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THE RADIANCE OBSTRUCTION 

AND PARALLEL FORMS ON AFFINE MANIFOLDS 

BY 

WILLIAM GOLDMAN AND MORRIS W. HIRSCH 

ABSTRACT. A manifold M is affine if it is endowed with a distinguished atlas whose 

coordinate changes are locally affine. When they are locally linear M is called 

radiant. The obstruction to radiance is a one-dimensional class CM with coefficients 

in the flat tangent bundle of M. Exterior powers of CM give information on the 

existence of parallel forms on M, especially parallel volume forms. As applications, 

various kinds of restrictions are found on the holonomy and topology of compact 

affine manifolds. 

Introduction. An affine manifold M is a manifold with a distinguished maximal 

atlas of charts, all of whose coordinate changes are locally affine. On such a 

manifold there is an intrinsic notion of a parallel tensor: one whose components in 

any affine chart are constants. More generally there is the notion of a polynomial 

tensor field of given degree. 

In 1962, L. Markus conjectured in [Mk] that a compact orientable affine n-dimen- 

sional manifold has parallel volume form if and only if it is complete (meaning that 

its universal covering is affinely isomorphic to Euclidean n-space Rn). The problem 

of constructing a parallel volume form determines an n-dimensional twisted real 

cohomology class originally studied by J. Smillie [Sm2]. In this paper we express 

this class as the nth exterior power of a twisted one-dimensional real class which 

we call the radiance obstruction CM. By computing CM in various cohomology 

theories-Cech, singular, de Rham, and others-we are able to exploit CM in several 

ways to yield more information on the structure of affine manifolds. Some of these 

results will appear in a subsequent paper [GH3]. 

The basic tool used is a formula, proved in ?2.6, which expresses the cohomology 

class of a parallel exterior k-form in terms of the k th exterior power of the radiance 

obstruction, Akcvf MIn ?2.7 the special case of a parallel volume form on a compact 

n-dimensional manifold M is examined: the existence of such a form implies that 

AnCM # 0. In ?2.8 we show that the affine holonomy group F of such an M cannot 

preserve a proper affine subspace. (In [GH3] this result will be improved by showing 

that r preserves no proper semialgebraic subset of Rn.) 

In ?2.10 we show that there tend to be plenty of parallel forms on a compact 

affine manifold with nilpotent affine holonomy. 
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In ?2.11 we extend slightly a theorem due originally to J. Smillie: If an affine 

manifold M has a parallel k-form w representing a nonzero cohomology class, then 

the affine holonomy cannot factor through a group having real cohomological 

dimension less than k. In particular if M has a parallel volume form, then the real 

cohomological dimension (rcd) of its fundamental group is at least equal to its 

dimension. 

?2.12 develops another theme of Smillie's: If M admits a k-form W as above, then 

any open cover qi of M by radiant submanifolds has nerve of dimension > k. (See 

below for the definition of radiant.) 

In ?2.13 we use earlier results to rule out the existence of any affine structure with 

parallel volume on a compact manifold of the form B x N, where N has finite 

fundamental group. If also the first Betti number of B is zero, then B x N has no 

affine structure whatsoever. 

In ?2.14 we show that the affine holonomy of a compact manifold cannot factor 

through certain kinds of groups studied by Margulis. For example SL(n, Z), for 

n > 3, is not the fundamental group of any compact affine manifold. 

The earlier sections contain a systematic development of certain topological 

notions related to affine manifolds. It is useful to begin with affine representations 

of groups. If a: G -- Aff(E) is such a representation (where E = Rn), we call a 

radiant if a(G) fixes a point of E. The obstruction to a being radiant is a class 

Ca E H'(G; EA), where X: G -- GL(E) is the linear part of a. We call c< the radiance 

obstruction of a. 

If -P is the fundamental group of a differentiable manifold M, then associated to 

an affine representation of ir is a flat affine bundle ( over M, and conversely. The 

radiance obstruction of a maps into a twisted 1-dimensional class on M, called c((), 

the radiance obstruction of (. The vanishing of c(() is equivalent to the bundle ( 

having a global flat section; or equivalently, to ( being isomorphic (qua flat affine 

bundle) to a flat vector bundle. When c(() = 0 we call ( a radiant bundle. 

These radiance obstructions for bundles and representations are the subjects of ?1. 

In ?2 we commence the study of affine manifolds. The tangent vector bundle TM 

of an affine manifold M has a natural flat affine structure TaffM. The radiance 

obstruction CM of M is defined to be c(TaffM). Now TM also has a natural flat 

vector bundle structure. The latter is isomorphic qua flat bundle to TaffM precisely 

when CM = 0. 

When CM = 0 we call M a radiant manifold. Geometrically this is equivalent to 

the existence of an atlas of affine charts whose coordinate changes are all linear. 

These and other ideas are developed in ??2.1-2.5. 

The radiance obstruction CM was studied in the context of cohomology of groups 

in Hirsch [H] and in Fried, Goldman and Hirsch [FGH2]; compare also [FGH1]. 

In [GH3] the radiance obstruction will be examined in Lie algebra cohomology 

and in algebraic group cohomology, with further application to affine structures. 

1. Flat affine bundles and cohomology. 
1.1. The radiance obstruction of an affine representation. A map f: E -+ F between 

real finite-dimensional vector spaces is affine if there exist a linear map A: E -+ F 
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and b e F such that f(x) = Ax + b. We call A the linear part and b the translational 

part off. 

The bijective affine maps of E to itself form the group Aff(E) of affine automor- 

phisms of E. It is the semidirect product of the normal subgroup of translations 

(canonically identified with E) and the subgroup GL(E) of linear automorphisms. 

Notice that E is the kernel of the homomorphism Lin: Aff(E) -+ GL(E) which 

assigns to each affine automorphism its linear part. 

The map Trans: Aff(E) -- E, defined by taking translational parts, is not a 

homomorphism (unless dimE = 0) but a crossed homomorphism, or cocycle, with 

values in the identity representation of GL(E). 

More generally let a: G -. Aff(E) be an affine representation of G (i.e. a is a 

homomorphism) with linear part 

X = Lino a: G -- GL(E) 

and translational part 

u = Transo a: G -+ E. 

Then u is a 1-cocycle with values in the (linear) representation X (or in the G-module 

EA)- It therefore belongs to a cohomology class c< = [u] E H'(G; EA). We call c< 

the radiance obstruction of the affine representation a. (Below we define radiance 

obstructions for affine bundles and affine manifolds.) 

PROPOSITION. Two affine representations having the same linear part are conjugate 

by a translation if and only if they have the same radiance obstruction. 

PROOF. Let A: G -- GL(E) be the linear part of affine representations a, fl: 
G -- GL(E) whose translational parts are u, v: G -- E. Then c. = c,! precisely when 

u - v is a principal crossed homomorphism, i.e. when there exists a E E such that 

u(g) - v(g) = a - X(g)a for all g E G. This is equivalent to 1Ta-a(g)Ta = /(g), 

where T denotes translation by a. Q.E.D. 

