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ABSTRACT. Let C* denote the 3-uniform tight cycle, that is the hypergraph with vertices v1, ..., vn
and edges v1V2v3, V2U3V4, ..., Un—1UnV1, Un¥1v2. We prove that the smallest integer N = N(n) for
which every red-blue coloring of the edges of the complete 3-uniform hypergraph with N vertices
contains a monochromatic copy of ¥ is asymptotically equal to 4n/3 if n is divisible by 3, and 2n
otherwise. The proof uses the regularity lemma for hypergraphs of Frankl and Rodl.

1. INTRODUCTION

Given a k-uniform hypergraph H, k > 2, the Ramsey number r(H) is the smallest integer N

such that every red-blue coloring of the edges of the complete k-uniform hypergraph K](\’;) with NV
vertices yields a monochromatic copy of H. A classical result in graph Ramsey theory ([1, 2, 10])
states that for k = 2 and n > 5 the Ramsey number of the graph cycle C,, with n vertices is

3

P(Ch) = sn—1 if nis even,
" 2n—1 ifnis odd.

Thus, the Ramsey numbers for graph cycles depend strongly on the parity of n.

In this paper we continue our study of Ramsey numbers for 3-uniform hypercycles, initiated in
[5]. There are various definitions of a cycle in a 3-uniform hypergraph. Given a suitably labeled set
of vertices {v1,...,v,}, a loose cycle has the edge set {v1v9v3, V3V4V5, V5VgVT, . . ., Up—1V,V1 }, While
the tight cycle, denoted henceforth by 07(13), has the edge set

{U1U2'037 V2V3V4, UV3V4V5, . . . , Un—1UnV1, Unvlv2}-

In [5] we proved that the Ramsey number for the n-vertex loose cycle, n even, is asymptotic to 5n /4.
(Note that loose cycles do not exist for n odd.)

Here an analogous problem is investigated for the tight cycles. So far, the only known value of
the Ramsey number for a tight cycle is r(Cf’)) = 13 (see [8]). Asymptotically, it turns out that the
Ramsey number for the tight cycle is larger than that for the loose cycle, and depends on whether
n is divisible by 3. Thus in this respect, tight cycles behave more like graph cycles than loose cycles
do. Our aim is to prove the following theorem.

Theorem 1.1.

(a) For every integer n > 1 and i =0,1,2,

dn —1 ifi=0,
r(C) = -
6n+2i—1 ifi # 0.
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(b) Let n > 0 be given. Then for all sufficiently large n and i =0, 1,2,

3 (44+n)n ifi=0,
(64+n)n if i # 0.
In the next section we prove the lower bounds and outline the proofs of the upper bounds. Their

complete proofs are deferred to Section 5.

2. LOWER BOUNDS AND THE OUTLINE OF THE MAIN PROOF

Most of the work in proving Theorem 1.1 lies in the upper bounds. In this section, we begin
by establishing the lower bounds (Theorem 1.1(a)), and then we sketch the main ideas needed
for Theorem 1.1(b), which include a notion of connectedness for 3-uniform hypergraphs. Since all
hypergraphs considered in this paper are 3-uniform, we will more concisely call them hypergraphs.

2.1. Proof of lower bounds. The first lower bound is based on relation between cycles and
matchings. Let Még) be a 3-uniform 3n-vertex matching, that is, a hypergraph consisting of n
disjoint edges. Observe that C?Ei) contains M7(13), and so r(C?()i)) > T(M7(l3)).

Proof of Theorem 1.1(a). To prove that ?”(C?()i)) > 4n — 1, partition the vertex set of Kﬁ)_Q into
two parts, X and Y, where |X| = 3n — 1, |Y| = n — 1, and color all edges inside X red and all

other edges blue. It is easily seen that this coloring contains no monochromatic MS’), and thus

no monochromatic copy of C?Ei). (Unlike in the case of graphs, the above extremal coloring is not
unique. For another one, see Example 1 in Subsection 2.2.)

To prove that T(Céi)Jrz) >6n+2i—1,i=1,2, partition the vertex set of Kﬁ(i)_mi_Q into two parts,
X and Y, where |X| = |Y| =3n+1i — 1, and color red [blue] all edges with an odd [even] number

of elements in X. An edge containing a vertex of X and a vertex of Y is called crossing.

Suppose that there is a red copy C of C?E:TZ_Z in such a coloring. Since |X| < 3n + i, at least one
edge of C' is crossing. But then, by the definition of a tight cycle, every edge of C' is crossing, that
is, every edge of C' contains one vertex of X and two of Y. This means that every third vertex of

C belongs to X, which is impossible when i # 0. g

Note that the first construction in the above proof implies that r(M,(L?’)) > 4n — 1, and so, in
view of Theorem 1.1, r(MT(;’)) and T(Céi)) are asymptotically equal. In fact, it is easy to prove that
T(My(LB)) =4n — 1.

2.2. Paths, pseudo-paths and connectedness. A (tight) path is a hypergraph with vertices
V1, ..., Upyo and edges v1v2v3, VU304, . .., UpUpt1Upro. The pairs (vi,v2) and (vpi2,vpt1) are called
the endpairs of the path. (Note the reverse order of the latter pair which emphasizes the symmetry
of the path.) The length of a path on p + 2 vertices is equal to p, the number of edges.

A pseudo-path in a hypergraph H is a sequence (eq, ..., ep) of not necessarily distinct edges of H
such that |e; Ne;y1| = 2 for each i = 1,...,p — 1. In particular, the edges of every path can be
ordered (in two ways) to form a pseudo-path. If (e1,...,e,) is a pseudo-path in H then we say
that e; and e, are connected in H by a pseudo-path. Unlike for paths, this defines an equivalence
relation and we call the equivalence classes the components of H.

A hypergraph H is connected if every two edges e, f € H are connected by a pseudo-path. Note
that there are several ways to define connectedness in hypergraphs (cf. [5]), but in this paper we
will always mean the one defined above. A sub-hypergraph H' of H is externally connected (in H)
if every two edges e, f € H' are connected in H by a pseudo-path. In other words, there is a
component C' of H that contains H’.
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Example 1. Consider a 3-uniform hypergraph with vertex set V=X UY, X, Y # (), and a red-
blue coloring where every edge with an odd intersection with X is colored red and all other edges
are colored blue. Then, the red sub-hypergraph has two components, one consisting of all edges
contained in X, the other formed by all edges with one vertex in X and two in Y.

Clearly, every red tight cycle must be entirely contained in one of these two components, a fact
utilized already in the proof of Theorem 1.1(a), ¢ # 0. Moreover, with |X| = |Y| = 2n — 1 this
yields an alternative “extremal coloring” in the proof of Theorem 1.1(a), ¢ = 0. Indeed, neither of
the two red components contains a cycle of length 3n. As a matter of fact, none of them contains
an externally connected matching of size n.

2.3. Monochromatic matchings in colorings of almost complete hypergraphs. The basic
idea of our proof, similar to that given by Luczak [6] and Figaj and Luczak [3] (see also [5]), is to
apply to the colored complete (hyper)graph the regularity lemma, find in the cluster (hyper)graph
a large structure of a certain type, and use this structure to obtain a long, monochromatic cycle.

Thus, a crucial role in the proof of Theorem 1.1(b) is played by the two following Ramsey-type
results on externally connected matchings. We state them now, but their proofs are deferred to the
end of the paper.

Lemma 2.1. For every n > 0 there exist § > 0 and sg such that the following holds. Let K be a
hypergraph with t = (44 n)s vertices, s > so, and at least (1 —0) (é) edges. Then, for every red-blue

coloring K = Kieq U Kplue, €ither Kieq or Kpue contains an externally connected matching M, 5(3).

The proof, given in Section 8, is so technically involved that, for the sake of the reader, it
is preceded in Section 6 by its “idealized” version with n = § = 0. There we will prove that the
Ramsey number r (M, §3)) = 4s—1 does not increase when the matching is requested to be externally
connected in one of the colors (cf. Theorem 6.1).

To deal with the case i # 0, we will need the following modification of Lemma 2.1.

Lemma 2.2. For every n > 0 there exist § > 0 and sg such that the following holds. Let K be
a hypergraph with t = (6 + n)s vertices, s > sg, and at least (1 — 5)(};) edges. Then, for every
red-blue coloring K = Kieq U Kplue, €ither Kieq or Kpue contains an externally connected union of

a matching MS(?’) and a cycle Cf’) or CéS).

Why does the size of the largest monochromatic, externally connected matching found in a

red-blue colored K go down from t/4 to t/6, if it has to be accompanied by a copy of Cf') or

Cg()?’)? The answer can be provided by the second construction in the proof of Theorem 1.1(a)
(see Section 2.1). Indeed, that construction yields a coloring of Kgsyo;—o without any externally

connected, monochromatic copy of a vertex-disjoint union of M §f’) and Céii L S=81+s82,1=1,2.

Although in Lemma 2.2 we do not assume that a copy of Cf’) or C’éB) has to be disjoint from the
matching, it can be reduced to the disjoint case by disregarding at most five edges of the matching.
This small loss does not affect the asymptotics of Lemma 2.2.

The proof of Lemma 2.2 is based on Lemma 2.1 and quite similar to its proof, but even more
technical. The full version can be be found in the Appendix.

2.4. Outline of the proof of upper bounds. We first consider the case of Céi). Let K](\‘?) =
HieqUHplue, where N ~ 4n, be a red-blue coloring of the edges of the complete 3-uniform hypergraph
kY.

We apply simultaneously, to both Hyeq and Hyye, the hypergraph regularity lemma (Theorem 3.2)
with suitably chosen parameters, and obtain a vertex partition V' = V3 U ... UV, |V;| ~ N/t,
such that for almost all triples {i,j, k} one of the induced sub-hypergraphs, Hyeq[V; U V; U V] or
Hype[ViUV;UVL], is “well structured”, that is, enjoys high regularity and large density (see Section 5
for details).
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It will be proved in Section 4 that a “well structured” hypergraph contains a long path (Lemma 4.6),

in our case of length almost 3N/¢t. We will build a monochromatic copy of C’?Ei) mostly out of such
paths, coming from about ¢/4 vertex disjoint “well-structured” hypergraphs. Thus, it is crucial to
find about ¢/4 disjoint, but mutually connected, “well-structured” sub-hypergraphs in one color.

To this end, let K,eq and Ki)ye be two auxiliary hypergraphs on the vertex set {1,2,...,t}, whose
edges are those triples {7, j, k} for which, respectively, Hyeq[ViUV;UV}] or Hyue[ViUV; UV, contains
a “well structured” sub-hypergraph. Set K = Keq U Ky and note that |K| ~ (;) We call K the
cluster hypergraph and the edges of K the cluster edges.

By Lemma 2.1 either K,eq or Kpue (say, Kyeq) contains an externally connected matching M =

MS(S) of size s ~ t/4. Next, using Lemma 4.6, we will find a long path in each sub-hypergraph
H,ealVi, Vj, Vi), where {i,j,k} € M. These paths are disjoint and have total length of about
(t/4) x (3N/t) = 3N/4 ~ 3n (in fact, 3n — O(1)).

To connect the long paths together into a red cycle of length 3n, we will construct in Hyeq short
paths (length O(1)) between the endpairs of long paths, being guided by the pseudo-paths linking

in K,eq the cluster edges of Ms(3) (in reality, we build the short paths first).

