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Abstract

An edge-colored graph G is rainbow edge-connected if any two vertices are connected by a
path whose edges have distinct colors. The rainbow connection of a connected graph G, denoted
by rc(G), is the smallest number of colors that are needed in order to make G rainbow edge-
connected. We prove that if G has n vertices and minimum degree δ then rc(G) < 20n/δ. This
solves open problems from [5] and [3].

A vertex-colored graph G is rainbow vertex-connected if any two vertices are connected by a
path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected
graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to
make G rainbow vertex-connected. One cannot upper-bound one of these parameters in terms
of the other. Nevertheless, we prove that if G has n vertices and minimum degree δ then
rvc(G) < 11n/δ. We note that the proof in this case is different from the proof for the edge-
colored case, and we cannot deduce one from the other.

1 Introduction

All graphs in this paper are finite, undirected and simple. We follow the notation and terminology
of [2]. The following interesting connectivity measure of a graph has recently attracted the attention
of several researchers. An edge-colored graph G is rainbow edge-connected if any two vertices are
connected by a path whose edges have distinct colors. Clearly, if a graph is rainbow edge-connected,
then it is also connected. Conversely, any connected graph has a trivial edge coloring that makes
it rainbow edge-connected; just color each edge with a distinct color. Thus, the following natural
graph parameter was defined by Chartrand et al. in [4]. Let the rainbow connection of a connected
graph G, denoted by rc(G), be the smallest number of colors that are needed in order to make G
rainbow edge-connected.

An easy observation is that if G has n vertices then rc(G) ≤ n − 1, since one may color the
edges of a given spanning tree with distinct colors (and leave the remaining edges uncolored). It
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is easy to verify that rc(G) = 1 if and only if G is a clique, that rc(G) = n − 1 if and only if G
is a tree, and that a cycle with k > 3 vertices has rainbow connection dk/2e. Also notice that,
clearly, rc(G) ≥ diam(G) where diam(G) denotes the diameter of G. The parameter rc(G) is
monotone non-increasing in the sense that if we add an edge to a graph we cannot increase its
rainbow connection.

Caro et al. [5] observed that rc(G) can be bounded by a function of δ(G), the minimum
degree of G. They have proved that if δ(G) ≥ 3 then rc(G) ≤ αn where α < 1 is a constant and
n = |V (G)|. They conjecture that α = 3/4 suffices and prove that α < 5/6 (a solution to this
conjecture was recently announced by Zsolt Tuza). Clearly, we cannot obtain a similar result if we
only assume that δ(G) ≥ 2. Just consider two vertex-disjoint triangles connected by a long path of
length n−5. The diameter of this graph, as well as its rainbow connection, is n−3. More generally,
it is proved in [5] that if δ = δ(G) then rc(G) ≤ ln δ

δ n(1 + oδ(1)). An easier non-asymptotic bound
rc(G) ≤ n4 ln δ+3

δ is also proved there. They also construct an example of a graph G with minimum
degree δ for which diam(G) = 3n

δ+1 −
δ+7
δ+1 . Naturally, they raise the open problem of determining

the true behavior of rc(G) as a function of δ(G). The lower bound construction suggests that the
logarithmic factor in their upper bound may not be necessary and that, in fact rc(G) ≤ Cn/δ

where C is a universal constant.
If true, notice that for graphs with a linear minimum degree εn, this implies that rc(G) is at

most C/ε. However, the result from [5] does not even guarantee the weaker claim that rc(G) is a
constant. This was proved recently by Chakraborty et al. in [3]. They prove that for every fixed
ε > 0 there exists a constant K = K(ε) so that if G is a connected graph with minimum degree at
least εn then rc(G) ≤ K. We note that the constant K = K(ε) they obtain is a tower function in
1/ε and in particular extremely far from being reciprocal to 1/ε.

Our main result in this paper determines the behavior of rc(G) as a function of δ(G) and in
particular resolves the above-mentioned open problem.

Theorem 1.1 A connected graph G with n vertices has rc(G) < 20n/δ(G).

