designated ‘thrombin-sensitive protein’ 
[1]. �e TSR-1 repeat (also known as properdin repeat) 
was then characterized in the thrombospondin proteins 
(TSPs), in which it is repeated three times [2]. TSP1 and 
TSP2 are secreted multimeric matricellular proteins that, 
in addition to the TSP repeat, share homology in an 
amino-terminal globular region, von Willebrand factor 
domain, type II repeats (epidermal growth factor (EGF)-
like), type III repeats (calcium binding) and the carboxy-
terminal region. �ese modular proteins act by bringing 
together cytokines, growth factors, membrane receptors 
and extracellular proteases. Several proteins involved in 
the complement pathway (properdin, C6, C7, C8A, C8B, 
C9) and extracellular matrix proteins, such as mindin, 
F-spondin and SCO-spondin, contain one or more TSR-1 
repeats.

�e prefix R in the R-spondin subfamily of TSR-1-
containing proteins derives from the expression of the 
gene encoding murine R-spondin1. �is gene is tran-
siently expressed in the neural tube at 10 and 12 days 
post-conception, in the boundary region between the 
roof plate and neuroepithelium, hence its name R(oof 
plate specific)-spondin [3]. In addition to the presence of 
the TSR-1 domain, all four R-spondin members are 
characterized by the presence of a carboxy-terminal 
region with positively charged amino acids and, import-
antly, two furin-like cysteine-rich repeats near the amino 
terminus of the mature protein. Furin repeats (first seen 
in the endoprotease furin) are also present in receptors 
for growth factors such as EGF, insulin, hepatocyte 
growth factor (HGF) and neurotrophic factors. �e R-
spondin family was discovered over a 4-year period. R-
spondin3 was discovered in 2002 [4], whereas descrip-
tions of R-spondin1 [3] and R-spondin2 followed in 2004 
[5]. Finally, R-spondin4 was characterized in 2006 [6].

R-spondin homologs (defined by two Fu domains 
followed by a TSP1 domain) are present in all vertebrates, 
in primitive chordates such as the lancelet Branchiostoma 
floridae, in the hemichordate acorn worm Saccoglossus 
kowalevskii and in the echinodermate sea urchin 
Strongylocentrotus purpuratus (Figure  1). No homologs 
with an R-spondin domain composition are found in 
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invertebrate model organisms such as Drosophila or 
Caenorhabditis, or any other primitive animal. Given this 
phylogenetic distribution, an R-spondin-like gene was 
likely to have been present in the deuterostome ancestor 
and, given its absence outside the deuterostome clade, 
also originated there. An evolutionary tree of these 
sequences rooted on the primitive deuterostomes clearly 
shows the two successive genome duplications that 
generated present day R-spondin diversity in vertebrate 
species such as fish and mammals (Figure 1).

�e mammalian R-spondins have a similar five-exon 
gene organization and protein domain structure. �e 
human family members share a pair-wise amino acid 
similarity of 40% to 60% (Figure 2). �e amino-terminal 
hydrophobic signal peptide ensures that secretion is 
encoded by the first exon, whereas the two cysteine-rich 
furin-repeat domains are encoded by exons 2 and 3, and a 
single TSP1 domain is encoded by exon  4. Exon  5 
encodes a region in the protein that is solely characterized 
by its high density of basic amino acids.

Characteristic structural features
�e four R-spondin proteins share a common domain 
architecture. An amino-terminal endoplasmic reticulum 
signal peptide ensures entry into the secretory pathway. 
�e processed mature protein has two cysteine-rich 
furin-like repeats at the amino terminus. �e central 
TSR-1 domain is followed by a region with a high number 
of basic amino acids at the carboxyl terminus (Figure 2). 
�e two furin-like repeats near the amino terminus are 
related to a domain seen in the subtilisin-like proprotein 
convertase family member furin. Although the function 
of this domain in furin is unknown, its prevalence in a 
number of important receptors for growth factors, such 
as EGF, insulin, HGF and neurotrophic factors, suggests 
it makes a significant functional contribution.