The case of C?(,i)Jri, 1 = 1,2, requires just one modification: in addition to an externally connected,
monochromatic matching in K, we will need a copy of a cycle of length not divisible by three in the
same color. This is provided by Lemma 2.2, which guarantees in either Koq or Kpjue the existence

of an externally connected sub-hypergraph which is a union of M 5(3), s ~ t/6, and a copy of either

C’f’) or C’ég). Due to the presence of a cluster cycle of length not divisible by three we will be able
to adjust the length of the final cycle to be equal one or two modulo three (by running once or twice
around the cluster cycle — see Section 5 for more details).

In the next section we introduce the regularity of hypergraphs and present a corresponding
regularity lemma. In Section 4 we prove the existence of paths of prescribed length in quasi-random
hypergraphs (Lemma 4.6), one of the two main ingredients of the proof of Theorem 1.1(b). In
Section 5 we put together the main proof, and, finally, in Sections 6-8 we provide the proofs of the
second crucial ingredient, Lemmas 2.1 and 2.2.

3. REGULARITY OF HYPERGRAPHS

In this section we describe the regularity lemma for hypergraphs established in [4], in a modified
version presented in [9]. To do this we will need to refer to the notion of e-regularity for graphs,
the key idea in Szemerédi’s Regularity Lemma [11].

3.1. Graph regularity. Let G be a bipartite graph with vertex classes X and Y and let 0 < d < 1.
For X’ C X and Y/ C Y, we write Eg(X',Y”’) for the set of edges of G that have one end in X’
and the other in Y’. The density dg(X',Y’) of G over the pair (X', Y”) is defined by

Eg(X’ Y’)\
da(x',y") = B 1T
Y = R

Let € > 0. We say that G is (d,€)-regular, if for all X’ C X and Y’ C Y with |X'| > €| X|
and Y] > €]Y|, we have

lda(X',)Y') —d| < e.
We say that G is e-regular if it is (d, €)-regular with d = dg(X,Y).

3.2. Hypergraph regularity. We now turn to hypergraph regularity. A triple (P'2, P13, P?3) of
bipartite graphs with vertex sets V3 U Vo, V3 U V3 and Vo U V3, or equivalently, the 3-partite graph
P = P2y PB U P? itself, will be referred to as a triad.

In what follows we often need to focus on the set of edges of a hypergraph H that are also vertex
sets of triangles in a fixed triad P with V(P) C V(H). We denote by Tr(P) the family of the vertex
sets of the triangles in the graph P, and set tr(P) = | Tr(P)|. Thus for any P, Tr(P) is a 3-uniform
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hypergraph on the same vertex set as P. Moreover, Tr(P) is 3-partite in the sense that every edge
intersects each set Vq, V5 and V3.
Further, we define the notion of the density of H with respect to P as

_[HATx(P)|
i P) = TR

Similarly, for every r-tuple of triads @ = (Q(1), Q(2), ..., Q(r)), let
U, ()|

|Upos Q)|

Note that in the definition above, the sets of triangles Tr(Q(p)) need not be pairwise disjoint.
Next, we define the notion of regularity for 3-uniform hypergraphs. Given a triad P = P2 U
P13 U P23 by a sub-triad we mean a triad Q = Q' U Q' U Q@ where

Q12 C P12, Q13 C P13, Q23 C P23.

d(Q) =

Definition 3.1. Let 6 > 0 and o > 0, and let r be a positive integer. Further, let H be a 3-uniform
hypergraph with V(H) 2 V(P).

e We say that H is («, d,r)-reqular with respect to a triad P if for every r-tuple of sub-triads
J=(Q(1),Q(2),...,Q(r)) satisfying | U Tr(Q(p))| > 6| Tx(P)|, we have |du(Q) — al < 4.
p=1

e We say that H is (d,r)-regular with respect to P if it is («, 9, 7)-regular with oo = dy(P).

e A triad P with respect to which H is (6, r)-regular will be called (9, r)-regular Otherwise, it
will be called (9, r)-irregular.

e Moreover, if each graph P'2, P13 P23 of an (a,6,7)-regular triad P = P2 U P13 U P? is
(1/4,€)-regular, then we call the pair (H, P) an («, 6, ¢, r, €)-reqular complex.

— —

Observe that if H¢ is the complement of H then dy(Q) = 1 — dg<(Q). Consequently, if H is
(o, 6, r)-regular, then H¢ is (1 — «a, 0, 7)-regular with respect to the same triad P.

3.3. Regularity Lemma for Hypergraphs. We now state the regularity lemma for 3-uniform
hypergraphs from [4] in a simplified form presented in [9] (see Lemma 4.1 and Remark 4.1 there).
We write K (U, W) for the complete bipartite graph with vertex sets U and W.

Theorem 3.2 (Regularity Lemma for Hypergraphs). For every § > 0, every integer to, all integer-

valued functions r = r(t,£), and all decreasing sequences £(£) > 0, there exist constants Tp, Lo and

Ny such that every 3-uniform hypergraph H with at least Ny vertices admits a partition 11 consisting

of an auziliary vertex set partition V(H) = Vo U Vi U--- UV, where tg < t < Ty, |Vo| < t and
¢

Vil = |Va| = --- = |V, and, for each pairi,j, 1 <i < j <t, apartition K(V;,V;) = U P where
a=1

1 < /¢ < Ly, satisfying the following conditions:
(i) all graphs PY are (1/¢,(0))-regular, o
(ii) H is (9, 7)-regular with respect to all but at most 53t triads (P, th], PY).

Note that the conclusions of Theorem 3.2 hold for the complement H¢ of H as well.
Since the outcome of the regularity lemma may be overwhelming, we simplify the picture a little
bit by selecting only one graph P’ from each K (V;,V;).

Claim 3.3. Given the partition produced by Theorem 3.2, there exists a family P of bipartite graphs
P = Py, one between each pair (V;,V;), where 1 < i < j < t, such that H is (6,r)-reqular with
respect to all but at most 26t3 triads (Phi, phi. PY).
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Proof. We apply the probabilistic method. For all 1 <i < j <t, choose an index a;; € {1,2,...,¢}
independently and uniformly at random. The selected indices determine a (random) family P of (;)
bipartite graphs. By condition (ii) of Theorem 3.2, the expected number of (§,r)-irregular triads
of P is at most 6¢3¢3(1/¢)3 = 6t3, and hence, by Markov’s inequality, the probability that there are
more than 26¢> such triads is less than 1/2. Thus, there exists a selection P with fewer than 253
(6, r)-irregular triads. O

4. A LONG, LONG PATH

Our goal in this section is to find tight hyperpaths of given lengths connecting two designated
edges of P in an («,0d,¢,r,¢)-complex (H,P), as defined in Definition 3.1. To distinguish the
hypergraph edges from the graph edges, in this section the former will be called hyperedges. On the
other hand, as in the whole paper, we will use the name “path” instead of “hyperpath”.

4.1. Short paths. Recall that a tight path of length m was defined as a hypergraph with vertices
{v1,...,vm+2} and the m hyperedges vivovs, ..., UnVUmt+1Um+2. We call the (ordered) pairs (vy,v2)
and (Vp42, Um+1) the endpairs of the path, while the vertices vs, ..., vy, are called internal vertices.
Two paths are said to be internally disjoint if they do not share any internal vertex.

Note that the endpairs of a 3-uniform path are ordered pairs of vertices. However, in a 3-partite
3-uniform hypergraph H on vertex set V3 U V5 U V3, we may designate one cyclic orientation, say
Vi — Vo — V3 — Vj, as canonical, and view the endpairs of paths as unordered pairs of vertices,
or simply the edges of the underlying graph P. Then saying that a path goes from e to f is not
ambiguous and means that the endpairs of the paths are the edges e and f directed by the canonical
ordering. For example, let e = ab and f = cd be two edges, where a,d € V1, b,c € V5. Then, under
the above canonical orientation, a path going from edge e to edge f is a path with the endpairs
(a,b) and (c,d).

Definition 4.1. With the convention that ijk is the canonical cyclic orientation, we say that an
ordered pair of edges (e, f), where e € P, is of type 1 if f € PI*, of type 2 if f € P*, and of
type 3 if f € PY. We denote the type of (e, f) by type(e, f).

Thus, every path from e to f has some length m such that
m = type(e, f) (mod 3).

Definition 4.2. Let e1,es be two edges of P and x,y be two integers. We say that e; reaches es
within H in x steps and in y ways if there exist at least y internally disjoint paths in H of length x
from ey to es.

Let

014

0= 500067

For an edge e € P we denote by Four™ (e, H) the set of those edges of P, which are reached from e
within H in four steps and in yon ways, and by Four™ (e, H) the set of all edges of P which reach
e within H in four steps and in yon ways (see Figure 4.1). Owing to the canonical orientation in
which all paths proceed, the sets Four™ (e, H) and Four™ (e, H) are contained in different subgraphs
P and thus are disjoint.
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FIGURE 4.1. The fourth neighborhoods of e (g € Four™ (e, H), h € Four™ (e, H))

In [7] the following result is proved . For a subset S C V(H) a path Q C H is called S-avoiding
if V(Q)NS = 0. Given a graph G with V(G) = V(H), we denote by H — G the sub-hypergraph
of H obtained by removing from H all hyperedges containing at least one edge of G. Finally, let

4 2
Ry = {e € P : min {|Four™ (e, H)|, [Four™ (e, H)|} < 2300 X 72}
Theorem 4.3 ([7]). For each o € (0,1) there exists § > 0 and sequences r({), €(¢), and ny(¢)
such that for all integers £ > 1 the following holds: if (H, P) is an (a, d,4,r(€),e({))-complex with
Vi| = [Va] = |V3| = n > ng(£), then there is a subgraph Py of at most 27/én?/{ edges of P such
that

(i) foralle € P\ Py

a' '\ n?
min (|Fow™ (e, H — Py)|, [Four™ (e, H — Ry)|) > <2()00> v’

and

(ii) for every ordered pair of disjoint edges (e, f) € (P \ Ro) x (P\ Ry), eN f =10, and for every
set SCV(H)\ (eU f) of size |S| < n/logn, there is in H an S-avoiding path from e to f
of length 9 + type(e, f). O

Part (i) above is Lemma 4.2 in [7], while part (ii) is Theorem 3.4(ii) in [7] (see also Remark 4.3
there). Now we formulate a useful corollary of Theorem 4.3.

Corollary 4.4. For each o € (0,1) there exists 6 > 0 and sequences r({), £(£), and no(£) such
that for all integers £ > 1 the following holds: if (H, P) is an (o, 0,¢,7({),(£))-complex with |Vi| =
Va| = |V3] = n > ng(£), then there is a subgraph Py of at most 27v/0n%/{ edges of P such that

(i) foralle € P\ Py

4 2
Fowrt(e. H)| > [ 2™
[Four™ (e, ”-(2000)5’

and
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(i) for every ordered pair of disjoint edges (e, f) € (P\ Py) x (P\ Py), eN f =0, and for every
set SCV(H)\ (eU f) of size |S| < n/logn, there is in H an S-avoiding path from e to f
of length 9 + type(e, f). O

Proof. Part (i) follows trivially from Theorem 4.3(i), because Four™ (e, H) D Four™ (e, H — Fy). To
prove part (ii), observe that, by definition of Ry and Theorem 4.3(i), we have Ry C Py, and thus
(P\ Ry) x (P\ Ry) C (P\ Py) x (P\ Py). Hence, part (ii) follows from Theorem 4.3(ii). O

Let us conclude this subsection with an observation that, for a small decrease in the size of S,
the path length in Corollary 4.4(ii) may be specified to be any integer from {10,...,17}.

Claim 4.5. Under the assumptions of Corollary 4.4, for every ordered pair of disjoint edges (e, f) €
(P\ Py) x (P\ Py), enf =10, for every set S C V(H) \ (eU f) of size |S| < n/logn — 12, and
for each m € {10,...,17}, m = type(e, f)(mod 3), there is in H an S-avoiding path from e to f of
length m.

