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THE RADON-NIKODYM THEOREM FOR 
BANACH SPACE VALUED MEASURES 

J. DIESTEL AND J. J. UHL, JR. 

The present notes are an updated version of a brief history 
of the Radon-Nikodym theorem for Banach space valued measures 
written by the first author in January, 1973. Since that time much 
progress has been made in this subject, and these notes are aimed 
at conveying some of the flavor of this progress and hopefully interest-
ing readers in some of the problems that remain. 

Our style will be informal. A few proofs are included. Complete 
details for most of what appears herein will be found in the finished 
version of [0]. 

There appears to be roughly three aspects to the theory of differentia-
tion of vector-valued measures: analytic, operator theoretic and 
geometric. While these aspects necessarily are intimately interrelated, 
we shall try to discuss the Radon-Nikodym theorem for these three 
viewpoints separately. Our presentation will be, to a large extent, 
along historical lines, though occasionally we stray from this path. 

In writing these notes, we have benefitted from conversations with 
many mathematicians. They have shown us examples and counter-
examples, and have been kind enough to send us preprints of their 
related work (oftentimes they even sent handwritten copies of their 
work!). A nonexhaustive list includes: J. Batt, W. J. Davis, B. Faires, T. 
Figiel, A. Gleit, W. B. Johnson, P. Kranz, E. Leonard, D. R. Lewis, J. 
Lindenstrauss, R. H. Lohman, H. Maynard, P. Morris, R. R. Phelps, 
H. P. Rosenthal, C. Stegall and K. Sundaresan. To each we extend our 
gratitude. We were especially fortunate to have a number of long 
conversations with Bob Huff which were extremely beneficial and had 
a definite effect upon this version of these notes. 

I. Analytic Aspects of the Radon-Nikodym Theorem. The start of 
the theory of vector-valued Radon-Nikodym theorems coincides (not 
too surprisingly) with the introduction of the first vector-valued integra-
tion theory by S. Bochner [1]. In this first paper on integration of 
vector-valued functions, Bochner notes that if every X-valued function 
of bounded variation defined on [0, 1] is differentiable almost every-
where then each X-valued absolutely continuous function on [0,1] 
can be recovered from its derivative via the "Bochner" integral. It 
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was left open, however, whether any infinite dimensional Banach 
space had the afore-mentioned property (called by some the Gelfand-
Frechet property). The next year in a short note [2], Bochner demon-
strated that Loo[0,1] did not possess the Gelfand-Frechet property. 
The existence of infinite dimensional Banach spaces with the Gelfand-
Frechet property remained open until 1935 when G. Birkhoff estab-
lished in [3] that Hilbert spaces possess the Gelfand-Frechet prop-
erty. His proof was rather direct though tedious. An easier proof of a 
(formally) stronger statement is worth outlining: if F : 2 —* H is 
countably additive and possesses finite variation | F | then in a natural 
way F defines a continuous linear functional on the Hilbert space 
(natural inner product) L2(\F\;H). Applying the Riesz Representa-
tion Theorem gets the desired derivative. The reader most likely 
recognizes this as the classical von-Neumann argument for the Radon-
Nikodym Theorem slightly generalized. 

More difficult results soon followed. In a now-famous paper [4] 
introducing the class of uniformly convex Banach spaces, J. Clarkson 
showed that every uniformly convex Banach space is a Gelfand-Frechet 
space. He also observes that£x is a Gelfand-Frechet space but c0 and 
Lx [0,1] were not Gelfand-Frechet spaces; for example, the function 
/ : [0,1] —> LifO, 1] given by f(t) = C[0tt) is nowhere differentiate 
but has bounded variation a fact that is easily established (that c0 

is not a Gelfand-Frechet space will be established momentarily). 
In the same issue of the Transactions that Clarkson's paper ap-

peared—the very next paper [5] — N. Dunford and M. Morse ex-
tended Clarkson's observation about lx to the class of Banach spaces 
having "boundedly complete" Schauder bases. A sequence (xn) of 
members of a Banach space X is called a Schauder basis whenever 
each x G X has a unique representation in the form x — ^ n anxn; the 
linear functionals x —» an are always continuous and we denote them 
by fn and call them coefficient functionals. The Schauder basis (xn) 
is said to be boundedly complete whenever given any sequence (an) 
of scalars, if sup n | | ^£ = 1 akxk\\ < oo then the series ^ n anxn converges. 
Dunford and Morse showed that Banach spaces with boundedly 
complete bases are Gelfand-Frechet spaces; more precisely they 
proved the, 

THEOREM. Let (il, 2) be a measurable space and let F : 2 -» X be 
a countably additive measure possessing finite variation \F\. Sup
pose that X possesses a boundedly complete basis (xn) (coefficient Junc
tionals (fn)). Then F is differentiable with respect to | F | ; more
over, the "naturar derivative works. 
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The Dunford-Morse theorem was soon to be generalized by the 
Dunford-Pettis results. However, their proof is so elegant that it bears 
(frequent) repeating: 

PROOF. We start by making the basis "monotone," i.e., if x G X so 
x = 5) n fn(x)xn —- then define a new norm 111 • 111 on L as follows: 

Il|-Ill=s«p«|| t /*(*)** ||• 

III ' III is equivalent to || • || so (xn>fn) is still a boundedly complete 
Schauder basis for (X, || | • || |). Moreover, for any n,j ê l w e have 

lllâ-IIMIII-lll-
Since F's differentiability is clearly invariant under isomorphism, we 
will show F is differentiable into X with 111 • 111. 

For each n, let Fn(A) = ^k+ifk(F(A))xk. Then for each n, 
/ / F is a countably additive scalar-valued, | F (-continuous mea-
sure defined on £. Thus, dfn ° Fld\F | exists for each n. 

Let gn : fì—> X be given by 

Â dfk° F 

Clearly g n E L i d F | ; X ) and for n , j è l , | | |gnM|| | ^ | | | g n + » | l | | . 
Furthermore, Fn = / gn d\ F | so that 

/lllgn(«')IIM|F|(u))=|Fn|(n)^|F|(n). 
Thus d(w) = limn|||gn(u;)||| exists |F|-almost everywhere and 
rf G Lid F |), by the Bounded Convergence Theorem. By the form 
of the gn's and the fact that supn|||gn(u>)|||= l imJUg^u;)!!^ oo for 
|F|-almost all w G fì, we have by (xn)'s boundedly complete nature 
that g = Y,n(dfn ° F/d| F \)xn is well-defined | F |-almost every-
where and, because 11|g( • ) | | | = d( • ) | F (-almost everywhere, satisfies 
g G Lid F |, %). ^ *s e a s % s e ^ n that g is the derivative of F with 
respect to | F |. 

The late 30's experienced a number of basic papers in vector mea-
sures concerned with the Radon-Nikodym theorem in some variation 
or another. The most prominent of these was probably the classic of 
I. M. Gelfand [6] which showed that a function of bounded variation 
on [0,1] and having values in a separable dual was weakly differen-
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tiable. As Lx [0,1] did not possess this property (the same function as 
defined by Clarkson works) Gelfand was able to conclude that 
Li [0,1] was not isomorphic to a dual space. Also noteworthy 
(especially for the purposes of these notes) was a paper of Bochner 
and Taylor [7] in which it was essentially (modulo some abstract 
measure theory) shown that the Gelfand-Frechet spaces were the 
same as those Banach spaces X with the property (henceforth and for 
obvious reasons called the Radon-Nikodym property) that given a 
countably additive X-valued map F defined on a sigma-algebra 
possessing finite variation \F\ then there exists a Bochner |F | -
integrable function / such that F (A) = JAfd\F\ for each A 
in Fs domain. (So Dunford and Morse did indeed establish that 
spaces with boundedly complete bases were Gelfand-Frechet spaces). 

The papers of the late 30's were largely preparatory for the major 
work of this time period and indeed of the analytic aspect of the Radon-
Nikodym theorem: the Linear Operations on Summable Functions of 
N. Dunford and B. J. Pettis [13]. The results of this paper evolved 
over a period of several years as seen particularly in the work of 
Gelfand ([6]), Dunford ([8] , [9], [10]) and Pettis ([11], [12]) 
and contains some of the most beautiful theorems in functional analysis 
of the pre-war period. We cite only those related to the Radon-
Nikodym theorem: 

(DP 1) If X is a separable dual space, then X possesses the Radon-
Nikodym property. 

(DP 2) If ((I, 2 , X) is a (finite) measure space and T : Lx(k) —> X is a 
weakly compact linear operator, then there exists a X-essentially 
bounded, strongly measurable function f : O—* X such that 

(*) r g = \fgd\ 

holds for all g G L^X). Moreover \\T\\ = ||/||ess.suP.-

(DP 3) If (fi, 2, X) is a finite measure space and T : LX(X)-» X is a 
compact linear operator, then the f of (DP 2) has k-essentially pre-
compact range, hence, is approximable in essential supremum norm 
by simple functions. 

(DP 4) If (fi, 2 , X) is a finite measure space and T : Lx(\) —> Xis any 
linear operator which is representable in the form (*) of (DP 2), 
then T maps weakly convergent sequences into norm convergent 
sequences. 
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(To be accurate it must be remarked that Dunford and Pettis did 
not prove (DP 2) in the form it is stated; they established the conclu-
sion under the additional hypothesis that the weakly compact oper-
ator's range was separable. However, R. S. Phillips in his classic paper 
On linear transformations [14] showed that separability of the 
range was a consequence of the operator's weak compactness). 

EXAMPLE. If a Banach space X possesses the Radon-Nikodym 
property and if (fì, 2 , X) is a finite measure space then every continu-
ous linear operator T : Li(k)—> X has a representation as in (DP2) so, 
by (DP 4), maps weak null sequences into norm null sequences. 
The operator T : LJO, 2TT] -* c0 defined by (Tf)k = J^ f(t) 
sin(kt) dt is continuous, linear and maps the weak null sequence 
(sin (kt)) in Lx [0, 2TT] into a sequence bounded away from zero in c0. 
Thus Co does not possess the Radon-Nikodym property. 

À particular consequence of (DP 2) worth special mention is the 
fact that all reflexive Banach spaces possess the Radon-Nikodym 
property. Actually, this fact can also be derived from (DPI) if one 
allows the following fact (we give a proof in the discussion of the 
geometric aspects of the Radon-Nikodym theorem) about the stability 
of the Radon-Nikodym property: a Banach space X possesses the 
Radon-Nikodym property if and only if every separable closed sub-
space of X possesses it. Thus, as separable closed subspaces of reflex-
ive spaces are separable duals, we obtain the asserted fact. 

Something must be said here. Though it might seem like the above 
proof of reflexive Banach spaces having the Radon-Nikodym property 
is a bit round-about, the only proofs we know of spaces having the 
Radon-Nikodym property depend ultimately upon establishing that 
separable subspaces are isomorphic to subspaces of separable duals. 
One might conjecture an affirmative answer to the following: 

PROBLEM 1. If X is a separable Banach space possessing the Radon-
Nikodym property then need X imbed in a separable conjugate? 

