The rainbow connection of a graph is (at most) reciprocal to its minimum degree

Michael Krivelevich * Raphael Yuster ${ }^{\dagger}$

Abstract

An edge-colored graph G is rainbow edge-connected if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted by $r c(G)$, is the smallest number of colors that are needed in order to make G rainbow edgeconnected. We prove that if G has n vertices and minimum degree δ then $r c(G)<20 n / \delta$. This solves open problems from [5] and [3].

A vertex-colored graph G is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by $\operatorname{rvc}(G)$, is the smallest number of colors that are needed in order to make G rainbow vertex-connected. One cannot upper-bound one of these parameters in terms of the other. Nevertheless, we prove that if G has n vertices and minimum degree δ then $\operatorname{rvc}(G)<11 n / \delta$. We note that the proof in this case is different from the proof for the edgecolored case, and we cannot deduce one from the other.

1 Introduction

All graphs in this paper are finite, undirected and simple. We follow the notation and terminology of [2]. The following interesting connectivity measure of a graph has recently attracted the attention of several researchers. An edge-colored graph G is rainbow edge-connected if any two vertices are connected by a path whose edges have distinct colors. Clearly, if a graph is rainbow edge-connected, then it is also connected. Conversely, any connected graph has a trivial edge coloring that makes it rainbow edge-connected; just color each edge with a distinct color. Thus, the following natural graph parameter was defined by Chartrand et al. in [4]. Let the rainbow connection of a connected graph G, denoted by $r c(G)$, be the smallest number of colors that are needed in order to make G rainbow edge-connected.

An easy observation is that if G has n vertices then $r c(G) \leq n-1$, since one may color the edges of a given spanning tree with distinct colors (and leave the remaining edges uncolored). It

[^0]is easy to verify that $r c(G)=1$ if and only if G is a clique, that $r c(G)=n-1$ if and only if G is a tree, and that a cycle with $k>3$ vertices has rainbow connection $\lceil k / 2\rceil$. Also notice that, clearly, $\operatorname{rc}(G) \geq \operatorname{diam}(G)$ where $\operatorname{diam}(G)$ denotes the diameter of G. The parameter $r c(G)$ is monotone non-increasing in the sense that if we add an edge to a graph we cannot increase its rainbow connection.

Caro et al. [5] observed that $r c(G)$ can be bounded by a function of $\delta(G)$, the minimum degree of G. They have proved that if $\delta(G) \geq 3$ then $r c(G) \leq \alpha n$ where $\alpha<1$ is a constant and $n=|V(G)|$. They conjecture that $\alpha=3 / 4$ suffices and prove that $\alpha<5 / 6$ (a solution to this conjecture was recently announced by Zsolt Tuza). Clearly, we cannot obtain a similar result if we only assume that $\delta(G) \geq 2$. Just consider two vertex-disjoint triangles connected by a long path of length $n-5$. The diameter of this graph, as well as its rainbow connection, is $n-3$. More generally, it is proved in [5] that if $\delta=\delta(G)$ then $r c(G) \leq \frac{\ln \delta}{\delta} n\left(1+o_{\delta}(1)\right)$. An easier non-asymptotic bound $r c(G) \leq n \frac{4 \ln \delta+3}{\delta}$ is also proved there. They also construct an example of a graph G with minimum degree δ for which $\operatorname{diam}(G)=\frac{3 n}{\delta+1}-\frac{\delta+7}{\delta+1}$. Naturally, they raise the open problem of determining the true behavior of $r c(G)$ as a function of $\delta(G)$. The lower bound construction suggests that the logarithmic factor in their upper bound may not be necessary and that, in fact $r c(G) \leq C n / \delta$ where C is a universal constant.