Proof. In view of Corollary 4.4(ii), we may assume that m > 13. In this case will apply Corol-
lary 4.4(ii) twice. First we find in H an S-avoiding path @1 from e to f of length my = 10, 11, or 12,
depending on the type of (e, f). Note that mg = m(mod 3), and thus m — myg is divisible by three.

Consider the initial segment Q) of Q1 of length m — myg, and call its other endpair €’ (note that
type(€, f) = type(e, f)). Now, find in H an (SUV(Q})\ ¢)-avoiding path Q2 from €’ to f of length
mg. Then, the concatenation Q) + Q2 forms in H an S-avoiding path from e to f of length m. O

4.2. Long paths. It was shown in [7] that («,d, ¢, €)-complexes contain long paths. Here we
strengthen that result by showing that, in fact, most pairs of edges of the underlying graph P are
connected in H by paths of any given, feasible length m, for a wide range of m.

Lemma 4.6. For each a € (0,1) there exists 6 > 0 and sequences r({), £(¢), and ny(f) with
the following property: for all integers £ > 1, if (H,P) is a (dg(P),0,¢,7(£),(f))-complex with
dg(P) > a and |Vi| = |Va| = |V3] = n > ny(¢), then there is a subgraph Py of at most 27v/6n? /¢
edges of P such that for all ordered pairs of disjoint edges (e, f) € (P \ Py) x (P \ Py), for every set
ScV(H)\ (eUf),|S| <n/(ogn)?, and for all integers m from the range

10 < m < (1—6Y%)(3n),
with m = type(e, f)(mod 3), there is in H an S-avoiding path from e to f of length m.

Proof. Note that unlike in Claim 4.5, here we need to construct a possibly very long path from e to f.
This will be achieved by a repeated application of Corollary 4.4(i). There is a minor, but irritating
difference, however, in the set-ups of Corollary 4.4 and Lemma 4.6: in the former, the hypergraph
density was roughly equal to «, while now we have a hypergraph H satisfying dg(P) > a. To
circumvent this technical obstacle, we consider a random sub-hypergraph Hr C H, where each
hyperedge of H is present independently with probability a/dg(P). By Chernoff’s bound, the pair
(Hg, P) is an (o, 20,¢,7({),e(f))-complex. Clearly, if Hr contains the desired path then so does H.
By resetting H := Hp and ¢ := §/2, we thus reduce Lemma 4.6 to the instance when (H, P) is an
(a0, 0,4,r(L),e(¢))-complex.

Given «, let § > 0 and the sequences r(f), £1(¢), and ng(¢) be such that Corollary 4.4 holds with
5 = 457 in place of 8, r(¢), €1(¢) in place of £(¢), and ny(¢). Set e(¢) = (5%61(@. Assume also that

ot

1
(4.1) 27\ 401 < 5000 °
We will prove Lemma 4.6 with the above choice of §, 7(¢) and £(¢), and with a choice of ny(£) > ng(¢)
such that for all £ > 1 and n > n;(¢) all inequalities encountered in the proof below hold true.
Let (H,P) be an («,0,¢,7(¢),e(f))-complex and Py = Py(H) be given by Corollary 4.4, where
Vil = |Va| = |[V3] = n > ny = ny(f). Let us fix an ordered pair of disjoint edges (e, f) €
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(P\ Py) x (P\ Py), and aset SC V(H)\ (eU f), |S| < n/(logn)?. Finally, fix an integer m from
the range 10 < m < (1 — 6Y/4)(3n), with m = type(e, f)(mod 3).

Our goal is to show that there exists an S-avoiding path from e to f of length m. Without loss
of generality, let us assume that type(e, f) = 3, e = ab € P'? and f = cd € P2, where a,d € V;
and b,c € V5.

The plan is to first grow, by recursive application of Corollary 4.4(i), two disjoint S-avoiding paths
Q. and Qy of equal length m/, one from e, the other from f, until their total length 2m’ reaches
roughly m. Then, making sure that 10 < m — 2m’ < 17, we will use Claim 4.5 to connect the other
endpairs of these two paths to form in H an S-avoiding path from e to f of length precisely m.

The two “parallel” paths will be grown recursively, in increments of four, using the property of
the sets Four™(¢’, H) and Four™ (f’, H), where ¢/ and f’ will denote the current endpairs. Thus,
we must take care to always choose the extending paths so that the new endpairs are outside the
exceptional set Py of the current sub-hypergraph. To this end, at any given step of this procedure,
we will have to consider two sub-hypergraphs defined as follows.

Given two disjoint paths, Q. from e and Q from f, of equal length m/, let H' = H'(Qe, Q) be
the sub-hypergraph obtained from H by deleting all vertices of ). and @, except for the last four
from each path (if m’ < 4, we set H' = H). Further, let the sub-hypergraph H” = H"(Q., Q.) be
obtained from H by deleting all vertices of Q. and @ (no exceptions). Set also P’ = P[V(H')] and
P’' = P[V(H")]. As long as

V(Qe)uV(Qp)| =2m' < (1-6"*)(3n),

the hypergraphs H' and H” have at least 6'/4n vertices in each set Vj, i = 1,2,3, and so, the pairs
(H',P") and (H",P") are (a,45%,£,r, 8/5%)—complexes (see, e.g., [9], Fact 4.2). Let P} and P} be
the subgraphs of P’ and P”, respectively, guaranteed by Corollary 4.4.

As a next step in the proof of Lemma 4.6, we show that two long paths can be grown from e and
f. Their length m/, due to the chosen method of construction, will be a multiple of four.

Fact 4.7. For every 0 < m/ < %(1 — 8% (3n), m’ divisible by four, there exists in H a pair of
disjoint S-avoiding paths Q. and Q¢ of length m', originating from e and f, respectively, and such
that their other endpairs are not in P} .

Proof. We proceed by induction on m’. There is nothing to prove for m’ = 0. Let Q. and @ be a
pair of disjoint S-avoiding paths, one from e and the other from f, of the same length m’ > 0, m’
divisible by four, and such that their other endpairs, ¢’ and f’, are not in Pj. (If m’ = 0, we set
e’ =ecand f' = f.) We will now show how to extend Q. and @y to a new pair of paths Q; and Q'
of length m' + 4, thus completing the inductive step. (The reader may be guided throughout by
Figure 4.2.)

Noticing that [V (H")| < |V(H')| and 5/5% = e1(¢), by Corollary 4.4 applied to H” we have
H" 2 H' 2
(42) ’PO//| S 27 45iw < 27 451'—“/(6)’/?4 .
On the other hand, by Corollary 4.4(i) applied to H" and by the fact that ¢’ € P], we infer that the
edge €’ reaches in four steps at least
ot [|V(H)/3)?
2000 14

other edges of P’. Therefore, since n > nj, by (4.2) and (4.1), €’ reaches in four steps at least
|P{'| + 4n other edges of P’, where the term 4n takes care of all edges adjacent to the two vertices
of the set

T.=V(H)NV(Q.)\¢.
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Consequently, there is at least one edge ¢” € P"”\ P}/, reached from €’ by at least vo|V (H")| internally
disjoint paths in H' of length four. Thus, since n > nq, at least one of them avoids S U T,, and we
may extend @) by four vertices, so that the new path @/, ends in " & Fj.

Qe Q.

b
/'\ L °
e . €
N\/. 1 el
a

Qy Q'

d

H/:H/<Q€7Qf) H//:H//(Qean)

FIGURE 4.2. Growing hyperpaths from e and f (illustration to the proof of Lemma 4.6).

We now similarly extend Q) by four vertices, so that the new path Q} is disjoint from @, avoids
S, and ends in f” ¢ Fy. Since H" = H'(Q¢,Q%), and so Py = Po(H'(Qc, QY)), the pair of paths
(Q¢, Q%) satisfies all conditions required in Fact 4.7. 0.

Now comes the final, gluing part of the proof of Lemma 4.6. First, we have to choose the right
length m’ of the paths Q. and Q¢ guaranteed by Fact 4.7. Since their total length 2m’ is divisible
by eight, it is convenient to represent m in the form

m = 8k + h,

where 0 < h < 7. Note that in view of Claim 4.5, there is nothing to prove when k = 1, or k = 2
and h < 1. If k > 2 and h > 2, we need m’ = 4(k — 1) because then m —2m’ =8+ h € {10,...,15}.
Similarly, when k& > 3 and h < 1, we need m’ = 4(k — 2) (this time m — 2m’ = 16 or 17).

Let

Ty =V(H)NV(Qp)\ [

We connect ¢’ and f’ by a path Qe ¢ in H' of length precisely m —2m' € {10,...,17}, which avoids
the set SUT, UT}y. This follows from Claim 4.5 above. The concatenation Q. + Q5 + Qs forms
in H an S-avoiding path from e to f of length m, as required. O

5. PROOF OF THEOREM 1.1(B)

In Sections 5.1-5.4 we prove Theorem 1.1(b) for Céi) and then, in Section 5.5, we explain how to

3) 3)

adjust the proof to obtain Theorem 1.1(b) in the remaining cases of Cén 1 and C'?(m ro
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5.1. The choice of constants and the use of the regularity lemma. Let n > 0 be given.
Set @ = 1/2 and let &', r(¢), €(¢), n1(¢) be as guaranteed by Lemma 4.6. Let §” = d(n/2) and
s0 = s0(n/2) be given by Lemma 2.1. Envisioning an application of Theorem 3.2, we set

s
(5.1a) 6:min{(;,40},
(5.1b) to = max {0,550},
and

(5.1¢) r(t,0) = r(0).

Theorem 3.2 yields integers Lg, Ty, Ng from which we derive

N; = max {QTO maxnq(¢), No} .
¢<Lg

Now, for an arbitrary n > iNl, consider a red-blue coloring K](\?) = H,eq U Hyye, where N =
(44 n)n > N1 > Np.

We apply the hypergraph regularity lemma (Theorem 3.2) with parameters given by (5.1a)-(5.1c)
to Hieq (and Hppye), yielding a partition IT satisfying conditions (i) and (ii) of Theorem 3.2. In
particular, this determines the values of t and ¢. Note that |Vi| = |Va| = -+ = |V{| > (N —Tp) /Ty >

By Claim 3.3, setting ¢ = £({), there exists a family P of (1/¢,¢)-regular, bipartite graphs
P = Pfgj between pairs (V;, V}), where 1 < i < j <t, such that Hyeq (and, by complement, Hyjye)
is (6,7(t,£))-regular with respect to all but at most 26t> triads P¥* = P% u Pk U P, Setting
r = r(t,¢), we will more concisely call these triads (4, r)-regular.

Note that if P¥* is a (6, r)-regular triad then

(Hyea, P%) is a (dp,., (PY%), 8, 0,7, €)-complex
and B B
(Hotue, P7%) is a (dy,,, (PY), 6, ¢, r,e)-complex.
Moreover, since
(52) dHred (Pl]k) + delue (szk) = 17

either dy_,(PY*) > 1/2 or dp,,, (PY*) > 1/2. (This is what we meant in Section 2.4 by a “well
structured” sub-hypergraph.)

5.2. Finding a monochromatic pseudo-path in K. We construct the cluster hypergraph K
with the vertex set {1,...,t}, and the edge set consisting of all triples {i, 7, k} such that the triad
PUF is (§,r)-regular. Note that K contains at least

<;> — 253 > (1) (;,)

edges, where the inequality follows by (5.1a).

