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Abstract

We give an evolving algebra solution for the well-known railroad crossing problem and use the occasion
to experiment with agents that perform instantaneous actions in continuous time and in particular with
agents that fire at the moment they are enabled.

1 Introduction

The well-known railroad crossing problem has been used as an example for comparing various specification
and validation methodologies; see for example [6, 7] and the relevant references there. The evolving algebras
(EA) methodology has been used extensively for specification and validation for real-world software and
hardware systems; see the EA guide [3] and the EA bibliography [1]. The merits of using “toy” problems
as benchmarks are debatable; not every methodology scales well to real-world problems. Still, toy problems
are appropriate for experimentation. Here we present an evolving algebra solution for the railway crossing
problem and use the opportunity for experimentation with instantaneous actions and reactions in real time.

In Sect. 2, we describe a version of the railroad crossing problem. It is not difficult to generalize the
problem (e.g. by relaxing our assumptions on trains) and generalize the solution respectively. An interested
reader may view that as an exercise.

In Sect. 3, we give a brief introduction to evolving algebras (in short, ealgebras), in order to make this
paper self-contained. We omit many important aspects of ealgebras and refer the interested reader to a fuller
definition in the EA guide [3]. In Sect. 4, experimenting with instantaneous actions in real time, we define
special distributed real-time ealgebras appropriate to situations like that of the railroad crossing problem.

In Sect. 5 and Sect. 6, we give a solution for the railroad crossing problem which is formalized as an
ealgebra. The program for the ealgebra is given in Sect. 5. The reader may wish to look at Sect. 5 right
away; the notation is self-explanatory to a large extent. In Sect. 6, we define regular runs (the only relevant
runs) of our ealgebra and analyze those runs. Formally speaking, we have to prove the existence of regular
runs for every possible pattern of trains; for technical reasons, we delay the existence theorem until later.

In Sect. 7, we prove the safety and liveness properties of our solution. In Sect. 8 we prove a couple of
additional properties of our ealgebra. In Sect. 9, we take advantage of the additional properties and prove
the existence theorem for regular runs and analyze the variety of regular runs.

The ealgebra formalization is natural and this allows us to use intuitive terms in our proofs. One may
have an impression that no formalization is really needed. However, a formalization is needed if one wants a
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mathematical verification of an algorithm: mathematical proofs are about mathematical objects. Of course,
we could avoid intuitive terms and make the proofs more formal and pedantic, but this paper is addressed
to humans and it is so much harder to read pedantic proofs. It is a long standing tradition of applied
mathematics to use intuitive terms in proofs. Let us notice though that more formal and pedantic proofs
have their own merits; if one wants to check the details of our proofs by machine, it is useful to rewrite the
proofs in a pedantic way. In any case, we see a great value in the naturality of formalization. No semantical
approach makes inherent difficulties of a given problem go away. At best, the approach does not introduce
more complications and allows one to deal with the inherent complexity of the given problem.

Acknowledgments. Raghu Mani participated in an initial stage of the work [5]. During the final stage
of the work, the first author was a CNRS1 visitor in the Laboratoire Informatique Theoretique et Program-
mation, Paris, France [4].

2 The Railroad Crossing Problem

Imagine a railroad crossing with several train tracks and a common gate, such as the one depicted in Fig. 1.
Sensors along every track detect oncoming and departing trains. Let us consider one of the tracks, shown in
Fig. 2. It has four sensors at points L1, L2, R1 and R2. Sensor L1 detects trains coming from the left, and
sensor L2 detects when those trains leave the crossing. Similarly sensor R1 detects trains coming from the
right, and sensor R2 detects when those trains leave the crossing. Based on signals from these sensors, an
automatic controller signals the gate to open or close.

Figure 1: A railroad crossing.

The problem is to design a controller that guarantees the following requirements.

Safety If a train is in the crossing, the gate is closed.

Liveness The gate is open as much as possible.

Several assumptions are made about the pattern of train movement. For example, if a train appears
from the left, it leaves the crossing to the right. It is easiest to express those assumptions as a restriction on
possible histories of train motion on any given track.

1Centre National de la Recherche Scientifique
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Figure 2: Placement of sensors along a railroad track.

Assumptions Regarding Train Motion. For any given track, there is a finite or infinite sequence of
moments

t0 < t1 < t2 < t3 < . . .

satisfying the following conditions.

Initial State The moment t0 is the initial moment. The observed part [L1, R1] of the track is empty at t0.

Train Pattern If t3i+1 appears in the sequence then t3i+3 appears in the sequence and we have that

• at t3i+1, one oncoming train is detected at L1 or R1,

• at t3i+2 the train reaches the crossing, and

• at t3i+3 the train is detected to have left the crossing at L2 or R2 respectively.

Completeness There are no other trains.

Additional Assumptions. From the moment that an oncoming train is detected, it takes time between
dmin and dmax for the train to reach the crossing. In terms of the sequence 〈t0 < t1 < t2 < t3 < . . .〉 above,
this assumption can be stated as follows:

1 Every difference t3i+2 − t3i+1 belongs to the interval [dmin, dmax].

Further, the gate closes within time dclose and opens within time dopen. This does not necessarily mean that
if the controller signals the gate to close (respectively open) at moment t then the gate closes (respectively
opens) by time t+ dclose (respectively t+ dopen). Let us state the assumption more precisely as a restriction
on possible histories.

2 There is no interval I = (t, t + dclose) (respectively I = (t, t + dopen)) during which the signal to close
(respectively to open) is in force but the gate is not closed (respectively opened) at any moment in I.

It is easy to see that the controller cannot guarantee the safety requirement is satisfied if dmin < dclose. We
ignore the case dmin = dclose and assume that

3 dclose < dmin.

Finally, we will assume that actions are performed instantaneously. Of course, real actions take time and
the use of instantaneous actions is an abstraction. But this may be a useful abstraction. For example, in our
case, it is natural to ignore the time taken by the controller’s actions. It is not natural at all to view closing
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and opening of the gate as instantaneous actions, and we will not do that. Let us stress that the evolving
algebra methodology does not require that actions are necessarily instantaneous. See for example [2] where
an instantaneous action ealgebra is refined to a prolonged-action ealgebra.

The design part of the railway crossing problem is not difficult, especially because the problem has been
addressed in a number of papers. What remains is to formalize the design in a specification language, in our
case as an evolving algebra, and prove the safety and liveness requirements are satisfied.

3 Evolving Algebras Reminder

We give a brief reminder on evolving algebras based on the EA guide [3]. We present only what is necessary
here and ignore many important features.

3.1 Static Algebras

Static algebras are essentially logicians’ structures except that a tiny bit of meta-mathematics is built into
it. They are indeed algebras in the sense of the science of universal algebra.

A vocabulary is a collection of function symbols; each symbol has a fixed arity. Some function symbols are
tagged as relation symbols (or predicates). It is supposed that every vocabulary contains the following logic
symbols: nullary symbols true, false, undef, a binary symbol =, and the symbols of the standard propositional
connectives.