COROLLARY. An affine representation has a stationary point if and only if the 

radiance obstruction vanishes. 

1.2. Holonomy of flat bundles. Let ( = (p, E, B, G, X, 41) be a fibre bundle with 

total space E, base B, projection p: E -- B, topological structure group G acting 

effectively on the standard fibre X, and structure atlas (D. 

To say that (D is an atlas means that (F is a set of homeomorphisms (D,: 

p Ui y- U, x X (indexed for convenience), where { U, } is an open cover of B. For 

x E U, define (Dix: p-'(x) -- X by (Fi(y) = (x, 1, y). There are continuous transi- 

tion maps gij: U, n UJ- G such that for x EL U, n UJ, the homeomorphism (D J-XF 
X -- X coincides with the action of g,j(x). When G acts effectively on X we have, 

for x E UL n UJ n Uk, 

gij(x)gjk(x)gk,(x) 
= 1 E G 

(the identity element) and also gii(x) = 1. 

A structure atlas is a maximal atlas. 
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We call ( a flat bundle if G is a discrete group. In this case the transition maps are 
locally constant. There is then a subatlas whose transition maps g,j are constant, i.e., 

g,j E G. If G acts effectively we obtain a family { gij} of elements of G satisfying 

gjgikgki = 1 = gii. We call such a family a cocycle with values in G. 
Suppose now that G is not necessarily discrete. Let G8 be the group G with the 

discrete topology. If ( is a bundle with structure group G, a flat structure on ( is a 

subatlas (D of the structure atlas (F such that (F0 is the structure atlas for a G" 

bundle. In other words, a flat structure on ( is determined by an atlas having locally 

constant transition maps. The same bundle can have many inequivalent flat struc- 

tures. 

Let ( be a flat bundle as above. A section s: U -- E of ( over an open set U c B is 

called flat (or parallel) if for every local trivialization (0j, U,) the composition 

4)1 

Un U, pp-U, U, x -X 

is locally constant. 

If U c U, is a connected open set andy E p'-U, then there is a unique flat section 

over Ui through y, namely the composition 

(id, y) 4-7 

U --+U --+ U X Y -j7U. IU I, Y pi. 

It is readily proved that ( has a global flat section if and only if its structure group 
can be reduced to a subgroup fixing a point of X. 

Suppose now that the flat bundle ( is a smooth bundle: E, B and X are manifolds, 

G acts on X by diffeomorphisms and the maps p, ei are smooth (we need only 
consider the C' case). Then there is a unique foliation J= Y(() of E obtained as 

follows: If (:,, U,) E (F and U, is connected, then I p -U, has as leaves the images of 

the flat sections over U,. These foliations induce the same foliation on p-L1U, n p-1UJ; 
thus J is well defined. 

It is easy to see that each leaf L of 9, in its manifold topology, is a covering space 
of B via pIL: L -- B; and the inclusion L -- E is an immersion transverse to the 

fibres of (. 

Let X: [0, 1] - B be a path from bo to bl. Given a point y in the fibre 
Ebo over bo, 

there is a unique lift XA: [0,1] -- E of X into the leaf through y such that XY(O) = y 
and p oa = X. Define hj(y) = 

XY(1). In this way a map hx: Ebo 
Eb1 is obtained. 

The covering homotopy property for covering spaces ensures that h x depends only 
on the homotopy class (rel endpoints) [X] of X. In local trivializations h \ appears as 

a diffeomorphism of X corresponding to some element of G. 

It is easy to see that when bo = b, = b we obtain a homomorphism 

hb: -71(B, b) -- Diff(Eb) 

into the group of diffeomorphisms of Eb, defined by hb([X])(y) = hj(y). 
For ((F,, U,) E (F and b E U, we define a homomorphism 

hi,b: 'T1(B, b) -- Diff(Y), [A] l, b? hb(X)o? j,. 
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Then the image of h, b lies in the image of G. When G acts effectively we can 

uniquely lift hi b into G, obtaining a homomorphism ir1(B, b) -+ G. 

Now let g: B -* B be a universal cover and let 1T c Diff B be its group of deck 

transformations. Identify 1T with s1(B, b) in the usual way (recall this depends on 

choosing a base point in g-'(b)). There results a homomorphism h: ST G which 

depends on the choice of b and the choice of (0p, U,). If h': ST G is the 

homomorphism corresponding to different choices, then there exists a unique g E G 

such that h' is the composition of h with conjugation by g. By abuse of language we 

call h the holonomy of ,. 

Conversely, every homomorphism h: ST - G determines a canonical flat bundle 

= q (h) with holonomy h: the total space E(nq) of q is the quotient of B x X by the 

diagonal action of -r. The leaves of the foliation Y(q) are the images in E(q) of the 

sets B x { x }. If h is the holonomy of (, then ( and q(h) are canonically isomorphic 

bundles. 

1.3. Affine bundles, vector bundles, derived bundles. Let E denote the vector space 

R'. A bundle with standard fibre E is an affine bundle if the structure group is 

Aff(E); it is a vector bundle if the group is GL(E). 

Fix an affine bundle ( = (p, E, B). A translation of a fibre Eb, b E B, is a map 

Eb -- Eb which corresponds to a translation of E when Eb and E are identified by a 

local trivialization. The set of translations of Eb is a group under composition, 

isomorphic to E (but not canonically) via local trivialization. Thus the translations of 

E, form a vector space, denoted by E,f. 

Let EL = UbeBE L. Define pL: EL B by sending E,L to b. In a natural way this 

map is the projection of a vector bundle, called the derived bundle ( L of (. 

Suppose ( is a flat affine bundle with a cocycle { g,j } and a holonomy homomor- 

phism h: ST - Aff(E). Then (L is a flat vector bundle, with a cocycle {Lin(g,,)} and 

a holonomy homomorphism h' = Lino h: T - GL(E). We also call h' the linear 

holonomy of (. 

1.4. Radiant bundles. A subtle question of structure arises here. Every vector 

bundle can be considered an affine bundle by means of the natural inclusion i: 

GL(E) -* Aff(E). Since the composition i o Lin: Aff(E) -* Aff(E) is homotopic to the 

identity through homomorphisms, it follows that an affine bundle ( is isomorphic, as 

an affine bundle, to its derived bundle (L. An explicit affine isomorphism F: -(* 

is easily defined. Let s: B -- ( be any section of (. For b E B and y E {b let F(y) be 

the unique translation of (b taking s(b) to y. Then F: ( (L is an isomorphism of 

affine bundles. 

When ( is a flat affine bundle, however, {L is a flat vector bundle which is not 

generally isomorphic to ( as a flat bundle. In later sections we will measure the 

difference between a flat affine bundle and its derived flat vector bundle by a 

cohomology class. The following result describes the case where they are isomorphic: 

PROPOSITION. Let ( be a flat affine bundle. Then the following conditions are 

equivalent: 

(a) J has a flat section; 

(b) f is isomorphic to (L as a flat affine bundle; 
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(c) ( is isomorphic to some flat vector bundle considered as an affine bundle; 

(d) the affine holonomy representation h: 'r -- Aff(E) of ( has a stationary point in 

E. 