With the ultimate goal of finding a monochromatic cycle 07(13)’ we first design a “big picture”
route (as a pseudo-path in K') that the monochromatic cycle will eventually follow.

To this end, define a red-blue coloring K = KoqU Kpjyue of the cluster hypergraph K, by including
{i,j,k} € Kieq if

dHred(Pijk) >1/2

and {i,7, k} € Kpe otherwise. By (5.2), this coloring is well defined.

By Lemma 2.1 with 1/2 in place of 7, there exists in K4, say, a connected matching M =
{h1,...,hs} of size s = t/(4+n/2). Let Q;, i = 1,...,s — 1, be a shortest pseudo-path in Keq
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from h; to h;+1. Note that the edges of each @; are all distinct, and thus the length ¢; of Q); satisfies
the bound ¢; < (}), which is independent of n.

Given two pseudo-paths P and (), where the last edge of P coincides with the first edge of @,
P + @ stands for the concatenation of P and @. The pseudo-path

Q=Qi+ +Qu1=(c1,r¢p)

will serve as “a frame” for the long red cycle in Hqq.

5.3. Creating a short monochromatic cycle in H. For every i =1, ..., p, let P’ = P% be the
triad corresponding to a cluster edge e;. Recall that all these triads are (9, r)-regular. Let Pg C Pt
be the subgraph of P (of prohibited edges) given by Lemma 4.6 applied to the complex (H,eq, P?),
and, fort=1,..., p—1, set

B' = (P"\ Fg) n (P R,

Choose mutually distinct edges f;, g; € B® for 1 <i < p—1. The bound on | P| from Lemma 4.6
ensures that for sufficiently large n this is possible.

In the next step of our construction, applying repeatedly Claim 4.5, we create a short cycle C
in Hyeq of length divisible by 3. To this end, we connect by disjoint paths of length 10, 11, or 12,
fito fa to f3...to fp—1 to gp—1 and then, “backward”, g,—1 to gp—2 ... to g1 to fi.

For the passages from f,_; to g,—1 and from g; to f1, we choose the triads PP and P!, respectively,
while for all i = 1,..., p — 2, the paths from f; to f;;11 and from g;;1 to g; use the triad P**1.

We have a choice of the direction around P? in which we connect fi to fz, but then all other
directions are determined. For the types to be well defined (cf. Definition 4.1), we need to designate
one orientation around each triad as canonical. For convenience, we declare canonical the orientation
consistent with the direction in which our paths proceed.

Note that for each i = 1,...,p — 2, the paths from f; to f;11 and from g;11 to ¢g; go in the same,
canonical by now, direction around P*!. Hence,

(5.3) type(fi, fi+1) + type(gi+1,9:) = 1+ 2 = 0(mod 3).
Since also

type(gi, f1) = type(fp-1,gp-1) = O(mod 3),
the obtained short cycle C has length divisible by 3.

To keep the paths disjoint, we apply Claim 4.5 with the set .S collecting the vertices of the so far
constructed paths. Since |S| < 12(2p) < n/logn, the assumptions on the size of S in Claim 4.5 are
satisfied. For future reference, we denote by R; the just created short path from g; to f1, by R;t1,
i=1,...,p— 2, the paths from f; to fiy1, and by R, the path from f,_; to g,—1.

5.4. Creating a monochromatic cycle of length 3n. Preparing for the final step, let
1= {1,£1,€1 + 0y — 1,...,p}.
Observe that |I| = s and that M = {hy,...,hs} = {e;: 1 € I}.

To complete the proof, we replace the short paths R;, i € I, in C by disjoint, long paths with the
same endpairs as the R;’s, which lie in the same triads (and thus, have the same length modulo 3
as the R;’s), in such a way that the total length of the obtained cycle is 3n.

Specifically, let m' be the length of C', minus the sum of the lengths of all paths R; with j € I.
Furthermore, for each i € I, ¢ # p, let

3n —m’
mi =T + T4,

where z; = 0, 1, or 2, so that

m; — type(fi, fi+1) = 0(mod 3).
For each i € I, i # 1,p, we apply Lemma 4.6 to the complex (H,eq, P"*1), with e = fi, f = fit1,
S =V(C)\ (eU f) (note that |S| = O(1)), and with m = m;. As a result, we obtain paths T;
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from f; to fir1 of length m;, i € I, i # 1,p, and, similarly, a path T} from f; to g1 of length m.
To achieve precisely the length 3n for the final cycle, we take a path T}, from f,_1 to g,—1 of length

my,=3n— | m' + Z m;
iel\{p}

This is possible, because for large n
N
10 <m, < sn +0(1) < (1-6"13 LJ ;
S

and Lemma 4.6 can again be applied. Since the edges of M are vertex-disjoint, the paths T; do not
interfere with each other.

5.5. Adjustment to lengths 3n + 1 and 3n + 2. In order to prove the second part of Theo-
rem 1.1(b), we first choose the constants in the same way as in Section 5.1, then apply the hyper-
graph regularity lemma (Theorem 3.2) to the red-blue colored K, 6+mn = Hred U Hyye, from which
we obtain the cluster hypergraph K.

Next, we color the edges of K with red and blue as in Section 5.2 and then use Lemma 2.2 to
find, say, in Keq a connected union of a matching M = {hy,...,hs} of size s =¢/(6 +n/2) and a

copy D of C’f’) or Cég). Below we consider only the case when D = Cf’), leaving the other case to
the reader.

We use the approach from Section 5.3 to obtain a red copy of C’:,(,ill [or C’éi)H] Let, as before,
Qi,t=1,...,5s — 1, be a shortest red pseudo-path from h; to h;+1, and, in addition, let Q)5 be the
shortest red pseudo-path from hg to an edge of D. The pseudo-path

Q=Q1+ - +Qs= (617"'7612)
will now serve as a frame for the desired red cycle in H,qq.

We define P?, P, B' and mutually distinct edges f;,g; € B? for 1 < i < p — 1 as before. Relying
on Claim 4.5, we construct first the short paths as before, except that now the path R, from f,_1
to gp—1 has to be of length equal to 1 [or 2] modulo 3. To ensure this, we build R, out of 4 pieces,
one in each triad constituting D, each piece connecting a pair of edges of type 1 [or 2].

More specifically, let V(D) = {a,b,c,d}, where e, = {a,b,c} and {a,b} C e,—;. Let us choose
disjoint, typical (that is, not belonging to respective prohibited subgraphs Py¥*) edges from the
intersections of consecutive triads: fp. € PN Pve f., € Pdn pede and fy, € P plad,

By Claim 4.5, going around each triad alphabetically, there are internally disjoint paths of length
10, connecting fp—1 to fie to feq to faq to gp—1. This settles the case i = 1. For i = 2, we build
paths of length 11, connecting f,—1 to faqq to feq to fp. to gp—1.

Finally, using Lemma 4.6, some s paths R;, corresponding to the edges of M, are replaced by
long paths 7;, in exactly the same way as in Section 5.4. Of course, we now adjust the length of
the last path, so that the length of the resulting cycle is exactly 3n + 1 [or 3n + 2].

6. MATCHINGS IN COMPONENTS (IDEALIZED)

In this section we prove a version of Lemma 2.1 with n = § = 0. There are two reasons for doing
this. Firstly, we exhibit here all essential ingredients of the real proof given in Section 8, not hidden
under the burden of tedious estimations. Secondly, the result we present here is interesting in its
own right, as dealing with a “connected” version of the classical Ramsey number (1, §3)) =4s—1.
It turns out that this Ramsey number is not affected by the additional restriction that the matching
must be contained in a monochromatic component. Interestingly, besides the extremal coloring of
K ﬁ’)ﬂ described in the proof of Theorem 1.1(a), which prevents any monochromatic matching of
size s, there is another one which contains monochromatic matchings of size s, but not externally
connected (see Example 1 in Section 2.2).
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Theorem 6.1. In every red-blue coloring of the complete 3-uniform hypergraph Kii)_l = Kieq U

Kilue, either Kieq or Kpe contains an externally connected matching MS(S).

The connectedness and components of a hypergraph H were defined in Section 2.2. Denote by
OH the set of all pairs zy for which there exists z such that xyz € H (0H is usually referred to
as the shadow of H). We find it convenient to view OH as both a graph and a set of pairs of the
vertices of H. Observe that

(6.1) OH' N OH" = () for any two distinct components H’, H" of H.

In particular, any two edges of the same color (say red), sharing two vertices must be in the same
red component.

Sett =4s—1, K = Kt(s), V = V(K), and consider an arbitrary red-blue coloring K = Kyeq U
Kplue. Our goal is to find M, 5(3) in some component of K..q or Kpue. We start our proof with two
observations.

Observation 6.2. For every x € V there exists a monochromatic component C' such that {zy: y €

V\{z}} CoC.

Proof. Let Kieq(x) := {yz: zyz € Kiea} and Kpe(z) := {yz: xyz € Kpue}. Since every edge
of K is colored by only one color, Kyue(x) is the complement of Ki.q(z), and consequently, one
of these two graphs must be connected. Suppose that Keq(x) is connected. Then, for every two

vertices y,z € V' \ {z} there is a path y = 21, x2,..., 2, = 2z in Kyeq(x) which corresponds to a red
pseudo-path ey, eo, ..., ex_1, where ¢; = za;x;11, ¢ = 1,...,k — 1. This pseudo-path connects zy
with 2z in K,.q, and hence, there is a red component C' such that xy,xz € 9C. O

For each x € V let us choose arbitrarily one component satisfying the condition in Observation 6.2
and denote it by C,. Let Vieq = {z € V: C, is red} and Ve = {z € V: C, is blue}. Note that
V = Vied U Vhlue and these two sets are disjoint.

Observation 6.3. If Vieq # 0 (Vie # 0, respectively), then there is a red component S (a blue
component A) such that C,, = S for every x € Vioq (Cp = A for every x € Viue).

Proof. This observation is trivial if [Vieq| = 1. Suppose |Vied| > 2 and let z,2' € Vieq. Then
zz' € 0C, NIC,, and, by (6.1), we have C, = Cy. O

Components A and S will play a special role, and we will refer to them as azure (A) and scarlet
(5)-

The next two claims form a mechanism to build an externally connected matching in one color
given an externally connected matching of the same size in the other color (see Lemma 6.7). Clearly,
the colors in their statements can be interchanged.

Claim 6.4. Let X = {z,y,2,a,b,c,d} CV be a set of seven vertices. Suppose that xyz is an edge
of some red component Cieq and ya, zb € IChe for some blue component Cyue. Then at least one
of the following holds.

(1) X contains two disjoint edges of Cied,
(2) there is an edge e C X in Cylye such that |eN{a,b,c}| =1 and le N {z,y, z}| =2,
(3) X contains two disjoint edges of Chpiye.-

Proof. Suppose that neither (1) nor (2) holds. Then both zya € Cyeq and xzb € Cieq, and, conse-
quently, ya, zb € 0Ceq. Thus, if zbc or yad were red, they would belong to Cieq. Since xya € Creq,
this implies that the edge zbc has to be blue, and thus zbc € Chpye (because zb € OChye). Similarly,
since 2zb € Cieq, the edge yad has to be blue, and thus yad € Chye (because ya € IChye), yielding
(3). O
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Claim 6.5. Let X = {u,v,w,x,y,z,a,b,c} CV be a set of nine vertices. Suppose that vvw and
xyz are edges of some red component Cieq and ya, zb,vb,wc € OCpe for some blue component
Chiue- Then at least one of the following holds.