A static algebra (or a state) A of vocabulary Υ is a nonempty set X (the basic set or superuniverse of
A), together with interpretations of all function symbols in Υ over X (the basic functions of A). A function
symbol f of arity r is interpreted as an r-ary operation over X (if r = 0, it is interpreted as an element of X).
The interpretations of predicates (basic relations) and the logic symbols satisfy some obvious requirements
stated below.

Remark on notations and denotations. A symbol in Υ is a name or notation for the operation that
interprets it in A, and the operation is the meaning or denotation of the symbol in A. In English, a word
“spoon” is a name of a familiar table utensil, and one says “I like that spoon” rather than a more cumbersome
“I like that utensil named ‘spoon’”. Similarly, when a state is fixed, we may say that f maps a tuple ā to
an element b rather than that the interpretation of f maps a tuple ā to an element b.

On the interpretations of logic symbols and predicates. Intuitively, (the interpretations of) true and false
represent truth and falsity respectively. Accordingly, the symbols true and false are interpreted by different
elements. These two elements are the only possible values of any basic relation. The Boolean connectives
behave in the expected way over these two elements, and the equality function behaves in the expected way
over all elements.

Universes and typing. Formally speaking, a static algebra is one-sorted. However, it may be convenient
to view it as many-sorted; here we describe a standard way to do this. Some unary basic relations are
designated as universes (or sorts) and their names may be called universe symbols. One thinks about a
universe U as a set {x : U(x) = true}. Basic functions are assigned universes as domains. For example, the
domain of a binary function f may be given as U1 × U2 where U1 and U2 are universes. If f is a relation,
this means that f(a1, a2) = false whenever a1 6∈ U1 or a2 6∈ U2. Otherwise this means that f(a1, a2) = undef
whenever a1 6∈ U1 or a2 6∈ U2, so that f is intuitively a partial function.

Remark on the built-in piece of meta-mathematics. In first-order logic, an assertion about a given struc-
ture does not evaluate to any element of the structure. For technical convenience, in evolving algebras truth
and falsity are represented internally and many assertions can be treated as terms. This technical modifi-
cation does not prevent us from dealing with assertions directly. For example, let f, g be nullary function
symbols and P a binary function symbol. Instead of saying that P (f, g) evaluates to true (respectively false)
at a state A, we may say P (f, g) holds (respectively fails) at A. In some cases, we may even omit “holds”; for
example, we may assert simply that f 6= g. Admittedly, this is not very pedantic, but we write for humans,
not machines.
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3.2 Updates

Alternatively, a state can be viewed as a kind of memory. A location ` of a state A of vocabulary Υ is a
pair ` = (f, ā) where f is a symbol in Υ of some arity r and ā is an r-tuple of elements of A (that is, of the
superuniverse of A). The element f(ā) is the content of location ` in A.

An update of state A is a pair (`, b), where ` is some location (f, ā) of A and b is an element of A; it is
supposed that b is (the interpretation of) true or false if f is a predicate. This update is trivial if b is the
content of ` in A. An update can be performed: just replace the value at location ` with b. The vocabulary,
the superuniverse and the contents of other locations remain unchanged. The state changes only if the
update is nontrivial.

Call a set S = {(`1, b1), . . . , (`n, bn)} of updates of a state A consistent if the locations are distinct. In
other words, S is inconsistent if there are i, j such that `i = `j but bi 6= bj . In the case that S is consistent
it is performed as follows: replace the content of `1 with b1, the content of `2 with b2 and so on. To perform
an inconsistent update set, do nothing.

A pedantic remark. The equality used in the previous paragraph is not the built-in equality of A but
rather the equality of the meta language. One could use another symbol for the built-in equality, but this is
not necessary.

A remark to theoreticians. At the point that updates are introduced, some people, in particular Robin
Milner [8], raise an objection that an update may destroy algebraic properties. For example, an operation
may lose associativity. That is true. So, in what sense are static algebras algebraic? They are algebraic
in the sense that the nature of elements does not matter and one does not distinguish between isomorphic
algebras. A standard way to access a particular element is to write a term that evaluates to that element.
Coming back to algebraic properties like associativity (and going beyond the scope of this paper), let us note
that, when necessary, one can guarantee that such a property survives updating by declaring some functions
static or by imposing appropriate integrity constraints or just by careful programming.

3.3 Basic Rules

In this subsection we present the syntax and semantics of basic rules. Each rule R has a vocabulary, namely
the collection of function symbols that occur in R. A rule R is applicable to a state A only if the vocabulary
of A includes that of R. At each state A of sufficiently rich vocabulary, R gives rise to a set of updates. To
execute R at such a state A, perform the update set at A.

A basic update rule R has the form

f(e1, . . . , er) := e0

where f is an r-ary function symbol (the head of R) and each ei is a ground term, that is, a term without
any variables. (In programming languages, terms are usually called expressions; that motivates the use of
letter e for terms.) To execute R at a state A of sufficiently rich vocabulary, evaluate all terms ei at A and
then change f accordingly. In other words, the update set generated by R at A consists of one update (`, a0)
where ` = (f, (a1, . . . , ar)) and each ai is the value of ei at A.

For example, consider an update rule f(c1+c2) := c0 and a state A where + is interpreted as the standard
addition function on natural numbers and where c1, c2, c0 have values 3, 5, 7 respectively. To execute the rule
at A, set f(8) to 7.

There are only two basic rule constructors. One is the conditional constructor which produces rules of
the form:

if g then R1 else R2 endif

where g is a ground term (the guard of the new rule) and R1, R2 are rules. To execute the new rule in a
state A of sufficiently rich vocabulary, evaluate the guard. If it is true, then execute R1; otherwise execute
R2. (The “else” clause may be omitted if desired.)

The other constructor is the block constructor which produces rules of the form:
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block
R1
...
Rk

endblock

where R1, . . . , Rk are rules. (We often omit the keywords “block” and “endblock” for brevity and use
indentation to eliminate ambiguity.) To execute the new rule in a state A of sufficiently rich vocabulary,
execute rules R1, . . . , Rk simultaneously. More precisely, the update set generated by the new rule at A is
the union of the update sets generated by the rules Ri at A.

A basic program is simply a basic rule.
In this paper we say that a rule R is enabled at a state A of sufficiently rich vocabulary if the update

set generated by R at A is consistent and contains a non-trivial update; otherwise R is disabled at A. (The
notion of being enabled has not been formalized in the EA guide.) Rules will be executed only if they are
enabled, so that the execution changes a given state. This seems to be a very pedantic point. What harm is
done by executing a rule that does not change a given state? It turns out that the stricter notion of being
enabled is convenient in real-time computational theory; see Lemma 4.4 in this connection.

3.4 Parallel Synchronous Rules

Generalize the previous framework in two directions. First, permit terms with variables and generalize the
notion of state: in addition to interpreting some function names, a generalized state may assign values to
some variables. (Notice that a variable cannot be the head of an update rule.)