We note that the constant 20 obtained by our proof is not optimal and can be slightly improved
with additional effort. However, by the construction from [5] one cannot expect to replace C by a
constant smaller than 3.

A vertex-colored graph G is rainbow vertex-connected if any two vertices are connected by a
path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected
graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make
G rainbow vertex-connected. Obviously, we always have rvc(G) ≤ n − 2 (except for the singleton
graph), and rvc(G) = 0 if and only if G is a clique. Also, clearly, rvc(G) ≥ diam(G) − 1 with
equality if the diameter is 1 or 2.

In some cases rvc(G) may be much smaller than rc(G). For example, rvc(K1,n−1) = 1 while
rc(K1,n−1) = n − 1. On the other hand, in some other cases, rc(G) may be much smaller than
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rvc(G). Take n vertex-disjoint triangles and, by designating a vertex from each of them, add a
complete graph on the designated vertices. This graph has n cut-vertices and hence rvc(G) ≥ n. In
fact, rvc(G) = n by coloring only the cut-vertices with distinct colors. On the other hand, it is not
difficult to see that rc(G) ≤ 4. Just color the edges of the Kn with, say, color 1, and color the edges
of each triangle with the colors 2, 3, 4. These examples show that there is no upper bound for one
of the parameters in terms of the other. Nevertheless, we are able to prove a theorem analogous to
Theorem 1.1 for the rainbow vertex-connected case.

Theorem 1.2 A connected graph G with n vertices has rvc(G) < 11n/δ(G).

In the next two sections prove Theorem 1.1 and Theorem 1.2, respectively.

2 Proof of Theorem 1.1

We start this section with several lemmas that are needed in order to establish Theorem 1.1. The
first lemma is a simple consequence of Euler’s Theorem.

Lemma 2.1 A graph with minimum degree δ has two edge-disjoint spanning subgraphs, each with
minimum degree at least b(δ − 1)/2c.

Proof: We can obviously assume that the graph is connected. As there are an even number of
vertices with odd degree, we can add a matching to G and obtain a (multi)graph G′ which is
Eulerian. By coloring the edges of an Eulerian cycle with alternating red and blue colors (starting,
say, with a vertex v, with the color blue, and with a non-original edge incident with v if there is
such an edge) we obtain that for each vertex u other than v, the number of red edges incident
with u is equal to the number of blue edges incident with u. At most one of these edges is not an
original edge of G. For the vertex v, if the total number of edges of G′ is odd we will have that the
number of blue edges incident with v is larger by two than the number of red edges incident with
v. This difference of two is also at most the difference in G, since we started with a non-original
edge incident with v if there is such an edge.

A set of vertices S of a graph G is called a 2-step dominating set if every vertex of V (G) \ S
has either a neighbor in S or a common neighbor with a vertex in S.

Lemma 2.2 If H is a graph with n vertices and minimum degree k, then H has a 2-step dominating
set S whose size is at most n/(k + 1).

Proof: Initialize H0 = H, S = ∅, and then for as long as ∆(H0) ≥ k, take a vertex v of degree
at least k in H0, add it to S and update H0 by deleting v and its neighbors from the vertex set of
H0. Observe that when the process has stopped each remaining vertex has lost in its degree and
therefore has a neighbor in the set of deleted vertices. Since the latter is dominated by S, we have
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that S eventually dominates the whole of V (G)\S in two steps. Clearly the process lasted at most
n/(k + 1) rounds.

Lemma 2.3 If S is a 2-step dominating set of a connected graph G then there is a set of vertices
S′ ⊃ S so that G[S′] is connected and |S′| ≤ 5|S| − 4.