Mass spectrometry approaches have provided some 
insight into the molecular structure of the furin domains 
in R-spondins [7]. �at study by Li et al. recorded the 
pattern of disulfide bonds between the 15 available 
cysteine residues present in these domains. In a purified 
peptide containing both furin-like repeats of R-spo2, they 
determined the free and interconnected cysteine residues. 
In total, five free cysteine residues were found: three in 

Figure 1. Evolutionary history of R-spondins. Homologs of R-spondin (each contains two Fu domains followed by a thrombospondin protein 1 
(TSP1) domain) are shown. Two non-chordate R-spondin sequences with its characteristic domain architecture were detected in the hemichordate 
acorn worm and the echinodermate sea urchin. These two were used to root the gene phylogeny. The tree clearly shows the two successive whole 
genome duplications that generated present day R-spondin diversity in vertebrate species such as fish and mammals. Sequences were aligned 
using MAFFT [80]. The tree was constructed using neighbor-joining as implemented in the clustalx package and visualized using iToL [81,82]. 
SkRspo is D1LXC5_SACKO from the hemichordate acorn worm Saccoglossus kowalevskii, BfRspo is C3Y1K8_BRAFL from the primitive chordate 
amphioxus Branchiostoma floridae, and SpRspo is XP_796266.2 from the echinodermate sea urchin Strongylocentrotus purpuratus. Vertebrate 
protein identifiers used for this tree are as follows: HsRspo4 ENSP00000217260, MmRspo4 ENSMUSP00000041578, DrRspo4 ENSDARP00000123862, 
DrRspo2 ENSDARP00000100941, HsRspo2 ENSP00000276659, MmRspo2 ENSMUSP00000067325, HsRspo1 ENSP00000348944, MmRspo1 
ENSMUSP00000030687, DrRspo1 ENSDARP00000058458, HsRspo3 ENSP00000349131, MmRspo3 ENSMUSP00000090287 and DrRspo3 
ENSDARP00000058577.
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furin repeat 1 and two in furin repeat 2. All interconnected 
cysteine residues appeared to be separated by only two or 
three intervening amino acids. No crystallographic study 
of furin-like repeats in R-spondins is yet available. 
However, such analyses have been performed for the EGF 
receptor and insulin growth factor receptor 1 [8,9]. These 
revealed the existence of three pairs of linked cysteine 
residues in furin-like repeat 1 that successively bridge 5, 8 
and 18 intervening residues. No unbound cysteine 
residues remained. It is unclear whether these divergent 
outcomes reflect conse quences of the techniques used or 
structural differences underlying the specific roles of these 
domains in the proteins studied.

The second domain that is common to all four R-
spondins is a TSR-1 domain. The human genome harbors 
41 proteins that contain TSR-1 domains. The number of 
the TSR-1 domains in these proteins varies from 1 to 18. 
All of the TSRs occur either in secreted proteins or in the 
extracellular portion of transmembrane proteins. The 
TSR-1 domain in R-spondin may have a role related to 
glycosaminoglycan (GAG)/proteoglycan binding. Several 
observations supporting such a role have been made in 
other TSR-1-domain-containing proteins. Multiple amino 
acid sequence alignments of TSRs show that a typical 
TSR domain consists of 60 amino acids, of which 12 are 

highly conserved [10,11]. X-ray crystallography of the 
TSR-1s of human TSP1 led to the discovery of the CWR 
layer, an architecture composed of three antiparallel 
strands. Strand A assumes a rippled conformation, 
where as strands B and C assume regular β-sheets. The 
side chains of the tryptophan residues in the A strand 
make up two W-layers. Two arginine residues in the B 
strand comprise the R-layers. The alternate stacking of 
the cationic guanidinium groups of the arginine residues 
with the aromatic side chains of the tryptophan residues 
provide vital stabilization in the structure of this small 
domain. Additional solidity derives from the C-layers, 
disulfide bonds capping the amino-terminal and carboxy-
terminal ends of the strands. The exposed tryptophan 
residues and arginine residues define the front face of the 
domain and are likely to contact the negatively charged 
repeating disaccharide units of GAGs and proteoglycans. 
Moreover, the disaccharide units in GAGs span approxi-
mately 9 Å, enabling two units to fit into the recognition 
groove of the TSR-1 [12]. The three-dimensional struc-
ture of R-spondins is not yet available, but molecular 
modeling techniques have also predicted a GAG-binding 
site for the TSR of R-spondin 4 [13]. A recently reported 
binding of R-spondin3 to the transmembrane proteo-
glycan syndecan-4 is consistent with these findings [14]. 