PROOF. The affine isomorphism ( (L constructed above from a section of ( is 

an isomorphism of flat bundles if the section is flat. Thus (a) =- (b), and (b) =- (c) is 

obvious. Since every flat vector bundle has a flat section, namely its zero section, 
(c) =* (a). Finally (a) (d), since flat sections correspond to stationary points of the 
affine holonomy representation ir -- Aff(E). Q.E.D. 

A radiant bundle is defined to be a flat affine bundle ( enjoying properties (a)-(d) 
of the proposition above. 

It is easy toconstruct nonradiant flat affine bundles. An example is the bundle 
over the circle S' corresponding to any homomorphism vl(Sl) = Z -+ Aff(E) gener- 
ated by an affine automorphism without a stationary point. 

1.5. Embedding affine bundles in vector bundles. It is sometimes useful to embed an 

affine ( bundle in a vector bundle -' having one more fibre dimension. Let 
(D = { U,, U } be the affine bundle structure on ( = (p, E, B, Aff(E), E, (F). Define a 
bundle structure on the composite map 

p 
g:E x R -- E -B 

as follows. Given i and x E Ui define 
. 

x: Ex X R -+E X R, (y, t) -+(to, x(y), t). 

The resulting atlas { {i, U, } defines a vector bundle 

J= {q, E x R,GL(E x R),E x R, (}. 

Evidently t is isomorphic as an affine bundle to the subbundle whose total space is 
E x {1); and the derived bundle (L is isomorphic as a vector bundle to the 
subbundle E x {O}. 

When t is flat so is iJ, and the holonomy of tj is the composition of the holonomy 
of t with the homomorphism 

J: Aff(E) -- GL(E x R), J(f ): (x, t) -* (Ax + tb, t), 

where g(x) = Ax + b. Similarly J converts a cocycle for t to a cocycle for ('. 
1.6. Affine spaces. For simplicity we took the standard fibre of an affine bundle to 

be a vector space. In a more puristic approach it would be an affine space, that is, a 
set together with a free transitive action on it by a vector group. While this approach 
seems unnecessarily elaborate, the notions of affine spaces and affine maps between 
them are occasionally useful. 

1.7. The radiance obstruction of a flat affine bundle. Let t be a flat affine bundle 

with holonomy h: 1T - Aff(E). We define the radiance obstruction c(() to be 

Ch E Hl(qr; EA), where X = Lino h: iT -- GL(E) is the linear holonomy of t, and ch 

is the radiance obstruction of h. As an immediate consequence of Proposition 1.5 
and Corollary 1.1 we obtain 

PROPOSITION. t has a flat section if and only if c(() = 0. 
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Technically speaking, c(() is not well defined since h and X are not uniquely 

determined; it would be more exact to write c(t, h). But the vanishing of c(() is 

independent of the choice of h. One of our main goals is to express c(() in other 

cohomology theories, some of which are more intrinsic. 

1.8. The singular radiance obstruction. Let ( be a flat affine bundle over a 

connected manifold M. Let (L be its derived flat vector bundle. There is a sheaf 

ty(L)t= Yof (germs of) flat sections of (L. The total space of Y, considered as a 

set, can be canonically identified with the total space of ( L. Clearly Y is a localy 

constant sheaf of vector spaces isomorphic to E. 

We consider Yas a system of local coefficients on M. If we fix a base point b E M 

and identify the stalk of Yb over b with E, then Yis determined by a homomorphism 

fl(M; b) -. GL(E). It is easy to verify that this homomorphism corresponds to the 

linear holonomy A of J when 'T1(M, b) is identified with the group XT of deck 

transformations of M. 
Such an identification also determines a homomorphism from the cohomology of 

XT with coefficients in Ex to the singular cohomology H,ing(M; Y) of M with 

coefficients in the local coefficient system. This homomorphism is an isomorphism 

of H1. The radiance obstruction c(() thus corresponds to an element 

csing(O) E H1(M; Y). 

It is easy to verify that csing(t) is intrinsically defined by (; the various choices made 

in its definition cancel out. 

1.9. The Cech radiance obstruction. Let H<*ech(M; Y) denote the Cech cohomology 

of M with coefficients in the sheaf Y. 

There is a canonical isomorphism 

Hing ( M; Y) H4ech( M; Y) 

(see Bredon [Br]). We describe a Cech 1-cocycle belonging to the image of csing(i). 

A Cech 1-chain with values in Yis determined by an open cover O& of M together 

with a function assigning to each pair U, Uj in qj a section of Y5over Ui n U.. Let 

= { Ui ) ie A be a radiant cover: an open cover by sets U, such that LUi is radiant. 

For each i let ai: U, be a flat section. If x E U, n U. let t,,(x) E (L be the 

translation of (x which takes si(x) to sj(x). Then t,, is a flat section of (LIUI n U,. 
This means t,, is a section of Mover Ui n UJ. 

It is not hard to verify that the collection { t,j} L A is a cocycle and the resulting 

cohomology class cCech(0) corresponds to Csing(0) 

1.10. The standard connection on a flat vector bundle. A (linear) connection on E is a 

supplementary bundle i1 C TE to p*t; thus TE = 7 @ p*(. Given a connection, for 

any (smooth) section s: M -b E we define a morphism (= bundle map) Vs: 

TM -- E (over the identity map 1M), by forming the composition 

Tf j q 

vs: TM-* TE -p*E -E, 

where j is the retraction with kernel q and g is the canonical map. In this way we 

obtain a linear map V from sections of E to morphisms TM -b E, or equivalently, 

to sections of T*M ? E. One often identifies the connection with the map V. 
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The connection q is called flat if E has a foliation 9 whose leaves are transverse to 

the fibres of E, such that i1 is the bundle T9 of tangent planes to leaves. Every such 

foliation of E determines a flat connection on E. 

Now suppose that E is a flat vector bundle. The canonical foliation Y of E, 

corresponding to the flat structure, determines a flat connection on E. We call this 

the standard connection on the flat vector bundle E. 

It is clear from the definition that if the section s is tangent at x E M to a leaf of Y 

then vsx: TxM -b Ex is zero. Thus vs measures the deviation of s from being flat. 

In particular vs vanishes if and only if s is a flat section. 

A connection on the trivial vector bundle E = (M x E, M, E) is the same thing as 

a morphism 8: TM -b E, i.e. a map linear on fibres. To see this, recall that if 

(x, y) E M x E, then T(Xy)(M x E) is identified with TxM a) E. The subspace 

complementary to 0 a) E is the graph of Sx. This connection is flat precisely when 8 

is closed as an E-valued 1-form on M, that is, when locally 8 coincides with 

differentials of maps from open sets of M into E. 

