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ABSTRACT

A simple treatment of the dominant radiative corrections to the Wi
and 7% mass formulae due to fermion-loop corrections to the propa-
gator is given, including the possibility of a very massive top
quark, m, > . A thorough comparison with the results of the com-
plete (SU(Z)LXU(I)Y) one-loop calculations is presented. Using «,
GH and MZ as input, we find excellent agreement with the complete
one-loop calculations (with mercas = 100 GeV) for all values of m,
within an expected error of AMW = (alzn)MW = 100 MeV in and
Asé 2 0.002 in the weak angle, s Technically we differ from

previous work in diagonalizing the yZ propagator for arbitrary
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values of q2, thus allowing for extensive use of the notion of
“running” coupling constants and masses. We also give a simple and
closed formula for the radiative corrections to be applied to s%
(accurate within an expected error of Asé = 0.002), when extracting
sé from neutrino scattering experiments. As a strategy for future
precision tests of the electroweak theory, we suggest attempting to
isolate and to test directly the "new physics" of boson loops and
other new phenomena by comparing with and looking for deviations
(larger than AM, = (a/Zn)Mw) from the predictions of the dominant
fermion-loop calculation.
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1. Introduction

Quantum corrections to the masses and couplings of the weak vector bosons
are dominated by fermion loop contributions to the propagators of the W* and
the yZ system. This is a well-known fact. It becomes apparent within the com-
plete one-loop calculations of the radiative correctionslgs) in the SU(Z)LxU(l)Y
spontaneously broken electroweak gauge theory4) as well as 1in the approximate
treatment which takes into account the leading {logarithmic) correction55'7’*)

only.

In the present work we concentrate on the dominant lepton and quark ~loop
corrections to the W* and vZ propagators. Our basic motivation may be summa-
rized as follows: fermion-loop corrections to the vector boson masses and coup-
lings can be reliably calculated. They only depend on the masses and the coup-
lings of the leptons and quarks to the vector bosons. Both masses and couplings
are empirically known apart from the mass (and the couplings) of the top quark,
M » which has to be treated as a free parameter allowing for va]uesg’lo) of My
even larger than the Wt mass, me > Mw. Boson-loop corrections,on the other hand,
in general depend on the empirically completely unknown self-couplings of the
vector bosons and the unknown value of the mass of the Higgs scalar, m - While
being suppressed and small compared with the fermion-loop corrections as long
as my is small, i.e., for m, = MW’ boson-Toop corrections may become very large
for my >> 1 TeV, so large even that a perturbative treatment starts to become
unreliable. A value of m, >> 1 TeV corresponds to a strongly interacting sec-
torll’lz) within the SU(Z)Lx U(l)Y theory which a priori cannot be excluded at
present. Vector-boson-loop corrections are also most 1ikely to differ from the
conventionally calculated ones if, e.g., vector bosons are of composite nature
implying the existence of a spectrum of isoscalar and excited bosons which modi-
fy the loop corrections. One may conclude that boson-Toop corrections at present
are more model-dependent than the largely model-independent fermion-loop correc-
tions. There is thus every reason for performing a transparent calculation of
the dominant fermion-loop corrections by themselves. A thorough comparison of
the magnitude of the corrections thus obtained with the results of the cohp1ete

13-17)

one-loop calculations is essential for precisely establishing the accu-

racy which will most 1ikely be needed in order to isolate and directly test

* For reyiews on radiative corrections to the electroweak parameters see, e.g,,
ref. 8.



contributions due to the bosonic sector of the electroweak theory, which in fact
contains the "new" (empirically unknown) physics in contrast to the "old" phy-
sics of the interactions of the vector bosons with the Tleptons and quarks.

The fermion-loop corrections to the propagators are enhanced by large loga-
rithms, typically of the order of (a/m) - 1n(Mw/mu) = (o/m) + 6.6. Bosonic propa-
gator and vertex corrections in the SU(Z)L><U(1)Y theory are expected to be of
the order of o/m, as long as the Higgs mass is small, My = Mw. As long as boson-
loop corrections are disregarded, it is thus sufficient for a consistent caicu-
lation to treat the light fermions in the leading log approximation,taking into

account, however, the possibility of a very heavy top quark, m

2
t

¢ > MW’ which is

known to contribute an important termg) proportional to m; as well as a term

proportional to 1n(mt/MN).

Our treatment of the fermion -loop corrections to the W™ and vZ propagators
is a novel one , insofar as the Teading contributions are calculated by using
propagator methods rather than the familiar renormalization group methods.
Effects of a large mass of the top quark, me > MW’ can thus be easily incorpo-
rated. By diagonalizing the yZ propagator matrix for arbitrary values of g2,
the procedure of absorbing radiative propagator corrections in g%-dependent
{"running") coupling constants and masses is generalized from the case of the
propagator of a single particle to the present case of a two-by-two propagator
matrix. As a result we obtain a simple and intuitively transparent treatment
of the fermion Joop corrections to the propagators in terms of q*-dependent
coupling constants, W® and Z masses and q*-dependent widths. Among other things,
it is clarified why the Fermi coupling, Gu’ "does not run", i.e.,, is a "good"
high energy parameter, how the tree-level relations for, e.g., sinzew are affec-
ted by the presence of a very massive top quark and how the vector boson widths,
rw’zsdepend on q%»thus affecting the Z-line shape, etc,

As regards neutrino scattering, simple and closed formulae will be given with-

in our approximation to be applied easily when extracting sin?e,, from the experi-

W
mental data.

The paper is subdivided as follows; Section 2 contains the study of the fer-
mion-loop corrections to the W and vZ propagators, Details on the renormaliza-
tion and the novel treatment of the diagonalization of the yZ propagator matrix
are deferred to Appendices A and B, In Section 3 we will discuss the numerical

predictions for Mw and s1'n28w for a series of reasonable choices of MZ and m,
and compare these predictions with the corresponding results of a full one-loop

14,15)

calculation available in the literature {compare Table 1 and Fig. 2). In



Section 4 we will give our closed formulae for the radiative corrections to be
applied when extracting sinzew from neutrino-hadron and neutrino-electron scat-
tering experiments. A comparison of our results with the ones of a full one-
loop calculation is also given for this case (compare Table 2). Section 5 con-
tains our summarizing conclusions.



2. The Yector-Boson Propagators

The radiative corrections to the W* and YZ propagators for values of g2 in
the range of

Oilqzl,ﬁl"lﬁ?M% , (2.1)

where Mw and MZ denote the measured W* and Z masses, are mainiy due to fermion
loops. The relevant Feynman diagrams are shown in Fig., 1. Compared with the con-
tributions of the lepton and quark Toops,which are enhanced by logarithms of

the ratios of vector-boson to Tepton and quark masses, the vector-boson-loop
contributions are small for the values of |g?| indicated in (2.1). This suppres-
sion of the boson-loop corrections is true, provided the effective cut-off in
the relevant Feynman diagrams is of the order of MW' This latter condition is
readily satisfied in the SU(Z)L><U(1)Y theory for a mass of the Higgs scalar of
the order of Mw leading to boson-loop corrections of the order of a/m or at most
of the order of aw/n. The same situation occurs in effective electroweak theo-

18) and w-dominancelg’zo)

ries based on yW® mixing , provided the effective cut-
off of the theory is sufficiently small. We thus expect that also in this ap-
proach the diagrams in Fig. 1 aive all the relevant corrections to the W® and

YZ propagators within the q® range indicated in (2.1).

In calculating the lepton and quark loops of Fig. 1, all fermions lighter
than M E'Mw B MZ are treated as massless, retaining their leading contribution
of the form I1n{1g*1/M?) only. Threshold corrections due to the finite masses of
these particles are introduced only at the very end6). The unknown and possibly
very large mass of the top quark, m is treated as a free parameter. For
my >> M the dominant top quark contribution arises from tge quadratically di-
vergent part of the diagram in Fig. 1 and is proportional ) to m%. In addition
there is a term proportional to 1n(mt/M) from the lTocarithmically divergent

part of the diagram.