Second, generalize the notion of guards by allowing bounded quantification. More formally, we define
guards as a new syntactical category. Every term P (e1, . . . , er), where P is a predicate, is a guard. A
Boolean combination of guards is a guard. If g(x) is a guard with a variable x and U is a universe symbol
then the expression (∀x ∈ U)g(x) is also a guard.

The semantics of guards is quite obvious. A guard g(ȳ) with free variables ȳ holds or fails at a (generalized)
state A that assigns values to all free variables of g. The least trivial case is that of a guard g(ȳ) = (∀x ∈
U)g′(x, ȳ). For every element b of U in A, let Ab be the expansion of A obtained by assigning the value b to
x. Then g(ȳ) holds at A if g′(x, ȳ) holds at every Ab; otherwise it fails at A.

Now consider a generalized basic rule R(x) with a variable x and let U be a universe symbol. Form the
following rule R∗:

var x ranges over U
R(x)

endvar

Intuitively, to execute R∗, one executes R(x) for every x ∈ U . To make this more precise, let A be a
(generalized) state that interprets all function names in the vocabulary of R(x) and assigns values to all free
variables of R(x) except for x. For each element b of the universe U in A, let Ab be the expansion of A
obtained by assigning the value b to x, and let Eb be the update set generated by R(x) at Ab. Since x does
not appear as the head of any update instruction in R(x), each Eb is also a set of updates of A. The update
set generated by R∗ at A is the union of the update sets Eb.

Call the new rule a parallel synchronous rule (or a declaration rule, as in the EA guide). A parallel
synchronous program is simply a parallel synchronous rule without free variables. Every occurrence of a
variable should be bound by a declaration or a quantifier.

3.5 Special Distributed Programs

For our purposes here, a distributed program Π is given by a vocabulary and a finite set of basic or parallel
synchronous programs with function symbols from the vocabulary of Π. The constitutent programs are the
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modules of A. A state of Π is a state of the vocabulary of Π. Intuitively, each module is executed by a
separate agent.

This is a very restricted definition. For example, the EA guide allows the creation of new agents during
the evolution.

Intuitively, it is convenient though to distinguish between a module (a piece of syntax) and its executor,
and even think about agents in anthropomorphic terms. But since in this case agents are uniquely defined
by their programs, there is no real need to have agents at all, and we may identify an agent by the name of
its program.

4 Special Distributed Real-Time Ealgebras

A program does not specify a (distributed) ealgebra completely. We need to define what constitutes a
computation (or a run) and then to indicate initial states and maybe a relevant class of runs. In this section,
we define a restricted class of distributed real-time evolving algebras by restricting attention to static algebras
of a particular kind and defining a particular notion of run.

We are interested in computations in real time that satisfiy the following assumptions.

I1 Agents execute instantaneously.

I2 Enviromental changes take place instantaneously.

I3 The global state of the given distributed ealgebra is well defined at every moment.

Let us stress again that the three assumptions above are not a part of the evolving algebra definition.
The prolonged-action ealgebra [2], mentioned in Sect. 2, satisfies none of these three assumptions.

Vocabularies and Static Structures. Fix some vocabulary Υ with a universe symbol Reals and let Υ+

be the extension of Υ with a nullary function symbol CT; it is supposed of course that Υ does not contain
CT. Restrict attention to Υ+-states where the universe Reals is the set of real numbers and CT evaluates
to a real number. Intuitively, CT gives the current time.

4.1 Pre-runs

Definition 4.1 A pre-run R of vocabulary Υ+ is a mapping from the interval [0,∞) or the real line to
states of vocabulary Υ+ satisfying the following requirements where ρ(t) is the reduct of R(t) to Υ.

Superuniverse Invariability The superuniverse does not change during the evolution; that is, the supe-
runiverse of every R(t) is that of R(0).

Current Time At every R(t), CT evaluates to t.

Discreteness For every τ > 0, there is a finite sequence 0 = t0 < t1 < . . . < tn = τ such that if
ti < α < β < ti+1 then ρ(α) = ρ(β). 2

Remarks. Of course, we could start with an initial moment different from 0, but without loss of generality
we can assume that the initial moment is 0. Our discreteness requirement is rather simplistic (but sufficient
for our purposes in this paper). One may have continuous time-dependent basic functions around (in addition
to CT); in such cases, the discreteness requirement becomes more subtle.

In the rest of this section, R is a pre-run of vocabulary Υ+ and ρ(t) is the reduct of R(t) to Υ.
The notation ρ(t+) and ρ(t−) is self-explanatory; still, let us define it precisely. ρ(t+) is any state ρ(t+ε)

such that ε > 0 and ρ(t + δ) = ρ(t + ε) for all positive δ < ε. Similarly, if t > 0 then ρ(t−) is any state
ρ(t− ε) such that 0 < ε ≤ t and ρ(t− δ) = ρ(t− ε) for all positive δ < ε.

Call a moment t significant for R if (i) t = 0 or (ii) t > 0 and either ρ(t) 6= ρ(t−) or ρ(t) 6= ρ(t+).
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Lemma 4.1 For any moment t, ρ(t+) is well defined. For any moment t > 0, ρ(t−) is well defined. If
there are infinitely many significant moments then their supremum equals ∞.

Proof Obvious. 2

Recall that a set S of nonnegative reals is discrete if it has no limit points. In other words, S is discrete
if and only if, for every nonnegative real τ , the set {t ∈ S : t < τ} is finite. The discreteness requirement in
the definition of pre-runs means exactly that the collection of the significant points of R is discrete.

We finish this subsection with a number of essentially self-evident definitions related to a given pre-run
R. Let e be a term of vocabulary Υ+. If e has free variables then fix the values of those variables, so that
e evaluates to a definite value in every state of vocabulary Υ+. (Formally speaking e is a pair of the form
(e′, ξ) where e′ is a term and ξ assigns elements of R(0) to free variables of e′.)

The value et of e at moment t is the value of e in R(t). Accordingly, e holds (respectively fails) at t if
it does so in R(t). Likewise, a module is enabled (respectively disabled) at t if it is so in R(t). In a similar
vein, we speak about a time interval I. For example, e holds over I if it holds at every t ∈ I.

If e has the same value over some nonempty interval (t, t+ ε), then this value is the value et+ of e at t+
(respectively at t−). Similarly, if t > 0 and e has the same value over some nonempty interval (t− ε, t), then
this value is the value et− of e at t−. Define accordingly when e holds, fails at t+, t− and when an agent is
enabled, disabled at t+, t−.

Further, e is set to a value a (or simply becomes a) at t if either (i) et− 6= a and et = a, or else (ii) et 6= a
and et+ = a. Define accordingly when an agent becomes enabled, disabled at t.