Figure 2. Protein domain architecture and chromosome location of human R-spondins. Schematic representations are shown for all 
four human R-spondin proteins. The total lengths of R-spondin1, 2, 3 and 4 are 263, 243, 292 and 234 amino acids, respectively. Three types of 
domains are detected: two cysteine-rich furin-like repeats, a single thrombospondin domain, and a basic amino-acid-rich domain. The relative 
protein sequence conservation, as a percentage of identical amino acids, within these domains is indicated. The two furin repeats jointly contain 
15 conserved cysteines, conforming to the consensus sequence for this domain in each repeat. Twelve out of 60 amino acid residues are highly 
conserved in thrombospondin protein 1 (TSP1) domains, six of which are cysteines. Secretion is mediated by an amino-terminal endoplasmic 
reticulum signal peptide. Putative N-linked glycosylation sites are indicated (N).
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It will be of interest to determine the GAG-binding 
specificity of the four R-spondin TSR-1s and to translate 
this knowledge into functional models.

Localization and function
Extensive functional analysis of the R-spondin proteins, 
using Wnt reporter assays in 293T cells, uncovered a link 
with the canonical Wnt/β-catenin pathway [5] (Figure 3). 
�e latter plays a central role in cellular proliferation, 
differentiation and stem cell maintenance. Activity is 

initiated when secreted proteins of the Wnt family bind to 
Frizzled (Fzd) receptors and the low-density lipo protein 
receptor related protein 5 or 6 (LRP5/6) co-receptors. At 
this level, the pathway is controlled by a series of 
extracellular antagonists (Figure  3). R-spondins uniquely 
synergize with Wnt proteins. Accordingly, R-spondin 
activation showed sensitivity to the presence of the 
extracellular Wnt inhibitor Dickkopf-1 (DKK1) and no 
synergy could be induced by overexpression of any of the 
known intracellular components of the pathway. Protein 

Figure 3. Simpli�ed overview of the canonical Wnt signaling pathway. The typical mammalian genome harbors 19 genes encoding Wnt 
secretory factors and 10 Frizzled (Fzd) genes encoding their receptors. Two low-density lipoprotein receptor-related proteins (Lrp) 5 or 6 act as Fzd 
co-receptors. Activating combinations of Fzd/Lrp/Wnt initiate signaling activity by silencing the activity of a dedicated β-catenin (βcat) destruction 
complex. Dvl gene products are instrumental in achieving this. (a) In the absence of Wnt signals, constitutively synthesized cytoplasmic βcat is the 
immediate target of this complex. Essential components of this complex are two tumor suppressor proteins: Apc (adenomatous polyposis coli) and 
axin, which act as scaffolds to capture newly synthesized βcat and allow its phosphorylation by the constitutively active kinases casein kinase-1 
(Ck1) and glycogen synthase kinase 3 (GSK3), also residing in this complex. (b) The Wnt-binding-induced cytoplasmic accumulation of βcat leads 
to import into the nucleus and binding to T-cell transcription factor (Tcf )/Lef transcription factors, upon replacement of the transcriptional Groucho 
repressors. Bipartite Tcf/Lef-βcat complexes are the ultimate effectors of this signaling cascade. A series of secreted antagonists control signaling 
activity at the level of ligand perception. Secreted Frizzled-related proteins (Sfrp1, 2, 4 and 5), Frzb and Wnt inhibitory factor (Wif ) can bind Wnt 
directly and prevent it from activating their receptors [83-86]. The other Wnt antagonists, Dickkopf 1 (Dkk1) [87] and Wise [88], inhibit by binding 
to the Lrp co-receptor. R-spondins, also operating at this level, are unique in enhancing Wnt activity. The seven transmembrane Lgr (4, 5 and 6) 
receptors mediating their action were recently uncovered [48,89,90].
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domain analysis showed that furin repeats are essential 
and sufficient to mediate the Wnt-potentiating effect of 
the R-spondins [5,7,15]. The first in vivo experi ments 
documenting this Wnt potentiating phenomenon were 
performed in early frog embryos [5]. Depletion of R-
spondin2 in one blastomere at the eight-cell stage resulted 
in disorganized somites and a reduction in myotomes at 
the injected site. Depletion at the gastrula stage resulted in 
a failure to transcriptionally activate the myoD and myf5 
genes, later leading to impaired muscle development. 
Manipulation of Wnt activity at this develop mental stage, 
in chick and mammals, strikingly phenocopies these 
effects [16,17]. Canonical Wnt pathway potentiation by R-
spondins has also been seen in experimentally induced 
tumors. A sustained high level of Wnt activity in the tumor 
was explained by the finding that mammary tumor virus 
integration sites were seen in both genes for Wnt family 
members and the gene for R-spondin2 [18].