The stability result referred to above gives rise to the possibility that 
one need not even look at all the separable subspaces (such is the case 
in testing for reflexivity, weak sequential completeness or quasi-
reflexivity, for example; see [15], [16] ). Thus the 

PROBLEM 2. If every closed subspace of X possessing a Schauder 
basis possesses the Radon-Nikodym property, then need X also possess 
it? 

Related to this is 
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PROBLEM 3. Is there an intrinsic characterization of Schauder bases 
that span spaces with the Radon-Nikodym property? 

The Dunford-Pettis results suggest other problems. For example, 
from (DP 3) we get the following: 

THEOREM. The compact operators on an LY-space that achieve their 
norm are dense in the space of compact operators. 

PROOF. MaharanVs theorem [17] tells us that the problem lies 
in the case of finite A's. By (DP 3), we need only show that if s : ft—> X 
is a simple function then the operator S : I^A)—> X given by S/ = 
ffsdk achieves its norm. If s = ^J

ni=\CA.xi where A1? • • *, A„ are 
pairwise disjoint members of ^ then choose k between 1 and n such 
that ||xfc|| = max{||x1||, • • -, ||xn||}. 

llsil = Ml- = INI = ^ N I = II J x ^ - W <&ll 

and A(Ak)~
 1cAk has norm 1. 

It is easily verified that every compact operator on a reflexive 
Banach space achieves its norm and that if ft is compact, Hausdorff and 
dispersed then the compact operators achieving their norm are dense 
in the space of compact operators. Unanswered however is the 

PROBLEM 4. Does every Banach space X have the property that the 
compact operators on X (to any other Banach space) that achieve their 
norm are dense in the space of compact operators? What about 
C(ft)'s? 

(DP 4) suggests a number of problems. It is easy to construct oper-
ators on Li(0,1) which map weakly convergent sequences into norm 
convergent sequences but haven't a kernel. For example, the operator 
7 : ^ ( 0 , 1 ) ^ 0 ( 0 , 1 ] given by (Tf)(t) = Sèf(u)) dw is such a 
linear operator. However, the following is not yet resolved. 

PROBLEM 5. If a Banach space X possesses the property that every 
continuous linear operator T : L^O, 1] —> X maps weakly convergent 
sequences into norm convergent sequences then need X possess the 
Radon-Nikodym property? 

An affirmative answer to Problem 5 will similarly answer 

PROBLEM 6. If weak and norm convergence of sequences in X 
coincide, then need X possess the Radon-Nikodym property? 
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As we mentioned above the only way new classes of spaces have 
been shown to possess the Radon-Nikodym property is by showing 
that separable subspaces are subspaces of separable conjugates. We 
illustrate this with an example (other such examples will be mentioned 
in later sections). 

A Banach space X is said to be weakly compactly generated when-
ever there exists a weakly compact set in X whose linear span is dense. 
Separable Banach spaces are precisely the compacdy generated 
spaces. Of course, all reflexive Banach spaces are weakly compactly 
generated. In a sense, the prototypes of the class of weakly compactly 
generated spaces are spaces of the form Co(T) (T any set). An Lx 

( /ut)-space is weakly compacdy generated if and only if fi is a-finite. 
This class of spaces has been studied by a number of authors; the basic 
information regarding weakly compactly generated spaces is con-
tained in [18]. 

The next result was remarked to us by Bill Johnson and Charles 
Stegall [19] ; the proof here is that of Bob Huff [20]. 

THEOREM. Weakly compactly generated dual spaces possess the 
Radon-Nikodym property. 

PROOF. If Y is a separable subspace of the weakly compactly gen-
erated space X*, then there is a separable subspace S of X such that 
Y is a subspace of S*. We will show S* is separable. Clearly S* is a 
quotient of X*; thus, S* is also weakly compactly generated. Let K 
be a weakly compact convex subset of S* that generates S*. Then K 
is a weak-star compact. But S is separable so K is weak-star metrizable. 
Hence, K is weak-star separable. But Ks compactness in both Haus-
dorff topologies (weak and weak-star) says these topologies coincide 
on K, i.e., K is weakly separable. By Mazur's theorem, K is norm 
separable and thus S* is separable-being the closed linear span of K. 

COROLLARY. L^fi) is not isomorphic to a dual for fi a-fìnite 
unless n is purely atomic. 

None of the consequences thus far mentioned of the Dunford-Pettis 
results was really out of the reach of Dunford and Pettis; the reason 
for their not proving them lies primarily in the fact that certain con-
cepts (weakly compactly generated, operators achieving norm) had not 
yet come of age. It is curious though that the problem of necessary and 
sufficient conditions for a given operator T: L^X)—>X (A a finite 
measure) to have a derivative was not given any attention especially 
since the tools for the solution of this problem were already developed. 
This problem waited for a satisfactory solution until the late W s when 
M. Metivier [21] and M. A. Rieffel [22] established necessary and 
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sufficient conditions for a vector measure to have a Bochner derivative 
with respect to some finite positive measure. Their presentation, while 
close in spirit to several proofs of Dunford, Pettis and Phillips (espe-
cially [23] ), was not exactly direct; however, in [24], S. Moedomo 
and J. J. Uhi derived the Metivier-Rieffel results and more, using 
nothing but the Dunford-Pettis-Phillips theorem (DP 2) and clever 
observation. The final result is the 

THEOREM. Let (fi, 2, A) be a finite positive measure space. Let 
F : X—*Xbea countably additive k-continuous vector measure. Then 
TFAE: 

(1) There exists a strongly k-measurable function f : fi—» X such 
that for each A G S 

F(A) = (Pettis) - f f(w) dk(w) 
J A 

(2) given e > 0 there exists fie G X such that k(filfie) < e and 
{F(A)lk(A) : A G £, A C fi€} is relatively norm compact; 

(3) given AGX, k(A) > 0 there exists B G 2, B C A, k(B) > 0 such 
that {F(C)lk(C) : C G X, C C B} is relatively norm compact; 

(4) same as (2) with "norm compact" replaced by "weakly compact"; 
(5) same as (3) with "norm compact" replaced by "weakly compact". 

For f to be Bochner k-integrable9 it is necessary and sufficient that F 
possess finite variation. 

The Moedomo-Uhl proof of this theorem is, it seems, the most 
natural proof and certainly was accessible to the mathematicians of the 
early 1940^. 

We first show (1) implies (2). 
Let € > 0 be given. Let (fn) be a sequence of simple functions 

converging X almost everywhere to the Pettis X-integrable function / 
EgorofFs theorem ensures that there exists a set ii€ G S such that 
fì/fìe has X-measure < e and fn converges uniformly on ii€ to / . It 
is now an easy matter to show that U : L^A)—* X defined by Ug = 
îçiegfdk is the operator limit of the finite rank operators Un : Lx(k) 
—> X given by Ung= SQ€gfndk and hence U is a compact linear 
operator. Note that if *A G S, AC üe then H c ^ A ) - 1 ^ ^ 1 so 
F(A)/A(A)= U(cJk(A)) and hence {F(A)/A(A) : A G S, AC (ì() is 
contained in the relatively norm compact image under U of L1(A),s 
unit ball. 

That (2) implies (3) is obvious. We will next show that (3) implies 
(1) and stop there; the equivalence of (4) and (5) with the other condi-
tions is a standard exhaustion argument. 
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Suppose (3) holds. Let € > 0 be given. Choose ft€ in accordance 
with (3). Let s = ]£n*=ia*cAi be a simple function in L^X). Define 
U€(s) by Ue(s) = 2n*=i ßiF(fte H Ai). U€ is continuous and linear and 
for s having Li-norm â 1, we have U€(s) G absolutely closed convex 
hull of {F(E)lk(E) : E G X, E G O j which by (3) and the Krein-
Smulian theorem is a weakly compact set in X. Thus U€ extends to a 
weakly compact linear operator Ue : L^k)—> X. The Dunford-Pettis-
Phillips theorem (DP 2) yields a Bochner derivative for U€. Now let 
€—> 0 and piece together the €-derivatives to get the Pettis derivative 
ofF. 

II. Operator Theoretic Aspects of the Radon-Nikodym Theorem. 
The results of the early analytic era were, to a large extent, unused and 
unappreciated until the late 60's. There is one notable exception: the 
work of A. Grothendieck. 

In his Memoir [25] and his Resumé [26], Grothendieck introduced 
several new classes of operators and studied the problems of approxima-
tion by finite rank operators and the structure of Banach spaces in 
terms of these classes of operators. Some of Grothendieck's most strik-
ing results are ultimately dependent upon Radon-Nikodym considera-
tions. 

The role that vector measures play in the theory of tensor products 
derives largely (entirely?) from the introduction by Grothendieck of 
the notion of an integral bilinear functional. R. Schatten and J. von 
Neumann had started, in the early 1940's, a systematic analysis of 
tensor products of Banach spaces ([27]). Their basic hangups were 
twofold: first, they could not get a handle on the dual of the space of 
compact operators (or more generally the dual of the A tensor product 
of two Banach spaces) and second after the appearance of J. Dixmier's 
study of tensor products of Hilbert spaces [29], they tried to mimic 
the Hilbert space situation. What was needed was a new idea. This 
was provided by Grothendieck who showed how the entire apparatus 
of measure theory entered naturally via the notion of integral operators 
(and integral bilinear functional) into the study of the general struc-
ture of Banach spaces. 

Recall the basic definitions (or equivalences thereof) of the classes 
of absolutely summing, 2-summing, integral and nuclear operators. 
A continuous linear operator T : X —> Y is said to be: 

absolutely summing whenever given an unconditionally convergent 
series ]jTn xn in X the series Xn Txn is absolutely convergent in Y; 

2-summing whenever given a formal series ^nxn in X such that 
S n l ^ n l 2 < ° ° for each / G X * it follows that ^n \\Txn\\

2 < oo; 

integral whenever there exists a regular Borei measure /ut defined on 
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the compact Hausdorff space fl(X*) X fl(Y**) formed by taking the 
Cartesian product of the unit balls of X* and Y** in their respective 
weak-star topologies with 

^ = L ( x . w , /(*)G(r*g)<W,c) 
holding for all oc G X and g G Y*; 

nuclear whenever there exist sequences (fn) C X* and (t/n) C Y 
such that 2 n ||/n|| W l < °° and Tx = £ , / „ ( % „ holds for all 
x G X. We denote by II^X; Y), II2(X; Y), I(X; Y) and N(X; Y) the 
classes of absolutely summing, 2-summing, integral and nuclear oper-
ators T : X—» Y. The basic containments between these classes may 
be summarized as follows: 

N(X; Y) C I(X; Y) C nx(X; Y) C II2(X; Y). 