After renormalization (compare Appendix A for a brief summary), the trans-
verse part of the WE propagator multiplied by the strength of the coupling to
*
the external fermions in Fig. 1 is given by

: 2 1oy ()
o (M) (a7) = q*(1+1,(q?])) - M3 LY

(2.2)

* We only consider the transverse part of the wi-propagator. The Tongitudinal
rart is ignored, as in connection with our present discussion only interac-
tions with light external fermions are of importance.



where

q.4
:g - uv

R (2.3)

T
v
and the vacuum polarization function, Hﬂ(qz), fulfilils
Re HN(M;) =0 . (2.4)
Condition (2.4) is a consequence of renormalizing at the scale Mw. [t quarantees
that the zero of the real part of the inverse of the propagator coincides with

the physical W* mass, M, and thus the residue of the pole, Ow(Mﬁ) = gﬁ(Mﬁ)/&n
is identical to the w¥ fermion coupling at the scale Mw. Explicitly we have

(o ) A(qz)-%-i for g% >0 )
q?) = - b+ { , (2.5
L M A(q?) for g% <0
with ,

Aa?) = = In(g) (2.6)
and

. 1 i) 1 3 for m_ <
b =?E(%t):1n={9 e (2.7)
i vy for m. > MW

where

i +1  for v, u, etc.
Ty = { . (2.78)
-1 for e, d, etc.
The sum in (2.7) runs over all fermions which belong to doublets with both mem-
bers of the doublet 1ighter than Mw, i.e., n, which is identical to the number
of contributing doublets, is equal to n = 12 for m, < Mw, while n = 9 for

m > MN'

Using the expression (2.5) for II'N(q2 ) and multiplying the numerator and the
denominator in (2.2) by (1+Re I ( (g%))" ", the W propagator may be rewritten in
the form

: 2
%(I\ﬁ) A (9%) = z -2 21 iW(q ) 7 % > (2.8)
Uy SRR ICOERNCRIACE

(2.9)

as well as



2(q2) = M e () (2.10)
W) T T ey By Ay T M goey '
and, finally,
(M2)
%i‘fngyf'bi for g% >0
Ty(a®) ={ " (2.11)
0 for q%2 <0

The physical interpretation of (2.8) is simple. Fermion-loop corrections to the
propagator are taken into account by introducing a q*-dependent coupling, mass
and width of the vector boson, We note that the g® dependence ("running") of
uw(qz) and Mw(qz) is a logarithmic one, while I,
This Tlinear dependence on q2 is due to the q* factor multiplying
nw(qz) in (2.2). The width becomes quickly negligible for g2 < Mﬁ.

(q?) varies linearly * with g°

An important physical consequence can now immediately be obtained from (2.8).
Employing the propagator (2.8) to describe muon decay, (2.8) has to be evaluated
in the 1imit of q® ~ 0. Consequently, the g2 - 0 1imit of the propagator (2.8)
may be directly identified with the experimentally measured** Fermi coupling,
Gu' Noting in addition that according to (2.9) and (2.10) the ratio of
aw(qz)/ Mﬁ(qz) is independent of g*, we find that

/2’ _C‘w(o) HOW(M‘j)
?GH_W_T : (2.12)

The tree-level relationship between Gu’ the W coupling to fermions, ow(Mﬁ),mea—
sured at the physical W mass and the W mass itself remains intact, even when
fermion-loop corrections to the propagator are taken into account: the Fermi
coupling, Gu’ determined by muon decay at low energies (19?| << Mﬁ) meas ures
directly the ratio of the on-mass-shell coupling of the W to fermions, gw(Mﬁ),
and the physical W mass. It is exactly this important point which allows one
to predict the high-energy parameters gw(Mﬁ) and Mw from the Tow-energy para-
meter Gu' The argument which led to (2.12) substantiates the usual jargon that

Gu is a "good high energy parameter" since "it does not run".

Next, we focus on the yZ propagator which is calculated according to the dia-

* This conclusion is based on the definition of the width given by (2.8) and
is at variance with ref.21 .

** When extracting Gu from muon decay an{ultra-violet finite) QED correction
is taken into account.



grams of Fig. 1lb. As the fermion loops induce YZ mixing terms, the propagator
becomes a two-by-two propagator matrix which in general has off-diagonal ele-
ments. A repetition of the above procedure of absorbing Toop corrections in g%
dependent coupling constants and masses requires a diagonalization of this vZ
propagator matrix for arbitrary q?. Once the propagator matrix is brought into
diagonal form*, one may introduce g% dependent photon and Z-boson couplinas to
the fermions and a g®-dependent Z-boson mass as well as a g%-dependent width
in analogy to the case of the W treated above.

After renormalization at the scale M= My = M, (compare Appendix A) the trans-
verse part of the inverse propagator matrix of the yZ system takes the form
(compare (A29))

RIVACHES

= v [qz(li-HYZ(qz)) - Miz] . {(2.13)

This propagator is to be used in conjunction with the current doublet (compare
(A32))

o jim (2.14
3y, = ) , 2.14)
B g0y U -szoe) 5T

which defines the coupling constants at the scale M.

In (2.13), the vacuum polarization matrix, HYZ(qZ), is given by (compare
(A30) and (A31})

. o > ek
m(a?) = - 32?%1 In(- % . R 5 o eas)
Z bz - s, bQ bl-ksﬁ bQ-2sﬁ b,
EQ Ew vd gﬁ Eﬁ d

where the constants b, bz and bQ are related to the weak isospin, 121), and the
charges, Qi’ of the contributing leptons and quarks via

* In terms of the fields defining the propagator, its diagonalization corres-
ponds to a transition from the original renormalized photon and Z fields
(i.e., existence of yZ mixing terms for g* M%)to new "running" fields for

the photon and the Z-boson.



b, = 2
i
b, = & Q2 ) (2.16)

The sums run over all leptons and quarks with masses m, smaller than Mw which
are treated as massless at this stage. We thus have (bl,bg,bQ) = (24/8,24/8,24/3)
for my, < MW’ while (bl,bz,bQ) = 21/8,20/8,20/3) for m, > MN' The correction
factor d in (2.16) is given by

2 2
oy o
4= 1 ity 0 g (2.17)

For M 7 in {2.13) we have

, (o 0 )
W (2.18)
Yz O

with (compare (A37))

"y
:C—ﬁ for I‘ﬂt<Mw
M% =
2 3GN(M2) m? (M%) mZ
MN t . A —5 t,-1
= (1+ ¥ (1+2c3) In or) for m_ >
e o~ W 20w TN £ > My
(2.19)

Here as well as in the ensuing considerations we used the asymptotic formulae
derived for me >> Mw in the whole range of m, > Mw. Due to

2
Re HyZ(MZ)

the zero of the real part of the inverse of the Z propagator correctly coin-

=0 {2.20)

cides with the empirical mass,,Mi, of the Z boson.

In (2.14) we have introduced the electromagnetic coupling e{M?) at the scale

M2 = Mﬁ = M% as well as the 7 coupling to leptons and quarks, g,(M*), and the

weak angle, Eﬁ = E;(Mz) at the scale M*. The electromagnetic fine-structure con-

stant measured at the scale M® is thus given by

a(M*) :9%? ; (2.21)

and according to (A34) we have

éﬁ%ggy for m < MN
Slf] = S-;J(Mz) :{ Q(Mz) X Gw(M 2) m% 3 (2'22)

EQTMTT ( +-—T2E—f1n Wﬁj for m > Mw



while the Z coupling to leptons and quarks is given by

ag) _ (M)

= for m,_ <«
o) sﬁ cﬁ cﬁ t MW
% ) 2
(MZ) _ GW(M )
qu(Mz) m%) - ~ ow(MZ) m%) for m, > Mw

R (1+2€§) n MNE

g? Eﬁ(l+ _— 1n W
WoW A M W

(2.23)
According to (2.19), (2.22) and (2.23), as long as m, < Mw, in our approximation
the radiative corrections induced by lepton and quark Toops do not affect the
tree -level relations for M%, Eﬁ and a, defined at the scale M. For m. > M, the
tree-level relation for M% receives a correction which depends quadratically and
Togarithmically on my, while Eﬁ and oz(Mz) are corrected by Togarithmic terms
only.