4.2 Runs

Now consider a distributed program Π with function symbols from vocabulary Υ+. Runs of Π are pre-runs
with some restrictions on how the basic functions evolve. Depending upon their use, the basic functions of
Π fall into the following three disjoint categories.

Static These functions do not change during any run. The names of these functions do not appear as the
heads of update rules in Π.

Internal Dynamic These functions may be changed only by agents. The names of these functions appear
as the heads of update rules and the functions are changed by executing the modules of Π. For brevity,
we abbreviate “internal dynamic” to “internal”.

External Dynamic These functions may be changed only by the environment. The names of these func-
tions do not appear as the heads of update rules; nevertheless the functions can change from one state
to another. Who changes them? The environment. Some restrictions may be imposed on how these
functions can change. For brevity, we abbreviate “external dynamic” to “external”.

Remark. It may be convenient to have functions that can by changed both by agents and the environment.
The EA guide allows that, but we do not need that generality here.

Before we give the definition of runs, let us explain informally that one should be cautious with instan-
taneous actions. In particular, it may not be possible to assume that agents always fire at the moment they
become enabled. Consider the following two interactive scenarios.

Scenario 1 The environment changes a nullary external function f at moment t. This new value of f
enables an agent X. The agent fires immediately and changes another nullary function g.

What are the values of f and g at time t, and at what time does X fire? If f has its old value at t then
X is disabled at t and fires at some time after t; thus X does not fire immediately. If g has its new value
already at t then X had to fire at some time before t; that firing could not be triggered by the change of f .
We arrive at the following conclusions: f has its new value at t (and thus ft differs from ft−), X fires at t,
and g has its old value at t (and thus gt differs from gt+).
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Scenario 2 At time t, an agent X changes a function g and in so doing enables another agent Y while
disabling himself.

When does Y fire? Since X fires at t, it is enabled at t and thus g has its old value at t. Hence Y is
disabled at t and fires at some time after t. Thus Y cannot react immediately.

The following definition is designed to allow immediate agents.

Definition 4.2 A pre-run R of vocabulary Υ+ is a run of Π if it satisfies the following conditions where
ρ(t) is the reduct of R to Υ.

1. If ρ(t+) differs from ρ(t) then ρ(t+) is the Υ-reduct of the state resulting from executing some modules
M1, . . . ,Mk at R(t). In such a case we say t is internally significant and the executors of M1, . . . ,Mk

fire at t. All external functions with names in Υ have the same values in ρ(t) and ρ(t+).

2. If i > 0 and ρ(τ) differs from ρ(τ−) then they differ only in the values of external functions. In such a
case we say τ is externally significant . All internal functions have the same values in ρ(t−) and ρ(t).
2

Remark. Notice the global character of the definition of firing. An agent fires at a moment t if ρ(t+) 6=
ρ(t). This somewhat simplified definition of firing is sufficient for our purposes in this paper.

In the rest of this section, R is a run of Π and ρ(t) the reduct of R(t) to Υ. Let e be a term e with fixed
values of all its free variables. A moment t is significant for e if, for every ε > 0, there exists a moment α
such that |α− t| < ε and ea 6= et. Call e discrete (in the given run R) if the collection of significant moments
of e is discrete. In other words, e is discrete if and only, for every t > 0, there is a finite sequence

0 = t0 < t1 < . . . < tn = t

such that if ti < α < β < ti+1 then eα = eβ .

Lemma 4.2 ((Discrete Term Lemma)) If a term e is discrete then

1. For every t, e has a value at t+.

2. For every t > 0, e has a value at t−.

Proof Obvious. 2

Lemma 4.3 ((Preservation Lemma)) Suppose that a term e with fixed values of its free variables does
not contain CT. Then e is discrete. Furthermore,

1. If e contains no external functions and t > 0 then et = et−.

2. If e contains no internal functions then et+ = et.

Proof This is an obvious consequence of the definition of runs. 2

It may be natural to have agents that fire the instant they are enabled.

Definition 4.3 An agent is immediate if it fires at every state where it is enabled. 2

Lemma 4.4 ((Immediate Agent Lemma))

1. The set of moments when an immediate agent is enabled is discrete.

2. If the agent is enabled at some moment t then it is disabled at t+ and, if t > 0, at t−.

Proof
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1. If the agent is enabled at a moment t, it fires at t and therefore (according to our notion of being
enabled) changes the state; it follows that t is a significant moment of the run. By the discreteness
condition on pre-runs, the collection of significant moments of a run is discrete. It remains to notice
that every subset of a discrete set is discrete.

2. Follows from 1. 2

Recall the scenario S2. There agent Y cannot be immediate. Nevertheless, it may make sense to require
that some agents cannot delay firing forever.

Definition 4.4 An agent X is bounded if it is immediate or there exists a bound b > 0 such that there is
no interval (t, t+ b) during which X is continuously enabled but does not fire. 2

Notice that it is not required that if a bounded agent X becomes enabled at some moment α, then it
fires at some moment β < α + b. It is possible a priori that X becomes disabled and does not fire in that
interval.

5 The Ealgebra for Railroad Crossing Problem

We present our solution for the railroad crossing problem formalized as an evolving algebra A of a vocabulary
Υ+ = Υ ∪ {CT}. In this section, we describe the program and initial states of A; this will describe the
vocabulary as well. The relevant runs of A will be described in the next section.

The program of A has two modules gate and controller, shown in Fig. 3.

gate

if Dir = open then GateStatus := opened endif
if Dir = close then GateStatus := closed endif

controller

var x ranges over Tracks
if TrackStatus(x) = coming and Deadline(x) =∞ then

Deadline(x) := CT+ WaitTime
endif
if CT =Deadline(x) then Dir := close endif
if TrackStatus(x) = empty and Deadline(x) <∞ then

Deadline(x) := ∞
endif

endvar
if Dir=close and SafeToOpen then Dir := open endif

Figure 3: Rules for gate and controller.

Here WaitTime abbreviates the term dmin − dclose, and SafeToOpen abbreviates the term

(∀x ∈ Tracks)[TrackStatus(x) = empty or CT + dopen < Deadline(x)].

We will refer to the two constituent rules of gate as OpenGate, CloseGate respectively. We will refer
to the three constituent rules of controller’s parallel synchronous rule as SetDeadline(x), SignalClose(x),
ClearDeadline(x), respectively, and the remaining conditional rule as SignalOpen.
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Our GateStatus has only two values: opened and closed. This is of course a simplification. The position
of a real gate could be anywhere between fully closed and fully opened. (In [6], the position of the gate ranges
between 0o and 90o.) But this simplification is meaningful. The problem is posed on a level of abstraction
where it does not matter whether the gate swings, slides, snaps or does something else; it is even possible
that there is no physical gate, just traffic lights. Furthermore, suppose that the gate is opening and consider
its position as it swings from 0o to 90o. Is it still closed or already open at 75o? One may say that it is
neither, that it is opening. But for the waiting cars, it is still closed. Accordingly GateStatus is intended to
be equal to closed at this moment. It may change to opened when the gate reaches 90o. Alternatively, in
the case when the crossing is equipped with traffic lights, it may change to opened when the light becomes
green. Similarly, it may change from opened to closed when the light becomes red. If one is interested in
specifying the gate in greater detail, our ealgebra can be refined by means of another ealgebra.