To present some of the deeper results that follow from [25], [26] and 
[30] we introduce the notation: by C we denote any space of all 
continuous functions (perhaps on a locally compact Hausdorff space, in 
which case we ask vanishing at infinity), by L we denote a space of all 
absolutely integrable functions with respect to some measure and by H 
we denote any Hilbert space. Then Grothendieck basically showed 

(Gl ) AU H) = n ^ L ; H); 

(G 2) AC; H) = n2(C; H) and AC; L) = n2(C; L); 

(G 3) nx(C; Y) = 7(C; Y) a n d n ^ X ; C) = Z(X; C); 

(G 4) Integral operators to or from H are nuclear; 

(G 5) The composition of 2-summing operators is nuclear. 

(G4) depends in an essential manner upon the Radon-Nikodym 
property and (G5) is also a consequence of the Radon-Nikodym 
theorem for Hilbert spaces though it can be established independently 
of this result. 

A fascinating consequence of (G1) through (G 5) is the Six Theorem. 
It is a fact that if T : X—• Y is a nuclear linear operator then T can be 
factored in the form 

X > Y 

Zi —> %2 ~* Z3 —» Z4 —> Z5 —> ZQ 

where each z{ is either a C, L or H and we can do this so that each class 
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appears twice and no C, L or H succeeds itself. Using (G1) through 
(G 5) the converse can be shown also to hold, that is, we have the 

Six THEOREM. If T : X—> Y can be factored as above, then T is 
nuclear. 

In addition to the above type of results, Grothendieck contributed 
in other basic ways to the theory and applications of the differentiation 
of vector measures. Among the results at least implicitly found in 
either [25] or [26] and closely related to the theory of the Radon-
Nikodym theorem are: 

(G6) A continuous linear operator T : X—> LX(X) (X any measure) is 
integral if and only if T maps Xs unit ball into a lattice bounded subset 
qfL^k); 

(G7) A continuous linear operator T : X—> L>i(k) is nuclear if and 
only if T maps Xs unit ball into a lattice bounded, equimeasurable 
subset of LX(X), where K C Lx(k) is equimeasurable means that given 
e > 0 and a set P of positive, finite k-measure, then there exists a 
subset P€ of P such that k(PIP€) ~ e and such that KIP€ is relatively 
norm compact in L«>(X/P€). 

(Gl) can be restated as a Radon-Nikodym Theorem as: a measure 
F : S (sigma-algebra)—> LY(k) possesses finite variation \F\ and 
possesses a Bochner derivative with respect to \F\ if and only if the 
range of F is lattice bounded and equimeasurable. To our knowledge 
this is the only result which characterizes Bochner differentiability in 
terms of only the range of a measure. It should be remarked that the 
lattice boundedness of F's range and the fact that F has its values in an 
Li(X) space insure F's finiteness of variation. 

Grothendieck not only proved new Radon-Nikodym theorems but 
gave new directions for the application of Radon-Nikodym results. 
This is largely due to his characterizations of integral operators in 
terms of factorization. For example, he showed that for a continuous 
linear operator T : X—» Y to be integral it is both necessary and suf-
ficient that there exist a compact Hausdorff space ft and a regular 
Borei measure /A defined on ft such that the diagram 

T 
X—> Y —>Y** 

S \ R 

c(ft) — M M ) 
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commutes for some bounded linear operators R : Lx( /x) -> Y** and 
S : X—> C(O). Thus the study of integral operators is reduced to a 
large extent to the study of operators on C(ft) spaces. On such spaces 
it can be shown (and is implicit in [25], explicit in [31], [97], [99] ) 
that absolutely summing and integral operators correspond to vector 
measures possessing finite variation while nuclear operators corre-
spond to vector measures possessing finite variation and which are 
differentiable with respect to their variation. Using these ideas, Gro-
thendieck derived the somewhat startling, 

(G8) Let T : X-> Y and S : Y—* Z be continuous linear operators. 
If T is integral and S is weakly compact, then ST is nuclear; while, 
ifT is weakly compact and S is integral, then ST is nuclear into Z**. 

(G9) If T : X—» Y* is integral and either X* or Y* possesses the 
Radon-Nikodym property, then T is nuclear into Y*. 

Based upon (G8) and G 9) and his duality theory for topological 
tensor products, Grothendieck was then able to (essentially) show, 

(G 10) If X possesses the Radon-Nikodym property, the approxima
tion property and is complemented in X** via a norm one projection 
(in particular if X is a dual space), then X possesses the metric approxi
mation property. 

The recent results of T. Figiel and W. B. Johnson [32] indicate 
the special nature of the Radon-Nikodym theorem in (G 10). 

The work of Grothendieck was virtually ignored until the mid-
1960's when renewed efforts in the structure theory of Banach space 
theory brought his work out of storage so-to-say. Motivated largely 
by the deep (and mysterious) results of [26], J. Lindenstrauss and 
A. Pelczynski introduced in [30] the class of j?p-spaces. These 
spaces to a large extent are the isomorphic versions of complemented 
subspaces of the Lp( /ut) space. Utilizing the £v space theory developed 
by Lindenstrauss, Pelczynski, Rosenthal, Stegall and Retherford in 
[30], [33] and [34] one of the more spectacular applications of 
notions related to the Radon-Nikodym theorem was obtained by 
D. R. Lewis and C. Stegall [35] : Let n : L^O, 1] - • LJO, 1] be a 
continuous linear projection having infinite dimensional range. Sup-
pose the measure P : Borei sets in [0,1] —> Lx [0,1] is given by P(A) = 
H(cA). Then P is a countably additive vector measure possessing finite 
variation. For P to be differentiable with respect to its variation, it is 
necessary and sufficient that IlLl [0,1] be isomorphic to lY. 

This gives rise to several questions regarding L rvalued measures. 
The first was suggested to us by W. B. Johnson. 
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PROBLEM 6. Suppose n : LJO, 1] —» LJO, 1] is a continuous linear 
projection and let P : Borei sets—» Lx[0,1] be given by P(A) = U(cA). 
If P is nowhere differentiable with respect to Fs variation, need 
IILi [0,1] be isomorphic to Lx [0,1] ? 

PROBLEM 7. Suppose X is a subspace of Lx[0,1] which does not 
possess the Radon-Nikodym property. Need X contain an isomorph of 

Before leaving the discussion of the operator theoretic aspects of the 
Radon-Nikodym theorem, it is worth mentioning several results re-
lated to projections in I^-spaces, L rvalued measures and differen-
tiability of these measures. 

Particularly noteworthy is the as-yet-unpublished result on split-
tings of Li [0,1] of Per Enfio: if L J 0,1] = X 0 Y then either X or Y 
is isomorphic to Lx [0,1] . 

With regards to non-differentiability, we note the example of A. 
Coste [36] of an Ll [0 1] -valued measure of finite variation having 
relatively compact range, but without a derivative with respect to its 
variation. A consequence of this example is the existence (a) of a 
compact, integral operator T : C[0,1] —» LY [0,1] which is not nuclear 
and (b) the existence of a Dunford-Pettis operator S :Li [0 ,1] —> 
Li[0,1] with no derivative. Costé's construction (actually carried out 
over the 2-dimensional torus) is ultimately dependent upon a deep 
fact from harmonic analysis (due originally to Menchoff) to the effect 
that on [0, 2rr] there exists a regular Borei measure //, singular with 
respect to Lebesgue measure for which the Fourier coefficients 
fi(n) tend to zero as n —> ± <» . 

III. Geometric Aspects of the Radon-Nikodym Theorem. Perhaps 
the greatest break through in the theory of Radon-Nikodym is due to 
M. A. Rieffel who in [37] tried to recover a classical differentiation 
theorem of Phillips by introducing the geometric notion of dentability. 
While Rieffel's efforts to obtain Phillip's result were unsuccessful, 
something more important came out of them — the establishment of a 
close interrelationship between the Radon-Nikodym theorem (and 
consequently the Radon-Nikodym property) and the geometry of a 
Banach space. It is this aspect of the Radon-Nikodym theorem that 
has seen the most spectacular advances in the theory in recent years. 

Recall the notion of dentability: a bounded subset B of a Banach 
space X is deniable whenever given € > 0 one can find a point x€ G B 
such that if one sweeps out the open e-ball about xe (see Figure 1) then 
fills up the remainder (i.e., takes the closed convex hull of B/Se(x6)), 
(see Figure 2) one doesn't get x€ back again. If the same x works for 
each e > 0 then x is called a denting point of B. 
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Figure 1 

Figure 2 

The basic facts regarding dentable sets are the following: 
(1) if the closed convex hull of B is dentable so is B (M. Rieffel 

[37]); 
(2) if B is a compact convex set then the extreme points of B are all 

denting points (and, of course, conversely) (M. Rieffel [37] ); 
(3) strongly exposed points of B are denting points (a point x G B 

is strongly exposed whenever there is / E X * ||/ | | = 1 such that 
/(*) > f(y) for t/ E B, t/ ^ x and such that if (t/n) C B and / (y n)-> 
/ ( * ) t h e n | | x - y n | | - > 0 ) ; 

(4) weakly compact sets are dentable (J. Lindenstrauss [38] 
showed that weakly compact convex sets in locally uniformly convex 
Banach spaces are the closed convex hull of their strongly exposed 
points, hence are dentable; S. Troyanski [34] showed that weakly 
compact sets always live in locally uniformly convex spaces); 

(5) if every countable subset of B is dentable, then B is dentable (H. 
Maynard [40] ). 

(We ought to remark that important related work of I. Namioka 
([41], [42]) contains a number of conditions for dentability of 
sets as well as an easy proof of (4) above. 
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The basic result of Rieffel that uncovered the fundamental relation-
ship of the geometry of a Banach space to the Radon-Nikodym 
theorem goes as follows: 

RIEFFEI/S DENTABILITY THEOREM: Let (Ci, 2, fi) be a finite positive 
measure space, X be a Banach space and F : 2 —> X be a countably 
additive vector measure possessing finite variation | F | with | F | <K 
fi. ThenTFAE: 

(1) Fis Bochner differentiable with respect to /x; 
(2) given e > 0 there exists fl6£ J such that fi(CVCi€) < e and 

such that 

{ - ^ j - : A G 2 , M ( A ) > 0 , A C n e } 

is dentable; 
(3) given AGX, JA(A) > 0 there exists B C A, B G 2, /i(B) > 0 

such that 

{^••CG*>CCB>^>0} 
is dentable. 

Since the paper [37] of Rieffel is a bit inaccessible we indicate 
briefly the proof of (3) implies (1). 