The deviation from the tree-level relation between Mw and M2 in (2.19) for
m > Mw may be expressed in terms of the parameter p defined by

M‘Z . 1 for mt < Mw
— A B
o= ’-é-z—M'z‘ = { 3 (MZ) m2 OW(MZ) m? s
Wz 1'+_S¥6ﬁfﬂﬁ_z4'(l+'zeﬂ) e ln-mg for me > Mw
W W
(2.24)

A large mass of the top quark thus implies p > 1. Using

=p-1 (2.25)
one may relate §ﬁ introduced by (2.14) (as the coefficient of the contribution
of jem to the neutral current) to the frequently used weak angle sﬁ defined by

the ratio of the W* and Z masses according to3)

",
Sﬁ =1 - M% . (2.26)

2 _ @2 2 e

Sw - Sw Cw 60 s
2
W

i =TF (2.27)
and thus

¢k = c2 (1 - &) (2.28)
For m, < My we have p = 1, sﬁ in this case coincides with 55, and all tree-level
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relations remain intact upon introducing fermion-Toop corrections. For m. > Mw,
all tree-level relations between (on-shell) coupling constants and masses re-
ceive corrections. Using (2.27) we may express & in (2.24) within our approxi-
mation in terms of cﬁ, rather than Eﬁ by

B 3oy, (M*) mi , oy (M*) mg
p=1+ '_Tgﬁ?Wﬁ——'+ (l-FZCw) ?Hﬁ_Ea In Ma- \ (2.29)

a formula which will be used in the numerical evaluation of Section 3.

For g* # M% not only the imaginary part but also the real part of the inverse

propagator in (2.13) has non-vanishing off-diagonal elements. Using the method
of Appendix B the real part of the propagator matrix is now cast into diagonal
form for any value of q%. The effect of the fermion-loop corrections is thus re-
duced to the introduction of g2 -dependent coupling constants and masses to be
used in conjunction with a diagonal yZ propagator.

The diagonalization is achieyed with the help of the transformation matrix D
given by (B12) with appropriately defined {q?-dependent) parameters c;, c; and
A. These parameters are identified by comparing the real part of (14—HYz(q2)) in
(2.13) with the matrix K in (B2). The matrix element of the yZ propagator becomes

1

q2 °
o YLy o s+ ot At
Jua) =, D O , Dj™ . (2.30)

G- Wg(q2) - 1 W (Q7) T,(a7)

where the transformed current is given by

e 2 jem
03, = o Cs) wapozy sem ‘ (2.31)
97(a%) 13,77 = su(a®) 37

Using (B14) one explicitly finds the expressions for the g%-dependent coupling
constants in (2.31}. First of all,

ar 2 qz B (M2
a(g?) = 2 (4n) - l—c_(M(:) b()) AlgZ) °

(2.32)

where A(q?) is given by (2.6). It is worth noting that formula (2.32) for the
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"running" of a(q?) coincides with the well-known result obtained if one consi-
ders loop corrections to the photon propagator by itseif. The q? dependence of
a{g?) is thus unaffected by the presence of the yZ mixing terms. Again using
(B1l4) one finds

Si(e?) = Zht GH0%) - a0 b A7) -

= D) 11+ o, (q?) ((b)-by) A(G2)+ nﬁ)] (2.33)
a, (02 %y 1772 I7n ' W2 ]
and
.. 97(a%)
() = —g— =
$2(q?) c2(q? (M2) S2(M?) m o
s o e M L T

(2.34)
These formulae hold for m, > MW' For m, < Mw, the terms proportional to 1n m%
have to be dropped. Moreover, for m, < Mw we have by = b, = b, according to (2.7)
and {2.16), and thus all the g®-dependent coupling constants, a(q?), qw(qz),
az(qz) and Eﬁ(qz) fulfil the same relations which are valid for the g2-indepen-
dent quantities in the tree approximation, We also note that for g2 = M2
A(M?) = 0, which implies that (2.33) and (2.34) correctly coincide with (2.22)

and (2.23).

We return to (2.30) and also give the explicit expressions for M%(qz) and
Pz(qz). According to {B7) and (B14), the Z mass and the Z.coupling are affected
in the same manner when applying the transformation D which diagonalizes the real
part of the yZ propagator. Consequently, we haye

Y an o 9p(a%)
Mz(q ) = MZ GETMET ) (2.35)

or, equivalently,

qz(qz) _ Gz(Mz)

M§Ta§7 = "_ﬂ%"‘ , (2.36)
i.e., the ratio of a,(q?)/ M%(qz) is a constant independent of q2,in complete
analogy to the constancy of the ratio qw(qz)/ Mﬁ(qz) implied by (2.9) and {2.10)
(compare also (2.12)). Noting that the left-hand side of (2.36) evaluated for
q® -» 0 is identical to the normalization of the neutral current neutrino inter-
actions, one concludes that these reactions directly determine the ratio of the
on-mass-shell coupling and the mass of the Z. An important consequence now follows
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immediately by combining (2.36) with (A38) and (2.12) to yield

ay(a”)/M5(a%)  ay(q” =0)/Mz(q®=0)
© = Q@7a] ~ &, (a7~ 0)/Mg(a7=0)

1 for m, < Mw
- { SGN(MZ) m?. (237)
t g —%— for m > Mw
T Mw t
and
(q%)
;%rafy -0 6, Zo, (2.38)

i.e., a large mass of the top quark leads to a deviation of the ratio p of the
neutral to charged current normalizations from the value of p = 1 valid at tree-
level and for the case of m, < Mw. This is a consequence of the fact that a
large mass splitting between the t and b quarks, m, > Mw >> My in this respect
acts in the same manner as, e.g., the introduction of additional Higgs scalars
with weak isospin I + 1/2 {compare (A4) and (A20)).

Finally from (2.15) one finds for Fz(qz) in {2.30) in complete analogy to
rh(qz) in (2.11),
2 0y (M)
%r‘_zigzL.(bl-ksw 0 25w b,) for g% >0
r,(9%) = { . , (2.39)
0 for g% <0
where (2.23) was used and only terms of order a are kept. The factor g? in (2.39)

may influence the Z-boson line shape to be measured at LEP.

In view of the numerical evaluation of the radiative corrections in Section 3,
we now introduce the threshoid effects due to the non-vanishing lepton and quark
masses in the formulae (2.32) and (2.33) for a(g®) and §ﬁ(q2). We note that a
fermion of mass m. yields a contribution to HYZ(qz) in (2.15) which is propor-
tional to In(1g®1/M?) for m2 << g% << M?, and a contribution proportional to
1n(m$/M2) for 19°| << m << M?. pccordingly, the finite ]epton and quark masses

are taken into account in o(g?) and sw(q ) by substituting® az) (for |q* l<M?)

m2

SRR [1n(‘q1') o(19%1 - m?) + In(gr) O(M* - md)]
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by A?) = -2 2 0 w8 TIn(ILL) o 1a21 ~m2) + In(ul) o(M - m2)]
2 MO = B O Tz QLT m ) inlyg R
(2.40)

where the sum is to be extended over all leptons and quarks. Thus, the top guark
does not contribute for m, > M= Mw >V|q§|. Likewise we write for the p and p
parameters in (2.29) and (2.37)

VZ G 3, Mﬁ m?

I R—_y "+ ez (1+2¢2) In W%) o(m M) (2.41)
and
3
o=1+ Tég; Gu m% o(m - M) (2.42)

where (2.12)} has been used.

We end this Section with a brief remark on the renormalization group differ-
ential equations for the g®-dependent coupling constants qw(qz) and a{q®). Even
though we have entirely based our treatment on directly analysing the fermion~-
Toop contributions to the propagators, renormalization group differential equa-
tions are (obviously) valid for the q®-dependent coupling constants, On the basis
of (2.9) and (2.6) we conclude

> & 1 _ 1,
where bi is given by (2.7}, and
z 3 1 _ 1

The equation (2.43) for aw(qz) is at variance with the corresponding equation
given in Ref. 6. We also note that renormalization group arguments by themselves
do not provide the g% factor in the expressions for rw(qz) and Fz(qz) given in
(2.11) and (2.39). In fact, the renormalization group arguments of Refs. 6 and
21 provide a q2 dependence for a definition of the W and Z widths which is un-
related to the imaginary part of the inverse propagator and thus has nothing to
do with the Z 1ine shape to be observed in e'e” experiments.
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3. Numerical Predictions

As the 7 mass, MZ’ will be precisely measured at LEP, it has become customary
to use Mz in conjunction with the Fermi constant, Gu, and the electromagnetic
fine structure constant, a, to predict the other electroweak parameters, in par-
ticular the W mass, Mw, and the ratio of Mw and MZ which defines the convention-
ally used parameter

Sﬁ =1 - I"ﬁ/M% ) (3.1)

The relevant formulae are easily obtained by collecting the different results of
Section 2.