R-spondins operate during embryogenesis
Wnt signaling is important in almost every fate decision 
during embryonic development throughout the animal 
kingdom [19]. The knowledge obtained of the Wnt-
enhanc ing ability of R-spondins together with their 
dynamic expression patterns in embryonic tissues (Addi-
tional File 1) predicts pleiotropic roles for R-spondins 
during embryogenesis.

R-spondin 1: sex phenotype reversal
R-spondin controls the most fundamental difference 
between individuals: their sex phenotype (Figure 4). The 
phenotypic sex of the embryo depends on gonadal sex 
determination. XY male to female sex reversal is relatively 
frequent, whereas XX male sex reversal is rare and 
usually caused by translocation of the sex-determining 
region Y (SRY) gene. Mutations in RSPO1 (encoding R-
spondin1) lead to an extremely rare human syndrome 
that combines SRY-independent XX male sex reversal 
with palmoplantar hyperkeratosis (PPK; an abnormal 
thickening of the palms and sole), and a predisposition to 
squamous cell carcinoma (SCC) of the skin. Parma et al. 
[20] described an Italian family with 11 46,XX individuals 
in two sibships. All affected individuals were pheno-
typically male. The seven genetic females did not show 
signs of the PPK/SCC phenotype or sexual ambiguity. 
Parma et al. postulated that homozygosity for a single 
mutational event causes both PPK and SCC in XY and 
XX individuals, and sex reversal in XX individuals. A 
genetic analysis of this family, complemented with an 
individual from a family with an independent mutation, 
proved the presence of mutations in RSPO1. Two types of 
mutations appeared to result in an absence of functional 
protein. PKK and SCC could be explained by fibroblast-
derived R-spondin1 stimulation of keratinocytes, leading 

to a reduced level of β-catenin in the affected keratino-
cytes [20]. The sex reversal appeared to be caused by a 
failure to mount high R-spondin1 levels in the gonads of 
affected individuals. This increase in R-spondin produc tion, 
normally at embryonic day (E)18.5, occurs only in XX 
gonads and is required to promote oocyte differ en tiation. 
A later analysis of Rspo1-/- mice [21] confirmed that an 
absence of R-spondin1 at the gonadal differen tiation 
stage leads to partial sex-reversed phenotypes. Similar 
phenomena are also seen in Wnt4-/- mice, probably 
because of the action of R-spondin1 upstream of Wnt4 
[22]. In summary, the Wnt4/R-spondin1 axis is 
operational in bipotential gonads of XX individuals, 
driving ovarian development. In XY individuals, the 
HMG-box-containing transcription factor SRY induces 
transcription of the SOX9 gene, another member of this 
HMG box family. This transcription factor then activates 
the program for testis development. The activation of 
Wnt4/R-spondin1 in XX gonads not only drives ovarian 
differentiation, but also suppresses the fibroblast growth 
factor (FGF)9-stabilization of SOX9 production. In the 
absence of strong Wnt signaling, the resulting SOX9 
production is sufficient to drive at least partial testis 
development (Figure 4) [23].