First we make a general remark concerning the existence of Radon-
Nikodym derivatives for a vector measure F with respect to a scalar 
measure fi: to show the existence ofdFldfi it suffices to show that given 
€ > 0 there exist sequences (xn

€ C X and En
€ E 2 where En

€ Pi Em
€ 

= Ci for nj£ m, /x(En
€) > 0 and Ci = U„F n

€ ( M almost) and 

{"2fj":E G X' **E) >0,ECEn<jC Ball (xn',e). 

Why? Basically because in such a situation if one chooses for fixed 
e > 0 an n€ such that /i(Un>ne En

€) < c and consider 
n 

X€ ~ ZJ Xk*CEke> 
k = l 

then the sequence (*i/n) is mean-Cauchy in L1(/ut;X), converging to 
the derivative of F with respect to fi. Verification of this is somewhat 
tedious and can be found in [0]. 
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Now to indicate how the dentability condition of (3) leads us to the 
above situation, we will show that given E G 2, of positive p-measure 
and € > 0, there exists D G 2 contained in E of positive fi-measure 
and there exists an x G X such that the average range of F over D, 
<^D(F), given by 

^D(F) = { - ^ j - : C G 2, C C D, /t(C) > 0 } 

is contained in Ball (ac, e). 
From this an easy exhaustion argument yields the desired situation. 
By dentability we know that there exists Ed G 2, Edd E with 

fi(Ed) > 0 and c4Ed(F) dentable. Let x G JfEd (F) be such that 

x$cömF(^ d (F) \BaU(x ,€) ) . 

Suppose x = F(D0)//i(Do) where D0 G S , D 0 C Ed, and /i,(D0) > 0. 
If D0 is the desired D, good; otherwise JtDo(F) (f Ball (x,e). Thus 
there is Ex CI D0 such that ^Ex) > 0 and ||°( F ( E J / ^ E J ) - *|| ^ €. 
Note that F(E 1) / /bi(£ 1)G^D o(F) yet F(E1)/,x(E1) $ Ball (s,e). 
Thus 

^ G c 5 S v ( ^ ( F ) / B a U ( x , € ) ) . 

Let fcx be the smallest positive integer è 2 for which there exists 
Ex C D0 such that /JL(EX) ^ fcr1, and 

^ f r ecöSv(^ £ d (F) /Bid l (x ,€ ) ) . 

Take any such Ex. Let Di = D 0 \ £ i . 
We claim ^ ( D J > 0. Otherwise, /i(Dx) = 0 so that /x(D0) -

/i(Ei) = M(DO/£I) = M(DI) = 0 SO that /ut(D0) = /x(^i)- As F is //,-
continuous, F(D0\El) = 0 so F(D0) = F(Ex) as well. Hence 
F(D0)//ÜL(D0) = F(E1)//x(E1) an impossibility in light of the in-
clusion of the right side and non-inclusion of the left side in the set 
c55v(^EB(F)/BaU(x,€)). 

If Dx fits the bill — good; otherwise, 
We generate a disjoint sequence (En) of members of 2 , a non-decreas-

ing sequence (fcn) of positive integers such that fi(En) ^ (kn)~
l and 

^ Gc^hV(^E d(F)/Ball(x,6)) . 

As iL(En)-> 0 we have fcn-> » . Letting E0 = U n F n and D = D0/E0 

we claim that /A(D) > 0 and <AD( F) C Ball (x, e). 
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That ^ D ( F ) C B a l l (*,e) is proved as follows: Let D'GD, 
D' G 2 , \KD') > 0. Then D' is contained in D 0 \Uï=i Ek for all n 
so that if F(D')/ |A(D')$Ball (x,é) then F(D')lfj,(D') G 
conv(^£r f(F)\Ball (x,e)). But then by choice of the (fcj's, ju.(D') 
^ (fcn - 1)-J -» 0 contradicting p(D') > 0. 

To see that /u,(D) > 0 suppose /i(D) = 0. Then as before ix(D0) 
= fi(E0) and F(D0) = F(E0) so that 

F ( P Q ) = F(£0) 
/ I ( D 0 ) ^ E O ) 

M(£O) 

= F(£n) = UK) 
*" p(En) "* n(E0) 

= 2»Mn ^ G œ u v ( ^ ( F ) \ B a l l ( x ) € ) ) 

since 5)n /xn = 1 where /û  2= 0. 

An immediate consequence of the Rieffel Dentability theorem is the 

THEOREM. If every (closed convex) bounded subset of the Banach 
space X is dentable, then X possesses the Radon-Nikodym property. 

After the Rieffel result appeared there was a period of absorption of 
the notion of dentability. Then in 1972, Hugh Maynard provided a 
major breakthrough; using a notion closely related to that of dent-
ability he gave the first internal characterization of Banach spaces 
possessing the Radon-Nikodym property. Though Maynard's result 
did not itself provide the converse to Rieffel's sufficient condition it 
was the basis for the eventual proof of the converse. Within several 
days during the summer of 1973, W. J. Davis and R. R. Phelps and, 
independently, R. E. Huff proved the following: 

THEOREM. If the Banach space X possesses the Radon-Nikodym 
property, then every bounded subset ofX is dentable. 

The Davis-Phelps proof depended upon Maynard's result itself 
while HufTs proof was achieved by a suitably clever modification of 
Maynard's construction. As Maynard's construction is possible of 
interest in other connections we present the original Huff proof (in 
[43], Huffs proof has been considerably streamlined): 
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PROOF OF DAVIS-HUFF-MAYNARD-PHELPS THEOREM. Let K be a 

bounded, non-dentable subset of the Banach space X. Suppose X 
possesses the Radon-Nikodym property. We assume that K is con-
tained in the unit ball of X. Let 0 < e < 1 be chosen so that 

( * ) x E K i m p l i e s x G co (K\Se(x)). 

Let ft = [0,1) and let X denote Lebesgue measure on [0,1). 
We will define inductively an increasing sequence 2o C 2X C • • • C 

2 n C • • • of finite algebras or subsets of ft and additive maps Fn : Xn 

—> X such that 
(i) the atoms of 2 n partition ft into half-open intervals {Z^, I2

n, • • *, 
'p(n)}; 

(ii) Fn(Ii
n )lk(Iin) G K for all n and all 1 ^ i g p(n); 

(iii) Ijn + l C I/1 implies 

| | F n + 1 ( I / + 1) Fn+im II 2 " - l 
II X(J/ + 1) X(V) II - 2- €-

and 
(iv) || F„(E) - FB+1(£)| | =S €X(£)/2» for each E G 2„. 
To start the construction we let Xo = {0> ft} and choose any x0 

G K. Define F o ( 0 ) = 0 and F0(ft) = *0. Since x0 G K and K is non-
dentable there exists a / , • • -, a£(1) > 0, J j i V a j 1 = 1 and Ä / , 
• • -, x^(1) G K such that 

I ISSMI - • * - * ' • * • 
and 

Partition ft into finitely many disjoint half-open intervals / / , • • •, 
I*(1) such that k(Ijl) = oj1. Let 2 i be the algebra of subsets of ft 
generated by {V, • • -, Ip(i)}. Define Fx on 2 i by defining F^^1) = 

rçVforl=./=?(!)• 
Generally, if 2 n

 a n d Fn have been defined and Xn
 n a s the (pairwise 

disjoint) half-open intervals If, • • -, I j ( n ) as atoms and Fn(^n)/X(I/) 
G K for each 1 ^ j ^ p(n), we proceed to define Xn+\ and F n + 1 as 
follows: 

By the non-dentability of K we have for each 1 ^ j' ^ p(n) that 
there exists a i ( / ) , • • -, 0,^(7) > 0, 5 )2-WO') = X a n d *i(/)> 
' ' '>XQ(j)(j) G K f 0 r W n Ì C n 
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||*«(/) 
- ' $ » " 

and 

"m-lr^lH-II A« 

Partition 7̂ n into pairwise disjoint half-open intervals / ^ j ) , • • '>Jq(j)(j) 
such that if lSlSq(j) then X(/,0)) = X(7/)aÄ(/). Let 2 n + 1 

be the algebra generated by the collection {Jt(j) : 1 =j = p(n), 1 ^ £ 
g (/(/)} and define Fn + 1 on 2 n + 1 by Fn+l(Jt(j)) = X(/£(jf))x£(/). 

This completes the basic construction of the proof We now estab-
lish (i) through (iv) for the sequence of pairs (£n , Fn). The construc-
tion itself contains (i) and (ii). Note that 

= \\X 

= || **(/)- f «*(/X(/)|| 

*IM>--§^ 

-Hi; ^ .« -^ I I 
^ e 2n - 1 

2n 2n 

which establishes (iii). Next observe that 

q(j) 

| |F n ( / / ) -F n + 1 ( / / ) | |= | | F n ( / / ) - 2 f»+i(/*(/)) || 

<Ki) 

= W ) - E xa/KC/xo*) 
* = i 

Il F (Ln) qU) 

"À(«l|-iw)-.?1*<^w 

S XW £ 
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which by the fact that each E G 2 n is the disjoint union of some Ijn's 
yields 

| | F B ( E ) - F n + 1 ( E ) | | S J L X ( E ) 

for each E G 2n> i.e., (iv) is established. 
Along with (i) and (iv) we have 
(v) | | F n ( E ) | | S X ( E ) , f o r e a c h E E 2 n , 

and (as an easy consequence of (iv)), 
(vi) \\Fn(E)lk(E)-Fn+l(E)lk(E)\\^el* for all E G 2 n , with 

k(E) > 0. 
Let <A = U n 2„ . Then J{ is an algebra of subsets of ft. By (iv), if we 

let E G eft then E G 2 n for all sufficiently large n and limnFn(£) = 
F(E) exists. Clearly F : ^4 —> X is additive and by (v) satisfies 
||F(E)|| ^ X(E) for each E EJf. Thus F : <A -> X is countable addi-
tive and strongly additive on the algebra <A. By the Kluvanek exten-
sion theorem [45], F extends to a countable additive F defined on 
the sigma-algebra 2 of subsets of ft generated by Jf-, If / G X* is 
given and ||/ | | ^ 1 then for each E G 2 we have by (v) 

| /(F(E)) | = Il invS/FfE,)! = l im„E/F(Ei) l 

^ l i n v E l / ^ E O I ^ l i n v E V E . ) 

= X(E), 

(where TT ranges over all countable disjoint coverings of E by members 
Eu • - -, Ek, • • • of J{ and TTX = TT2 means each member of TT2 is a 
union of members of 77 x). Thus, 

(vii) | |F(E) | |gA(E) 
holds for each E G I Thus F is of bounded variation and is domi-
nated by X. 

Since X has the Radon-Nikodym property, F is differentiate with 
respect to X, say F(£) = IE/(W) dk(w) holds for each E G 2-

By the necessity of Rieffel's dentability theorem (Theorem 2.1) and 
the result of STEP ONE of the sufficiency part of the same theorem we 
have that given B' G 2 with X(B') > 0 there exists B Ê X , B C B ' , 
X(B) > 0 with diameter &4B( F) < e/10. We shall show however 
that F as constructed satisfies diameter J$B(F)^ e/4 for all B G 2 
wi thX(B)>0. The resulting contradiction will finish the proof. 