The program does not define our evolving algebra A completely. In addition, we need to specify a
collection of initial states and relevant runs.

Initial states of A satisfy the following conditions:

1. The universe Tracks is finite. The universe ExtendedReals is an extension of the universe Reals with
an additional element∞. The binary relation < and the binary operation + are standard; in particular
∞ is the largest element of ExtendedReals.

2. The nullary functions close and open are interpreted by different elements of the universe Directions.
The nullary functions closed and opened are interpreted by different elements of the universe Gat-
eStatuses. The nullary functions empty, coming, in crossing are different elements of the universe
TrackStatuses.

3. The nullary functions dclose, dopen, dmax, dmin are positive reals such that

dclose < dmin ≤ dmax.

One may assume for simplicity of understanding that these four reals are predefined: that is, they have
the same value in all initial state. This assumption is not necessary.

4. The unary function TrackStatus assigns (the element called) empty to every track (that is, to every
element of the universe Tracks). The unary function Deadline assigns ∞ to every track.

It is easy to see that, in any run, every value of the internal function Deadline belongs to ExtendedReals.

6 Regular Runs

The following definition takes into account the assumptions of Sect. 2.

6.1 Definitions

Definition 6.1 A run R of our evolving algebra is regular if it satisfies the following three conditions.

Train Motion For any track x, there is a finite or infinite sequence

0 = t0 < t1 < t2 < t3 < . . .

of so-called significant moments of track x such that

• TrackStatus(x) = empty holds over every interval [t3i, t3i+1);

• TrackStatus(x) = coming holds over every interval [t3i+1, t3i+2), and
dmin ≤ (t3i+2 − t3i+1) ≤ dmax;

11



• TrackStatus(x) = in crossing holds over every interval [t3i+2, t3i+3); and
• if tk is the final significant moment in the sequence, then k is divisible by 3 and TrackStatus(x) =

empty over [tk,∞).

Controller Timing Agent controller is immediate.

Gate Timing Agent gate is bounded. Moreover, there is no time interval I = (t, t + dclose) such that
[Dir=close and GateStatus = opened] holds over I. Similarly there is no interval I = (t, t+dopen) such
that [Dir=open and GateStatus = closed] holds over I. 2

In the rest of this paper, we restrict attention to regular runs of A. Let R be a regular run and ρ be the
reduct of R to Υ.

6.2 Single Track Analysis

Fix a track x and let 0 = t0 < t1 < t2 < . . . be the significant moments of x.

Lemma 6.1 ((Deadline Lemma))

1. Deadline(x) =∞ over (t3i, t3i+1], and Deadline(x) = t3i+1 + WaitTime over (t3i+1, t3i+3].

2. Let Dclose = dclose + (dmax − dmin) = dmax −WaitTime. If TrackStatus(x) 6= in crossing over an
interval (α, β), then Deadline(x) ≥ β −Dclose over (α, β).

Proof

1. A quite obvious induction along the sequence

(t0, t1], (t1, t3], (t3, t4], (t4, t6], . . . .

The basis of induction. We prove that Deadline(x) =∞ over I = (t0, t1); it will follow by Preservation
Lemma that Deadline(x) = ∞ at t1. Initially, Deadline(x) = ∞. Only SetDeadline(x) can alter that
value of Deadline(x), but SetDeadline(x) is disabled over (t0, t1). The induction step splits into two
cases.

Case 1. Given that Deadline(x) = ∞ at t3i+1, we prove that Deadline(x) = t3i+1 + WaitTime
over I = (t3i+1, t3i+3); it will follow by Preservation Lemma that Deadline(x) = t3i+1 + WaitTime at
t3i+3. SetDeadline(x) is enabled and therefore fires at t3i+1 setting Deadline(x) to t3i+1 + WaitTime.
ClearDeadline(x) is the only rule that can alter that value of Deadline(x) but it is disabled over I
because TrackStatus(x) 6= empty over I.

Case 2. Given that Deadline(x) < ∞ at t3i where i > 0, we prove that Deadline(x) = ∞ over
I = (t3i, t3i+1); it will follow by Preservation Lemma that Deadline(x) =∞ at t3i+1. ClearDeadline(x)
is enabled and therefore fires at t3i setting Deadline(x) to∞. Only SetDeadline(x) can alter that value
of Deadline(x) but it is disabled over I because TrackStatus(x) = empty 6= coming over I.

2. By contradiction suppose that Deadline(x) < β −Dclose at some t ∈ (α, β). By 1, there is an i such
that t3i+1 < t ≤ t3i+3 and Deadline(x) = t3i+1 + WaitTime at t. Since (α, β) and the in crossing
interval [t3i+2, t3i+3) are disjoint, we have that t3i+1 < t < β ≤ t3i+2. By the definition of regular runs,
dmax ≥ t3i+2 − t3i+1 ≥ β − t3i+1, so that t3i+1 ≥ β − dmax. We have

β −Dclose > Deadline(x) at t = t3i+1 + WaitTime
≥ β − dmax + WaitTime = β −Dclose

which is impossible. 2

12



Corollary 6.1 ((Three Rules Corollary))

1. SetDeadline(x) fires exactly at moments t3i+1, that is exactly when TrackStatus(x) becomes coming.

2. SignalClose(x) fires exactly at moments t3i+1 + WaitTime.

3. ClearDeadline(x) fires exactly at moments t3i with i > 0, that is exactly when TrackStatus(x) becomes
empty.

Proof Obvious. 2

Let s(x) be the quantifier-free part

TrackStatus(x) = empty or CT + dopen < Deadline(x).

of the term SafeToOpen with the fixed value of x.

Lemma 6.2 ((Local SafeToOpen Lemma))

1. Suppose that WaitTime > dopen. Then s(x) holds over intervals [t3i, t3i+1 + WaitTime − dopen) (the
maximal positive intervals of s(x)) and fails over intervals [t3i+1 + WaitTime− dopen, t3i+3).

2. Suppose that WaitTime ≤ dopen. Then s(x) holds over intervals [t3i, t3i+1] (the maximal positive
intervals of s(x)) and fails over intervals (t3i+1, t3i+3).

3. The term s(v) is discrete.

4. s(x) becomes true exactly at moments t3i with i > 0, that is exactly when TrackStatus(x) becomes
empty.