Using (2.12) and (2.22) which relate Gu to the on-mass-shell coupling constant
aw(Mz) = gﬁ/dn,and cw(Mz) to a(M?) and Eﬁ(Mz), where Eﬁ(MZ) is defined by (2.14),
one obtains

2
T

2

M2 ON(Mz) m
LT ?ﬁ%%fjlﬂﬁ (1 + = In ﬂ%) (for my > M)

We now express Eﬁ according to (2.28) in terms of sﬁ and the deviation, &0, of

(3.2)

the p parameter (2.41) from p = 1 and introduce the ratio af0)/a(M?*) given by
(2.32). Relation (3.2) then becomes

0 1
i = e s e
1

(3.3)

where the conventional notation 1 - Ar has been introduced for the factor by which
the formula for Mﬁ differs from the tree-level relation. The correction 1-~Ar in
our approximation of keeping the dominant fermion contributions only is given by

a{0)
. ET) o . 2 for m, < Mw |
‘ 3(0) +§%m.2£ [_ZL (3-4sﬁ) %5 n %l}] for m, > M,
3.4
where from (2.32) and (2.40) we obtain .
aq((ﬁ?z—)y - 1+ a{0) by A(g>=0)
=1-°—L(%)?Q1? 1n%1;9(M2-m1?)<.1 . | (3.5)

Finally, we may combine (3.1) with (3.3) to yield
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2 _ 0 1
Mz = (3é'éun) 57 cﬁ(17-Ar) : (3.6)

This equation may now be used in conjunction with {3.4) and (3.5) to predict sﬁ

in terms of Gu’ a{0) and M%, keeping the presently unknown mass of the top quark,
m., as a free parameter. The W mass is obtained subsequently from (3.1},

The radiative corrections given by (3.4) have two different sources. There is
first of all the contribution of the light leptons and quarks which, according to
(3.5), leads to a(0)/a(M?*) < 1. Secondly, there is the additional contribution of
the heavy top quark, which tends to increase 1-Ar towards 1-aAr = 1. It contains
the well-known dominant termg) proportional to‘m% which may be traced back to the
SU(2) breaking effect induced by m > Mw >> m in the masses of the charged and
neutral unmixed vector bosons in (A4} and (A20). We emphasize the additional
lTogarithmic correction in (3.4) which is due to the corrections of the tree-level
relations in (2.22) and (2.24) and becomes important for m, 2 130 GeV.

-2

For the numerical evaluation we put Gu = 1,16634 - 107° GeV™? and
a ' = 137.035963 and choose
m, =My = 0.1 GeV R
m, = 0.3 GeV
m. = 1.5 GeV
my = 4.5 GeV (3.7)
for the quark masses to be used in (3.5)., These values are consistent22’23) with

the various thresholds in e+e‘ - hadrons and coincide with the masses chosen in
the recent analysis of Ref. 24, From (3.5) one obtains

a(M2)"t = 128 (3.8)

for M = MZ and me > MN'

Qur results for Mw and sﬁ for various choices of m and MZ are presented in

Table 1 and compared with the numerical results of a complete one-loop calcula-
tion by Lynn and Stuartla) for the particular value of the Higgs boson mass of

m, = 100 GeV. As seen in Table 1, the agreement of the two predictions is very
good. The difference between the two calculations varies between 10 MeV and 90 MeV
in the prediction of MW’ corresponding to a difference 1in sﬁ between 0.0003 and

0.0019. We have also compared our results with the results of a complete one~loop

15)

calculation by Jegerlehner and find that our values of MN never differ from
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his results for M, ( for m, = 100 GeV) by more than 110 MeV. Jegerlehner also
gives the expected errors in his predictions due to uncertainties 1in the ex-
perimental data for e'e” - hadrons used as input and an estimate of the errors
induced by the neglect of higher-order corrections., We find that our results
for Mw agree with his results within twice his estimated error.

As expected, the discrepancy between our dominant fermion-loop calculation
and the full one-Toop calculation becomes larger when my is increased from
m, = 100 GeV to m, = 1 TeV. The increase of Ar with increasing m, implies an
increase of s& according to (3.6) and a corresponding decrease of Tw.lThe dis-

crepancy between our results and the complete one-Toop calculation 5} reaches

about 250 MeV for a choice of the Higgs mass of m, = 1 TeV.

In Fig., 2 we compare for Mz = 93 GeY our results for Ar as a function of m
with the resu]h@skﬂ:acomp1ete one-loop cafculation for various choices of my -
For m, = 100 GeV the discrepancy between our results and the full one-loop cal-
culation is always less than 7%. For,e.g., m = 45 GeV we obtain

Ar = 0.0676 (3.9)
which deviates by 5% from the result

Ar = 0.0713 £0.0013 (3.10)

15,16)

of a complete one-loop calculation for m, = 100 GeV.

Relations (3.4) and (3.6) may also be used to deriye an upper limit on the

top quark ?ass, My by inserting the Z mass obtained in the UAl and UAZ experi-
26,17
ments

M, = (91.9 +1.8) GeV (3.11)
and the average value of16’24)
sZ = 0.233+0.003+0.005 (3.12)

W
from deep inelastic neutrino scattering, Due to the proximity of our results for
Ar and sﬁ to the results of the full one-Toop calculation,our result of

m < 180 GeV (3.13)

agrees with the result obtainedl7) by Langacker, Marciano and Siriin.

The exceedingly small discrepancy of Table 1 between our calculation based on
the dominant fermion loops and the complete one-loop calculation is not an unex-
pected one. Corrections to our calculation are first of all due to the neglected
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contributions of the light fermions of order o/m, or at most of order
qw/n =~ 4g/m, not enhanced by large logarithms. Secondly, there are loop contri-
butions involving bosons. For a Higgs boson mass of m, = Mw Q'MZ = 100 GeV which
acts as an effective cut-off for the boson loops, we expect also these contribu-
tions to be of the order o/w. We thus expect a discrepancy between our results
and the complete one-loop calculations with m = 100 GeV of the order of
AM; o N
AMw = 2Mi—= = Mw = 95 MeV (3.14)

and

2

A
ASﬁ:'A—pTwz—=”2Cﬁ—*—Nl'\ir;
| 7 "W
These estimates agree with the largest discrepancies found in the direct compa-
rison of Table 1. The results of Table 1 in fact support the hypothesis that the

neglected contributions are of the order of o/m rather than of the order of aw/n.

-0.0019 (3.15)

We end this Section with a few comments on the significance of the results on
the radiative corrections in the dominant fermion-Tloop approximation. While the
validity of the SU(Z)LxU(l)Y spontaneously broken electroweak theory has been
implicitly assumed, it must be emphasized that the fermion-loop corrections ac~
tually only depend on the structure and magnitude of the couplings of the vector
bosons to the leptons and quarks, It is true that these couplings arise as a conse-
quence of the spontaneously broken SU(Z)LxU(l)Y gauge theory, but an equally
credible derivation of the interactions of the vector bosons with the leptons and
quarks 1is obtainedlg’zo) within the framework of a globally SU(2)NI weak isospin
invariant massive vector boson theory broken by the photon yia the W-dominance
substitution rule wﬁ - wi + A Au with* A= e/gw. In other words, the fermion-loop
corrections are evidently completely independent of the Higgs sector of the theory
or, more generally, the mass generating mechanism, and they are equally indepen-
dent of the vector-boson self-interactions implied by the non-Abelian gauge prin-

ciple.

Corrections of or deviations from the predictions of the radiative corrections
in the dominant fermion-loop approximation strongly depend on the mass of the
Higgs boson. Additional corrections arise, e.g,, from the possible existence of

* This condition is a necessary consequence of the substitutionrule Wslw wa + A Au'
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supersymmetric particles and/or the existence of additional vector bosons which
are expected to be present, e.g., within composite models and within superstring
motivated extended gauge theories. By comparing sufficiently accurate experimen-
tal results for Mw and/or sﬁ with the predictions of the dominant fermion-1loop
calculations one will be able, at least in principle, to establish the existence
of additional radiative effects or put a bound on their magnitude.