First we observe that for n S 4 if Z/* + 1 is contained in If then 

(vin) II 
K ' II x(/»+ 1) MUn) 
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For if n è 4 and Z/* + 1 is contained in If1 then for all m ^ n + 1 

Fm(L" + ') Fm(im > | | Fn + .(// + 1) Fn+1(/i") 
X(i,»+1) X(Z,»)|| ~ l l \(Ijn+1) X(Z/») 

Fn(Iin) FB+1(Z,") II | |F w + 1 (y+' ) Fm(Zn"+') 
X(J«») X(7,») II II X(7/-+1) X(Z/" + I) 

^ 2 " - l __e__ y || F.dr1) Ffc+1(4"+1) 
~ 2» 2» fc_f+1 | | X(Z/—) X(Z/-') 

by (iii) and (vi) 

> 2" - 2 £ y e -g. 2" - 2£ c _ 2 » - 3 £ > c 
— 2n *=„+i2fc — 2" € 2" 2" € 2 * 

Now (viii) follows by letting m —» « . 
Let B G 2 be given with X(B) > 0. 
Since 2 is generated by <A there exists £ G cfi such that X(£\B) + 

X(B\E)<(e/16)X(B),sothat 

k(E\B) < -^-X(B) - \(B\E) 

= i ^ - [ X ( B ) - X ( B \ E ) ] 

= ^ - X ( B O £ ) . 

E must be a Sn f°r some n ^ 4. Thus E is the union of some Z '̂s, say 
E = UjGK^n- Th e n clearly some '̂o G Khas 

0 < \ ( / - o \ B ) < € / 1 6 \ ( I \ n ß ) 

since E is the disjoint union of the If's as i ranges through K and 
A(£\B) < (€/16)X (E PI B). 

Look at I\ PI B = C. Clearly 
(ix) X(P io\C)<€/16X(C) 

so that k(C) > 0, So we are in the same position with C that we started 
with B. We can conclude that there exists Pv*-1 C In

Jo such that if 
D = Z^+1 H C then k(In.+ l\D) < (e/16)X(D). Again X(D) > 0. 

By (viii) and the inclusion In.+Ì C T)Q we have 

F(f},+ 1) j W l k € 
w "xar1) ^ o ) i i ~ 2 
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It is readily checked that 

(») M HIV F(C) II _ K(Il\C) II F(I%\C) Ë(ip 
K ' \\k(I\) X(C) II X(C) IU(/«0\C) X(Z«Jo) 

which by (ix), ^ (e/16) • 2 = e/8. Likewise, 

(***) 
A ^ 1 ) X(D) I I - 8 

Thus, from (*), (**) and (***), || ( F( C)/A( C) ) - ( F ( D ) / 
X(D))|| è e/4 and we have shown that diameter ^ B ( F ) ^ e/4, as we 
wanted. 

The combined effect, of course, of the above results is that a Banach 
space X possesses the Radon-Nikodym property if and only if every 
(closed) bounded (convex) subset of X is dentable. Immediate from 
this and Maynard's observation (5) above (J. Uhi has given a prior 
analytic proof of this result in [46] ) is the 

THEOREM. Let Xbea Banach space. Then TFAE: 
(1) X possesses the Radon-Nikodym property; 
(2) every closed linear subspace of X possesses the Radon-Nikodym 

property; 
(3) every separable closed linear subspace ofX possesses the Radon-

Nikodym property. 

Consequently if every separable subspace of X has a separable 
dual then X* posseses the Radon-Nikodym property. 

The fact that the Radon-Nikodym property is separably determined 
is an immediate consequence of Maynard's observation that a set is 
dentable whenever each of its countable subsets is dentable. That this 
is so is most easily seen by considering a non-dentable set B in the 
Banach space X: pick any point b G B. There is an e > 0 such that 
b E c o n v ( B \ B a l l (b,e)). Thus there exist b^l\ • • -, b ^ in B at 
distance more than e away from b with ^ W 1 ^ 1 * close to fo, for 
some Ai(1), • • • , A j ( i , ^ 0 , S ^ i V 1 * = 1. Similarly with each fy» 
we can find bJ

(2) (t)'s in B\Ball (bi(1), €) such that an appropriate convex 
combination of the b/2) (Ï) yields a good estimate to b(1). Repeat this 
procedure on bji2)(i)'s, etc., etc.: the resulting countable collection is 
non-dentable. 

Another immediate consequence of the Davis-Huff-Maynard-Phelps 
Theorem along with RieffeFs Theorem is the following result of Davis 
and Phelps [44]: 
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COROLLARY. A Banach space X possesses the Radon-Nikodym 
property if and only if every equivalent renorming of X produces a 
dentable closed unit ball. 

Before continuing with our discussion of the geometric aspects of 
the Radon-Nikodym Theorem it is perhaps wise to recall historically 
the first applications of the theorem to the structure theory of Banach 
spaces. Probably the best known (though not always known to be an 
application of a Radon-Nikodym Theorem) is the application men-
tioned in Part I: neither c0 nor Lx (0,1) are isomorphic to dual spaces. 
Why? Again, both are separable and do not possess the Radon-
Nikodym property. Now everyone recalls from a first course in func-
tional analysis the usual proof that c0 and LY (0,1) are not (isometric 
to) dual spaces. Their unit balls haven't nearly enough extreme 
points, so by the Krein-Milman Theorem they can't be duals. Of 
course, using just the classical Krein-Milman Theorem the isometric 
result is all that one can conclude. An isomorphic version is also 
available. 

We say that a Banach space X possesses the Krein-Milman property 
([47] ) whenever every closed bounded convex subset of X possesses 
an extreme point. Clearly the Krein-Milman property is an iso-
morphic invariant. If X possesses the Krein-Milman property, then 
every closed bounded convex subset of X is the closed convex hull of 
its extreme points ([47]). The classical Krein-Milman Theorem 
yields that reflexive Banach spaces possess the Krein-Milman property. 
J. Lindenstrauss ( [47] ) showed that £i(r) possesses the Krein-
Milman property and C. Bessaga and A. Pelczynski [48] showed 
that all separable conjugate spaces possess the Krein-Milman property. 
As c0 and Lx(0,1) do not possess the Krein-Milman property, again 
one can see that neither is isomorphic to a dual. 

The close relationship between the Krein-Milman and Radon-
Nikodym properties both historically (insofar as applications are con-
cerned) and conceptually (especially in light of the Rieffel-Davis-
Huff-Maynard-Phelps Theorem) leads us to ask 

PROBLEM 8. Are the Krein-Milman and Radon-Nikodym properties 
equivalent? 

We first posed this in the first write-up of these notes and there has 
been considerable progress already. First, J. Lindenstrauss showed 
that the Radon-Nikodym property implies the Krein-Milman property 
(his proof appears in [49] ). His proof is so elegant and simple it 
requires repetition: let B be a non-empty closed bounded convex sub-
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set of the Banach space X. Let € j= 0 be given. Pick x G B s o that x 
is not a member of conv (B)\Ball (x, e/2)). Pictorially, see Figure 3. 
Now separate x from conv (B\Ball (x, e/2)) by a hyperplane; pictorially 
see Figure 4. By the Bishop-Phelps Theorem we can push the hyper-
plane to miss conv (B\Ball (x,€/2)) yet support B. (See Figure 5). Of 
course the face (the face of a hyperplane is the collection of points of 
B at which the corresponding functional achieves its max) of this new 
hyperplane in B — call it Bx — has diameter ^ e. 

m 
Figure 3 

4Q 
Figure 4 

Figure 5 



THE RADON-NIKODYM THEOREM 25 

Now apply the same procedure to Bx yielding a face of Bx of diam-
eter 2g e/2. Continuing in this fashion we get a sequence Bn of closed 
bounded convex sets, diameter Bn ̂  ein, each Bn a face of Bn_x. Thus 
Pln Bn consists of a single point which by the facial nature of the Bn's 
is necessarily extreme. 

The converse to Problem 8 remains open (there has been a signifi-
cant contribution which we discuss later). In fact the following is not 
yet known concerning the Krein-Milman property: 

PROBLEM 9. If every separable subspace of X possesses the Krein-
Milman property need X possess the Krein-Milman property? 

After Lindenstrauss' result, a number of improvements of the basic 
implications regarding the extremal structure of closed bounded con-
vex sets in Banach spaces with the Radon-Nikodym property were 
discovered by R. R. Phelps [49]. We summarize them in the fol-
lowing: 

THEOREM. Let Xbea Banach space. Then TFAE: 
(1) X possesses the Radon-Nikodym property; 
(2) every bounded subset ofX is dentable; 
(3) every closed, bounded, convex subset ofX is dentable; 
(4) every closed, bounded, convex subset ofX has a denting point; 
(5) every closed, bounded, convex subset of X is the closed convex 

hull of its denting points; 
(6) every closed, bounded, convex subset of X has a strongly ex

posed point; 
(7) every closed, bounded, convex subset of X is the closed convex 

hull of its strongly exposed points. 

The proofs of many of the implications in [49] are reminiscent of 
those found in the proof of the original Bishop-Phelps Theorem ( [50] ). 
This similarity is probably not accidental. 

We say that a Banach space X possesses the Bishop-Phelps property 
whenever given a closed, bounded, absolutely convex set B C X and a 
Banach space Y the collection of continuous linear operators from X 
to Y which achieve the maximum norm on B is uniformly dense in the 
space of all continuous linear operators from X to Y. Clearly, the 
Bishop-Phelps property is an isomorphic invariant. This property 
was studied by J. Lindenstrauss in [38] who showed that if X is a 
reflexive Banach space then X possesses the Bishop-Phelps property. 
In light of [38] and the aforementioned results of R. Phelps we have 
that any Banach space with an equivalent locally uniformly convex 
norm (a Banach space is said to be locally uniformly convex whenever 
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given xn, x0EX \\xn\\ = 1 = ||x0|| and ||xn + x0|| -> 2 implies ||xn - x0|| 
—> 0) possessing the Bishop-Phelps property possesses the Radon-
Nikodym property. Based partially upon Phelps results and partially 
upon the knowledge of existing examples we ask 

PROBLEM 10. If a Banach space X possesses the Bishop-Phelps prop-
erty (respectively the Radon-Nikodym property) then need X be 
locally uniformly convexifiable? 

Similarly, 

PROBLEM 11. Are the Bishop-Phelps and Radon-Nikodym properties 
equivalent? 