1.11. De Rham cohomology with coefficients in a flat vector bundle. Let E, F be real, 

finite-dimensional vector spaces and U c F an open set. Sections of U x E corre- 

spond to maps U -b E. The standard connection assigns to such a map f a morphism 
TU = U x F -b U x E, which corresponds to a map from U to the vector space 

L(E, F) of linear maps from E to F. This map U -b L(E, F) is just the differential df. 

For each integer k > 0 the exterior differential operator defines a linear map 

d(k, U,E) = dk: CO(U,(AkF*) ? E) -- CO(U,(Ak?lF*) ? E) 

such that dk+1 O dk = 0; here C' indicates the vector space of C' maps. 

Now let p: E -- M be a flat vector bundle. By identifying fibres of E with E, and 

coordinate neighborhoods in M with open sets V, in F, we can piece together the 

exterior differentials d(k, V;, F) to obtain a family of linear maps 

(dV)k: Ak(M; E) -- Ak+l(M; E) 

for each integer k > 0. Here Ak( M; E) is the vector space of E-valued exterior 

k-forms on M, that is, the space of sections of the vector bundle Ak(T*M) ? E. 

Notice that A?(M; E) is the space of sections of E, A1(M; E) is the space of 

morphisms TM -b E, and (d, )o is just the connection V. Thus we have extended 

V to a sequence of linear maps 

17 k( ~~~(dv)k k 
O A(M; E) --* ... Ak ( M; E) - 

* Ak (M; E) 

- -- A'(M; E) --O (n = dim M). 

Working locally one sees that (d V )k+1 o(dv)k = 0, since this holds for the 

exterior differential. (This uses flatness of E.) Therefore the sequence above is a 

cochain complex. Its cohomology is, by definition, the de Rham cohomology of M 

with coefficients in the flat vector bundle E, denoted by H*(M; E). 

1.12. The covariant differential for flat affine bundles. Let p: E -* M be a flat affine 

bundle, with its derived flat vector bundle E L. Although E is not a vector bundle we 

can still define a covariant differential 

V: C'(E) -- C'(T*M EL) = A'(M; E L) 
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from sections of E to morphisms TM - EL, in a generalization of ?1.10. There is a 

natural affine structure (see ?1.6) on C'(E), and V is an affine map. 

We split TE = T-F@ T9 as in the preceding section, and remark that 7W is 

naturally isomorphic to p*E L. For an element of TW is a tangent vector to a fibre E., 
of E. This fibre is an affine space (see ?1.6) and a tangent vector to an affine space 

corresponds naturally to a translation via affine identifications with a vector space. 

Thus for y E E. there is a natural identification TYEX = (Ex)L. Noting that x = 

p(f), in this way we identify TPV- p*EL. 

Now define 'TI to be the composite vector bundle morphism 

r,:TE = T- TE TP--*EL *EL. 

For any section s: M E define Vs to be the composite morphism 

Vs:TM TE-EL 

As before Vs = 0 precisely when s is flat. 

1.13. Computation of V for a special flat affine bundle. Fix a smooth map g: 

M -- E. There is a flat affine bundle E(g) whose projection is the natural one, p: 
M x E -- M, but whose foliation Y has as leaves the graphs of the maps g + 

constant. It is easy to see that there is a canonical identification of the derived flat 

vector bundle E(g)L with the trivial flat vector bundle M x E (whose foliation has 

for leaves the graphs of constant maps). 

Let s: M -- E(g) be a section corresponding to f: M -- E. It turns out that vs: 

TM -- M x E is given as follows: If x e M andy E TxM, then 

( vs)xy = (x, dfxy - dgxy). 

This is proved first for the case where g is identically 0. The general case follows by 

considering the isomorphism of flat affine bundles 

E(g) -E(O) = M x E, (x, y) -(x, y-g(x)) 

and pulling back the information on E(O). 

In the special case where M = U c E is an open set and g: U E is g(x) = -x, 

it follows that vs: TU = U x E -- U x E is given by (x, y) (x, dfx(y) + y), 

where s(x) = (x, f(x)) E U x E. In particular, when s is the zero section, Vs is the 

identity map of U x E. 

1.14. The de Rham radiance obstruction. Let ( = (p, E, M) be a flat affine bundle, 

E L its derived flat vector bundle, and ?"the sheaf of flat sections of E L. The singular 

radiance obstruction csing(J) is a class in H,*ing(M; 9') (see ?1.8). In this section we 

compute the image of csing(J) in de Rham cohomology H*(M; EL) (see ?1.11) under 

the canonical isomorphism. We denote this image by c, E H1(M; EL); in most later 

computations we shall use this form of the radiance obstruction. 

Recall from ?1.11 that H*(M; EL) is the cohomology of a cochain complex 

Ak(M; EL) 4-Ak 1(M; EL). 

From ?1.12 let v: C'(E) -- A1(M; EL) be the covariant differential. 

THEOREM. Let s: M -- E be any section. Then Vs is a cocycle whose cohomology 

class [ Vs] is c. 
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PROOF. Locally vs is the differential of a map U -- E. Thus Vs is locally exact, so 

it is closed. 

The cohomology of M pulls back injectively to that of its 1-skeleton. Therefore to 

prove [Vs] = 
c, it suffices to prove g*[Vs] = g*c, for every map g: S1 -+ M of a 

circle into M. Now v and ct behave naturally for induced bundles. Therefore it 

suffices to prove the theorem for the special case where M = sl. 
Let h: T(51) -* Aff(E) be the holonomy of (. We may assume ( is the canonical 

flat bundle with holonomy h (see ?1.2). Thus we take the total space E to be the 

identification space of R x E by the relation 

(x + m, y)=(x, Amy) (m E Z) 

for some A E GL(E). A section s: S1 -- E lifts to a map R -- R x E of the form 
x '-+ (x, f(x)), where f: R -- E satisfies f(x + 1) = Af(x). The (L_valued 1-form 

Vs corresponds to an F-valued 1-form on R, namely dx ? df/ds. The de Rham 

homomorphism on cochains carries the 1-cocycle vs to the singular 1-cocycle z 
which when applied to a differentiable singular 1-simplex c: [0, 1] - M gives 

z(a) = *(vs)=f1 a(f ou() dt 
[0, 11 0 at 

=- f- dr =f (uf(1) - u(0)) 

If a is the fundamental 1-cycle [0, 1] R/Z induced by the restriction of the 

identity map, then z(a) = f(l) - f(O) = b is the translational part of the affine 

holonomy of {. By ?1.8, vs represents the radiance obstruction ci in de Rham 

theory. Q.E.D. 

1.15. Exterior powers of the radiance obstruction. Let E -* M be a flat vector 

bundle. For any integers k, I > 0 there is a natural morphism (AkE) X (AE') 
Ak + 'E. These fit together to induce bilinear maps 

Hk (M; A kE) x H'(M; 'E) -- Hk+( M; A k?E), 

and similarly with more factors on the left. In particular there is a k-linear map 

H'(M; E) x ... x H'(M; E) -*H k(M; A kE). 

Preceding this with the diagonal map 

H'(M; E) -*H'(M; E) x .. x H'(M; E) 

gives the exterior k th power map Ak: H1(M; E) - Hk( M; AkE). 