As for the accuracy in the measurements of Mw and sﬁ which will be desirable,
one may be guided by the discrepancies between the dominant fermion-loop and the
full one-1loop ca]cu]ations shown in Tab]e 1 and Fig. 2, keeping in mind that an
increase of my from m, = = 100 GeV to m, = = 1 TeV will increase the discrepancy in
My () from am, = = 50 MeV (-0.001) to aM = 250 MeV (-0.005). From Table 1 and

Fig. 2 one concludes that within the unmodified SU( ) xU(l) theory, even the

L
most precise measuremég%zg)ofs us1nopolar1zede beams at LEP and aiming at an

accuracy of As,, = 0.0004 (corre?pond1ng to AMN = 20 MeV) might barely be able
to establish a discrepancy from the dominant fermion-Toop results. We hasten to
add that this conclusion only holds for m = 100 GeV, and if none of the above
mentioned "new physics" phenomena are realized in nature., A heavy Higgs boson
and other "new physics" phenomena may in fact lead to significant deviations in
the experimental results from the calculation in the dominant fermion-loop

approximation shown in Table 1 and Fig, 2
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4. Radiative Corrections to Neutrino Scattering

In this Section we consider the radiative correctiors* to be applied when
extracting the weak angle, sﬁ, from measurements of neutrino hadron and neutri-
no lepton scattering. We will show that the dominant fermion-loop correction of
Section 2 is sufficient to calculate the radiative corrections to sﬁ with an
accuracy of the order of o/m = 0.002, provided the well-known QED correction to
charged current interactions of neutrinos with quarks and the neutrino charge
radius correction in neutral current interactions are taken inte account in
addition to the fermion-loop corrections to the propagator.

The basic effective Hamiltonian for calculating neutrino scattering processes
with the inclusion of the dominant radiative corrections is given by

5
- A —
H =/—L§ [0, Y'(1-vs5) W& ¥;(1-¥s) v+ h.c.

#1410 (1) (5 VM- vs) wT vy (1-vs) uthic)

s 205 YN(1-vs) v (35 - 5502 35 (4.1)

This Hamiltonian corresponds to the diagrams in Fig. 3. It contains the charged
current neutrino lepton interaction, the charged current interaction of neutri-
nos with u and d quarks and the neutral current interaction with leptons and
quarks. The normalization of the charged current neutrino lepton interaction
is an immediate consequence of relation (2.12). The normalization factor is iden-
tical to Gu even when fermion-loop corrections to the propagator are taken81nto
account. The charged current interaction of neutrinos with quarks contains ) the
additional well-known QED correction originating from the diagrams of Fig. 3c,
f=1+9_(2"::_)1n (g) : (4.2)
where V¥ = max{19?1, ma) with q* denoting the neutrino momentum transfer in the
scattering process. Finally, the normalization of the neutral current interac-
tion in (4.1) is due to (2.38) and contains the correction factor p given by

* Compare refs. 29 and 30 for calculations of the radiatiye corrections to be
applied in the case of neutrino hadron scattering and ref. 23 for the case of
v, (Gﬁ) electron scattering. The dependence of the radiative corrections on

My has recently been studied in refs, 31 to 33,
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(2.42). For m_ > M, we have p > 1. The effective weak angle, §ﬁ(q2), in (4.1)
is given by

2 2
§2(q?) = 53(a%) - F ) m Iy (4.3)

The first term, Eﬁ(qz), is due to the effect of fermion-loop corrections to the

Z boson propagator. According to (2.33) and (2.28), §ﬁ(q2) is related to
sﬁ =1 - Mﬁ/M% via

Saa?) = AR (s + (1-57) 6 - al?) b AeT)) (4.4)

where ,according to (2.29) and (2.41),the parameter p differs from o by an addi-
tional correction term which depends logarithmically on the top quark mass, My s
and b, A(g®) is given by (2.40). From the second equality in {2.33) we know that
Eﬁ(qz) = a{q?)/ qw(qz) for mg <M, i.e., §§(q2) is in general less strongly
dependent on g than a(q?) or cw(qz). The second term in (4.,3) is of completely
different origin from the first one. It is due to the neutrino charge radius
contribution {shown in Fig. 3b) which is due to photon exchange and charged cur-
rent weak interactions and is thus completely unrelated to the neutral current
interactions induced by Z boson exchange. The possibility of this contribution
which is invariant by ditself wunder ocauge transformations in the
leading log approximation was pointed 0ut34) as early as 1963 by Bernstein and
Lee. We finally note that our expression (4.1) for the effectiye Hamiltonian is
very similar to the one given6) by Antonelli and Majani. It is different insofar
a5 we have included the possibility of a very massive top quark and also
discriminate clearly between gﬁ(qz) and Eﬁ(qz),

The weak angle in neutrino scattering is deduced from the measurements of
the ratio of the neutral to charged current cross-sections by neutrinos

o{v N>y X)
15 H

R\) - cji\)uQ—au"R)' (4.5)

or antineutrinos

o(qu—>vuX)

RS = 5% N=wF Xy (4.6)
1
and from the Paschos-Wolfenstein quantities35)
g(v. N>v X) £ g(v N-v X)
Ri = H |3 H 123 , (4_7)

olv, N>~ * Olv N—
1 U H M
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where N denotes an isoscalar target. In terms of the empirically determined
v/v ratio
o(quau"X)
- N YT ) (4.8)
1w
which is introduced in order to minimize theoretical uncertainties due to strong
interactions’C)the measured ratios R,» Ry and R* determine the weak angle gﬁ(qz)

in (4.1) via

R= ()7 (B(r) S3(a?) - §2(a%) +3) (4.9)
whereBO)
5
5 (1+r) R,
5
B(ry = g (IrUr) Nl R (4.10)
. :
0 R

In arriving at (4.9) one assumes that the structure function of an isoscalar
nucleus consists of u, d and u and d quarks only and one neglects the Cabibbo
angle.

From R one deduces the effective weak angle Qﬁ(qz) for the value of g2 at

which v-scattering is measured, and one finally obtains sﬁ by using (4.3) and
(4.4). This radiatively corrected value differs from sé, the value of the weak
angle obtained by using the Born approximation when evaluating the experimen-
tal data, i.e.,

R=B(r) s} -3 +5 (4.11)
by the amount
(6sﬁ)RC = sﬁ - sé . (4.12)

which is the radiative correction we wish to determine from the effective Hamil-
tonian (4.1},
8)

From (4.9) and (4.11) we find in lowest order in a

L2742y - <2 - 2{f-p) R
sw(q ) g = T?E_§§T_TT . {4.13)

Substituting (4.3) and (4.4) in (4,13} and noting that in the expression for
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sﬁ-—sé obtained upon substitution, sé may be replaced by sﬁ in first order in

a, we arrive at the simple formula

(852)gc = alMF) [gm 10 (o) + b2 AG) + (gramy = grey) S5
2B(r) sﬁ-25ﬁ+1 B
+ T 2B(FT 7 (p-f)-(l—sﬁ)(p-l) . (4.14)

For typical SPS (CERN) or FNAL neutrino experiments we have <1g?|> = 20 GeV?,
implying that b, A(q?) from (2.40) becomes
1 |q2118 m2 m2
b, A(1g*} 220 GeV?) = 7% [Tn 0———M7U——9+-21n (ng o(M-m )] , (4.15)
while a(q?) and a(M?) are deduced from (2,32) and (2.40) and p, p and f are
given by (2.41), (2.42) and (4.2).