Another indication of the relationship of the Bishop-Phelps theorem 
and the Radon-Nikodym property can be found in the study of various 
types of smoothness and convexity properties of a norm in Banach 
spaces. Recall that a Banach space X is called smooth whenever each 
non-zero point x £ X has a unique support functional in X*; in this 
case one obtains a natural norm-to-weak-star continuous map from the 
sphere of X to that of X*. If this spherical image map is norm-to-weak 
continuous X is said to be very smooth; if it is norm-to-norm continu-
ous X*s norm is said to be Frechet differentiable. 

An easy consequence of Mazur's theorem and the Bishop-Phelps 
theorem is the 

THEOREM. If X possesses an equivalent very smooth norm then X* 
possesses the Radon-Nikodym property. 

This result was first proved somewhat indirecdy by E. Leonard and 
K. Sundaresan in [51] where it was shown that if E's norm was 
Frechet differentiable then for 1 < p < <» so too was LE

P(Q, l)'s norm 
in which case LE

P(0,1)* = LE*P'(0,1); an appeal to the results of N. 
Gretsky and J. J. Uhi Jr. [52] finishes the proof. A direct proof of 
the above theorem was given in [ 19] ; a consequence of the above 
results found in [19] concerns renorming of C(fì)-spaces. Its proof 
indicates how Radon-Nikodym considerations can play an effective 
role in Banach space theory. 

THEOREM. If C(fi) is a Grothendieck space (il an infinite compact 
Hausdorff space) then C(ü) cannot be renormed smoothly. 

PROOF. (Recall a Grothendieck space is a Banach space X for which 
weak-star and weak sequential convergence in X* are the same). 

Suppose C(fì) is a smoothable Grothendieck space. In its smooth 
norm, C(ft) is still a Grothendieck space. Thus, in this new norm C(fì) 
is very smooth. Thus, C(fì)* possesses the Radon-Nikodym property. 
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As the Radon-Nikodym property is an isomorphic invariant we can 
assume that C(fi) — in its usual norm —has a dual with the Radon-
Nikodym property. But C(fl)'s dual is an I ^ / L I ) and L1(/LI),S have the 
Radon-Nikodym property if and only if /ut is purely atomic, i.e., C(fi)* is 
an &i(r) space. But then fi must be a dispersed compact HausdorfF 
space ([53] ), i.e., contains no perfect subsets. If we now take any se-
quence of distinct points of fi it must have a convergent subsequence, 
otherwise, its set of limit points would be perfect; thus fi is sequentially 
compact. Let (wn) be a sequence of distinct points of fi converging in 
fi to w0. Then denoting by 8W the point-mass concentrated at w G fi 
we have 8Wn -> 8Wo weak-star in C(fi)*. But C(fi) is a Grothendieck 
space so 8Wn -» 8WQ weakly. As C(fi)* = £ i (0 , 8Wr -> 8WQ in norm. 
This is absurd since for n ^ m \\8Wn — 8Wm || = 2!! 

The above proof avoids the usual calculations of M. M. Day [54] 
and also extends his result to some extent. Also it suggests a possible 
affirmative answer to the 

PROBLEM 12. If X is a Grothendieck space and X* possesses the 
Radon-Nikodym property then need X be reflexive? In particular, if 
X is a Grothendieck space with an equivalent (very) smooth norm need 
X be reflexive? 

The smoothness conditions on a Banach space are invariably some-
what dual to convexity conditions on the dual space. 

We say that the Banach space X is strictly convex whenever every 
norm one element of X is an extreme point of the closed unit ball of 
X; we say X is weakly locally uniformly convex whenever given xn> x0 

G X, ||jcn|| = 1 = ||x0|| and \\xn + x0\\ -» 2 we have xn—• x0 weakly. Of 
course, locally uniformly convex spaces are weakly locally uniformly 
convex; in turn, weakly locally uniformly convex spaces are strictly 
convex. 

If X* is weakly locally uniformly convex then X* is strictly convex 
so X is smooth. Thus there is a (unique) spherical image map of 
X's unit sphere to X*'s which is || • ||-to-weak-star continuous. As is 
easily seen, weak-star and weak sequential convergence on the unit 
sphere of X* coincide so X is very smooth. Thus (weakly) locally 
uniformly convex dual spaces possess the Radon-Nikodym property. 
We know of no dual space which possesses the Radon-Nikodym 
property which is not "in some way" dually (weakly) locally uniformly 
convexifiable. Thus 

PROBLEM 13. If X* possesses the Radon-Nikodym property then need 
there exist a Banach space Y such that Y* is isometric (isomorphic) to 
X* and Y* is dually locally uniformly convex? 
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As one quickly sees most of the affirmative information that has been 
gathered has concerned dual spaces. In fact in the case of dual spaces 
several of our above questions (Problems 1 and 8) have been answered 
in the affirmative. The most spectacular result is that of C. Stegall 
who showed in [55] : 

THEOREM. For any Banach space X, TFAE: 
(1) X* possesses the Radon-Nikodym property; 
(2) every separable subspace ofX has a separable dual; 
(3) every separable subspace of X* imbeds in some separable dual 
Consequently, the dual of a separable Banach space possesses the 

Radon-Nikodym property if and only if it is separable. 

The proof of Stegall is found in somewhat modified form in [0] 
(most of the modifications in [0] are due to R. E. Huff); perhaps a 
few applications of Stegall's theorem are in order; first, however we 
remark that using the Stegall construction, R. E. Huff and P. Morris 
([56]) have proved that for dual spaces the Krein-Milman property 
is equivalent to the Radon-Nikodym property. So for example Banach 
spaces with boundedly complete Markusevich bases ([57]) possess 
the Radon-Nikodym property (this result was noted by P. Kranz and 
the authors but follows more easily from the results of S. Troyanski 
[57] and the Huff-Morris result). Similarly, if X is a strong differen
tiability space in the sense of E. Asplund ( [58] ) then X* possesses 
the Radon-Nikodym property (this follows from results of [59] for 
example). Thus for dual spaces there are a number of ways in which 
one can test for the Radon-Nikodym property; of some interest would 
be an affirmative answer to the following, 

PROBLEM 14. If X* possesses the Radon-Nikodym property then 
need X* possess a boundedly complete Markusevich basis (we refer 
the interested reader to [57], [60], and [61] for various dis-
cussions of Markusevich bases)? 

Returning to Stegall's theorem we note first the following: 

COROLLARY. Let X* possesses the Radon-Nikodym property. Let 
Y be any quotient of any subspace ofX. Then Y* possesses the Radon-
Nikodym property. 

On to the applications of Stegall's theorem: 

APPLICATION 1. If X* possesses the Radon-Nikodym property then 
bounded sequences in X have weak Cauchy subsequences. 

Indeed, if (xn) C X is a bounded sequence then the closed linear 
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span [xn] of (xn) is a separable subspace of X. By Stegall's theorem 
and its corollary, [xn] * possesses the Radon-Nikodym property hence 
is separable; thus (xn) has a o-([xn], [xn] *)-Cauchy subsequence. 
Clearly this subsequence is also weak Cauchy in X. 

Thus a weakly sequentially complete Banach space X with X* 
possessing the Radon-Nikodym property is reflexive. 

(If one wanted to, one could prove the above avoiding the Stegall 
result quoted above; however some hammers must be used —for 
example the results of [62], [63] and the fact that LJO, 1] does 
not possess the Radon-Nikodym property will suffice). 

Another application is to topological tensor products: 

APPLICATION 2. Suppose X, Y are Banach spaces with X* and Y* 
possessing the Radon-Nikodym property and either X* or Y* possess
ing the approximation property. Then the projective tensor product 
X* <£> Y* possesses the Radon-Nikodym property. 

In fact, by (G 10) of Part II, whichever of X* or Y* possesses the 
approximation property also possesses the metric approximation 
property. It follows therefore that X* ® Y* coincides (isometrically) 
with the class of nuclear operators from X to Y* which by (G 9) is 
isometric to the class of integral operators from X to Y*. But the 
integral operators from X to Y* is the dual of the injective tensor 
product X ® Y of X and Y. Thus X* <£> Y* is a dual space. Let S be 
a separable closed linear subspace of X <8> Y. Then there exists separ-
able closed linear subspaces X0 and Y0 of X and Y such that S is a 
subspace of X0 ® %. But (%o ® Y0)* is isometric to the space of 
integral operators from X0 to Y0*. By the corollary to Stegall's theorem, 
Y0* possesses the Radon-Nikodym property so by (G 9) the space of 
integral operators from X0 to Y0* is identical to the space of nuclear 
operators from X0 to Y0*. By Stegall's theorem both X0* and Y0* are 
separable, so the space of nuclear operators from X0 to Y0* is separable. 
Thus (X0 ® Y0)* is separable and so, by the Dunford-Pettis theorem, 
possesses the Radon-Nikodym property. By the corollary to Stegall's 
theorem S* is separable. Thus every separable subspace of the pre-
dual of X* ® Y* has separable dual. It follows that X* ® Y* possesses 
the Radon-Nikodym property. 

The use of the fact that the spaces involved were dual spaces in the 
above proof is clear; it is not clear that the dual nature of the spaces is 
necessary. Thus the 

PROBLEM 15. If X and Y possess the Radon-Nikodym property then 
does X <8> Y? 
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Epilogue. In the preceding, weVe developed a number of formula-
tions of the Radon-Nikodym property. It might be of some use to 
collect these. So we state the, 

THEOREM. Let Xbea Banach space. Then TFAE: 
(1) X possesses the Radon-Nikodym property; 
(2) every closed linear subspace of X possesses the Radon-Nikodym 

property; 
(3) every separable closed linear subspace ofX possesses the Radon-

Nikodym property; 
(4) every function f : [0,1] —• X of bounded variation is differen

tiate almost everywhere; 
(5) every absolutely continuous function f: [0,1] —»X is differen

tiate almost everywhere with 

f(b)-f(a)= \b f'(t)dt 

for any a9 b G [0,1] ; 
(6) every continuous linear operator T :L 1 [0 ,1 ] —» X factors 

through £1? i.e., given T there exist continuous linear operators 
R : ii —> X and S : LY [0,1] —> &l such that the diagram 

Lx [0,1] —^X 

v 
commutes; 

(7) for every compact Hausdorff topological space il the absolutely 
summing, integral and nuclear operators from C( fl) to X are isometri
cally identical; 

(8) for every Banach space Y the Pietsch integral operators ( [64] ) 
from Y into X coincide (isometrically) with the nuclear linear oper
ators from Y into X; 

(9) every (closed) bounded (convex) subset ofX is dentable; 
(10) every closed bounded convex subset of X has denting points 

and is the closed convex hull of such; 
(11) every closed bounded convex subset ofX has strongly exposed 

points and is the closed convex hull of such. 
If there is a Banach space Y such that X is isomorphic to Y* then 

(1) through (11) are equivalent to 
(12) every separable subspace of Y has a separable dual; 
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(13) every separable subspace of X is isomorphic to a subspace 
of a separable dual; 

(14) every closed bounded convex subset of X has extreme points 
and is the closed convex hull of such; 

(15) For 1 g p < oo, Lp(/u, X)* = Lp,(fx, X*) where p~l + ( p ' ) " 1 

= 1. 