Now, changing notation, let ( = (p, E, M) be a flat affine bundle and consider 

AkC~ E Hk(M; Ak(EL)) in de Rham theory. 

THEOREM. If ( has a flat affine subbundle of fibre dimension j, then A kct = 0 for all 

k > j. 

PROOF. Let q = (p, F, M) be the subbundle. Viewing the inclusion i: FL C EL as 

a coefficient homomorphism, we derive an induced homomorphism 

i#: H*(M; FL) -- H*(M; EL). 
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One easily verifies that i#cn = cf, for example by using ?1.14. Since AkFL has 

zero-dimensional fibres for k > j, the theorem follows. Q.E.D. 

Below we give various conditions ensuring AkCc # 0. 

2. The radiance obstruction of an affine manifold. Now we apply the preceding 

theory of flat affine bundles to affine manifolds. Recall that an affine structure on a 

(differentiable) manifold M is defined as follows. Let E be a fixed vector space 

having the same dimension as M. Let U c M be an open set and let A: U -+ E be a 

coordinate chart for the manifold structure on M. Two coordinate charts A,: U, -* E 

(i = 1, 2) are said to be (affinely) compatible if on each component of 4 I (U1 ) nl 42(U2 ) 

the map 421 o {j extends to an affine automorphism of E. In other words, the 

coordinate change g12 = 4iC'1: 42(U1 nl U2) -l 41(Ul n U2) is locally affine. An 

affine structure is defined to be a maximal atlas of compatible affine coordinate 

charts. An affine manifold is a manifold with an affine structure. 

Throughout the rest of this work, M denotes a connected affine manifold modeled 

on the vector space E = R , n > 0. 

2.1. Flat structures on the tangent bundle. Let M be an affine manifold. As a 

differential manifold, M has a tangent vector bundle TM. To the affine structure we 

shall associate two other bundle structures on TM: a flat affine bundle TaffM, and a 

flat vector bundle canonically identified with the derived bundle (TaffM )L. Thus 

TM has three bundle structures; it is important to keep them conceptually distinct. 

If f: M -. N is an affine map between affine manifolds then we will see that the 

tangent map Tf: TM -- TN is a morphism for each of the three bundle structures. It 

also turns out that the natural (identity) map TM -* TaffM is an isomorphism of 

affine bundles, while the natural map (TaffM)L TM is an isomorphism of vector 

bundles. The natural map TaffM -- (TaffM)L is an isomorphism of affine bundles; 

it is not an isomorphism of flat bundles unless M is radiant. 

We now define a flat affine structure for TM. Let { (p, U, } be an affine atlas for M 

modeled on E = Rn. For each i and each x E U, define an affine isomorphism 

01. x: Tx M -*E,9 
v- 

?(jx) + d0j(x)v. 

Define the natural affine trivializations 

0,: TU, -+U xE, v 0- 
(x9 0i'X(v)) if v C TxM. 

One easily sees that (0i, Ui) is an atlas for a flat affine bundle structure on TM 

which is completely determined by the affine structure of M. The resulting flat affine 

bundle is called TaffM. 

Suppose f: M -- N is an affine map (i.e. N is an affine manifold and f is affine in 

local charts). Then Tf, considered as a map T affM __ T affN, is affine in each fibre, 

and Tf: TaffM -- TaffN is a morphism of flat affine bundles. (Note that in natural 

affine trivializations, Txf does not appear to be linear.) 

Now assume that the affine atlas ( 6,, U) on M is such that each nonempty map 

q, = + o o,-' extends to a (global) affine automorphism of E (as when U, n U, are 

connected). Then the collection { g,, ) is a cocycle for the flat affine bundle T affM; 

and the collection of linear parts {Lin(g,,)) is a cocycle for the flat vector bundle 

TM. 
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We now describe the canonical flat vector bundle structures on TM. Each fibre 

TX M coincides in a natural way with the group of translations of TxM = T 'f xM. 
Therefore we identify TxM with the fibre over x of (TaffM)L, the derived bundle of 

TaffM (see ?1.3). Thus TM is canonically isomorphic, as a vector bundle, to the flat 

vector bundle (TaffM )L. 

2.2. Developing sections. Since TaffM is a flat bundle, it has a canonical foliation Y 

transverse to its fibres. For U an open set in E, the foliation of Taff U = U x E has 

as leaves the sets defined by x + y = constant. Notice that these leaves are trans- 

verse to the submanifold U x {O}. 

It follows that the leaves of -Fare transverse to the zero section of TM. To 

emphasize its role in the affine structure we refer to this zero section as the 

developing section of TaffM, denoted by aM: M -3 TaffM. See Goldman [G] for 

another treatment. 

Let (0i, U,) be an affine chart on M. In terms of the natural trivialization O- of 

TaffU1 induced by p, (see ?2.1), the developing section aM corresponds to the map 

U, 
- 

U, x E, x + (x, f(x)) 

Thus the image uM(U,) corresponds to the graph of cp. 

To an affine manifold M we have associated a flat affine bundle structure TaffM 

on TM with its corresponding foliation 5, together with a section AM of TaffM 

transverse to 5. Conversely, let N be a differentiable manifold and suppose TN has 

a flat affine bundle structure a with corresponding foliation 5", and that a: 

N -- TN is a smooth section transverse to 5". Let U, c N be a connected open set 

over which TaN is trivial, so that there is a flat affine bundle map 

fj: TaffU1 Ui x E. 

For each leaf L of 5a f, takes each component of L r) T"U, into a set of the form 

Ui x { y). From transversality of a to 1a it follows that the composition 

'a f, 

bi: U -* T"U,- U x E -E 

is an immersion. Give U, the affine manifold structure induced from E by cs. 

Because TaN is a flat affine bundle, Ui n Uj inherits the same affine structure from 

Ui and U.. Thus to TaN and a we have associated an affine structure on N. 

REMAkRK. An older approach to affine structures on manifolds is through the idea 

of a linear connection on TM (as in ?1.10) whose curvature and torsion vanish. The 

developing section is then viewed as an "integral" of the tensor which is the identity 

endomorphism of TM. This interpretation may be found in Matsushima [Mt], where 

it is attributed to J. L. Koszul. 

2.3. Developing maps. Let p: M -- M be a universal covering of an affine manifold 

M modeled on E. We give M the induced affine structure (making p an affine map). 

Let v denote the group of deck transformations of M. 
A developing map for M is an affine immersion M -- E. 

The following basic result is well known; we include a proof for the reader's 

convenience. 
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THEOREM. (a) There exists a developing map. 

(b) For any developing map f there is a unique holonomy homomorphism h: 

s7 - Aff(E) for which f is equivariant, that is, 

f og = h(g)of (ge 7). 

(c) Iff ' is another developing map, then f '-y o ffor a unique y E Aff(E). 