Proof: Let c denote the number of connected components of G[S]. If c = 1 we are done, as we may
take S′ = S. Otherwise, consider a shortest path connecting two vertices in distinct components
of S, say vertices x and y. This path has at most four internal vertices, as if there were more then
there would be a vertex on this path whose distance to any vertex of S is at least 3, contradicting
the fact that S is a 2-step dominating set. Thus, by adding four vertices to S we can decrease the
number of components. Henceforth, by adding at most 4(c−1) vertices to S we obtain a set S′ ⊃ S
so that G[S′] is connected.
Proof of Theorem 1.1: Suppose that G is a connected graph with n vertices and minimum
degree δ. Set k = b(δ − 1)/2c. We first apply Lemma 2.1 to obtain two edge-disjoint spanning
subgraphs of G, denote G1 and G2, with δ(Gi) ≥ k. We next apply Lemma 2.2 to each of the Gi to
obtain a 2-step dominating set Si of Gi with |Si| ≤ n/(k + 1) for i = 1, 2. Since Si is also a 2-step
dominating set of G, and since G is connected, we can apply Lemma 2.3 and obtain S′i ⊃ Si with
|S′i| ≤ 5n/(k+1)−4 and so that G[S′i] is connected. Now consider S′ = S′1∪S′2. Notice that we have
that either G[S′] is connected (this happens, for example, if S′1 and S′2 intersect) or else, using the
fact that S1 is a 2-step dominating set, we can add at most one vertex to S′ to obtain a set S ⊃ S′

so that G[S] is connected. In any case, we have constructed a set S with |S| ≤ 10n/(k + 1) − 7
vertices so that G[S] is connected and Si ⊂ S for i = 1, 2.

Let T be a spanning tree of S. Let W = V \ S and consider the following subsets of W . Let
Di ⊂ W be the vertices of W having a neighbor of Si for i = 1, 2 and notice that each vertex of
Li = W \Di has a neighbor in Di for i = 1, 2. We color the edges of G as follows. Each edge of
T receives a fresh distinct color. All edges between S1 and D1 belonging to G1 receive the same
fresh color. All edges between D1 and L1 belonging to G1 receive the same fresh color. All edges
between S2 and D2 belonging to G2 receive the same fresh color. All edges between D2 and L2

belonging to G2 receive the same fresh color. The remaining edges of G may stay uncolored. The
overall number of colors used is |S|+ 3 ≤ 10n/(k + 1)− 4.

It remains to show that the coloring makes G rainbow edge-connected. Indeed, let x, y be two
vertices of G. If x ∈ S and y ∈ S then we can use the path in T connecting them. Otherwise if
x ∈ S and y ∈ D1 ∪D2 then we can use an edge of G1 from y to some vertex z ∈ S and then the
path in T connecting z and x. Otherwise if x ∈ S then we must have y ∈ L1∩L2 and hence we can
use an edge of G1 from y to z ∈ D1, an edge of G1 from z to u ∈ S and the path from u to x in T .
Otherwise, we may assume that both x and y are in W . If x ∈ D1 and y ∈ D2 then let u ∈ S be a
neighbor of x so that (x, u) ∈ E(G1) and let z ∈ S be a neighbor of y so that (y, z) ∈ E(G2). These
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two edges together with the path in T connecting u and z form a rainbow path between x and y.
Otherwise if x ∈ D1 and y ∈ L2 then we can reduce to the last argument by adding another edge
of E(G2) from y to a vertex of D2. Otherwise we can assume that both x and y are in L1 ∩L2 and
we can reduce to the last argument by adding another edge of E(G1) from x to a vertex of D1.

3 Proof of Theorem 1.2

The proof of Theorem 1.2 also requires us to find a relatively small 2-step dominating set. However,
we need additional important requirement from it. We call a 2-step dominating set k-strong if every
vertex that is not dominated by it has at least k neighbors that are dominated by it.

Lemma 3.1 If H is a graph with n vertices and minimum degree δ, then H has a δ/2-strong 2-step
dominating set S whose size is at most 2n/(δ + 2).

Proof: Initialize H0 = H, S = ∅, and then for as long as ∆(H0) ≥ δ/2, take a vertex v of degree
at least δ/2 in H0, add it to S and update H0 by deleting v and its neighbors from the vertex set
of H0. Observe that when the process has stopped each remaining vertex has lost more than δ/2
in its degree and therefore has more than δ/2 neighbors in the set of deleted vertices. Clearly the
process lasted at most n/(δ/2 + 1) rounds.
Notice the obvious, but important fact: adding vertices to a 2-step dominating set does not decrease
its strength.