If true, notice that for graphs with a linear minimum degree ϵn, this implies that $r c(G)$ is at most C / ϵ. However, the result from [5] does not even guarantee the weaker claim that $r c(G)$ is a constant. This was proved recently by Chakraborty et al. in [3]. They prove that for every fixed $\epsilon>0$ there exists a constant $K=K(\epsilon)$ so that if G is a connected graph with minimum degree at least ϵn then $r c(G) \leq K$. We note that the constant $K=K(\epsilon)$ they obtain is a tower function in $1 / \epsilon$ and in particular extremely far from being reciprocal to $1 / \epsilon$.

Our main result in this paper determines the behavior of $r c(G)$ as a function of $\delta(G)$ and in particular resolves the above-mentioned open problem.

Theorem 1.1 A connected graph G with n vertices has $r c(G)<20 n / \delta(G)$.
We note that the constant 20 obtained by our proof is not optimal and can be slightly improved with additional effort. However, by the construction from [5] one cannot expect to replace C by a constant smaller than 3.

A vertex-colored graph G is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by $\operatorname{rvc}(G)$, is the smallest number of colors that are needed in order to make G rainbow vertex-connected. Obviously, we always have $\operatorname{rvc}(G) \leq n-2$ (except for the singleton graph), and $\operatorname{rvc}(G)=0$ if and only if G is a clique. Also, clearly, $\operatorname{rvc}(G) \geq \operatorname{diam}(G)-1$ with equality if the diameter is 1 or 2 .

In some cases $\operatorname{rvc}(G)$ may be much smaller than $r c(G)$. For example, $r v c\left(K_{1, n-1}\right)=1$ while $r c\left(K_{1, n-1}\right)=n-1$. On the other hand, in some other cases, $r c(G)$ may be much smaller than
$\operatorname{rvc}(G)$. Take n vertex-disjoint triangles and, by designating a vertex from each of them, add a complete graph on the designated vertices. This graph has n cut-vertices and hence $\operatorname{rvc}(G) \geq n$. In fact, $\operatorname{rvc}(G)=n$ by coloring only the cut-vertices with distinct colors. On the other hand, it is not difficult to see that $r c(G) \leq 4$. Just color the edges of the K_{n} with, say, color 1 , and color the edges of each triangle with the colors $2,3,4$. These examples show that there is no upper bound for one of the parameters in terms of the other. Nevertheless, we are able to prove a theorem analogous to Theorem 1.1 for the rainbow vertex-connected case.

Theorem 1.2 A connected graph G with n vertices has $\operatorname{rvc}(G)<11 n / \delta(G)$.
In the next two sections prove Theorem 1.1 and Theorem 1.2, respectively.

2 Proof of Theorem 1.1

We start this section with several lemmas that are needed in order to establish Theorem 1.1. The first lemma is a simple consequence of Euler's Theorem.

Lemma 2.1 A graph with minimum degree δ has two edge-disjoint spanning subgraphs, each with minimum degree at least $\lfloor(\delta-1) / 2\rfloor$.

Proof: We can obviously assume that the graph is connected. As there are an even number of vertices with odd degree, we can add a matching to G and obtain a (multi)graph G^{\prime} which is Eulerian. By coloring the edges of an Eulerian cycle with alternating red and blue colors (starting, say, with a vertex v, with the color blue, and with a non-original edge incident with v if there is such an edge) we obtain that for each vertex u other than v, the number of red edges incident with u is equal to the number of blue edges incident with u. At most one of these edges is not an original edge of G. For the vertex v, if the total number of edges of G^{\prime} is odd we will have that the number of blue edges incident with v is larger by two than the number of red edges incident with v. This difference of two is also at most the difference in G, since we started with a non-original edge incident with v if there is such an edge.

A set of vertices S of a graph G is called a 2-step dominating set if every vertex of $V(G) \backslash S$ has either a neighbor in S or a common neighbor with a vertex in S.

Lemma 2.2 If H is a graph with n vertices and minimum degree k, then H has a 2 -step dominating set S whose size is at most $n /(k+1)$.