Concerning spaces with or without the Radon-Nikodym property 
we have 

Radon-Nikodym Property 

Yes No 

separable duals 

reflective spaces 

weakly compactly generated duals 

duals of Frechet differentiable 
spaces 

duals of strong differentiable 
spaces [49] 

locally uniformly convex duals, 

Lp(fi)l<p< oo 
£x (r), r any set 

nuclear operators between Lp, Lq 

quasi-reflexive spaces 

X**, X* when X**/X is separable [65] 

X * , i f { G E X * * | | G | | g l } i s 
Eberlein compact weak star 
topology [65] 

X* when contained in a weakly 
compactly generated space [65] 

unconditionally convergent 
series in reflexive space (or any 
dual space with Radon-Nikodym 

absolutely convergent series in 
a reflexive space (or any space 
with Radon-Nikodym) 

Co 

^ [ 0 , 1 ] 
C(fl), fì infinite compact, 

Hausdorff 

Li( /ut), /Lt not purely atomic 

Loo( /x), fi non-trivial 

Largely because it never seemed to fit in the previous sections we 
have not remarked upon a fundamental method of W. J. Davis, T. 
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Figiel, W. B. Johnson and A. Pelczynski [66] concerning factorization 
of operators. One particular variation of this method yields that weak-
ly compact linear operators factor through reflexive spaces. A moment's 
reflection leads to a quick derivation of the Dunford-Pettis-Phillips 
theorem as an immediate consequence of the Dunford-Pettis theorem. 
Another variation of the Davis et al. construction is the fact that separ-
able duals are subspaces of spaces with boundedly complete bases 
(this is actually dependent also upon the deep results of [67] ) so the 
Dunford-Pettis theorem follows from the Dunford-Morse result. As all 
of classical vector measures is, in a sense, the study of weakly compact 
operators the paper of Davis, Figiel, Johnson and Pelczynski is must 
reading for workers in the area. 

Finally, we have to admit to concentrating our attentions on a rather 
special topic: the Radon-Nikodym theorem as it pertains to Banach 
space theory. Applications to the study of non-linear operators (see 
[68], [69] for example) or probability theory (see [69], [70] or 
[71] ) were not discussed. The role of the Radon-Nikodym theorem 
in the topological classification of Frechet spaces (see [72] ) was 
never mentioned. Perhaps our greatest oversight has been neglecting 
the basic work of E. Thomas [73] on the Radon-Nikodym theorem 
in general spaces. 

Added in Proof. Since the submission of the original manuscript, 
there has been a great deal of progress in the study of the Radon-
Nikodym property. It seems like no time is better than the present to 
report on this progress. As is usual, attendant to this progress are new 
problems — we mention these as well. 

Once one knows of the existence of many extreme points for closed 
bounded convex subsets of a Banach space with the Radon-Nikodym 
property, it is natural to ask if Choquet-type theorems might not be 
possible. Such is the case. G. A. Edgar [Al] demonstrated the first 
such result showing the following 

THEOREM. Let Kbe a separable closed bounded convex subset of a 
Banach space X that has the Radon-Nikodym property. Let x £ K 
Then there is a Borei probability measure fi defined on K such that x is 
the resolvent of fi and /x(ext K) = 1. 

It should be mentioned that in the case of separable Banach spaces 
(in fact, more generally, separable Fréchet spaces) the extreme points 
of closed bounded convex sets are universally measurable, a fact due to 
R. Bourgin [ A2] ; thus the statement /*(ext K) = 1 makes sense. 

The possibility of neat extensions of Edgar's result to nonseparable 
closed bounded convex sets is discussed in [A3] ; it seems 
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plausible at this time that a Choquet theorem of the sort that each 
point of a closed bounded convex set K in a Radon-Nikodym space is 
representable by a probability measure /ut defined on the Borei subsets 
of K which satisfies /x(B) = 1 for any Borei set B D ext K can be 
proved. Such a result would be a very exciting complement to Edgar's 
result. 

A few words on Edgar's method of proof are in order, particularly 
since the proof is so beautiful. The idea is as follows: take a point x 
in K. If x is extreme, then the obvious point mass has x as a resolvent. 
If not, then x is the midpoint of some nontrivial line segment in K; if 
the endpoints of this segment are extreme points, fine: average the 
point masses. Otherwise, one-or-both-of these endpoints is the mid-
point of some nontrivial line segment in K; continue this process. The 
hope is that the endpoints will fan out to the edges of the set K; of 
course, this isn't going to happen but one can hope. What is happen-
ing though is that we are constructing a K-valued martingale (look 
at the Huff construction). Now a fact of life in Banach spaces (proved 
by S. D. Chatterji [A4] ) is that the Radon-Nikodym property for X is 
equivalent to the convergence of bounded equi-integrable martin-
gales in Li(fi, X) for all pi's. Thus the martingale constructed above 
converges to some bounded measurable K-valued function f defined 
on K which, it is hoped, lives further out towards the edges of K than 
x is. We wish to continue pushing the range of / out towards the 
edges — it is unlikely that fs range already lies in the extreme points 
of K. To keep spreading / out, we use the Kuratowski-Ryll-Nardzew-
ski selection theorem [A5] to find universally measurable functions 
/ i , f2 on K to K which satisfy (fx + /2)/2 = / with /i(fc) = /(*) if 
and only if f(k) is extreme. Repetition of the first part of the argu-
ment, only now dealing with measurable functions rather than simple 
functions again produces a convergent martingale; now a transfinite 
induction allows one to continue the process through all the count-
able ordinals. The process is easily seen at each point of K to be a 
continuous process from the ordinals less than the first uncountable 
ordinal to K. Thus, there is a countable stopping time at each point of 
K. But at the stopping time, the procedure of construction insures us 
that the value is an extreme point. Of course, along the way, we've 
been carrying the probability measure /ut ' defined on the Borei sets of 
the two-point space {0,1} raised to the power lì, where fi denotes the 
first uncountable ordinal. The fact that the limit function g given by 
the stopping time's value has its values in the extreme points of K 
allows one to define /x(B) = Jßgrf/ut'. It is a routine calculation to 
see that /ut is the representing measure for x. 
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Since Edgar's result, there has been considerable effort on proving 
uniqueness theorems for the representing measures; the paper of R. 
Bourgin and G. A. Edgar [A6] extends the classical simplex charac-
terization in a totally natural but highly nontrivial manner to this 
noncompact situation. 

Though the equivalence of the Krein-Milman property with the 
Radon-Nikodym property remains open, a variation of the Krein-
Milman property has been shown to be equivalent to the Radon-
Nikodym property by Bob Huff and Peter Morris. We say that a 
Banach space X has the strong Krein-Milman property whenever each 
closed bounded subset of X contains an extreme point of its closed 
convex hull. Huff and Morris [A7] proved the following 

THEOREM. Each of the following statements imply all of the others: 
(1) X has the Radon-Nikodym property; 
(2) each closed bounded subset ofX contains an extreme point of its 

convex hull; 
(3) X has the strong Krein-Milman property; 
(4) for each closed bounded convex subset K of X, the set of ele

ments in X* which strongly expose some point ofX is dense in X*. 
(5) X does not have the following property: There exists a closed 

subset K contained in the interior of a closed bounded convex set C in 
Xwith~cö(K)= C. 

A key step in the proof of the above theorem is a lemma which is a 
modification of the key lemma of the Davis-Phelps proof of the equiva-
lence of dentability of arbitrary bounded subsets of X with X having 
the Radon-Nikodym property. This lemma, which promises to be of 
considerable use in future constructions highlights dentability as a 
compactness type property. It bears mention. 

LEMMA (DAVIS-HUFF-MORRIS-PHELPS). Suppose Kisa closed convex 
nondentable set with nonempty interior KP. Then there exists r > 0 
such that 

K ° = c o ( K ° \ Û {y G X-.Wy-x^Kr}) 
i = ì 

for any finite subset {xx, • • -, xn} Ç. K. 

In the fall of 1974, Isaac Namioka and Bob Phelps turned their atten-
tions to a class of spaces introduced by E. Asplund. Called by Asplund 
strong differentiability spaces; these spaces have come to be known as 
Asplund spaces: a Banach space X is said to be an Asplund space 
whenever every continuous convex function defined on an open con-
vex domain in X has a dense domain of Fréchet differentiability. 
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Asplund [A8] essentially showed that if X admits an equivalent 
norm whose dual norm is locally uniformly convex, then X is an 
Asplund space; in particular, if X* is reflexive or separable then X is 
an Asplund space (this requires a number of deep renorming theorems 
which one may find in [A9] or [AIO] ). Asplund also estab-
lished the 

THEOREM. If X is an Asplund space, then each weak* compact con-
vex subset ofX* is the weak* closed convex hull of its weak* strongly 
exposed points (A weak* strongly exposed point of K Q X* is a strong-
ly exposed point whose exposing functional is back in X). 

Namioka and Phelps established the converse, i.e., X is an Asplund 
space if and only if weak* compact convex subsets ofX* are the weak* 
closed convex hulls of their weak* strongly exposed points. 

Using this result, they were able to establish some striking stability 
properties for the class of Asplund spaces; previously Asplund had 
shown that the property of being an Asplund space was preserved by 
quotient maps; using the Namioka-Phelps characterization, one actually 
has the 

THEOREM. If X is any subspace of a quotient of an Asplund space, 
then X is also an Asplund space. 

Moreover, if (Xn)n^i a r e Asplund spaces, then (2 n © ^n)i > (2„ © 
Xn)Co are Asplund spaces for any 1 < p < oo. 

It is easily established that if X is an Asplund space, X* has the 
Radon-Nikodym property. This suggests the 

PROBLEM 16. If X* has the Radon-Nikodym property, need X be an 
Asplund space? 

This problem was originally raised by Bob Phelps and already there 
has been significant progress on it. Collier [All] and Namioka 
and Phelps [A12] have shown that if X* is weakly compactly gen-
erated, then X is an Asplund space. Also, if C((i)* has the Radon-
Nikodym property (which happens if and only if fl is dispersed), then 
C((î) is an Asplund space. Peter Morris showed that if X is a subspace 
of some weakly compactly generated Banach space and X* has the 
Radon-Nikodym property, then X is an Asplund space. 