When evaluating (4.14) we use the CDHS resu1t36) of r = 0.39 and the CHARM
resu1t37) of r = 0.456 and calculate the radiative correction, (ésﬁ)RC, for the
CDHS and CHARM experiments. Using as input MZ = 91,8 GeV and m, = 45 GeY yields
s? = 0.2295 from {3.6). Inserting this value and M

My in (4.14) one obtains

W
2 ——
(657 )pe = -0.0098 (CDHS)
(852)pc = -0-0101 (CHARM) (4.16)

These resuits are in excellent agreement with the results quoted by the experi-
mental groups on the basis of a complete one-loop calculation for the same value
of my = 45 GeV and m, = 100 GeV,

(852)ge = -0.011%0.002 (CDHS)
(857)pe = -0.0092 £0.002 (CHARM) . (4.17)

To proceed further we give in Table 2 the radiative corrections, (6Sﬁ)RC as a
function of my for experiments measuring Rv, R+ and R™. We again use MZ==91.86eV
as input.and vary m, - The corresponding values of.sﬁ are given in Table 2, as
well as the results for (6s§)RC. The results for the case of Rv are compared with
the results of the full one-loop calculations of Bardin and DokuchaevaBl) which
are base on m, = 100 GeV. We see that the discrepancy between our results for
(&sﬁ)RC in experiments measuring Rv and those of Ref. 29 1s always less than
0.002. A similar conclusion is also reached when we compare our results with

those of Stuart32).
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We also note that the radiative correction to R according to Tabte 2 is in-

sensitive to the value of m Our results on the dependence of (6Sﬁ)RC on

£
my in Table 2 are essentially in agreement within an error of the order of

o/T = 0.002 with a recent study33) by Sirlin using a complete one-Toop calcula-
tion,

We now turn to the radiative corrections to be applied when extracting sﬁ
from measurements of the vug/ﬁﬁg ratio., In the Born approximation we now have

Lo 2
o(v“g-+vug) ) 165B 1258-+3

R = =
e o o b 2
o(vug-»vug) IBSB 4sB-bl

) (4.18)

and the radiative corrections from the Hamiltonian (4.1) are obtained
as

2
(88 )pc = o) Tg I (quzp) + b2 A(Q?) +

1 1 -
+ (e = ey Sad - (LS 6-1) (4.19)
Substituting b, A(q?) from (2.40) and evaluating (4.19) for <|q®|> = (0.3 GeV)?
for various values of m, as shown in Table 2. The re-

33)

we again obtain (ésﬁ)RC
sults of Table 2 are again in agreement with the full one~Toop calculation

by Sirlin.

In summary, the simple and compact formulae (4.14) and (4.19) based on the
notion of "running coupling constants" and the dominant fermion-loop approxima-
tion, supplemented by the charged current QED and the neutrino charge radius
correction, yield the radiative corrections to be applied to sé to an excellent
approximation. Neediess to say, the significance of neutrino scatfering ex-
periments as a test of the SU(Z)LxU(l)Y theory lies in establishing a consis-
tency (or inconsistency) of the radiatively corrected values of sﬁ with the re-
sults for s2 calculated from Gu’ a. and MZ and the results calculated from the

W
ratio of'Mw and MZ‘
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5. Summarizing Conclusion: The Strateqy for Future Precision Tests of the

Electroweak Theory

The spirit of the present investigation is best characterized by quoting

Feynman38)

: "In any event, it is always a good idea to try to see how much or
how 1ittle of our theoretical knowledge actually goes into the analysis of
those situations which have been experimentally checked" - or will be experi-

mentally checked in the future, as we may add within the present context.

The analysis of the present paper shows how strongly fermion-loop correc-
tions to the propagators dominate the radiative corrections to the electroweak
parameters. While the dominating role of the fermion loops has been gqualitatively
known for a long time, a thorough quantitative analysis including the case
of a very massive top quark, m > Mw, and leading to comparative Tables and
Figures has, to the best of our knowledge, not been carried qut as yet. For
m, = 100 GeV (compare Table 1), the discrepancy in the prediction of Mw from
Q. Gu and MZ between the present calculation and the complete one-loop results
ranges from a few times 10 MeV to 100 MeV, depending on the value of m, . This
is in agreement with the error in the calculation which is estimated to be of
the order of (o/2m) M, = 100 MeV or, equivalently, Asﬁ = 0.002. For mH??l TeV,
the discrepancy between the dominant fermion-loop approximation and the com-
plete one-loop results may increase to about 250 MeV, while for M, >> 1 TeV the
perturbative boson-loop calculations become unreliable., These figures set the
scale for the accuracy needed if future measurements are to test the theory
beyond the dominant fermion-loop approximation.

Apart from providing an excellent approximation to the full one-Toop calcula-
tion, the dominant fermion- loop approximation leads to an exceedingly simple
and intuitively satisfactory picture of the radiative corrections in terms of
q? -dependent ("running") coupling constants and vector boson masses. Two cases,
me < MN and me > Mw have to be discriminated. For my, < MN the radiative effects
may be summarized by noting that the Fermi coupling, Gu’ is independent of g?
("does not run") and all tree-level relations between masses and couplings remain
intact for the g% dependent quantities. Care must be taken when deducing the
weak angle, sﬁ, from neutrino scattering, where additional photon exchange cor-
rections have to be taken into account. If sﬁ = 1—-Mﬁ/M% is used in the mass
formulae, the radiative correction is exclusively determined by the ratio of
a(0)/afM?*) < 1, which is unequal to 1due to the q” dependence of a(q?). For my>M,
an additional and possibly Targe mass scale, My 5 enters the calculation and
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Teads to important additional terms in the various relations for the g% depend-
ent quantities. In particular, the deviation of the o parameter from o = 1
induces additional corrections which are quadratic and logarithmic in m, and
tend to decrease the quantity Ar determining the radiative corrections to the

vector boson masses from Ar = 0.07 to Ar = 0, if the extreme value of mt??ZOOGeV

is chosen.

The main conclusion of the present paper, a strategy for future precision
tests of the electroweak theory, now follows immediately. Discriminating clear-
ly the radiative effects induced by the empirically tested vector boson fermion
interactions from the "new physics" of the vector boson self-interactions and
possibly other new phenomena, e.g., the effects of a strongly interacting Higgs
sector, of compositeness, etc., it seems highly suggestive in the analysis of
future precision data to start from a comparison of these data with the predic-
tions of the dominant fermion-loop approximation. Both disagreement of the data
with these predictions or agreement within errors will stronaly constrain the
bosonic sector of the theory as well as other new phenomena (whereby m, is
assumed to be known), and it might teach us something about the physics at the
energy scale of 1 or 2 TeV. In fact, it seems to us that the proposed procedure
for analysing future precision data on Mw, M7 and sﬁ gives us the only chance
to see, to isolate and to test directly the radiative effects due to the bosonic
sector, i.e., due to that part of the theory which is uniquely related to the
celebrated renormalizability propertieng) of the spontanecusly broken electro-

weak gauge theory4).
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Appendix A: The Renormalization of the W* and yZ Propagators

In this Appendix we will give a brief derivation of the expressions (2.2)

and (2.14) for the renormalized propagators of the W¥ and the yZ system which
include the vacuum polarization effects due to the lepton and quark Toops shown
in Figs. la,b. We will include three families of leptons and quarks. The gene-
ralization to more than three families is a simple task. All leptons and quarks
with the exception of the possibly very massive top quark are treated as mass-
less. As for the mass of the top quark, wewill explicitly discriminate between the two
cases of my < Mw (the "massless" case) and my > Mw (the very massive case).

The renormalization of the W propagator is straightforward. In lowest order
of perturbation theory the transverse part of the W* propagator is given by

Ly WA
ST =T @ (A1)
where
a4
= B I
v guw oz (A2)

Introducing the modification due to lepton and quark loops (Fig. la) one obtains

ST =T ez ) - (A3)
where
M(U)2 for m, <M ,
‘M’(O)Z ~ { W t W
= (A4)
! ()2, 2 4(0) ¢ v
Mw me b or my >N,

In (A3) we have kept the notation of (Al) for the propagator. The index o now
denotes unrenormalized quantities. The contribution of a very massive top quark,
my > Mw’ in (A4) 1s due to the quadratically divergent part of the quark loop
and is given by
°)
3o, 2
2 (‘3) _ 2 W A 1
me t, 0= m Hjﬁ{——(1n ﬁ%‘+ =) (A5)
Keeping the leading Togarithms for the light Teptons and quarks, the vacuum
polarization function in (A3) becomes
(o)
%y :
i) = - bt (- f) (46)

and the (ultra-viplet-divergent) renormalization constant, Z&l, is found to be
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% A?
By -7 1n-Mz for m < Mw
Ly =1 o) 2 : (A7)
M
—3——-(1-1n Wr' E—]n for  m, > M,
The constant b] is defined by (2.7) and is given by
n_ 12
=3 for m <M
T T t W
bt = { , (A8)
-% for m, > MN