PROOF. (a) Let : TaffM - E be a trivialization. Let O: M - TaffM be the 

developing section (= zero section). Then the composition f = 4 o au: M -- E is an 

immersion because the zero section ajf: M - TM is transverse to leaves of the 

foliation 3of T afM (see ?2.2). Sincef is easily seen to be affine in local coordinates, 

f is a developing map. 

(b) Let h: r -- Aff(E) be the holonomy of the flat affine bundle TaffM (see ?1.2). 

It is readily proved that f as constructed above is h-equivariant. The general case of 

(b) now follows from (c), and the proof of (c) is trivial. Q.E.D. 

We call a homomorphism h as in (b) an affine holonomy homomorphism for M. 

When M is given, h is uniquely determined up to a composition with an inner 

automorphism of Aff(E). 

It is easy to see that an affine holonomy homomorphism for M is also a holonomy 

homomorphism for the flat affine bundle TaffM as defined in ?1.2. 

We generally pretend the developing map is unique and denote it by dev: M -+ E. 

By a similar abuse of language the image h(S7) of the corresponding holonomy 

homomorphism is called the affine holonomy group r of M. The image Lin(r) c 

GL(E ) is called the linear holonomy group of M. 

An affine manifold M is complete if its developing map is bijective. Equivalently, 

M is complete if its universal covering is affinely isomorphic to E. For a general 

discussion of complete affine manifolds we refer to Milnor [Mil and Fried and 

Goldman [FG1]; in the latter paper all such structures on compact manifolds of 

dimension < 3 are classified. If M is a compact complete affine manifold, then its 

affine holonomy group F acts freely and properly discontinuously on E with 

compact fundamental domain. It is an amusing exercise to show that the converse 

holds. 

2.4. The radiance obstruction of an affine manifold. It will be convenient to denote 

the flat affine bundle TaffM by T or TM, and the flat vector bundle (TaffM)L by E or 

EM (see ?2.1). 
As a vector bundle EM is the same as TM, but EM has a flat structure. In 

particular the de Rham cohomology group H*(M; E) and related groups will be 

important. 

The radiance obstruction of M is defined to be CM -CT E H1(M; E); thus CM is 

the de Rham radiance obstruction of T. Since E and TM are the same as vector 

bundles, CM is represented by a TM-valued 1-form on M, that is, by an endomor- 

phism of TM. By ?1.14 this endomorphism is VaM, the covariant differential of the 

zero section of TM. From ??2.1 and 1.13, VaM is the identity isomorphism of TM. 
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This proves 

THEOREM. The radiance obstruction of M is the de Rham class CM E H1(M; E) 

represented by the identity endomorphism of TM, where E denotes the flat vector bundle 

structure on TM. 

2.5. Parallel and polynomial tensors. A tensor (field) on a connected affine 

manifold M is called parallel if in affine coordinates each component of the tensor is 

constant. Alternatively, a parallel tensor field on M is a flat section of the bundle of 

tensors on M, which is given the flat vector bundle structure induced from (TaffM) . 

Let t be a parallel tensor on M and t the induced form on the universal cover M. 

Fix a developing map dev: M -- E. Let the corresponding holonomy homomor- 

phism be h: X7r -- Aff(E). Let F c Aff(E) and A c GL(E) denote the affine and 

linear holonomy groups. 

It is easy to prove (see e.g. [GH2]) that there is a unique (constant) tensor tE on E 

which is related to t by dev; and tE is invariant under the induced action of A on 

tensors. Conversely, for any A-invariant tensor t' on E there is a unique parallel 

tensor t on M such that t' = tE (defined as above). 

More generally any tensor s on M corresponds to a unique F-invariant tensor s' 

on dev(M) which is related by dev to the lift s of s to M. In particular if the 

components of s are given by polynomial maps E -- R in local affine coordinates, 

then s' extends to a P-invariant polynomial tensor field on E. 

2.6. Parallel differential forms and the evaluation formula. From ?2.5 it follows that 

a parallel exterior k-form X on M corresponds to a linear map AkE -+ R which is 

invariant under the action of the linear holonomy group of M on AkE*. Thus the 

vector space of parallel k-forms on M is H(M; AkE*), where E is the flat tangent 

vector bundle of M (see ??2.1, 2.4), AkE* is the (fibrewise) k th exterior power of its 

dual bundle (also a flat vector bundle over M), and Ho denotes the vector space of 

flat sections (equivalently, the zeroth de Rham cohomology). 

There is a natural fibrewise pairing of bundles AkE* @ AkE -+ M x R which over 

x E M is simply the duality pairing. Considering this as a coefficient pairing to the 

trivial flat line bundle, we obtain a natural pairing 

K: H?(M; AkE*) x Hk(M; AkE) -- Hk(M; R), 

also denoted K(a, /3) = (a, ,B). 

The following useful formula combining parallel forms, the radiance obstruction, 

and the real cohomology of M, will be applied many times. We call it the evaluation 

formula: it says the cohomology class of a parallel differential k-form W is obtained 

by evaluating (via K) X on the k th exterior power of the radiance obstruction: 

PROPOSITION. Let o E H?(M; AkE*) be a parallel k-form. Then ((0, AkCM) - 

the de Rham cohomology class of w. 

PROOF. By Theorem 2.4, AkcM is represented by the identity endomorphism of 

Ak(TM). The lemma follows from this by working through the definition of K. 

Q.E.D. 
The following corollary is a basic principle which will be used throughout the rest 

of this work. 
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THEOREM. Let X be a parallel k-form on the affine manifold M with nonzero 

cohomology class [X] E Hk(M; R). Then the kth exterior power of the radiance 

obstruction 

Akc E Hk(M; AkE) 

is nonzero. Q.E.D. 

Theorem 3.2 of [FGH2] treats the special case of k = 1 in this theorem. The same 

paper exhibits a compact affine 3-manifold having a nonzero parallel 2-form, but 

whose radiance obstruction vanishes (the case k = 1/2 on p. 511 of [FGH2]). By the 

theorem above the cohomology class of such a form must vanish; compare [GH2 

and GHL]. 

In the next three sections we give some applications of the evaluation formula. 

2.7. Parallel volume. The n-dimensional affine manifold M is said to have a 

parallel volume form X if M is orientable and o is a parallel nonzero exterior form of 

degree n. In any affine chart, o appears as a nonzero constant multiple of the 

Eucidean volume form dxl A ... A dx,. The existence of X is equivalent to the 

linear holonomy group lying in SL(E). 

If M is nonorientable, then we say M has parallel volume if its oriented double 

covering has a parallel volume form. 

The following old and unsolved conjecture of L. Markus motivates many of the 

results of this paper. 

L. MARKUS' CONJECTURE. A compact affine manifold is complete if and only if it 

has parallel volume. 

In [FGH2] Markus' conjecture was proved for the case of nilpotent holonomy, 

generalizing an earlier result of Smillie [Sm2] for abelian holonomy. Further cases of 

the conjecture are proved below. 

Applying the evaluation formula (see ?2.6) to a parallel volume form proves the 

following important fact. 

THEOREM. If M is an orientable n-dimensional compact affine manifold with parallel 

volume, then AncM # 0. Q.E.D. 