It seems likely that an affirmative solution is in the offing to 

PROBLEM 17. If X* has the Radon-Nikodym property and X embeds 
in a weakly compactly generated space, need X be weakly compactly 
generated? 
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This would constitute a simultaneous extension of the Friedland-
John-Zizler theorem ([A13], [A14]): if X has a Frechet differ en-
liable norm and X embeds in a weakly compactly generated space, 
then X is weakly compactly generated, and the recent result of John 
and Zizler [A16] : if both X and X* embed in weakly compactly 
generated spaces, then X is weakly compactly generated. That the 
latter result would be extended is a consequence of Kuo's theorem: if 
X* is a subspace of a weakly compactly generated space, then X* has 
the Radon-Nikodym property. When the original manuscript of this 
paper was submitted only Kuo's original proof of this fact was avail-
able; since that time, Peter Morris has derived a truly beautiful and 
elegant proof which bears repeating: we want to show that every 
separable subspace of X has a separable dual; take a separable sub-
space S of X. By a classical result of Banach and Mazur, there is a 
quotient map Q: Zl°^> S. Q* : S* -*£«, is an imbedding. Since S is 
a subspace of X, S* is a quotient of X*. So we have the diagram 

R p* 

1 
Y 

where R is the quotient map of X* onto S* and Y is the weakly com-
pactly generated space that contains X*. The map Q*R takes its 
values in the injective space £oo([A18]) so can be extended to a 
bounded linear operator M : Y—> £«. Of course, MY is a weakly com-
pactly generated linear subspace of £«; but weakly compact subsets 
of £oo are separable, so the range of M (and consequently, Q*S*) is 
separable. Since S* is isomorphic to Ç>*S*, S* is separable. FINIS 

It should be remarked here that the above results are sharp; in fact, 
H. P. Rosenthal's example [A19] of a nonweakly compactly gen-
erated subspace of a weakly compactly generated space is a dual 
space. Hence, it has the Radon-Nikodym property though it is not 
weakly compactly generated. 

Before leaving the subject of Asplund spaces, we mention a few more 
problems: 

PROBLEM 18. If X is an Asplund space, need X admit an equivalent 
Fréchet differentiable norm? 

PROBLEM 19. If X admits an equivalent Fréchet differentiable norm 
then need X be an Asplund space? 
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PROBLEM 20. If X* has the Radon-Nikodym property, then need X 
have an equivalent Fréchet differentiable norm? 

PROBLEM 21. If X and Y are Asplund spaces, need X ® Y, the injec-
tive tensor product of X, Y, be an Asplund space? 

When studying elementary functional analysis, the first example of 
a separable Banach space with nonseparable dual is JZq. For many 
years, it was open as to whether or not this might not be the funda-
mental culprit, i.e., if X is separable and X* not, then maybe lx lies 
somewhere in X. Such a possibility was put to rest by R. C. James 
[A20] who constructed a Banach space called "James tree space" 
denoted by JT that had the following startling properties (many of 
these properties were established by J. Lindenstrauss and C. Stegall 
[A21]): 

1. JT is a separable dual space which does not contain £x; 
2. JT* is nonseparable and does not contain H1 or c0; 
3. JT**, JT****, • • -, all the even duals of JT are weakly compactly 

generated; 
4. JT*, JT***, • • -, all the odd duals of JT fail the Radon-Nikodym 

property; in particular, none are weakly compactly generated. 
Notwithstanding the space JT, the containment or noncontainment 

of &! is closely related to geometric problems with Radon-Nikodym 
flavor. Most of these relations are based on a spectacular result of 
Haskell Rosenthal [A22] : a Banach space X contains £x if and 
only if X admits a bounded sequence (xn) which has no weak Cauchy 
subsequences. Based in part on the Rosenthal constructions, Rosen-
thal and Ted Odell [ A23] showed the results for separable spaces: 

THEOREM. X contains no subspace isomorphic to £x if and only if 
weak* compact convex subsets of X* are the norm-closed convex hull 
of their extreme points. 

Thus the James tree space shows that the full power of Krein-Milman 
is needed in dual spaces to deduce the Radon-Nikodym property; 
Stegall's construction of [ A24] is sharp! 

Using the tools developed by Rosenthal in [A22] and calling 
upon his own rather impressive collection of mathematical weapons, 
Bill Johnson [A25] showed the following: 

THEOREM. Suppose X* contains £x; however, whenever 11 imbeds in 
X*, the unit vector basis of £x never has a weak* convergent subse
quence. Then l Y imbeds in X. 

COROLLARY. If X is a Grothendieck space and X* has the Radon-
Nikodym property, then X is reflexive. 
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COROLLARY. If X is a Grothendieck space admitting an equivalent 
smooth norm, then X is reflexive. 

The attentive reader will note that these last two corollaries also 
resolve problem 12 in the affirmative. 

It ought to be mentioned at this juncture that Bill Johnson [A26] 
has also given the following improvement on Stegall's theorem: Let 
X* have the Radon-Nikodym property and S Ç X* be a separable 
closed linear subspace, then there exists a separable dual Y contained 
in X* containing S with Y complemented in X*. This gives further 
evidence of an affirmative response to the 

PROBLEM 22. If X has the Radon-Nikodym property and S is a 
separable subspace of X, is S contained in a complemented separable 
subspace of X? 

As we saw in our discussion of the Dunford-Pettis results and later 
in our discussion of the Bishop-Phelps property, there appears to be a 
close relationship between the Radon-Nikodym property and density 
of norm-attaining operators. This belief in the relationship between 
these formally different notions is further fortified by the Huff-Morris 
results alluded to above. Recently, the second author of this paper has 
proved the following: Suppose X is a strictly convex Banach space. 
Then in order that the operators from LJO, 1] to X that attain their 
norm be dense in the space of operators, it is necessary and sufficient 
that X have the Radon-Nikodym property. 

The Phelps results on the plenitude of strongly exposed points in 
arbitrary closed bounded convex subsets of spaces with the Radon-
Nikodym property establishes this property as a central notion in con-
vexity theory of Banach spaces; as is usual with the notions related to 
convexity it is fruitful to search for dual notions of smoothness. Such a 
program has been initiated by M. Edelstein [A27] and, modulo a 
few oversights on the part of Edelstein, continued by D. C. Kemp 
[A28]. The work of Edelstein and Kemp is still in its infancy; 
however, it raises the following general 

PROBLEM 23. Find (smoothness) conditions on X* that insure that X 
has the Radon-Nikodym property. Hopefully, the conditions will be 
necessary, sufficient and applicable! 

In this connection, we must mention some recent very elegant work 
of Fran Sullivan [A29]. It is a basic fact of nonreflexive Banach 
spaces that the convexity and smoothness of the norm deteriorates 
badly as one passes to higher duals. So if X is a nonreflexive Banach 
space, then (a) X**** is not strictly convex, (b) X*** is not smooth, 
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(c) X** is not weakly locally uniformly convex, and (d) X* is not very 
smooth (see [AIO] ). Similarly, for nonRadon-Nikodym dual spaces, 
we have a deterioration of convexity and smoothness properties; 
stated positively, we have for X* to have Radon-Nikodym it is 
sufficient that (a) X be very smooth, (b) X* be weakly locally uniformly 
convex, (c) X** be smooth, or (d) X*** be strictly convex. The last two 
conditions are to be found in Sullivan's paper along with a number of 
other results related to the problem of finding conditions on X that 
insure the strict convexity or smoothness of X*. 

As we saw in the section dealing with Grothendieck's contributions 
to the Radon-Nikodym theorem, the Radon-Nikodym property is a 
useful tool in studying spaces of operators. When do various spaces 
of operators have the Radon-Nikodym property? It is not surprising 
that for the space of bounded linear operators, the conditions are 
rather restrictive. In fact, if X* and Y have the Radon-Nikodym 
property and if every continuous linear operator from X to Y is com-
pact, then X(X\ Y) — the space of bounded linear operators from X 
to Y has the Radon-Nikodym property. This result is due in the 
separable case to the first author; W. B. Johnson showed how to reduce 
the general case to the separable case. A noteworthy corollary of this 
result is the following: the space £X(X) of unconditionally convergent 
series in a Banach space X with the Radon-Nikodym property has the 
Radon-Nikodym property. This in turn suggests the 

PROBLEM 24. Let a be an accessible ® norm [A30] and X be a 
Banach space with the Radon-Nikodym property. Does ll <8>a X have 
the Radon-Nikodym property? 

For a = A or y (least and greatest reasonable norms), the response 
is yes. 

In connection with the aforementioned result on J!(X; Y) having the 
Radon-Nikodym property, we mention that Terry Morrison has given 
an extremely elegant proof of the following partial converse: ifJ?(X; Y) 
has the Radon-Nikodym property and Y has a complemented subspace 
with an unconditional basis, then every operator from X to Y is com
pact. In fact, otherwise Morrison shows the existence of a Boolean 
algebra <A and a bounded additive set function F : cfi —> X(X\ Y) 
which is not strongly additive (see [A31] ), an implication of which 
condemns J!(X; Y) to lack the Radon-Nikodym property. 

Finally, we mention some results of Heinrich Lotz [A32] pertain-
ing to the Radon-Nikodym property in dual Banach lattices. The most 
striking result demonstrating the special nature of Banach lattice goes 
as follows: 
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THEOREM. Let X be a dual Banach lattice and suppose X does not 
contain an order isomorphic copy of c0 or £^[0,1]. Then X has the 
Radon-Nikodym property. 

Similar stronger statements in the presence of additional conditions 
on the order structure of X are contained in [ A32]. In passing, we 
mention the following intriguing problem posed by Lotz: 

PROBLEM 25. If X is a Banach lattice with the Radon-Nikodym 
property, is X a dual space? 

Some final comments are in order. Problems 5 and 6 have been 
answered in the negative by Jim Hagler who has exhibited a Banach 
space J H with the following properties: 

(1) J H is separable and hereditarily c0; 
(2) JH* is nonseparable; hence, by Stegall's theorem, lacks the 

Radon-Nikodym property; 
(3) weak Cauchy sequences in JH* are norm convergent. 

The space J H is modeled after the James tree space (with c0 as a build-
ing block rather than £2)

 a n d possesses a number of fascinating proper-
ties in addition to (1), (2) and (3). 

The result of Peter Morris to which we alluded in the discussion of 
Asplund spaces has also been obtained by K. John and V. Zizler. With 
regards to Asplund spaces, a recent advance has been made by I. 
Ekeland and G. Lebourg who have given an affirmative response to 
Problem 16; we recommend the reader to the lecture notes of John Rain-
water regarding the Akeland-Lebourg result —these notes are par-
ticularly clear, self-contained (and, we are told, self typed). 

Finally, Gerry Edgar has demonstrated the following stability 
result: if Y Ç X and both Y and X/Y have the Radon-Nikodym prop-
erty, then X has the Radon-Nikodym property. 

We regret the omission of any reference to the work of J. Gil de la 
Madrid on the relationship of the theory of vector measures and tensor 
products of Banach spaces; Gil de la Madrid's papers appear in Trans. 
AMS 114 (1965), 98-121 and Canad. J. Math. 18 (1966), 762-793. 
The reader interested in the topics of Part II will be well advised to 
refer to these papers. 

The authors acknowledge the support of NSF during the prepara-
tion of this paper. 
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