R-spondin2: necessary for development of limbs, lungs 
and hair follicles
Limb buds in the early embryo show production of R-
spondin2 and 3, while lung buds exclusively produce R-
spondin2. The matching requirement of R-spondin2 for 
lung and limb development was unveiled in a mouse 
insertion mutant, termed ‘footless’ (Rspo2Tg/Tg), and in 
animals homozygous for a targeted inactivation of the 
Rspo2 gene [24-26]. The reported overlapping phenotypes 
in limb development are explained by an absence of 
functional R-spondin2 protein in the apical ectodermal 
ridge (AER). The resulting impaired Wnt signal leads to 
defective expression of the important AER maintenance 
factors FGF4 and FGF8. The lung defects seen in 
Rspo2Tg/Tg mice are associated with reduced branching of 
bronchioles. However, this developmental defect can be 
rescued by culturing ex vivo explants in R-spondin2-
conditioned medium. Several additional observations 
imply involvement of canonical Wnt signaling. First, the 
effects seen are exacerbated if Rspo2Tg/Tg mice are 
intercrossed with Lrp6 mutant mice [27]. Second, mating 
of ‘footless’ mice with Wnt reporter mice detected a 
significant drop in Wnt activity at the distal tips of the 
branching epithelium. A corresponding reduction of 
expression of the Wnt target gene Irx3, required for 
branching, further explained the phenotype [28]. A study 
investigating the genes responsible for coat features in 
domestic dogs showed that R-spondin2 is also involved 
in the Wnt-driven development of the hair follicle [29]. 
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An insertion event in the 3’ UTR of this gene appeared to 
affect mRNA stability in dogs with ‘furnishings’ (extra fur 
around the mouth and eyes), and they show a threefold 
increase in transcript expression.

R-spondin3: placenta development
Development of the mouse placenta starts at E8.5 with a 
fusion between the chorion and allantois, two extra-
embryonic tissues. Subsequently, chorioallantoic branch-
ing occurs, resulting in a functional labyrinth enabling 
exchange of gases, nutrients and waste products between 
embryonic and maternal blood vessels. An insufficient 
penetration of fetal blood vessels in the labyrinthine zone 
is seen in Wnt2 and Frzd5 knockout mice [30,31]. In 
studies analyzing the signals for vasculogenesis and 
angiogenesis, the targeted disruption of the Rspo3 gene 

leads to severe vascular defects, especially in the placenta 
[32,33]. R-spondin3 production is detectable at the 
chorio allantoic interface. �e chorioallantoic fusion 
appears normal in the absence of R-spondin3. However, 
fetal blood vessels present in the labyrinth do not 
properly align with the maternal blood sinus, causing 
death of the animals around day E10. �e same pheno-
mena were reported for Wnt/Fzd mutated animals, 
implying that R-spondin acts upstream of Wnt.

R-spondin 4: nail development
Anonychia is a mild disorder, defined as the absence of 
fingernails and toenails. It is mostly seen in autosomal-
dominant inherited syndromes. Isolated anonychia shows 
an autosomal-recessive inheritance. Recently, homozy-
gous and compound heterozygous mutations in the gene 