This sharpens Theorem 3.1 of [FGH2] which concludes only that CM # 0. 

The following well known result is useful. 

PROPOSITION. Suppose the linear holonomy of M factors through a group G which 

admits no nontrivial homomorphism to the group R of real numbers. Then M has 

parallel volume. In particular if the first Betti number of M is zero then M has parallel 

volume. 

PROOF. Let the linear holonomy ir -X GL(E) factor through G and consider the 

composition 

X- G -GL(E) AR, 

where j(y) = log Det yj and gf is the linear holonomy. Since jg = 0 it follows that 

every element of the linear holonomy group has determinant + 1. Q.E.D. 
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REMARK. Markus' conjecture implies nontrivial information on the topology of 

affine manifolds. Suppose M is a compact manifold which admits an affine struc- 
ture. Then Markus' conjecture has the surprising consequence that either the first 

Betti number of M is nonzero or M is an aspherical space (and indeed covered by 

Eucidean space). 
2.8. Irreducible affine holonomy. An affine representation h: ir - Aff(E) is irreduc- 

ible if no proper affine subspace is invariant under h(1T). 

LEMMA. Let M be an affine manifold having a parallel k-form which represents a 

nonzero cohomology class in Hk( M; R). Then the affine holonomy group F of M cannot 

preserve any affine subspace of dimension m < k. 

PROOF. If F preserves an m-dimensional affine subspace, then TaffM has a flat 

affine subbundle of fibre dimension m, and by ?1.15 we then have A'CM = 0 for all 

j> m. Since AkCM # 0 by Theorem 2.7, it follows that k < m. Q.E.D. 

THEOREM. The affine holonomy of a compact affine manifold M with parallel volume 

is irreducible. 

PROOF. Passing to an oriented covering we assume M has a parallel volume form. 

Then AncM # 0 by ?2.7 and the theorem follows from the lemma above. Q.E.D. 
This theorem was proved in [FGH2] under the extra assumption that F is 

nilpotent. In [GH3] we generalize it by showing that no proper semialgebraic set is 

invariant under F. 

In [FGH2, p. 496], it is shown that the affine holonomy is irreducible for any 

compact complete affine manifold. 
2.9. Radiant manifolds. The affine manifold M is called radiant when CM = 0. 

Suppose M is radiant. Then TaffM has a global flat section. Therefore by ?1.5 any 
affine holonomy group F has at least one stationary point in E. 

Let p: M -. M be a universal covering. We can always choose a developing map 
dev: M -+ E so that the corresponding holonomy group has the origin in E as a 

stationary point. In this case the affine and linear holonomy representations coin- 

cide. 

Suppose F fixes the origin. Let { Ui ) be an open covering of M such that there are 

open sets V, c M which map diffeomorphically onto U, by p, and which map 

diffeomorphically by dev. For each i define an affine chart 

= devo(pIV'): U; E. 

These charts form an affine atlas for M whose coordinate changes are linear. The 

existence of such an atlas is equivalent to the radiance of M. 

There are radiant manifolds diffeomorphic to S1 x V, where V = S'- (the Hopf 

manifolds), or V is any compact surface (see [FGH2, p. 502]). 

THEOREM. Let M be a compact radiant manifold. Then: 

(a) M does not have parallel volume; 

(b) the first Betti number of M is nonzero; 

(c) every parallel 1-form on M is zero; 
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(d) the Euler characteristic of M is zero; 

(e) the developing map of M is not surjective. 

Parts (a), (c), (d), and (e) are proved in [FGH2, ?3]. The proofs all involve the 

radial vector field on E which is F-invariant and vanishes only at the origin. In 

[FGH2] compactness of M is used to show that the induced vector field RM on M is 

nonsingular. This proves (d) and (e). Further use of the vector field RM proves (a) 

and (c). Part (b) follows from (a) and Proposition 2.7. Q.E.D. 

2.10. Parallel forms and nilpotent holonomy. Let M be a compact affine manifold. 

In this section we assume the affine holonomy group F of M is nilpotent. For 

background on this class of affine manifolds, see [FGH2]. 

THEOREM. Suppose M has a parallel k-form w whose cohomology class [WI E 

Hk( M; R) is nonzero. Then M has a nonzero parallelj-form for allj < k. 

PROOF. By the evaluation formula (?2.6) we know AkCM * 0, so AJcM * O for all 

j < k. For thesej, therefore, H'(F; AJE) # 0, where E is considered as a F-module 

via the linear representation F C Aff(E) -- GL(E). 

For any F-module V it is known that, because of nilpotency of F, HJ(r; V) * 0 

implies H0(F; V*) * 0 (see [FGH2, ?1]; also Hirsch [H] and Dwyer [Dw]). Taking 

V = A'E completes the proof. Q.E.D. 

In [GHL] it is proved that when M is nonradiant there always exists a cohomologi- 

cally nontrivial parallel k-form, where k > 0 is the Fitting dimension of M: the 

dimension of the largest invariant linear subspace of E on which the linear holonomy 

is unipotent. In [GH3] we study the Fitting dimension in terms of orbits of algebraic 

groups. 

The parallel j-form in the theorem cannot always be taken to be nonzero in 

cohomology. For example consider the complete, compact affine 3-manifold M = 

R3/r, where F is the nilpotent subgroup of Aff(R3) of all affine transformations of 

the form 

1 6c 18c2 ia 
- 

0 1 6c b 

where a, b, c are integers. Every F-invariant parallel 2-form on R' is a constant 

multiple of dy A dz, where (x, y, z) are the linear coordinates in R3. Now 6dy A dz 

= d(w), where w = dx - 6zdy + 18z2dz is F-invariant. Therefore every parallel 

2-form on M is exact. 

2.11. Cohomological dimension. In this section and the next we prove some results 

due in essence to J. Smillie. The top-dimensional cohomology class, which we call 

A'cM, was discovered independently by him; see [Sm2]. At this writing some of 

Smillie's results have not been published. 

The real cohomological dimension rcd(G) of a group G is the smallest integer k 

such that H'(G; F) = 0 for all i > k whenever R is a finite-dimensional real vector 

space with a G-module structure. 
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It can be shown that [G: H] < oo implies rcd(G) < rcd(H), and that rcd(F*G) < 

max{rcd(F), rcd(G)}, where * denotes free product. If there is an Eilenberg- 
Mac Lane complex K(G, 1) of dimension < k then rcd(G) < k. 

It is easy to see that rcd(G) is less than or equal to the virtual cohomological 
dimension of G (see Serre [Se]). 

Smillie [Sm2] shows that rcd(G) < 1 if G is built up from finite and infinite cyclic 
groups by a finite number of free products and finite extensions. He used this fact to 
exclude certain manifolds from having affine structures with parallel volume, e.g. a 
connected sum of manifolds homeomorphic to S' x S2. 

The following result generalizes Smillie's theorem. 