5. If [α, β) or [α, β] is a maximal positive interval of s(x), then SignalClose(x) is disabled over [α, β] and
at β+.

Proof

1. Over [t3i, t3i+1), TrackStatus(x) = empty and therefore s(x) holds. At t3i+1, Deadline(x) = ∞ and
therefore s(x) holds. SetDeadline(x) fires at t3i+1 and sets Deadline(x) to t3i+1 + WaitTime. Over
(t3i, t3i+1 + WaitTime− dopen),

CT + dopen < (t3i+1 + WaitTime− dopen) + dopen

= t3i+1 + WaitTime = Deadline(x)

and therefore s(x) holds. Over the interval [t3i+1 + WaitTime− dopen, t3i+3), TrackStatus(x) 6= empty
and CT + dopen ≥ t3i+1 + WaitTime = Deadline(x) and therefore s(x) fails.

2. The proof is similar to that of 1.

3. This follows from 1 and 2.

4. This follows from 1 and 2.

5. We consider the case when WaitTime > dopen; the case when WaitTime ≤ dopen is similar. By 1, the
maximal open interval of s(x) has the form [α, β) = [t3i, t3i+1 + WaitTime − dopen) for some i. By
Three Rules Corollary, SignalClose(x) fires at moments t3j+1 + WaitTime. Now the claim is obvious.
2
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6.3 Multiple Track Analysis

Lemma 6.3 ((Global SafeToOpen Lemma))

1. The term SafeToOpen is discrete.

2. If SafeToOpen holds at t+ then it holds at t.

3. If SafeToOpen becomes true at t then some TrackStatus(x) becomes empty at t.

4. If SafeToOpen holds at t then t belongs to an interval [α, β) (a maximal positive interval of SafeToOpen)
such that SafeToOpen fails at α−, holds over [α, β) and fails at β.

Proof

1. Use part 3 of Local SafeToOpen Lemma and the fact that there are only finitely many tracks.

2. Use parts 1 and 2 of Local SafeToOpen Lemma.

3. Use parts 1 and 2 of Local SafeToOpen Lemma.

4. Suppose that SafeToOpen holds at t. By parts 1 and 2 of Local SafeToOpen Lemma, for every track
x, t belongs to an interval [αx < βx) such that s(x) fails at αx−, holds over [αx, βx) and fails at βx.
The desired α = maxx αx, and the desired β = minx βx.2

Lemma 6.4 ((Dir Lemma)) Suppose that [α, b) is a maximal positive interval of SafeToOpen.

1. Dir = close at α.

2. Dir = open over (α, β] and at β+.

Proof

1. By Global SafeToOpen Lemma, some TrackStatus(x) becomes empty at t. Fix such an x and let
0 = t0 < t1 < t2 < . . . be the significant moments of TrackStatus(x). Then α = t3i+3 for some i.
By Three Rules Corollary, SetDeadline(x) fires at t3i+1 + WaitTime setting Dir to close. By Local
SafeToOpen Lemma, s(x) fails over I = (t3i+1 + WaitTime, t3i+3]. Hence SafeToOpen fails over I and
therefore every SignalClose(y) is disabled over I. Thus Dir remains close over I.

2. By 1, SignalOpen fires at α setting Dir to open. By part 5 of Local SafeToOpen Lemma, every
SignalClose(x) is disabled over [α, β] and at β+. Hence Dir remains open over (α, β] and at β+. 2

Corollary 6.2 ((SignalOpen Corollary)) SignalOpen fires exactly when SafeToOpen becomes true. Sig-
nalOpen fires only when some TrackStatus(x) becomes true.

Proof Obvious. 2

We have proved some properties of regular runs of our ealgebra A, but the question arises if there any
regular runs. Moreover, are there any regular runs consistent with a given pattern of trains? The answer is
positive. In Sect. 8, we will prove that every pattern of trains gives rise to a regular run and will describe
all regular runs consistent with a given pattern of trains.
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7 Safety and Liveness

Recall that we restrict attention to regular runs of our ealgebra A.

Theorem 7.1 ((Safety Theorem)) The gate is closed whenever a train is in the crossing. More formally,
GateStatus = closed whenever TrackStatus(x) = in crossing for any x.

Proof Let t0 < t1 < . . . be the significant moments of some track x. Thus, during periods [t3i+2, t3i+3),
TrackStatus(x) = in crossing. We show that GateStatus = closed over [t3i+2, t3i+3] and even over [t3i+1 +
dmin, t3i+3]. (Recall that dmin ≤ t3i+2 − t3i+1 ≤ dmax and therefore t3i+1 + dmin ≤ t3i+2.)

By Three Rules Corollary, SetDeadline(x) fires at t3i+1 setting Deadline(x) to α = t3i+1 + WaitTime.
If Dirα = open then SignalClose(x) fires at α setting Dir to close; regardless, Dirα+ = close. By Local
SafeToOpen Lemma, s(x) fails over I = (α, t3i+3). Hence, over I, SafeToOpen fails, SignalOpen is disabled,
Dir = close, and OpenGate is disabled.

By the definition of regular runs, GateStatus = closed at some moment t such that α < t < α+ dclose =
t3i+1 + WaitTime + dclose = t3i+1 + dmin. Since OpenGate is disabled over I, GateStatus remains closed
over I and therefore over the interval [t3i+1 + dmin, t3i+3). By Preservation Lemma, GateStatus = closed at
t3i+3. 2

Let Dclose = dclose + (dmax − dmin) = dmax −WaitTime.

Theorem 7.2 ((Liveness Theorem)) Assume α+dopen < β−Dclose. If the crossing is empty in the open
time interval (α, β), then the gate is open in [α+dopen, β−Dclose]. More formally, if every TrackStatus(x) 6=
in crossing over (α, β), then GateStatus = opened over [α+ dopen, β −Dclose].

Proof By Deadline Lemma, every Deadline(x) ≥ β −Dclose > α + dopen over (α, β). By the definition of
SafeToOpen, it holds at α. If Dirα = close then SignalOpen fires at α; in any case Dirα+ = open.

By Deadline Lemma, every Deadline(x) ≥ β−Dclose > CT over (α, β−Dclose). Hence, over (α, β−Dclose),
every SignalClose(x) is disabled, Dir remains open, and StartClose is disabled.

By the definition of regular runs, GateStatus = opened at some moment t ∈ (α, α + dopen). Since
StartClose is disabled over (α, β −Dclose), GateStatus remains opened over (t, β −Dclose) and therefore is
opened over [α+ dopen, β −Dclose). By Preservation Lemma, GateStatus = opened at b−Dclose. 2

The next claim shows that, in a sense, Liveness Theorem cannot be improved.

Claim 7.1

1. Liveness Theorem fails if dopen is replaced with a smaller constant.

2. Liveness Theorem fails if Dclose is replaced with a smaller constant.

Proof The first statement holds because the gate can take time arbitrarily close to dopen to open. The
second statement holds for two reasons. Recall that Dclose = dclose +(dmax−dmin). The term (dmax−dmin)
cannot be reduced; to be on the safe side, the controller must act as if every oncoming train is moving as
fast as possible, even if it is moving as slow as possible. The term dclose cannot be reduced either; the gate
can take arbitrarily short periods of time to close. Now we give a more detailed proof.