Figure 4. Overview of sex determination in mice. During mouse embryogenesis, bipotential gonads arise from the genital ridges by 10.5 
days post-conception (dpc). In somatic cells of XY genital ridges, Sry expression (dark blue line at lower part of figure) starts at 10.5 dpc, reaches a 
peak at 11.5 dpc and then wanes by 12.5 dpc. A few hours later, Sox9 expression (light blue line at the lower part of the figure) is upregulated to 
induce differentiation of Sertoli cells. Sox9 expression peaks at 11.5 to 12.5 dpc, continues to be expressed postnatally and is supported by several 
positive-feedback loops (including fibroblast growth factor 9 (FGF9), prostaglandin D2 (PGD2) and SOX9 itself ), and SOX9 subsequently activates 
many male-specific genes, including the gene encoding anti-Müllerian hormone (Amh). At 12.5 dpc, morphological differences between testis 
and ovary are evident. In the absence of SRY, genes such as Wnt4, Rspo1 and Foxl2 are expressed in a female-specific manner and induce ovarian 
development, as characterized by the expression of follistatin and many other ovary-specific genes. FOXL2, forkhead box L2; SOX9, SRY box 
containing gene 9; SRY, sex-determining region on the chromosome Y. This figure is adapted with permission from [23].
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encoding R-spondin4 were found in affected individuals 
[34-37]. The various genetic alterations all predicted 
severely impaired synthesis of functional R-spondin4 
protein. A study monitoring the effects of these muta-
tions, using R-spondin2 as a template, showed that at 
least two of these, C78Y and C113R, led to a defect in 
secretion [7]. The Q65R substitution did not affect 
secretion, but drastically reduced R-spondin2 activity. 
Involvement of the Wnt pathway in nail development was 
recently also deduced in patients that combine anonychia 
with brachydactyly (shortness of fingers and toes) [38]. 
The SOX9 transcription factor is essential for the normal 
development of the terminal phalanges, and associated 
‘Anlagen’ like nails [39]. It must initially be induced, but 
silenced at later stages. Downregulation of SOX9, and 
subsequent inhibition of chondrogenesis, is mediated by 
canonical Wnt signaling. Mutual antagonistic activity 
between SOX9 production and canonical Wnt activity 
has been deduced from the analysis of gonad differ-
entiation [23]. The phenomena seen in these anonychia/
bracydactyly patients seem to be explained by an 
imbalance between these forces due to duplications of 
regulatory sequences 5’ of the gene encoding SOX9 [38]. 
Several reports imply involvement of Wnt7a in this process 
of terminal phalange differentiation [40,41]. A likely role 
for R-spondin, as also seen in gonad differentiation, has 
not been addressed so far.

Mechanisms
Receptors
The identification of the membrane component mediat-
ing R-spondin signaling has proceeded with trial and 
error. Contradictory reports proposed that R-spondin 
bound to Fzds, LRPs, Kremen receptor and/or Wnts [42-
44]. However, three recent reports [45-47] identified 
Lgr4, Lgr5 and Lgr6 as the receptors of the R-spondin 
protein family (Figure 3). Each of them can bind all four 
R-spondins in vitro [48]. RNA interference-mediated 
deletion of the endogenous Lgr4 in 293T cells resulted in 
effective removal of the R-spondin-mediated enhance-
ment of Wnt signaling in these cells [48]. A specific 
rescue occurred by exogenously introducing Lgr4, Lgr5 
and Lgr6 [48]. Recently, syndecan-4 was proposed as the 
receptor for R-spondin3 in the planar cell polarity 
pathway [14]. An earlier report had claimed a role for R-
spondin3 in canonical Wnt signaling [33]. With the 
current knowledge that the Lgr proteins act as receptors 
for the furin domains in R-spondins, the R-spondin3/
syndecan-4 interaction most likely involves the TSR-1 
domain. The Lgr proteins appear to be physically asso-
ciated with the Fzd/LRP complex. The R-spondin compo-
nent in Wnt signaling may therefore be mediated by the 
LRP5/6 Frizzled co-receptors. Of note, R-spondin1 
enhances LRP6 phosphorylation [43].