(1) X contains three disjoint edges of Creq,

(2) there is an edge e in Cple such that |e N {a,b,c}| = 1 and either |e N {z,y,z} = 2, or
le N {u,v,w}| =2,

(3) there are two disjoint edges eq, ea € Cpye such that for i =1, 2, the edge e; intersects each
of {z,y, 2}, {u,v,w}, and {a,b,c} in one verter.

Proof. If (2) does not hold, then the edges xzb, vwe, uwe and yza are all red (because ya, zb, we €
OChlue), and thus in Cieq (because zyz, uvw € Cieq). Consider the edges yua and xvb. If either of
them is red, then it has to be in Cieq (because ya,zb € 0C,eq), yielding (1), as xzb, vwe, and yua
are disjoint and in Cleq, and so are uwe, yza and xvb. If both yua and zvb are blue, then they
belong to Chye (because ya, vb € Cyye). Hence (3) holds. O

Remark 6.6. Note that for the proofs of Claims 6.4 and 6.5 it is not essential that K is a complete
hypergraph. In the case of Claim 6.4, we just need to assume that all triples of vertices within
X, intersecting simultaneously {z,y, z} and {a,b,c,d}, are edges of K. In the case of Claim 6.5,
all triples of vertices within X, having two vertices in {u, v, w,z,y, 2} and one in {a, b, c}, must be
edges of K. This observation will be used in the full proof of Lemma 2.1 in Section 8.

Our last preliminary result relies heavily on the two previous claims. Essentially, it says that
given a maximal matching in a red component, one can construct a matching in a blue component
of roughly the same size.

Lemma 6.7 (The Mirror Lemma). Let M be a largest matching in a red component Cieq and let
P be a set of at least |M| + 3 vertices outside M. Assume further that for some blue component
Chlue and for every e € M, the bipartite induced subgraph OCypiyele, P] of OChue contains Ky p|-1-
Moreover, setting G = 0Cpue[V (M), P, let J be an arbitrary, non-empty subset of P such that

J 2 {v e P:degg(v) < |V(M)[}.

Then there exists a matching M' C Cye such that either

(i) [M'] = [M],

i) V(M) P| < |M], and

(iii) (P\V(M'))NJ #0,
or

(iv) |M'| = |M|+1, and

(v) [V(M")nP| <|M|+3.
Proof. Let M" C Chue be a largest matching such that

o V(M) P| < M),
(6.2) e V(M") intersects at most |M"| edges of M,

o (P\V(M")NJ#0.
We claim that |M"”| > |M| — 1. Indeed, suppose |M"| < |M| — 2. It follows that there exist
e1,e2 € M so that (e Uea) NV (M"”) =0. Set P = P\ V(M"). Since

|P"| = |P| = |PNV(M")] = M| +3— (M| -2) =5,
one can choose a, b, c € P” so that 0Chele;, {a,b,c}] D Ka3 fori =1,2, and (P"\ {a,b,c})NJ # 0.
This is always possible, because at most one vertex of P can be excluded for each e; and ey, and

these excluded vertices have to belong to J. (If no vertex is excluded then we can simply choose a,
b, and ¢ so that a vertex of J remains in P”\ {a, b, c}.)
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Claim 6.5, applied to X = e; U ey U {a,b,c}, implies that we can either enlarge M in Cieq (if
(1) of Claim 6.5 occurs) or M” in Ch,e with conditions (6.2) preserved (if (2) or (3) of Claim 6.5
occurs), yielding a contradiction with the choice of M or M”| respectively.

Hence |M"| > |M| — 1. If [M"| > |M|, we are done. Otherwise, let zyz € M be such that
{z,y,2} NV (M") = 0. Since

|P"| = [M]+3 = (IM] 1) =4,

one can choose a,b,c € P” so that 9Chele, {a, b, c}] D Ka3 and (P”\ {a,b,c}) N J # (. We apply
Claim 6.4 to the set X = {z,y, z, a,b, ¢,d}, where d € P"\ {a,b,c} is arbitrary. By the maximality
of M in Cieq, (1) cannot hold. If (2) holds, we enlarge M” by adding the edge e, obtaining a
matching M’ satisfying conditions (i), (ii), and (iii). If conclusion (3) holds, we enlarge M" by
adding two disjoint edges, obtaining a matching M’ satisfying conditions (iv) and (v). O

Proof of Theorem 6.1. Let M be a largest matching among all matchings contained in S or A.
Without loss of generality we assume that () # M C S. This implies that Vieq # 0, but Ve might
be empty. Suppose that

(6.3) I1<m=|M|<s-1
and set
(6.4) R=Vieqa \ V(M) and B = Vpue \ V(M).

Note that RN B = 0,

(6.5) t=4s—1=3m+|RUB|,

and consequently, using also (6.3),

(6.6) IRUB|=4s—1—-3m>s+2>m+3>4.

Observation 6.8. All edges in RU B with at least one vertex in R are blue, and therefore in the
same blue component Chye. Furthermore, if B # (), then Cpjue = A.

Proof. Note that any red edge with at least one vertex in R is in the scarlet component S and, if
disjoint from V' (M), could be used to enlarge M. Hence, all edges from the set T'={e C RUB :
eN R # (0} must be blue. Moreover, every pair of edges from T is connected by a pseudo-path in T,
and thus, they all belong to the same blue component. The second part follows because any blue
edge containing a vertex from Vjjye also contains a pair from A (see Observation 6.3). O

For the rest of the proof we distinguish three cases. In each of them, the Mirror Lemma plays a
central role. However, we need its technical conclusion (iii) only in the third case.
Case 1: B=1)

In this case, RUV (M) = V and thus |R| =t —3m > m + 3 > 4. Denote by Chye the blue
component guaranteed by Observation 6.8.

Observation 6.9. For every edge e € M, the bipartite induced subgraph OChyele, R] of OChiue
contains Ko g1 as a subgraph.

Proof. Suppose there is an edge xyz € M and two vertices a,b € R such that za and yb & 0Chye.
Let ¢,d € R\ {a,b} (recall that |R| > 4). Note that, by Observation 6.8, ac,bd € 9Chjye, and thus
edges xac and ybd must be red.

Since ax, by € 05, we have that zac,ybd € S. Consequently, (M \ {zyz}) U {zac,ybd} is a red
matching in S larger than M — a contradiction. O
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Now we apply Lemma 6.7 with P = R (recall that |R| > m+3), obtaining a matching M’ C Chye
either of size m and with |V (M) N R| < m, or of size m + 1 and with [V (M) N R| < m + 3. Note
that by (6.3)

4s —1 —3m —m > 3(s —m) in the former case,
4s —1—3m — (m+3) > 3(s —m — 1) in the latter case.

[R\ V(M) > {

This allows us in either case to enlarge M’ to size s. Indeed, since all edges contained in R are
in Cplye (cf. Observation 6.8), we can greedily find s — m or s —m — 1, respectively, disjoint edges
from Chye and add them to M.

Case 2: R=1)

In this case, BUV (M) = V and thus [B| =t —3m > m + 3 > 4. Since B # (), the azure
component component A exists. Furthermore, by the definition of Vij,e and (6.4), we know that
for every e € M the graph 0Ale, B] is the complete bipartite graph. Thus, by the Mirror Lemma
applied with P = B, we obtain a matching M" C A of size |M'| = m and such that |V (M')NB| < m.
(A matching of size m + 1 in the azure component A is impossible by our choice of M.)

Note that |B\ V(M')| > 4s — 1 —3m —m > 3. We claim that R’ := Vieq \ V(M') = 0.
Indeed, suppose that R’ # (). Take any three vertices a,b,c € B\ V(M’') and d € R’ (observe that
d ¢ B\ V(M') because R’ C Vieq in this case). Since ab € 9A (because a € Vyjye), both abe and abd
are red (otherwise we could enlarge M’ to size m + 1). But ad € 9S (because d € Vieq), therefore
abd € S and, consequently, abc € S. Since {a,b,c} N V(M) = (), we can enlarge M, which is a
contradiction.

Thus R’ = () and we are back in Case 1 with the colors red and blue interchanged and M replaced
by M'.

Case 3: |B|,|R| > 1

Set P = RU B and note that, by (6.6), we have |P| > m + 3. Since B # (), the blue component
guaranteed by Observation 6.8 is Cplue = A. In particular, for all pairs of vertices a,b € P we have
ab € 0A.

Observation 6.10. For every e € M, the bipartite induced subgraph 9Ale, P] of 0A contains
K5 |p|-1 as a subgraph.

Proof. The proof follows the lines of the proof of Observation 6.9. Suppose there is an edge zyz € M
and two vertices a,b € P such that za,yb ¢ 0A. Note that, in fact, a,b € R because 0Ale, B] is
the complete bipartite graph. Recall that |P| > 4 by (6.6), and choose arbitrarily ¢,d € P\ {a, b}.
Since ac, bd € 0A, edges xac and ybd must be red.

On the other hand, by the definition of Vieq, we also have ax,by € 35, so xac,ybd € S. Hence,
(M \ {zyz}) U{zac,ybd} is a red matching in S larger than M — a contradiction. O

We apply the Mirror Lemma with Creq = S, Chiue = A, P = RUB, and J = R. Let M’ be a
matching in A satisfying conclusions (i)-(iii) (again, option (iv)-(v) is excluded by the choice of M).
We have

|IP\V(M")| >4s—1—3m—m > 3.
By conclusion (iii), we can choose a,b,c € P\ V(M) so that ¢ € R. Hence, the pair ac € 9AN IS,
and consequently, abc € S if it is red and abec € A if it is blue. Also {a,b, ¢} is disjoint from both
V(M) and V(M'). Thus, either we obtain a matching of size |[M|+ 1 in S, or a matching of size

IM'| +1 = |M]|+1 in A, contradicting the maximality of M among all matchings contained in S
or A. U

7. MATCHINGS AND SHORT CYCLES IN COMPONENTS (IDEALIZED)

In this section we prove a version of Lemma 2.2 with § = 0, and with the term 7s replaced by
Q(y/s). The main reason for doing this is, similarly to the previous section, to show the ideas of
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the proof clearly and without tiring calculations. A complete proof of Lemma 2.2 is not included
in this paper, but can be found in the Appendix.

Theorem 7.1. There exists cy such that the following holds. Let s > c3 and let K be the complete 3-

uniform hypergraph with t > 6s+ co+\/s vertices. Then, for every red-blue coloring K = KieqU Kplye,

)

either Kieq or Kplue contains an externally connected union of a matching Ms(3 and a cycle Cig)

or Cé?’).

Please note that the above theorem determines only the asymptotic value of the Ramsey number

for a connected union of a matching Ms(?’) of size s and a copy of Cf) or C’ég) (we do not require

them to be disjoint). At this point we do not know whether the lower bound of 6s + 2i — 1 given
in Sections 2.1 and 2.3 is optimal.

Proof. Let cg = 25V/7, s > 0(2), and let K be the complete 3-uniform hypergraph with ¢t = 6s + cg+/s
vertices. For simplicity, we assume that 6s + cp+/s is an integer and note that ¢t < 7s. Suppose that
for an arbitrary red-blue coloring K = Kyeq U Kplue

(7.1) no monochromatic component contains M 5(3) and C’f’) or C’é?’).

Recall that the sets Vieq and Vijue, and the scarlet component S and the azure component A were
defined in Section 6. We distinguish two complementary cases, and in each of them we obtain a

contradiction to (7.1) or its consequence, (7.2) below. In each case we use the fact that T(C’f)) =13
(see [8]).

Case 1: [Vied|, |Volue| > s-

In this case we are able to prove Theorem 7.1 even with t = 6s — 1 and s > 37. We first prove
that each of S and A contains a matching M, §3).