Proof: Initialize $H_{0}=H, S=\emptyset$, and then for as long as $\Delta\left(H_{0}\right) \geq k$, take a vertex v of degree at least k in H_{0}, add it to S and update H_{0} by deleting v and its neighbors from the vertex set of H_{0}. Observe that when the process has stopped each remaining vertex has lost in its degree and therefore has a neighbor in the set of deleted vertices. Since the latter is dominated by S, we have
that S eventually dominates the whole of $V(G) \backslash S$ in two steps. Clearly the process lasted at most $n /(k+1)$ rounds.

Lemma 2.3 If S is a 2-step dominating set of a connected graph G then there is a set of vertices $S^{\prime} \supset S$ so that $G\left[S^{\prime}\right]$ is connected and $\left|S^{\prime}\right| \leq 5|S|-4$.

Proof: Let c denote the number of connected components of $G[S]$. If $c=1$ we are done, as we may take $S^{\prime}=S$. Otherwise, consider a shortest path connecting two vertices in distinct components of S, say vertices x and y. This path has at most four internal vertices, as if there were more then there would be a vertex on this path whose distance to any vertex of S is at least 3, contradicting the fact that S is a 2 -step dominating set. Thus, by adding four vertices to S we can decrease the number of components. Henceforth, by adding at most $4(c-1)$ vertices to S we obtain a set $S^{\prime} \supset S$ so that $G\left[S^{\prime}\right]$ is connected.
Proof of Theorem 1.1: Suppose that G is a connected graph with n vertices and minimum degree δ. Set $k=\lfloor(\delta-1) / 2\rfloor$. We first apply Lemma 2.1 to obtain two edge-disjoint spanning subgraphs of G, denote G_{1} and G_{2}, with $\delta\left(G_{i}\right) \geq k$. We next apply Lemma 2.2 to each of the G_{i} to obtain a 2-step dominating set S_{i} of G_{i} with $\left|S_{i}\right| \leq n /(k+1)$ for $i=1,2$. Since S_{i} is also a 2-step dominating set of G, and since G is connected, we can apply Lemma 2.3 and obtain $S_{i}^{\prime} \supset S_{i}$ with $\left|S_{i}^{\prime}\right| \leq 5 n /(k+1)-4$ and so that $G\left[S_{i}^{\prime}\right]$ is connected. Now consider $S^{\prime}=S_{1}^{\prime} \cup S_{2}^{\prime}$. Notice that we have that either $G\left[S^{\prime}\right]$ is connected (this happens, for example, if S_{1}^{\prime} and S_{2}^{\prime} intersect) or else, using the fact that S_{1} is a 2 -step dominating set, we can add at most one vertex to S^{\prime} to obtain a set $S \supset S^{\prime}$ so that $G[S]$ is connected. In any case, we have constructed a set S with $|S| \leq 10 n /(k+1)-7$ vertices so that $G[S]$ is connected and $S_{i} \subset S$ for $i=1,2$.

Let T be a spanning tree of S. Let $W=V \backslash S$ and consider the following subsets of W. Let $D_{i} \subset W$ be the vertices of W having a neighbor of S_{i} for $i=1,2$ and notice that each vertex of $L_{i}=W \backslash D_{i}$ has a neighbor in D_{i} for $i=1,2$. We color the edges of G as follows. Each edge of T receives a fresh distinct color. All edges between S_{1} and D_{1} belonging to G_{1} receive the same fresh color. All edges between D_{1} and L_{1} belonging to G_{1} receive the same fresh color. All edges between S_{2} and D_{2} belonging to G_{2} receive the same fresh color. All edges between D_{2} and L_{2} belonging to G_{2} receive the same fresh color. The remaining edges of G may stay uncolored. The overall number of colors used is $|S|+3 \leq 10 n /(k+1)-4$.