In (A6) and (A?) the unrenormalized coupling of the W to the leptons and guarks
is denoted by QN = g&o)/4n and the ultra-violet cut-off by A. The sum of Zﬁl
and Hw (A3) 1s independent of the renormalization scale, M, which is

to be 1dent1f1ed with the empirically observed mass of the w*, i.e.,

M= Mw . (A9)

Multiplying the propagator (A3) by the coupling, q&ﬂ), to the outgoing lep-
tons and quarks in Fig. la and introducing the renormalized W¥ mass,

Z, Mb(l")2 for m, <M,

MZ = { (A10)
z, (0% wm tl0)y g M
W My me t 7)o forome > M

as well as the renormalized coupling constant at the mass scale M = Mw,

%M ()

U (A1)
(A3) may be rewritten in the form of (2.2) in the main text, i.e.,
2
N (0) _ OW(MW) _ 2 W
8y, o = Ty grrram remE < () (40, (A12)
Here, (AN)UM denotes the renormalized propagator,
W -1, W
(a%), = 0 (e) s (A13)
or, equivalently (compare with the vZ propagator renormalization, {A29))
W,- - W -
(8%, = Ty a) VT, (Al3a)
and nw ) denotes the renormalized vacuum polarization

n(e%) =z, W le?) = - A lbi (-3 (A1)
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The choice (A9) of the renormalization scale assures that

Re HW(M;) =0 ., (A15)
and, consequently the zero of the real part of the inverse propagator in (Al2)

coincides with the empirically observed mass of the W boson.

We turn to the renormalization of the yZ propagator. Its structure is comple-
tely analogous to (A3),

= Tw(q"'(l’lmf(%)(qz)) - Mﬁ%)z , (A16)

but in the present case, Z'l, Hg%)(qz) and M£§)2 are two-by-two matrices given

by

XL
1(A°)u»

(o)

-1 W -1 -1
/Zv RORE
I - " . (A17)
S&O) 1 5&0)2 1 1
-1 - - 1 -1
cw"T (Z5-221) ;,,(JT)_Z (20" -2273) + a(f)? a
_<(0)2
b ’ bg Sw bQ \
0 RONO!
(o), > Q(U) -q2 W W \
Myz (47) == Inlgp) )
b2 - 5% by baes{®) bg-2s{®)? b, |
/
S&O)C&D) S&o)z C&U)Z j
(A18)
and
(o) _ (0 C
e’ =, ﬁgo)z) (A1)
with (0)2
_EJT)? for m <M,
CRE .
7 : 3q&0) (A20)
NOH O eme 100wy for w1,
W

We note that the additive mass correction proportional to mé in (A20) is differ-
ent from the correction appiied in the case of the charged boson in (A4). The

consequences of this additional contribution will become apparent below.

The propagator (Al6) is to be used in conjunction with the current doublet
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e(o) em
Lo, (01; (a21)
s e (5(3) - glo)2 sem

S:OI CIO] JLU’ W Ju

W W

containing the electromagnetic and the weak neutral current. The unrenormalized
Weinberg angle is denoted by

(o) g glo)e (A22)

(
w -]
where q(o) = e(°)2/4n 1s the unrenormalized electromagnetic fine-structure con-

stant.

For my > Mw the ultra-violet divergent renormalization parameters ZY’ Zwl and
sz in (Al6) have the form

-1 aﬂo) o~ A? 4a(0) m%
and
M) m2
-1 _ -1 GN( t
Zwl = ZN (1 + g Tn-ﬂz) .
m2
Zoy = It (1 + %"ﬁ In o) . (A2 4)

For mi < M, the terms proportional to In(m%/Mz) have to be dropped and 7, ; and
sz become equal. The parameters b, b, and bQ depend on the weak isospin and
charges of the leptons and quarks and are defined by (2.20), while Bb is given
by

(R (h25)

i

B’ =

L.
@ all fermions
where the sum runs over all Teptons and quarks independently of the magnitude of
*

m, - Finally, the choice of the renormalization scale

* Due to the logarithmic dependence on M the difference between MZ and MN in-
duces terms of the order of an(MZ/Mw) which are of the same order of magni-

tude as the terms we have neglected consistently.
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M2 = Mﬁ > M2 (A26)
assures that

Re niz)(Mz) - 0 (A27)

implying that the real part of the propagator has a pole at the empirically de-
termined Z mass, MZ'

The renormalization of the yZ propagator (Al6)} is accomplished in analogy to
the case of the W propagator in (A13). Application of a suitable transformation
on the propagator matrix (Al6) replaces 77! by unity and Mgg)z by a transformed
diagonal matrix. The "renormalization transformation", T, is obtained by spe-
cialization of the matrix D in (B12) to the present case, Comparing the matrix
Z”' in (A17) with the matrix K in (B2) one finds the appropriate expressions
for ¢;, c» and A and subsequently, by substitution in (B12}, the "renormaliza-

tion matrix"

1/2
ZY . 0
C = i . (A28)
sy (-2, 7)) Cﬁ ) )’
o) 2.1/ 2 > (o)z
(L-sy" L Zyy L) Z, Iy g

By construction, application of T yields (compare (Al3a) as well as (Bl3))*

(A1 = wad) & = T aR(1em(a%)) < M) (h29)
where
m,(a?) = Tiy)er) & (A30)
and
0 0
2 (e)2t _ )
TR (A31)

and Re HYZ(M%) = 0 as a consequence of (A27), Explicit expressions for HYZ(qZ)
and Miz will be given below.

Let us now consider the renormalized current to be used in conjunction with
the renormalized propagator (A29) (compare (B14)). Applying C on (A21) yields

* Eyidently, the transition from (Ag) to the renormalized propagator (a?zniv

corresponds to the transition from the unrenormalized to the renormalized
photon and Z fields.



- 31 -

ety g
C i, = . (A32)
6,0} (3120 - sp(M) 38

The renormalized electromagnetic coupling, e(M*), at the scale M? is related to
the unrenormalized one which is present in (A21) via

a(M?) = e*(M) _ Z elo)? -7 olo)

Iy y Tow Y ; (A33)
and the radiatively corrected weak angle, EN(M ), in (A32) is given by
Z 2 (Mz) m2
—22y = (9) ¥ L a(M?) N t
SHM?) = s 7o W(“_ITT?_MVMT) (A34)

In (A34) we used (A33) and the explicit expression for ZNZ given in (A24). The
renormalized Z-coupling in (A32) is found to be

2y (M) ) o, (M)
g (M) = YR A (D ! 2

"? _2
S w(1+’274—n6ﬁ 1n W) CN(1+Tn (2+%-§) 1n W—)

. (A35)

According to (A34) and (A35), the tree Tevel relations for Eﬁ and o, are mod1i -
fied for mt>>-Mw by correction terms which depend logarithmically on m, . These

correction terms are not present for my < MW'

We return to the renormalized propagator (A29). An explicit evaluation of
(A30) shows that H&Z(qz) is obtained from Hg%)(qz) in (Al8) by making the re-
placement

st -5, . g, (A36)

where d is given by (2.17). This replacement yields (2.15) in the main text.
Finally, using (B7) one finds that the radiatively corrected Z mass in (A31)
is given by

2 3 (MZ) mz (MZ) m2 _
M§=;‘%(l+—iw1-6ﬁ—- mb%_(ugﬁ)mmé)l . (A37)

The tree level relation for MZ is thus corrected by terms which are quadratic
and logarithmic in my (for m, > Mw). Combining (A35) with (A37) one finds that
the ratio GZ/M% receives a quadratic correction only,

a, (M) o (M?) 3°w( “) 12:
— = : A38
MZ MN ( Mﬁ’ ( )
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The factor relating qw/Mﬁ to GZ/M% may be traced back to the different top
quark contributions to the charged and neutral vector boson masses in (A4) and
(A20). Indeed, from (A20), using the renormalization relations (Al0) and {All}),
we conclude that

(0) 2 2

a7 %4y 3OW(M } my
M1 ty . (A39)

i "% Ton — My

Here, according to (A2l) and (A22} we have

I A A T A e R A A (A40)

Relation ({A38) now follows immediately by noting that o is obtained from a%o)
by multiplication with the same factor which relates M% to ﬂgo)z (compare (B7)
and (B14)).