Lemma 3.2 If G is a connected graph with minimum degree δ then it has a connected spanning
subgraph with minimum degree δ and with less than n(δ + 1/(δ + 1)) edges.

Proof: By deleting from G edges that connect two vertices with degree greater than δ as long as
there are any we obtain a spanning subgraph with minimum degree δ and less than δn edges. Each
connected component of this spanning subgraph has at least δ + 1 vertices. Thus, by adding back
at most n/(δ + 1)− 1 edges we can make it connected.

Proof of Theorem 1.2: The statement of the theorem is trivial for δ ≤ 11 so we assume that
δ > 11. Suppose that G is a connected graph with n vertices and minimum degree δ. By Lemma
3.2 we may assume that G has less than n(δ + 1/(δ + 1)) edges. We use Lemma 3.1 to construct
a set S which is a δ/2-strong 2-step dominating set of size |S| ≤ 2n/(δ + 2). From Lemma 2.3 we
can add at most 4(|S|− 1) vertices to S and obtain S′ ⊃ S so that G[S′] is connected and S′ is also
a δ/2-strong 2-step dominating set. Observe that |S′| ≤ 10n/δ − 5.

Let W = V (G)\S′ and consider the partition W = D∪L where D is the set of vertices directly
dominated by S′ and L is the set of vertices not dominated by S′. Since S′ is δ/2-strong, each
v ∈ L has at least δ/2 neighbors in D. We further partition D into two parts D1 and D2 where
D1 are those vertices with at least δ(δ+ 1) neighbors in L. Notice that |D1| < n/δ since otherwise
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G would have had at least n(δ + 1) edges, contradicting our assumption. We also partition L into
two parts L1 and L2 where L1 are those vertices that have at least one neighbor in D1.

We are now ready to describe our coloring. The vertices of S ∪ D1 are each colored with a
distinct color. The vertices of D2 are colored only with five fresh colors so that each vertex of
D2 chooses its color randomly and independently from all other vertices of D2. The vertices of L
remain uncolored. The overall number of colors used is less than 11n/δ.

It remains to show that, with positive probability, our coloring yields a rainbow vertex-connected
graph. We first need to establish the following claim.

Claim 3.3 With positive probability, every vertex of L2 has at least two neighbors in D2 colored
differently.

Consider a vertex v ∈ L2. As it has no neighbor in D1, it has at least δ/2 neighbors in D2. Fix,
therefore a set X(v) ⊂ D2 of neighbors of v with |X(v)| = dδ/2e. The probability of the bad event
Bv that all of the vertices of X(v) receive the same color is 5−dδ/2e+1. As each vertex of D2 has
less than δ(δ + 1) neighbors in L we have that the event Bv is independent of all other events Bu
for u 6= v but at most (δ(δ + 1)− 1)dδ/2e of them. Since

e · 5−dδ/2e+1((δ(δ + 1)− 1)dδ/2e+ 1) < 1

for all δ ≥ 11, we have by the Lovász Local Lemma (cf. [1]) that, with positive probability, none
of the bad event Bu hold.

Having proved the claim we can now fix a coloring of D2 with five colors so that each vertex of
L2 has at least two neighbors in D2 colored differently. We now show that this coloring, together
with the coloring of S′ ∪ D1 with distinct colors, yields a rainbow vertex-connected graph. As
S′ ∪D1 is connected, and since each vertex of D2 has a neighbor in S′, we only need to show that
pairs of vertices of L have a rainbow path connecting them. Each v ∈ L has (at least) two neighbors
in D colored differently. This is true for v ∈ L2 as v has two such neighbors already in D2. This
is also trivially true for v ∈ L1 since the vertices of D1 are colored distinctly, and with colors that
are not one of the five colors used in D2. Now let u, v ∈ L. Let x ∈ D be a neighbor of u and let
y ∈ D be a neighbor of v whose color is different from the color of x. As there is a rainbow path
from x to y whose internal vertices are only taken from S′, the result follows.
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