It remains to show that the coloring makes G rainbow edge-connected. Indeed, let x, y be two vertices of G. If $x \in S$ and $y \in S$ then we can use the path in T connecting them. Otherwise if $x \in S$ and $y \in D_{1} \cup D_{2}$ then we can use an edge of G_{1} from y to some vertex $z \in S$ and then the path in T connecting z and x. Otherwise if $x \in S$ then we must have $y \in L_{1} \cap L_{2}$ and hence we can use an edge of G_{1} from y to $z \in D_{1}$, an edge of G_{1} from z to $u \in S$ and the path from u to x in T. Otherwise, we may assume that both x and y are in W. If $x \in D_{1}$ and $y \in D_{2}$ then let $u \in S$ be a neighbor of x so that $(x, u) \in E\left(G_{1}\right)$ and let $z \in S$ be a neighbor of y so that $(y, z) \in E\left(G_{2}\right)$. These
two edges together with the path in T connecting u and z form a rainbow path between x and y. Otherwise if $x \in D_{1}$ and $y \in L_{2}$ then we can reduce to the last argument by adding another edge of $E\left(G_{2}\right)$ from y to a vertex of D_{2}. Otherwise we can assume that both x and y are in $L_{1} \cap L_{2}$ and we can reduce to the last argument by adding another edge of $E\left(G_{1}\right)$ from x to a vertex of D_{1}.

3 Proof of Theorem 1.2

The proof of Theorem 1.2 also requires us to find a relatively small 2-step dominating set. However, we need additional important requirement from it. We call a 2 -step dominating set k-strong if every vertex that is not dominated by it has at least k neighbors that are dominated by it.

Lemma 3.1 If H is a graph with n vertices and minimum degree δ, then H has a $\delta / 2$-strong 2 -step dominating set S whose size is at most $2 n /(\delta+2)$.

Proof: Initialize $H_{0}=H, S=\emptyset$, and then for as long as $\Delta\left(H_{0}\right) \geq \delta / 2$, take a vertex v of degree at least $\delta / 2$ in H_{0}, add it to S and update H_{0} by deleting v and its neighbors from the vertex set of H_{0}. Observe that when the process has stopped each remaining vertex has lost more than $\delta / 2$ in its degree and therefore has more than $\delta / 2$ neighbors in the set of deleted vertices. Clearly the process lasted at most $n /(\delta / 2+1)$ rounds.
Notice the obvious, but important fact: adding vertices to a 2 -step dominating set does not decrease its strength.

Lemma 3.2 If G is a connected graph with minimum degree δ then it has a connected spanning subgraph with minimum degree δ and with less than $n(\delta+1 /(\delta+1))$ edges.

Proof: By deleting from G edges that connect two vertices with degree greater than δ as long as there are any we obtain a spanning subgraph with minimum degree δ and less than δn edges. Each connected component of this spanning subgraph has at least $\delta+1$ vertices. Thus, by adding back at most $n /(\delta+1)-1$ edges we can make it connected.

Proof of Theorem 1.2: The statement of the theorem is trivial for $\delta \leq 11$ so we assume that $\delta>11$. Suppose that G is a connected graph with n vertices and minimum degree δ. By Lemma 3.2 we may assume that G has less than $n(\delta+1 /(\delta+1))$ edges. We use Lemma 3.1 to construct a set S which is a $\delta / 2$-strong 2 -step dominating set of size $|S| \leq 2 n /(\delta+2)$. From Lemma 2.3 we can add at most $4(|S|-1)$ vertices to S and obtain $S^{\prime} \supset S$ so that $G\left[S^{\prime}\right]$ is connected and S^{\prime} is also a $\delta / 2$-strong 2 -step dominating set. Observe that $\left|S^{\prime}\right| \leq 10 n / \delta-5$.