Observation 7.2. Ms(g) C A and Ms(?’) cS.

Proof. Partition the set of vertices V(K) := V into sets V', VI ;, V{,, such that V. ; C Vieq,
Vieal = 8, Vilue € Vblues [Viel = s, and V= VA (V4 U V).
Since |V'| > 6s—1—2s > 4s—1, Theorem 6.1 applied to the induced red-blue coloring Keq[V']U

Kpiue[V'] of K[V'] implies that there exists a matching M = M) in a component (say red) Cieq
of Kieq. (This is true because each component of any sub-hypergraph of K,q is contained in some
component of Kieq.)

By (7.1) we know that C’f’) ¢ Cieq- Consequently, for each edge ryz € M and any vertex
a € Vo> at least one of the edges zya, rza, yza must be blue and also in A, since a € V{;,.. Thus,
using all s vertices of V; . and s edges of M, we greedily find a matching of size s in A. Using

(7.1) again, we have C’f) ¢ A. Replacing Creq with A, Vijye with V. ;, A with S, and interchanging
colors red and blue in the argument above, we obtain a matching of size s in S. U

In view of Observation 7.2, it follows from (7.1) that
(7.2) c® ¢ Aand CP ¢ S,
Observation 7.3. For every pair of vertices xy € (Vrzed) there exist at most twelve vertices z € Vpjue
such that zyz is blue (and therefore in A).
Proof. Suppose there is a pair xy € (Vf;d) and 13 vertices 21, ..., 213 € Vhlue S0 that xyz; € A for
1 =1,2,...,13. Since T(C4(3)) = 13, the sub-hypergraph induced in K by zi,...,z13 contains a

monochromatic copy C of Cf).
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On the one hand, all pairs z;z; are in JA, because z;,2; € Viue. Therefore, if C was blue then
C C A — a contradiction to (7.2). On the other hand, all edges zyz, where z € V(C), are in A by our

assumption. In order to avoid a copy of Cf) in A, one of the edges zz2, yz2', where 2,2’ € V(C),
must be red. Since z,y € Vieq, such an edge is in S, and we have 22’ € 9S. Hence, if C was red,
then C C S — again a contradiction to (7.2). O

Observation 7.4. Every triple of vertices in Vieq is blue and, consequently, (Vr:fd) C C} e for some

blue component Cy ...

Proof. By Observation 7.3, for all x,y, 2 € Vieq, there are at most 3 x 12 vertices a € Vyye so that
one of the edges zya,xza,yza is blue. Since |Vie| > s > 37, we can select a vertex a € Ve SO

that xya, zza,yza € S. We must have zyz blue to avoid C’f) in S. O

We can clearly interchange colors red and blue in Observations 7.3 and 7.4 and obtain that

(Vb?i“) C C!., for some red component C/_;. Since one of Vied, Vilue must contain at least [¢/2] >

3s vertices, we find greedily both a copy of Ms(g) and a copy of Cf), in either C/_; or Cf, ..

contradicting (7.1). O
Case 2: “/red| <sor |Vblue| < s.

By symmetry, we may assume that |Vieq| < s and |Viue| > 58 + coy/s. We first prove that the

azure component A contains a matching M5(3) whose vertex set is in Vplue- Again, this is true even
for t = 6s — 2.

Observation 7.5. There exists a matching M4 = M§3) C A with V(M4) C Vilge-

Proof. Let Viue = V'UV” be a partition of Vp,e such that |V’/| = s. Since |V”| > 6s—2—(s—1)—s >
4s — 1, Theorem 6.1 applied to the induced 2-coloring Kyeq[V"] U Kpiue[V"”] of K[V”] implies that
there exists a matching M = M, 3(3) in a monochromatic component of K[V”] (which is contained in
some monochromatic component C' in K).

If C is blue, then it must be A, because V" is a subset of Vjue, and we are done. Hence assume
C = Cieq is red. By (7.1), we have Cf) ¢ Creq. To avoid Cf’) in Cleq, for each edge xyz € M and
any vertex a € V', at least one of the edges xya, xza, yza must be a blue edge, and, consequently,

also in A, because a € V' C Vjue. Thus, using all s vertices a € V' and s edges of M, we greedily
find a matching M4 of size s in A. Clearly, V(M4) C V' UV" = Vyle- O

In view of Observation 7.5 and the assumption (7.1), we know that C’f’) ¢ A. We distinguish
two subcases. In the first one we assume that almost all pairs of vertices from V4, are contained
in the shadows of at most two red components.

Subcase 2a. There exist two red components Crled and Cfed such that

(7.3) ’(V‘;) \ (ACL, UAC2)| < 6t.

We now prove a series of observations. Recall that by Observation 6.3 the scarlet component S
exists whenever V;oq # (). We now show that in that case one of C’rled and Cfed equals S or can be
replaced by S.

Observation 7.6. If V,.q # (), then there exists a red component Ci.q such that

(Z) \ (0, UDS)| < 242,

(7.4 (") \@cauos)| -
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Proof. Note that (‘2/) \ (Vbéue) C 0S. If |oC! ;| < 18t holds, then with Creq = C2 we have

174 (7.3) 1
0 \ (OCteq UOS)| < 6t 4 |0C,oq| < 24t.
Hence, suppose that [0CL | > 18t and |0C2 4| > 18t. We claim that there exist vertices u,v,w €
Viblue such that uv € (9Crled, uw € 8C'r26d, and vw € (9Crled U 8C’r26d.
This follows from a simple graph-theoretic fact.

Fact 7.7. Let the edges of the complete graph K, be partitioned into three sets Eq, Eo, E3 so that,
with e; = |Fy|, i = 1,2,3, we have min{ey,es} > 3es3. Then there exists a triangle with at least one
edge in E1, at least one edge in Ey and no edge in Es3.

Proof. Since the average degree in E3 is 2e3/n, there is a vertex u such that degp, (u) + degp, (u) >
n—1—2e3/n. If degp, (u), degg, (u) > \/e3, then there is a non-E3 edge between the neighborhoods
Ng, (u) and Ng,(u), completing a desired triangle.

Suppose now that, say, degp, (u) < \/e3. If there is an edge zy € E; with 2 € Ng,(u) and
y € Npg,(u), then u,z,y is a triangle with the desired triangle. Otherwise, the number of edges
of F1 not contained in Ng,(u) is at most

2

Hence, there is an edge of F; with both endpoints in Ng,(u), yielding again a desired triangle. [
We apply Fact 7.7 to Ey := dCL |, By := 0C2 and E3 := (VbQ‘“e) \ (OCL  UOC2,) (note that the
assumptions hold).
Take any x € Vieq and vertices u,v,w € Vpe such that uv € 8C’rled, uw € 8Cr2ed, and vw €
8C’rled U 8036d. Since all three pairs of vertices contained in any red edge are in the shadow of the

d 1
degp, (u) + < €gE, (U)> + degp, (u) x n < 5(\/%4- e3) + 2e3 < 3ez < e;.

same red component, uvw must be a blue edge and hence in A. To avoid a copy of C’f’) in A, at

least one of the edges uvzx, uwzx, vwzr must be a red edge, say uvz. Since uv € ﬁCrled and zu € 95,

we have Cl ; = S and the proof is completed by setting Cy.q = C%; and recalling (7.3). O
From now on we assume that
Vi
(7.5) ‘< b21“6> \ (0Cq UOC2,)| < 24t,

and that C’rled =5, if S exists.
Observation 7.8. Every set X C Vijue with | X| > 25/ contains a copy of C’ig) in C'led or Cl?ed.

T

Proof. Let X C Vijue with | X| > 251/t be given. Note that by (7.5)
X IX| 1
1 2 > _ 2
(8C’red U acred) N <2 > ‘ - ( 9 > 24t > 24|X|

Thus, by the Turan Theorem, there is a complete graph Ki3 in 8Crled U 8Cr2€d' Let X be the vertex
set of one such Kj3. Since T(Cf’)) = 13, the set (XO) contains a monochromatic copy C of Cﬁgg). It

3
cannot be blue because all pairs of vertices of X are in 0A and so C would be in A. Hence, C must
be red and, thus, in C’rled or Cfed because ()go) C GCrled U 8Cr2€d. O

Now, we are ready to finish the proof of Theorem 7.1 in Subcase 2a. Recall that co = 25v/7 and

t < 7s. Suppose first that Vi,eq = 0. By Observation 7.8, every set of 25/ vertices in Vije = V

contains a copy of Cf) in Crled or Cfed. Hence, we can find greedily, by taking one edge from a copy

of C’f) and reusing the remaining vertex, a matching of size

(t —25Vt) /3 > (65 + cov/s — 25V/Ts) /3 > 2s
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in Crled u Cfed. Thus, there is an index i € {1,2} such that C’ﬁed contains M 5(3) as well as a copy
of C’f').

Assume now that Vieq # 0 and, thus, S exists and Cl; = S. We know (see Observation 7.5) that
A contains a matching My, V(M4) C Vilye, of size s but no Cf’). As in the proof of Observation
7.2, for every vertex x € Vieq and each edge e € My, there exists a edge f € S so that = € f and
le N f| = 2. Hence, we can find a matching of size |Vieq| < s in S that uses exactly 2|Vieq| vertices
of Viue. After this, we use the greedy procedure from the previous paragraph and find a matching
in SUC2%, of size (|Vite| — 2|Viea| — 25v/%)/3. Combining these two matchings and the fact that

(§]

|Volue| + [Vied| = |V| = t yields a matching in S U C’fed of size
Vieal + ([Votue| — 2/ Viea| — 25V%) /3 = (t — 25V/7s) /3 > 2s,

as before. Consequently, either S or Crged contains M, §3). Note that at least one edge of this matching

comes from a copy of C’ig) in S or Cfed. Thus, in either case, we have MS(S) and C’ig) in the same
red component.

1

Subcase 2b. Inequality (7.3) does not hold for any two red components CL; and C2 .

T

We will first show that in this case the red components can be grouped into three large sets. To
this end, we need the following simple fact. (We will only need part (b) now; part (a) will be used
twice in Section 8.)

Fact 7.9. For given numbers a1 > a2 > --- > ar >0, let N =a1+ -+ a.
(a) Let d > 2N/3 and k > 2. If ay < d, then there exists 1 < by < k — 1 such that N —d <

Lo
Z 473 S d.
i=1
(b) Let N > 5r and k > 3. If a; +aga < N — 2r, then there exist 1 < {1 < ly < k — 1 such that
£y 12 k
Yai>r, >, a;>r,and Y, a;>r.
i=1 i=f1+1 i=la+1

J4
Proof. (a) Define £y = min {K > a; >N — d}. If ¢ = 1 then we are done. Otherwise, ays, < a1 <
i=1
N —d, and so
N—-d<) a;<(N-d)+ag <2(N-d <d

i=1
(b) If a; > ay > r, take 1 = 1 and lo = 2. If a1 > r but a2 < r, take /1 = 1 and define

4
ly =min{l: > a; > r}. Then,
i=2

2 lo—1
Zai:al—l—Zai—l—agz <ar+r+ay <N —r,
i=1 =2

k 14
and so, >  a; > r as well. Finally, if as < a; < r, define ¢; = min {K Y ap > 7‘} and
i=lo+1 i=1

l
{5 = min {f: > oa; > 7“}. Then
i=l1+1
l1—1

¢
iaiﬁ Zaz’+a1§27“
i=1 1
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Lo
and, similarly, > a; < 2r. Hence,
i=01+1
k
Z a; > N —4r > r.
i=lo+1
O
Now we can prove the following consequence of negating (7.3).
Observation 7.10. There exists a partition (‘2/) = F'U F? U F3 such that
(i) F', F? F3 are pairwise disjoint,
(i) |F*[Vilue)| = 3t for i =1,2,3, ‘
(iii) for every red component Cieq there exists ¢ € {1,2,3} such that 9C,eq C F".
Proof. The shadows of all red components, intersected by (Vbéue), form a partition of (VbQ‘“e) into

disjoint sets of pairs. (Each pair that is not in any red edge is in a partition class by itself.)
Let a; > ag > ... be the sizes of these partition classes. If (7.3) does not hold for any two red
components then a; + ag < (‘Vbé‘“*') — 6t and, by Fact 7.9(b) with N = ('Vb21“9|) and r = 3t, the
a;’s can be grouped into three sums, each at least 3t. Let the corresponding three sets of pairs,
forming a partition of (‘/‘)21”9), be denoted by F?, i = 1,2,3. Then the conclusion follows with F’s
being arbitrary extensions of F%s such that for each red component Cieq if 9Ceq N (Vb21“e) C F; then
0Chreq C F;.
For convenience, set F' = F" [Volue] and deg;(v) = degz:i(v), i = 1,2,3, v € Vplye.