Part 1. Given some constant copen < dopen, we construct a regular run of our ealgebra A and exhibit an
open interval I = (α, β) such that the crossing is empty during I but the gate is not opened during a part
of interval (α+ copen, β −Dclose).

We assume that dopen, Dclose < 1 (just choose the unit of time appropriately) and that there is only one
track.
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The traffic. Only one train goes through the crossing. It appears at time 100, reaches the crossing at
time 100 + dmax and leaves the crossing at time 110 + dmax, so that Dir should be changed only twice: set
to close at 100 + WaitTime and set to open at 110 + dmax.

The run. We don’t care how quickly the gate closes, but we stipulate that the time ∆ that the gate takes
to open belongs to (copen, dopen).

The interval I: (110 + dmax, 110 + dmax + dopen).
Since the only train leaves the crossing at 110 + dmax, the crossing is empty during I. However the gate

takes time ∆ > copen to open and thus is not opened during the part (110 + dmax + copen, 110 + dmax + ∆)
of I.

Part 2. Given some constant Cclose < Dclose, we construct a regular run of our ealgebra A and exhibit an
open interval I = (α, β) such that the crossing is empty during I but the gate is not opened (even closed)
during a part of interval (α+ dopen, β − Cclose).

We assume that dopen, Cclose < 1, and that there is only one track with the same traffic pattern as in
part 1.

The run. This time we don’t care how quickly the gate opens, but we stipulate that the time ∆ that the
gate takes to close satisfies the following condition:

0 < ∆ < min{dclose, Dclose − Cclose}.

The interval I is (0, 100 + dmax), so that α = 0 and β = 100 + dmax.
Since the only train reaches the crossing at 100+dmax, the crossing is empty during I. The gate is closed

by 100+WaitTime+∆ and is closed during the part (100+WaitTime+∆, 100+WaitTime+(Dclose−Cclose))
of interval (α+dopen, β−Cclose). Let us check that (100+WaitTime+∆, 100+WaitTime+(Dclose−Cclose)
is indeed a part of (α+ dopen, β − Cclose). Clearly, α+ dopen < 0 + 1 < 100 + WaitTime + ∆. Further:

100 + WaitTime + ∆
< 100 + WaitTime + (Dclose − Cclose)
= 100 + (dmin − dclose) + [(dclose + dmax − dmin)− Cclose] = β − Cclose.

2

8 Some Additional Properties

Theorem 8.1 ((Uninterrupted Closing Theorem)) The closing of the gate is never interrupted. More
formally, if Dir is set to close at some moment α, then Dir = close over the interval I = (α, α+ dclose).

Recall that, by the definition of regular runs, GateStatus = closed somewhere in I if Dir = close over I.

Proof Since Dir is set to close at α, some SignalClose(x) fires at α. Fix such an x and let t0 < t1 < . . .
be the significant moments of track x. By Three Rules Corollary, there is an i such that α = t3i+1 +
WaitTime = t3i+1 + dmin − dclose. Then α+ dclose = t3i+1 + dmin ≤ t3i+2. By the definition of regular runs,
TrackStatus(x) = coming over I. By Deadline Theorem, Deadline(x) = α over I, so that CT + dopen >
CT > Deadline(x) over I. Because of this x, SafeToOpen fails over I and therefore SignalOpen is disabled
over I. Thus Dir = close over I.

Theorem 8.2 ((Uninterrupted Opening Theorem)) Suppose WaitTime ≥ dopen; that is, dmin ≥
dclose + dopen. Then the opening of the gate is not interrupted; in other words, if Dir is set to open at
some moment α, then Dir = open over the interval I = (α, α+ dopen).

Recall that, by the definition of regular runs, GateStatus = opened somewhere in I if Dir = open over I.

Proof It suffices to prove that every SignalClose(x) is disabled over I. Pick any x and let t0 < t1 < . . . be
the significant moments of track x. Since Dir is set to open at α, SignalOpen fires at α, SafeToOpen holds
at α, and s(x) holds at α. We have two cases.
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Case 1. α+ dopen < Deadline(x)α <∞. Since Deadline(x)α <∞, τ3i+1 < α ≤ t3i+3 and Deadline(x)α =
t3i+1 + WaitTime for some i (by Deadline Lemma). We have

α+ dopen < Deadline(x)α = t3i+1 + WaitTime < t3i+1 + dmin ≤ t3i+2 < t3i+3.

By Deadline Lemma, Deadline(x) does not change in I, so that CT remains < Deadline(x) in I and therefore
SignalClose(x) is disabled over I.

Case 2. α+ dopen ≥ Deadlineα(x) or Deadlineα(x) =∞.
We check that t3i ≤ α ≤ t3i+1 for some i. Indeed, if TrackStatus(x)α = empty then t3i ≤ α < t3i+1 for

some i. Suppose that TrackStatus(x)α 6= empty. Since s(x) holds at a, α + dopen < Deadlineα(x). By the
condition of Case 2, Deadline(x)α =∞. Recall that TrackStatus(x) 6= empty exactly in intervals [t3i+1, t3i+3
and Deadline(x) =∞ exactly in periods (t3i, t3i+1]. Thus α = t3i+1 for some i.

The first moment after α that SignalClose(x) is enabled is t3i+1 + WaitTime. Thus it suffices to check
that α+ dopen ≤ t3i+1 + WaitTime. Since dmin ≥ dclose + dopen, we have

α+ dopen ≤ t3i+1 + dopen ≤ t3i+1 + (dmin − dclose) = t3i+1 + WaitTime.2

Corollary 8.1 ((Dir and GateStatus Corollary)) Assume dmin ≥ dclose + dopen.

1. If the sequence γ1 < γ2 < γ3 < . . . of positive significant moments of Dir is infinite, then the sequence
δ1 < δ2 < δ3 < . . . of positive significant moments of GateStatus is infinite and each δi ∈ (γi, γi+1).

2. If the positive significant moments of Dir form a finite sequence γ1 < γ2 < . . . < γn, then the positive
significant moments of GateStatus form a sequence δ1 < δ2 < . . . < δn such that δi ∈ (γi, γi+1) for all
i < n and δn > γn.

Proof We prove only the first claim; the second claim is proved similarly.
Since Dir = open and GateStatus = opened initially, GateStatus does not change in (0, γ1). Suppose

that we have proved that if γ1 < . . . < γj are the first j positive significant moments of Dir, then there
are exactly j − 1 significant moments δ1 < . . . < δj−1 of GateStatus in (0, gj ] and each δi ∈ (γi, γi+1). We
restrict attention to the case when j is even; the case of odd j is similar. Since j is even, Dir is set to open
at γj . If γj is the last significant moment of Dir, then the gate will open at some time in (γj , γj + dopen)
and will stay open forever after that. Otherwise, let k = j + 1. By Uninterrupted Opening Theorem, the
gate opens at some moment δj ∈ (γj , γk). Since Dir remains open in (δj , γk), GateStatus = opened holds
over (δj , γk). By Preservation Lemma, GateStatus = opened at γk. 2

9 Existence of Regular Runs

We delayed the existence issue in order to take advantage of Sect. 8. For simplicity, we restrict attention
to an easier but seemingly more important case when dmin ≥ dclose + dopen. The Existence Theorem and
the two Claims proved in this section remain true in the case dmin < dclose + dopen; we provide remarks
explaining the necessary changes.