The R-spondin/Lgr axis
A variety of genetic studies were conducted to determine 
the locations of expression and the physiological roles of 
Lgr4, Lgr5 and Lgr6 during embryogenesis. Those 
experiments actually monitored locations of R-spondin-
amplified Wnt signaling. Analysis of the Lgr4 receptor, 
using a variety of genetic models, detected strong expres-
sion in cartilage, kidney, adrenal gland, reproductive 
tracts, the eyes and nervous system cells. The associated 
phenotypes are diverse and extend over tissues derived 
from all germinal layers [49-60]. Lgr5, likewise, shows a 
dynamic and complex expression pattern during embryo-
genesis [61,62]. Rare Lgr5+cells are seen in the adult eye, 
mammary gland, intestinal tract, skin and the reproduc-
tive organs [63-65]. Developmental Lgr6 expression is 
most prominent in the hair placodes, rare cells in the 
brain, the mammary gland, and the airways of the lungs 
[62,66].

Importantly, R-spondin/Lgr signaling also operates in 
several self-renewing adult tissues. The best studied 
example is the mucosa of the digestive tract, consisting of 
a stomach, small intestine (Figure 4) and the colon. The 
first indication that Rspondin1 can act as a growth factor 
for intestinal epithelial cells, by agonizing canonical Wnt 
signaling, was found in a transgenic mouse model in 
which Rspo1 was under the control of the immuno-
globulin locus [67]. The essential requirement of Wnt 
signaling for the physiological maintenance of the stem 
cells in these tissues was previously shown in a Tcf4 
(T-cell transcription factor 4) ablation experiment and a 
DKK1 transgenic model [68,69]. The involvement of 
R-spondin was indirectly uncovered by a Lgr5-driven 
GFP (green fluorescent protein) knock-in mouse model 
and a Lgr5/LacZ-driven lineage tracing model [70]. These 
studies identified the Wnt-target gene LGR5 as a unique 
marker for the stem cells feeding these tissues [63]. Lgr4 
is co-expressed in stem cells, and in addition it is 
detectable in all other progenitor cells. Isolated Lgr5+ 

intestinal stem cells can be maintained in vitro and 
induced to continuously propagate organoids [64,71]. 
Notably, addition of R-spondin and Wnt constitutes an 
absolute requirement for these cultures. In mouse intes-
tinal organoids, deletion of these Lgr receptors pheno-
copies withdrawal of R-spondin. Moreover, absence of 
Lgr receptors can be compensated by providing cells with 
the strongest possible Wnt signals. Canonical Wnt/R-
spondin signaling is, moreover, implied in establishing 
the hair follicle cycle and remains crucial for stem cell 
activity throughout life [63,65,72-76].

Frontiers
Now that the Lgr proteins have been established as the 
receptors for R-spondins, directly funneling into the 
canonical Wnt pathway through Frizzled and Lrp, several 
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gaps in our knowledge of R-spondins can be addressed. 
For example, crystallographic studies of R-spondin and 
R-spondin/Lgr complexes are required to understand 
how the interaction-induced information is transferred 
to the Wnt/Fzd/Lrp signaling unit. The increase in Lrp6 
phosphorylation, associated with the presence of R-
spondin in the Wnt receptor complex, needs to be under-
stood in greater detail. In particular, the dedicated kinase 
and the specific substrate for this reaction among the five 
conserved PPPSPXS motifs in Lrp need to be identified 
[77]. Another challenge is to determine the exact 
composition of the operating Wnt receptor complexes. A 
key question here is whether the Lgr/R-spondin module 
constitutes a standard feature of canonical Wnt signals in 
vertebrates or an accessory option. It will also be 
important to determine to what extent preference in the 
cooperation between the various components in vivo 
plays a role. Another challenge will be to find out the 
specificity and site of synthesis of the R-spondins that 
control particular biological processes. Because the R-
spondins are also stimulators of stem cell development, it 
is anticipated that future research will use R-spondin-
based strategies for the manipulation of adult stem cells 
in regenerative medicine settings. The first findings, 
supporting the therapeutic potential of in vivo adminis-
tered R-spondins, were found in a mouse model for 
inflammatory bowel diseases similar to Crohn’s disease 
[78]. Future attempts to replenish disease-damaged 
epithelial tissue along the gastrointestinal tract, including 
Barrett’s disease, will likely exploit R-spondin-mediated 
ex vivo expansion of the epithelia of interest [64,71,79].
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