Observation 7.11. For every vertex v € Vjue there is an index i € {1,2,3} so that deg;(v) = 0.

Proof. Suppose that there is a vertex v € Vjue such that deg;(v) > 0 for all i = 1, 2, 3. Denote by
U; the neighborhood of v in F' and take any three vertices u; € U;, 1 = 1,2, 3.

Since the pairs vui, vug, vuz belong to the shadows of distinct red components, all edges vu,;u;,
1 <i < j <3, are blue and thus in the azure component A (because v € Vijye).

Consequently, since there is no C’f’) in A, the edge ujusug must be red. Thus, all pairs of vertices
w; € U; and uj € Uj, @ # j, are in the shadow of the same red component. Without loss of generality
we may assume that u;u; € FL.

Take any three vertices u;, u;, uj, such that ui,u; € U; and u; € U;. Since the edges vu;u; and
vujuj are both in A and Cf) ¢ A, either vu;u} is red or wjuju; is red. In the first case, uu} € Fi,
while in the second case u;u} € F.

From this it follows that all pairs of F are contained in {v} UUj;, i = 2,3. Since |F?| > 3t >
deg;(v), there exist vertices u;,u; € U; so that wu}; € F?, i = 2,3.

If all four edges induced by {ug,u, ug,us} C Vie were blue, we would have Cf) in A - a
contradiction. Hence, at least one of them is red, say ugubus. Since ugug € F', we have uguly € F.

But then usul, € F' N F? — a contradiction with Observation 7.10(i). O

For 1 < i < j <3, let Wi; = {v € Vpe: deg;(v) > 0,deg;(v) > 0}. Next, we prove that
Wia, W13, and Wa3 have each at least two vertices.

Observation 7.12. |W;;| >2for 1 <i<j <3.

Proof. By symmetry, we can restrict ourselves to the case i = 1 and j = 2. Since |1:" I >3t i=1,2,
there is a matching M; of size four in \F’l\ Let uju) € My and ugub, € M be vertex disjoint. Since
the copy of Cf’) induced by {u1,u},u2,u5} cannot be blue, at least one of its edges must be red.
However then at least one pair from ujug, uiul, u)jus, ujul is in F! or F2. This implies that at least
one of these vertices is adjacent to an edge of F'* and an edge of F2 and, thus, belongs to Wia. Now
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we remove that vertex and find another pair of disjoint edges, one from Mj, the other from Ms.
Repeating the above reasoning, we obtain another vertex in Wis, completing the proof. O

Let wig, wiy € Wia, wiz, wis € Wis, was, why € Waz. Clearly, by Observation 7.11 for all
1<i<j<3and 1< <j <3, {i,j} #{, 7'}, the pairs wijwy ;, ngwi/j/, wing,j,, ngwg,j, are
from F¢, where £ = {i,j} N {i,5'}.

We show now that the sub-hypergraph H induced in K by vertices wia, wi,, wiz, Wiz, was3,
whs € Vplue contains a copy of C’é3) in the azure component A.

Since F!' N F? = (), we may assume that the pair wisw}, is not contained in F'. Also, at least
one edge of the sub-hypergraph of K induced by vertices w2, w}y, wig, w}; must be red (or we have

3) .

C’A(1 ) in the azure component).

Edges wiaw)swi3 and wisw),whs must be blue because wiswis, wipw)y € F1 and wigw), does
not belong to F'!. Hence, either wi2wi3w]s or wi,wizw}s is red, and the pair wizw); must lie in F!
(and, consequently, not in F3). Using the same argument we infer that waswhs belongs to F? and
wlgw’u to F2.

Observe now that all edges of the form viv13v23, where v;; € {wij,ng}, are blue because the
pairs contained in them belong to different F*’s and the shadow of every component is contained in
a unique F"*. Moreover, the edges wigw|ywis, wiaw)ow)s, wizw]swas, Wisw]sWhs, WasWyswiz, and
woswh.w), must be blue as well because, again, all the pairs contained in any red edge belong to

23W12 , agaln, pall Y g g
the shadow of the same red component (and to a unique F"), which is not the case here.
/ / / / / /

?)Therefore, all edges wi2wozwi3, Wa3zwizWis, W13Wi3Was, W)3WazwWi2, and whswigwas of the cycle

C’é ) on vertices w12, Wa3, W13, Ws, whs are colored blue and belong to the azure component. O

8. MATCHINGS IN COMPONENTS (THE REAL THING)

In this section we prove Lemma 2.1. Since the hypergraph K appearing in Lemma 2.1 is almost
complete, we will be guided by the proof of Theorem 6.1 presented in Section 6. However, it will
be convenient to replace K with a large sub-hypergraph K; with a more regular structure. Its
existence is guaranteed by the following simple lemma.

For a vertex x in a hypergraph H, let Ny(z) = {y : zy € 0H}. For two vertices z,y, let
Ny (z,y) = {z : xzyz € H}. Note that if y € Ny (z) (equivalently, x € Ng(y)), then Ny (z,y) # 0.
We call all such pairs zy of vertices active. Thus, the active pairs in H are exactly those pairs of
vertices which belong to the shadow 0H of H.

Lemma 8.1. Fiz § > 0 and set 6; = 106V/6. Let K be a 3-uniform hypergraph with t vertices and
at least (1—9) (g) edges. Then K contains a sub-hypergraph K1 with t; > (1—061)t vertices such that
every vertex x of Ky is in an active pair and for all active pairs vy we have |Ng, (z,y)| > (1 —31)t1.

A (fairly standard) proof of Lemma 8.1 can be found in [5] (see Lemma 4.1 therein).

Proof of Lemma 2.1. We may assume that n < 1. Given 0 < 1 < 1, define § = 110724, For
any hypergraph K on t = (4 + n)s vertices and with at least (1 — ) (é) edges, let K7 be the sub-
hypergraph of K satisfying the conclusions of Lemma 8.1 with ; = 106*/6 = 7/1000. In particular,
using the bound ¢ < 5s, we get

t1 = |V(K1)| > (1 — 51)t >t—50s=1t— (T)/QOO)S > (4 + 77/2)5

Since every monochromatic component of K is contained in a monochromatic component of K, it
is enough to show the conclusion of Lemma 2.1 for K. For the clarity of our presentation we will
reset K := K1, 6 := 1 and n := 2n. Equivalently, we will assume that K has ¢t = (4 + n)s vertices,
0 <n < 1/2, every vertex x of K is in an active pair, and for all active pairs zy

(8.1) Nk (z,9) > (1— o)t
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where 6 = 1/500.
Since every z is in an active pair, it follows from (8.1) that for all z € V(K),

(8.2) Nk (z)| = {y : 2y € 0K} = (1 - 6)t + 1.

Let V = V(K) and fix a coloring K = Kieq U Kplye. Our ultimate goal is to show that either
in Keq or in Kp),e there is an externally connected matching M. §3). We begin with some preliminary
results. Our first observation establishes for every x € V the existence of a dominant monochromatic

component C,, the shadow of which contains most pairs of vertices xy. (For the complete hypergraph
K this was done in Observation 6.2.)

Observation 8.2. For every vertex x € V there exists a monochromatic component C, such that
(8.3) {y eV :ayecdC,}| > (1)t
The observation will follow from a simple graph theoretic result.

Fact 8.3. Let G be a graph with n vertices and minimum degree d. If n > d > 3n/4, then for every
red-blue coloring of the edges of G there is a monochromatic component with at least d+ 1 vertices.

Proof. Let G = Gyeq UGhpue be a red-blue coloring of the edges of G. Suppose that no component of
G1eq has more than d vertices. Then, by Fact 7.9(a) in Section 7 there is a partition V(G) = V1 U Vs,
where

n—d < |Vi| < 5 <|Val < d and Eg,,,(Vi, V) =0.

Observe that in Gy, every vertex of V5 has a neighbor in V; and every vertex of Vi has more than
|V2|/2 neighbors in V. Thus, the graph Gpye is connected, and so there is a blue component on all
n > d+ 1 vertices. O

Proof of Observation 8.2. Note that 6 < 1/4 and that, by (8.1), for every vertex x € V the graph
K(z) ={yz : xzyz € K} has minimum degree at least (1 — )t > 3t/4 (and at most ¢ vertices). The
coloring K = KyeqU Kpye induces a coloring K () = Kyeq () U Kpue () which, by Fact 8.3, contains
a monochromatic component with at least (1—0)t vertices. Consequently, there is a monochromatic
component C' in K such that 0C' contains at least (1 — d)t pairs xy. O

For each x € V let us choose arbitrarily one component satisfying the condition in Observation 8.2
and denote it by C. Let

Vied = {z € V: Cy is red} and Vyue = {z € V: C is blue}.

Observation 8.2 tells us that V' = V,.q U Vpiue and this union is disjoint by the definition of V,¢q and
Vblue-

Our next result says that for most z € V,oq, as well as for most = € Vjjye, the components C,, are
the same. (For the complete hypergraph K this is Observation 6.3.)

Observation 8.4. If |Vieq| > 65t (|Voue| > 66, respectively) then there is a red component Cleq

(a blue component Chjye) so that Cp = Creq (Cr = Chlye) for all but at most 26t vertices & € Vieq
(.T S Vblue)-

Proof. Consider a graph G defined on Vieq by putting an edge between x and y whenever zy €
0C, N OC, (note that by (6.1) this means that C;, = C,). By Observation 8.2 every vertex “spoils”
at most 0t edges, and thus |E(G)| > (5) — vdt, where v = |V;eq|. Our goal is to show that G has
a component of order at least v — 2dt. Suppose this is not true. Then, by Fact 7.9(a) in Section 7
with d = v — 20t, there is a partition V,eq = V1 U V5 with

26t < Vi, |Va| < v — 28t and Eg(Vy, Vo) = 0,
which yields at least 26t(v — 20t) > vdt edges in the complement of G — a contradiction. O
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If |Vied| > 60t, we define the scarlet component S as the (unique) red component Cieq guaranteed
by Observation 8.4 and set
r/ed = {ZC € Vieqa : Cp = S}
Then
[Vial = [Viea| — 20t > 46t.
If |Vied| < 66t then e say that the scarlet component does not exist and V
|Vblue| = 63t, we define the azure component A and the set

Vbllue = {I‘ € Vblue : Cac = A}

'q = 0. Similarly, when

Then
Vituel = [Volel — 20t > 46t,
and V). = 0 if [Vie| < 65t. We also set
V' = Viea U Volge:
Since 0 < 1/12,
(8.4) V| = [Vieal + Vil > — 80t

(¢]

For each z € V/__, set

e 98(x) = |{y € V : ay € 88},
and for each = € V{/| ., set

OA(x) =[{y € V : zy € 0A}|.
By Observation 8.2 and the definitions of S and A we have
(8.5) |0S ()|, [0A(x)] > (1 — d)t.