Let Υ1 = Υ− {GateStatus}, and Υ0 = Υ1 − {Deadline,Dir}. For i = 0, 1, let Υ+
i = Υi ∪ {CT}.

Theorem 9.1 ((Existence Theorem)) Let P be a pre-run of vocabulary Υ0 satisfying the train motion
requirement in the definition of regular runs, and let A be an initial state of A consistent with P (0). There
is a regular run R of A which starts with A and agrees with P .

Proof Let the significant moments of P be 0 = α0 < α1 < . . .. For simplicity, we consider only the case
where this sequence is infinite. The case when the sequence is finite is similar. Our construction proceeds in
two phases. In the first phase, we construct a run Q of module controller (that is of the corresponding
one-module evolving algebra of vocabulary Υ+

1 ) consistent with A and P . In the second phase, we construct
the desired R by extending Q to include the execution of module gate.
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Phase 1: Constructing Q from P . Let β0 < β1 < . . . be the sequence that comprises the moments αi
and the moments of the form t+WaitTime where t is a moment when some TrackStatus(x) becomes coming.
By Three Rule and SignalOpen Corollaries, these are exactly the significant moments of the desired Q. We
define the desired Q by induction on βi. It is easy to see that Q(T ) is uniquely defined by its reduct q(t) to
Υ1.

Q(0) is the appropriate reduct of A. Suppose that Q is defined over [0, βj ] and k = j+1. Let γ range over
(βj , βk). If controller does not execute at βj , define q(γ) = q(βj); otherwise let q(γ) e the state resulting
from executing controller at q(βj). Define q(βk) to agree with q(γ) at all functions except TrackStatus,
where it agrees with P (βk).

Clearly Q is a pre-run. It is easy to check that Q is a run of controller and that controller is
immediate in Q.

Phase 2: Constructing R from Q. We construct R by expanding Q to include GateStatus. Let γ1 <
γ2 < . . . be the sequence of significant moments of Q at which Dir changes. Thus Dir becomes close at
moments γi where i is odd, and becomes open at moments γi where i is even.

There are many possible ways of extending Q depending on how long it takes to perform a given change
in GateStatus. Chose a sequence a1, a2, . . . of reals such that (i) ai < γi+1− γi and (ii) ai < dclose if i is odd
and ai < dopen if i is even. The idea is that gate will delay executing OpenGate or CloseGate for time ai.

The construction proceeds by induction on γi. After i steps, GateStatus will be defined over [0, gi], and
GateStatusgi will equal opened if i is odd and will equal closed otherwise.

Set GateStatus = opened over [0, γ1]. Suppose that GateStatus is defined over [0, γi] and let j = i + 1.
We consider only the case when i is even. The case of odd i is similar.

By the induction hypothesis, GateStatus = closed at γi. Since i is even, Dir is set to open at γi. Define
GateStatus = closed over (γi, γi + ai] and opened over (γi + ai, γj ].

It is easy to see that R is a regular run of A. 2

Remark. If the assumption dmin ≥ dclose +dopen is removed, Phase 1 of the construction does not change
but Phase 2 becomes more complicated. After i steps, GateStatus is defined over [0, gi], and GateStatusgi =
closed if i is even; it cannot be guaranteed that GateStatusgi = opened if i is odd. The first step is as above.
For an even i, we have three cases.

Case 1: ai < γj − γi. Define GateStatus over (gi, gj ] as in the Existence Theorem Proof.
Case 2: ai > γj − γi. Define GateStatus = closed over (gi, gj ].
Case 3: ai = γj − γi. Define GateStatus = closed over (gi, gj ] as in sub-case 2 but also mark gj (to

indicate that OpenGate should fire at γj).
For an odd i, we have two cases.
Case 1: Either GateStatus = opened at γi or else GateStatus = closed at gi but gi is marked. Define

GateStatus over (gi, gj ] as in the Existence Theorem Proof.
Case 2: GateStatus = closed at γi and γi is not marked. Ignore ai and define GateStatus = closed over

(gi, gj ].

Claim 9.1 ((Uniqueness of Control)) There is only one run of controller consistent with A and P .

Proof Intuitively, the claim is true because the construction of Q was deterministic: we had no choice in
determining the significant moments of Q. More formally, assume by reductio ad absurdum that Q1, Q2
are runs of controller consistent with A and P and the set D = {t : Q1(t) 6= Q2(t)} is non-empty. Let
τ = inf(D). Since both Q1 and Q2 agree with A, τ > 0. By the choice of τ , Q1 and Q2 agree over [0, τ).
Since both Q1 and Q2 agree with A and P , they can differ only at internal functions; let q1, q2 be reductions
of Q1, Q2 respectively to the internal part of the vocabulary. By Preservation Lemma, q1 and q2 coincide
at τ . But the values of internal functions at τ+ are completely defined by the state at t. Thus q1 and q2
coincide at τ+ and therefore Q1, Q2 coincide over some nonempty interval [τ, τ + ε). This contradicts the
definition of τ . 2
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Claim 9.2 ((Universality of Construction)) Let R′ be any regular run of the ealgebra consistent with
A and P . In the proof of Existence Theorem, the sequence a1, a2, . . . can be chosen in such a way that the
regular run R constructed there coincides with R′.

Proof By Uniqueness of Control Claim, the reducts of R and R′ to Υ+
1 coincide. The moments γ1 < γ2 < . . .

when Dir changes in R are exactly the same moments when Dir changes in R′. We have only to construct
appropriate constants ai.

Let δ1 < δ2 < . . . be the significant moments of GateStatus in R′. With respect to Dir and GateStatus
Corollary, define ai = δi − γi. It is easy to check that R = R′. 2

Remark. If the assumption dmin ≥ close + dopen is removed, the proof of Uniqueness of Control Claim
does not change but the proof of Universality of Construction Claim becomes slightly complicated. Let
j = i+ 1. For an even i, we have two cases.

Case 1: δi ≤ γj . Define ai = δi − γi.
Case 2: δi > γj . In this case γj − γi < dopen. The exact value of ai is irrelevant; it is only important

that ai ∈ (γj − γi, dopen). Choose such an ai arbitrarily.
For an odd i, we also have two cases.
Case 1: In R′, either GateStatus = opened at γi or else GateStatus = closed at γi but OpenGate fires at

γi. Define ai = δi − γi.
Case 2: In R′, GateStatus = closed at γi. The exact value of ai is irrelevant; it is only important that

ai < dclose. Choose such an ai arbitrarily.
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