%]

j
o
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Appendix B: The Diagonalization cf the yZ Propagator

The fermion loop corrections to the photon and Z-boson propagators shown in
Fig. 1b Tead to a two by two propagator matrix containing off-diagonal elements.
In this Appendix we give the formalism for the diagonalization of a propagator
matrix of the general structure obtained on the basis of Fig. 1b. This diagona-
lization of the propagator is essential for an interpretation of the corrected
propagator in terms of (renormaiized) fields associated with the photon and Z-
boson. The method to be used for the diagonalization of the propagator consists

40)

of a slight generalization of the procedure applied in Lagrangian models con-

taining a yW® so-called "current mixing" term.

Suppressing Lorentz indices which are irrelevant in the present connection,

the propagator A{q®) to be considered has the form
1

A(9*) = (q® K - M), (B1)
where
B /Cl A
K = B2
"‘)\. Cz) (82)
and
. (0 0
M = . B3
\o m2) (83

The parameters c;, C2 and A may be constants (as encountered in the case of the
renormalization of the propagator matrix in Appendix A) or may be dependent on
g® (as in section 2, when one introduces q* dependent "running" coupling con-
stants). The mass matrix (B3) contains a vanishing and a non-vanishing mass to
be identified in the applications with the photon and Z-boson mass, respective-
ly. In view of the applications in Appendix A and in section 2 we consider the
matrix element of the propagator (B1l) formed with a two-component current of
the form

I (84)

J o= {3 e ) . 8

\ () 2 m)
We will now explicitly construct the transformation D which diagonalizes the

propagator, i.e.,

-1 - + ot

3* @) 5= 37 05T ae®) 07T D g = 3T 0 Ay, (eP) DG, (B5)

where
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1
e
2y _
Bgiagld?) = . (86)

0 FEESE
We will find that the mass m' is related to m via

m? =M S (7)
Cy Ca=-A :

The transition from A(g?) to Adiag(qz) in (B5) corresponds to the transition
from the original fields toappropriately chosen transformed fields which lead
to vanishing off-diagonal elements in the yZ propagator.

The transformation D is found in two steps, First of all, one introduces a
(non-orthogonal) transformation, D;, which diagonalizes the symmetric matrix
K. It is given by

1 -A!
CA - A /Cz(].'?\.'z),
D1 = 1 » (88)
0 =
Veo
where
A
A= . 9
— (B9)
One easily verifies that indeed
)\.|2 —)\.I
- 1 0 _at2 7 oA 1
D, A l(qz) D11:=C|2( )_mnz 1-x J1 -2 (B10)
\ |
0 1 -A 1
i-at

Application of the transformation Di thus transforms the propagator from the
form (B1) which is characteristic for current mixing to the form (B10) which is
characteristic for mass mixing. The diagonalization of the propagator is com-
pleted by subsequently applying the orthogonal transformation R (with Rt= R'l),

/\/l-l'z A \
R = . (B11)

N I N2/
Application of

L 0
D= RD, = /er (B12)
- A vey

\/Cl(ClCz"A.z)‘ VC1Ca = A
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fully diagonalizes the propagator. In accordance with (B5) we have
1 0 0 0
-1, 2 t 2/ \ ) _oa-1 2
D° = - = A, s B13
Da "(q%) q\o J (0 o2 diagld’) (B13)

where m'? is given by (B7). For the currents to be used in (B5) in conjunction

with the diagonal propagator one obtains

e .
7o Jem
Dj = ) (814)
C; {3)_ 2 iji .
9 e az U G * 5 92) e
B

It is useful to note that m* in (B7) and g% in {(B14) are modified by the same
factor ci/(c ¢ - A%).



Table 1

i

Comparison of the results for Mw‘and sﬁ = sinzew in the dominant fermion-loop approxi-

14)

mation of the present paper with the results of a complete one-Toop calculation

Dominant fermion- Complete one-toop results .
m, MZ loop approximation Ref. 14, my = 100 GeV Uifference
{GeV) | (GeV) MN sf Mw o2 My Asf
(GeV) W (GeV) W (MeV) -\‘
88 75.69 0.2602
90 78.29 0.2433 78.29 0.2434 0 -0.0001
30 92 80.81 0.2284 80.80 0.2287 10 -0.0003
94 83.27 0.2152 83.26 0.2155 10 -0.0003
96 85.69 0.2033 85.66 0.2038 30 -0.0005
88 75.72 0.2596
90 78.32 0.2428 78.27 0.2436 50 -0.0008
60 92 80.84 0.2279 80.78 0.2291 60 -0.0012
94 83.30 0.2147 83.22 0.2162 80 -0.0015
96 85.71 0.2029 85.62 0.2046 90 -0.0017
88 75.90 0.2561
90 78.49 0.239%4 76.47 0.2398 20 -0.0004
90 92 81.01 0.2247 80.98 0.2253 30 -0.0006
94 83.46 0.2116 83.43 0.2123 30 -0.0007
96 85.87 0.1999 85.82 0.2008 50 -0.0009
88 76.12 0.2518
90 78.71 0.2351 78.70 0.2353 10 -0.0002
130 92 81.23 0.2204 81.22 0.2207 10 -0.0003
94 83.69 0.2073 83.67 0.2076 20 -0.0003
96 86.11 0.1955 86.08 0.1959 30 -0.0004
88 76 .47 0.2449
90 79.06 0.2283 79.06 0.2284 0 -0.0001
180 92 81.59 0.2136 81.57 0.2138 20 -0.0002
94 84.05 0.2005 84,04 0.2007 10 -0.0002
96 86.47 0.1887 86.46 0.1889 10 -0.0002
88 76.91 0.2362
90 79.50 0.2197 79.52 0.2194 -20 0.0003
230 92 82.03 0.2051 82,04 0.2047 -10 0.0004
94 84.49 0.1920 84 .52 0.1916 -30 0.0004
i 96 86.92 0.1803 86 .95 0.1797 -30 0.0006
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Table 2

s g : 2 Z a2 _ 2 > 2 2 i
The radiative correction, (5SN)RC = Sy " Sg» to be applied to Sg where sg s

the weak angle extracted from neutrino scattering by using the Born approxi-
mation. The radiative correction is given for neutrino hadron (Rv, R+, R™)

and neutrinc electron scattering as a function of the top quark mass, m,. - We
assume MZ = 91.8 GeV, which together with a and Gu fixes sﬁ as shown in the

Table. As for the momentum transfer, we assumed <q? > = 20 GeV? for neutrino
hadron and <g2> = 0.09 GeVY? for neutrino electron scattering. We note that

the results for the case of neutrino electron scatterina are unchanged if

g% is varied between g2 = 0.01 GeV? and ¢ = 1 GeVZ.

, T - =

F%(B==59x1d9) R R %fhhe

Present

2 2 4 2 2 2

me (GeV) sy (sylre | Sydpe | (SSwlee || (BSwlre | (SSwlre
30 0.2298 -0.010 -0.010 -0.013 -0.007 -0.003
45 0.2295 -0.010 -0.009 -0.013 -0.007 -0.003
60 (.2293 -0.010 -0.008 -0.013 -0.007 -0.003
90 0.2261 -0.009 -0.010 -0.011 -0.007 -0.005
120 0.2229 ~-0.010 -0.011 -0.011 -0.008 -0.008
180 0.2150 -0.010 -0.011 -0.009 -0.011 -0.013
240 0.2045 -0.010 -0.011 -0.007 -0.014 -0.021
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Figure Captions

Figure 1 :

Figure 2

Figure 3 :

Fermion-loop diagrams contributing to the W and vZ propagators.

: The radiative correction factor Ar as a function of the top quark

, in the dominant fermion-loop approximation of the present
25)

mass, m,
paper (full Tine) compared with a complete one-loop calculation
for several values of the Higgs mass (broken lines). For the Z boson
mass Mz = 93 GeV has been used as input. (The shape of the curve for
the dominant fermion-loop approximation for values of my = MN is an
artefact of extrapolatina the results for Ar obtained for m, << Mw

and me >> Mw to the region of m, = MN‘ A more careful treatment can

be carried out to improve the behaviour of Ar in the vicinity of
my = Mw.)_

Diagrams describing neutrino scattering in the leading Tog approxi-
mation, (a) ordinary neutral current contribution, (b) neutrino

charge radius contribution, {c) QED correction to charged current
neutrino interactions.
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