Let $W=V(G) \backslash S^{\prime}$ and consider the partition $W=D \cup L$ where D is the set of vertices directly dominated by S^{\prime} and L is the set of vertices not dominated by S^{\prime}. Since S^{\prime} is $\delta / 2$-strong, each $v \in L$ has at least $\delta / 2$ neighbors in D. We further partition D into two parts D_{1} and D_{2} where D_{1} are those vertices with at least $\delta(\delta+1)$ neighbors in L. Notice that $\left|D_{1}\right|<n / \delta$ since otherwise
G would have had at least $n(\delta+1)$ edges, contradicting our assumption. We also partition L into two parts L_{1} and L_{2} where L_{1} are those vertices that have at least one neighbor in D_{1}.

We are now ready to describe our coloring. The vertices of $S \cup D_{1}$ are each colored with a distinct color. The vertices of D_{2} are colored only with five fresh colors so that each vertex of D_{2} chooses its color randomly and independently from all other vertices of D_{2}. The vertices of L remain uncolored. The overall number of colors used is less than $11 n / \delta$.

It remains to show that, with positive probability, our coloring yields a rainbow vertex-connected graph. We first need to establish the following claim.

Claim 3.3 With positive probability, every vertex of L_{2} has at least two neighbors in D_{2} colored differently.

Consider a vertex $v \in L_{2}$. As it has no neighbor in D_{1}, it has at least $\delta / 2$ neighbors in D_{2}. Fix, therefore a set $X(v) \subset D_{2}$ of neighbors of v with $|X(v)|=\lceil\delta / 2\rceil$. The probability of the bad event B_{v} that all of the vertices of $X(v)$ receive the same color is $5^{-\lceil\delta / 2\rceil+1}$. As each vertex of D_{2} has less than $\delta(\delta+1)$ neighbors in L we have that the event B_{v} is independent of all other events B_{u} for $u \neq v$ but at most $(\delta(\delta+1)-1)\lceil\delta / 2\rceil$ of them. Since

$$
e \cdot 5^{-\lceil\delta / 2\rceil+1}((\delta(\delta+1)-1)\lceil\delta / 2\rceil+1)<1
$$

for all $\delta \geq 11$, we have by the Lovász Local Lemma (cf. [1]) that, with positive probability, none of the bad event B_{u} hold.

Having proved the claim we can now fix a coloring of D_{2} with five colors so that each vertex of L_{2} has at least two neighbors in D_{2} colored differently. We now show that this coloring, together with the coloring of $S^{\prime} \cup D_{1}$ with distinct colors, yields a rainbow vertex-connected graph. As $S^{\prime} \cup D_{1}$ is connected, and since each vertex of D_{2} has a neighbor in S^{\prime}, we only need to show that pairs of vertices of L have a rainbow path connecting them. Each $v \in L$ has (at least) two neighbors in D colored differently. This is true for $v \in L_{2}$ as v has two such neighbors already in D_{2}. This is also trivially true for $v \in L_{1}$ since the vertices of D_{1} are colored distinctly, and with colors that are not one of the five colors used in D_{2}. Now let $u, v \in L$. Let $x \in D$ be a neighbor of u and let $y \in D$ be a neighbor of v whose color is different from the color of x. As there is a rainbow path from x to y whose internal vertices are only taken from S^{\prime}, the result follows.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, Second Edition, Wiley, New York, 2000.
[2] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics 184, Springer-Verlag 1998.
[3] S. Chakrborty, E. Fischer, A. Matsliah, and R. Yuster, Hardness and algorithms for rainbow connectivity, Proceedings of the $26^{\text {th }}$ International Symposium on Theoretical Aspects of Computer Science (STACS), Freiburg (2009), 243-254.
[4] G. Chartrand, G. L. Johns, K. A. McKeon, and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008) 85-98.
[5] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection, Electronic Journal of Combinatorics 15 (2008), \#R57

[^0]: *School of Mathematics, Tel Aviv University, Te; Aviv, Israel. Email: krivelev@post.tau.ac.il
 ${ }^{\dagger}$ Department of Mathematics, University of Haifa, Haifa 31905, Israel. Email: raphy@math.haifa.ac.il