THEOREM. If an affine manifold M has a nonzero cohomology class represented by a 

parallel exterior k-form w, then its affine holonomy h cannot factor through a group G 

having rcd(G) < k. 

PROOF. The existence of w implies by ?2.6 that Akch * 0. Suppose h is a composite 
homomorphism 

f g 
h: - G -- Aff(E). 

Then f*(AkCg) = Akch - 0, whence AkCg is a nonzero cohomology class of G with 

coefficients in the G-module defined by the linear part of g. Therefore rcd(G) > k. 

Q.E.D. 
Taking w in the theorem above to be a parallel volume form proves 

COROLLARY. Let M be a compact affine manifold having parallel volume. Then the 

affine holonomy of M cannot factor through a group G having rcd(G) < dim M. 

This result can be used to rule out various groups from being the fundamental or 
holonomy groups of certain kinds of affine manifolds. For example, the fundamental 
group of a surface has rcd < 2. Therefore, it cannot be the fundamental or 

holonomy group of a compact manifold M with parallel volume if dim M > 2 (as is 

seen by taking w to be a volume form). 
2.12. Radiance dimension and parallel cohomology. Let H k (M; R) denote the 

subspace of Hk( M; R) of de Rham classes which contain parallel k-forms. Let '? be 
a radiant cover of M, i.e. qj is a cover by open sets, each of which is radiant in its 

induced affine structure. Let N"? denote the simplicial complex which is the nerve 

of qV 

THEOREM. The inclusion H k (M; R) - Hk( M; R) factors through the natural map 

Hk(Nq/; R) -+ Hk(M; R). 

PROOF. By ?1.9 the radiance obstruction CM E H1(M; E) comes from a Cech class 

c& E H1('?; E). 

Let a class [w] E Hpk(M; R) be represented by the parallel k-form w. We 

consider w as lying in H?(M; AkE*). Since each element of '& is radiant, w also 

corresponds to a Cech class wv Ee H0('&; AkE*). There is a natural pairing 

Hk(q/; AkE) ? HC(T; AkE*) + Hk(?T; R) 
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corresponding to the coefficient pairing AkE ? AkE* -* R. This pairing takes 
Ak(cM) ? R. to an elementj[w] E Hk(Q?; R) = Hk(Na/; R) which depends only on 
[w]. One can show that the image of j[w] in Hk(M; R) is just [w]; compare ?2.6. 

Q.E.D. 
Define the radiance dimension rad(M) to be the smallest integer d such that there 

exists a radiant cover qof M with H'(N?e; R) = 0 for i > d. 

COROLLARY. If M admits a parallel k-form which is nonzero in cohomology then 

rad(M) > k. Q.E.D. 

It seems likely that the resulting inclusion Hp*ar(M) -* H*(N'?) constructed 

above is a homomorphism of graded algebras; but we have not proved this. 
2.13. Fibrations with radiant fibres. Throughout this section f: M -+ B denotes a 

locally trivial fibration of an affine manifold M over a topological manifold B. We 

assume that the affine holonomy homomorphism of M vanishes on the image of the 
fundamental group of the fibre. 

The definition of rad(M) is given in ?2.12. 

PROPOSITION. (a) The affine holonomy of Mfactors through 7r1(B); 

(b) rad(M) < dim B. 

PROOF. (a) follows from part of the exact homotopy sequence of the fibration f: 

1T,(f -'(x)) 
-- 

ri(M ) --, 
r,(B) 

O- . 

(b) follows by considering covers of M having the form { f -1Vi ), where { Vi ) is a 

covering of B by simply connected open sets over each of which the fibration is 

trivial, and whose nerve has the same dimension as B. Q.E.D. 

COROLLARY. Let w be a parallel k-form on M. Then w is zero in cohomology if either 

(a) k > rcd(w1(B)), or 

(b) k > dim B. 

PROOF. (a) follows from (a) of the proposition and ?2.11, while (b) follows from 

(b) of the proposition and ?2.12. Q.E.D. 
As an application we obtain 

THEOREM. Let B and N be compact manifolds, with 1T,(N) finite. Then: 

(a) B x N cannot have an affine structure with parallel volume. 

(b) Assume also that H1(B; R) = 0. Then B x N cannot have any affine structure. 

PROOF. 7rT(N) being finite means the product fibration B x N -- B fulfills the 

hypothesis of this section. Therefore (a) follows from (b) of the proposition and 

?2.12. And (b) now follows because if H1(B x N; R) = 0 then any affine structure 

on B x N would necessarily have parallel volume, contradicting (a). Q.E.D. 
In a forthcoming paper [FG2], Proposition 2.13 is used to show that a 3-dimen- 

sional Seifert manifold admits a flat Lorentz metric if and only if it is covered by a 

T2-bundle over S1. See also [FG1]. 
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2.14. Affinely rigid groups. We call a discrete group HI affinely rigid if 

Hl(ll; E)= 0 for all real finite-dimensional fl-modules E; a simple example is 
provided by any finite group. 

In [Mg] Margulis proved a remarkable theorem which implies that fI is affinely 
rigid if it is an irreducible lattice in a semisimple Lie group G of R-rank > 2. We call 

such groups H Margulis groups. An example is SL(Z, n) for any n > 3. 
Margulis proved that any linear representation of such a HI either takes values in a 

compact subgroup, or else extends to a representation of G; and the same holds for 
affine representations (see ?1.7). (For another proof of Margulis' theorem see 
Zimmer [ZI.) Now every representation of a compact group, or of a semisimple 
group (see Milnor [Mi]), is radiant; and this property is equivalent to affine rigidity. 

By taking E = R we see that any affine representation of an affinely rigid group 
must be volume-preserving. 

THEOREM. The affine holonomy of a compact affine manifold cannot factor through 

an affinely rigid group. In particular it cannot factor through a Margulis group. 

PROOF. If the holonomy did so factor, the manifold would have to be radiant, and 
would have to have parallel volume by Proposition 2.7. But it is impossible for a 
compact radiant manifold to have parallel volume (see [FGH2, 3.1]). Q.E.D. 

By an obvious extension of a theorem of J. Smillie about free products of finite 

groups [Sm2] one obtains a nonfactoring theorem for free products of affinely rigid 
groups: 

PROPOSITION. Let M be a compact affine manifold. If dim M > m then the affine 

holonomy of M cannot factor through the free product of m affinely rigid groups. 

PROOF. Suppose the holonomy factors through 1I = 111* ... *fIm, each II, being 

affinely rigid. The classifying space BII for HI can be laken as the one-point union 
(wedge) of those for the HI . A well-known construction using a classifying map f: 
M -+ BI11 v ... v B I,,M for TaffM produces an open cover {Ui,. . ., Um} = Tlof M 

such that f((UJ) c BI1. This implies that the affine holonomy of U, factors through 

Ili. Therefore qj is a radiant cover. Thus rad(M) < dim M so M cannot have 

parallel volume by ?2.12. But any homomorphism rI -* R must vanish on each LIi, 
so M must have parallel volume by Proposition 2.7. This contradiction completes the 
proof. Q.E.D. 
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