Our last preliminary result is the Mirror Lemma (cf. Lemma 6.7) adjusted to non-complete
hypergraphs.

Lemma 8.5 (The Blurred Mirror Lemma). Let M be a largest matching in a red component Cleq
and let P C V, where PNV (M) = 0 and |P| > |M| + 306t. Assume further that for some blue
component Cplye and for every e € M, the bipartite induced subgraph OCyyele, P] of OCpiye contains
K3 p|—gsi—1- Then there exists a matching M’ C Cyue such that

(i) |M'| > |M| and

(i) V(M"Y N P| < |M|+ 44t.
Proof. Let M" C Cpue be a largest matching such that
o [V(M")NnP|<|M"| and
e V(M") intersects at most |M"| edges of M.
We first claim that |M”| > |M| — 46t. Indeed, suppose |M"| < |M| — 46t. We will show that
there exist e;,eo € M and a,b,c € P" := P\ V(M") such that (e; Uez) NV (M") = 0 and the set
X =e1Ueg U{a,b,c} satisfies the assumptions of Claim 6.5 (see Remark 6.6).

From the second part of (8.6) and our supposed bound on |M”|, it follows that there exist at

least 40t edges of M disjoint from V(M"). Let e; = uvw € M be any such edge. Below we suppress

the dependence on K and write N(z) for the neighborhood of x in the shadow of K, and N(x,y)
for the neighborhood of z,y in K. By (8.2),

[V (N(u) NN (v) N N(w)) | < 3t = [N(u)] = [N(v)] = [N(w)| < 30t

and so, there exists ey = xyz € M such that eo N V(M”) = () and every pair of vertices p,q €
e1 Uey = {u,v,w,z,y, 2} is active.
By the first part of (8.6) and our bounds on |P| and |M"|, we have

|P"| = Pl — |P n VM) > |M| + 306t — (|M| — 48t) = 346t

(8.6)
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Among the vertices of P” at most 18t+2 do not belong to the bipartite cliques K5 |p|—gst—1 between
ei, 1 = 1,2, and P, guaranteed by the assumptions. Also, by (8.1),

6
< =
(%)= 0

where the intersection is taken over all pairs of vertices p, ¢ € e; Ues. Since (34 — 18 —15)0t —2 > 3,
one can choose a,b,c € P” so that
(a) 0Cpuelei, {a,b,c}] D Ko 3 for i =1,2, and
(b) all triples of vertices having two vertices in {u,v,w,z,y, 2} and one in {a,b,c} are edges
of K.

Thus, we can apply Claim 6.5 (see Remark 6.6) to the set X = e; UeaU{a,b,c}. But then we can
either enlarge M in Cieq (if (1) of Claim 6.5 occurs) or M” in Chy,e with conditions (8.6) preserved
(if (2) or (3) of Claim 6.5 occurs), yielding a contradiction with the choice of M or M”, respectively.

Hence |M"| > |M| — 46t. If |M"| > |M]|, we are done. Otherwise, we repeat the following
procedure which keeps enlarging M” by increments of two until its size reaches | M| (for convenience,
we assume that |M| — |M"| is even). Let the current matching be denoted by M’ |M'| < |M|. Tt
is important that in each step we will

e not delete any edge of M’, that is, M" C M’,
e add to V(M') at most four vertices of P, and
e maintain the second part of (8.6).

Since there are (|M| — |M"])/2 steps, for the final M’ we have

V(M) 0P| < [M"| +2(|M| = [M"]) = [M] + (|]M| — |M"]) < [M] + 45t,
so (ii) holds. Now we describe a single step of the procedure. Let e = xyz € M be such that
eNV(M') = (). Denote by Py the set of at most 95t + 1 vertices of P which do not belong to the

bipartite clique Ko |p|_gs5;—1 between e and P, guaranteed by the assumptions.
Set P' = P\ (V(M')U P). Similarly to the above,

|P'| > | M|+ 308t — (|]M| + 46t) — |Py| > 166t.

Set Ny = P"N N(z,y) N N(x,2) N N(y,z). By (8.1), |[N1| > (16 — 3)0t = 135t. Let a € N1 and set
Ny = NiN N(a,z) N N(a,y) N N(a,z). We have, again by (8.1), | N2| > 106¢t. Similarly, for every
b € Ny and every ¢ € N3 = No N N(b,x) N N(b,y) N N(b, z), we have
INs N N(c,z) N N(c,y) N N(c,z)| >4t > 1.

Thus, one can choose a,b,c,d € P’ so that

(a) 0Cpuele,{a,b,c}] D Ka3

(b) all triples of vertices within {x, y, z, a, b, ¢, d} intersecting simultaneously {z, y, 2z} and {a, b, ¢, d}

are edges of K.
We apply Claim 6.4 (see Remark 6.6) to the set X = e U {a,b,¢,d}. By the maximality of M

in Cleq and the maximality of M” with respect to (8.6) in Chye (note that V(M")N X = 0),
conclusions (1) and (2) of Claim 6.4 cannot hold. Thus, (3) holds, which allows us to enlarge M’

by adding the edges e; and es guaranteed by Claim 6.4(3). Note that, indeed, in a single step we
have used four vertices of P and one edge of M. O

P"\(\N(p,q)

We are now ready to complete the proof of Lemma 2.1. Since § < 1/12, in view of Observation
8.4, either the scarlet component S or the azure component A (or both) does exist.

Let M be a matching of maximum size in K among all matchings that lie in S or A. Without
loss of generality we assume that ) # M C S. This implies that |V | > 4dt, but V},,, might be
empty, that is, the azure component A might not exist. Suppose that

1<m=|M|<s-—1
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and set

(8.7) R=V!

(]

a \ V(M) and B = Vi \ V(M).

According to this definition, if B # (), then V{ . # 0, and consequently, the azure component A
does exist. Note that RN B = () and

(8.8) t=A+n)s=3m+|RUB|+|V\V'|,
and, using m < s and (8.4),
(8.9) |[RUB| > (44+n)s—3m —|V\V'| > (1+n)s — 86t.

Observe that by (8.9) and our choice of 6, whenever one of the sets R or B has size at most 53t
then the other one has size at least

(14+mn)s — 130t > m + 306t.
We first show the following variant of Observation 6.8.

Observation 8.6. If |R| > 24t, then all edges zyz € K[RU B] with z € R and zy € 05 belong to
the same blue component Chy,e. Furthermore, if also |B| > 24t, then Cpjye = A.

Proof. First note that any red edge zyz € K[RU B] with xy € S would be in S and disjoint from
V(M), and thus it could be added to M, contradicting the maximality of M. Hence, every such
edge is blue. Let z,y,z € RUB and xy and zz be two pairs in dS. Since |BUR| > 24t and the pairs
xy and xz are active, by (8.1) there is w € RU B such that zyw € K and zzw € K. Hence, both
edges are blue and in the same blue component. Now, by (8.5), the subgraph 0S[R] has minimum
degree at least |R| — 6t > |R|/2 and, thus, it is connected. This implies that all pairs zy € 9.5 such
that x € R and y € RU B are in the shadow of the same blue component Chye.

To prove the second part, notice that if both |R|, |B| > 24t then, again by (8.5), the number of
edges of S with one endpoint in R and the other in B is more than |R||B|/2, and the same is true
for the edges of 0A. Hence, there is a pair x € R and y € B such that xy € 905 N 0A. It follows
that Cblue = A. O

For the rest of the proof of Lemma 2.1 we distinguish three cases analogous to the three cases
considered in the proof of Theorem 6.1.
Case 1: |B| < 50t

Denote by Chpiue the blue component guaranteed by Observation 8.6.

Observation 8.7. For every edge e € M, the bipartite induced subgraph dChuele, R] of OChiue
contains Ky |r|_35¢—1 as a subgraph.

Proof. Let e = zyz € M. By (8.2), at least |R| — 36t vertices a € R are such that all three pairs za,
ya and za are active. Let the set of such vertices be denoted by R..

Suppose that dChuele, Re] contains no copy of Ky |, |—1- Then there exist two vertices a,b € R
such that, say, ya, zb ¢ 0Cpye. Since |R| > 20t + 5, by (8.5) and (8.1) there are ¢,d,u € R\ {a,b}
such that ac,bd € 9S and yac, zbd, uac,ubd € K. By Observation 8.6, uac, ubd € Cyye and thus
ac,bd € OCpe. Hence, the edges yac and zbd must be red. Consequently, yac, zbd € S and
(M \ {xyz}) U{yac, zbd} is a matching in S larger than M — a contradiction. O

Now we apply Lemma 8.5 with Cyeq = S, Cplye and P = R (recall that |R| > m+304t), obtaining
a matching M’ C Chye of size |M'| :=m/ > m and with |V(M') N R| < m + 40t.
If m' > s, we are done. Otherwise, by (8.9) and (8.4), we have
IR\ V(M')| > (4+mn)s —3m — 136t — (m + 46t) > 3(s —m') + 34t.

This allows us to enlarge M’ to size s by adding blue edges contained in R\ V(M’). Indeed, by
(8.1) and (8.5), we can greedily find s — m’ disjoint edges zyz € K[R] with zy € 9S. Since all such
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edges belong to Cpye (cf. Observation 8.6), we can add them to M’ obtaining a matching of size s
in a blue component.
Case 2: |R| < 54t

By our assumptions and (8.9), B # () and thus the azure component A exists.

Observation 8.8. For every edge e € M, the bipartite induced subgraph 0A[e, B] of A contains
K5 B|-9st—1 as a subgraph.

Proof. Fix an edge xyz € M. By (8.1), at least |B| — 3dt vertices a € B are such that all three
pairs za, ya and za are active. Let the set of such vertices be denoted by B.. Call a vertex a € B,
friendly to x if xa € S UOA and let B, be the subset of B, containing all unfriendly vertices to x.

Claim 8.9. |B;| < 20t

Proof. Suppose that |B,| > 20t, recall that |V, ;| > 46t (since S exists), and consider the bipartite
induced subgraphs Gs and G4 of 05 and 0A, respectively, with vertex set B, UV, ;. Assume for
simplicity that |B,| = 20t and |V | = 40t, taking subsets if necessary. Recalling that By C V{j..
by (8.5), |Gs| > 4(6t)? and |G| > 6(6t)?, and consequently, |Gs N G4l > 2(6t)%. Let a € B,
have degree at least 0t in Gg N G4. Then, by (8.1) and the definition of B, one can find a vertex
u € V!, such that zau € K and au € Gg N G4 C 9S N OA, which contradicts the assumption that

(&
a is unfriendly to x, no matter how xau is colored. O

Set By = B, \ (B U B, U B;). It is sufficient to show that JA[e, B;] contains a copy of Ky |p/|_;-
Suppose it does not. Then there exist two vertices a,b € B, such that, say, ya, 2b &€ OA (and thus,
they must be in 0S). Since |B| > 2§t + 4, by (8.5) and (8.1), there are ¢,d, € B\ {a,b} such
that ac,bd € 0A and yac, zbd € K. Hence, the edges yac and zbd must be red. Consequently,
yac, zbd € S and (M \ {zyz}) U {yac, zbd} is a matching in S larger than M — a contradiction. [

We apply Lemma 8.5 with Cieq = S, Chiwe = A and P = B (recall that |B| > m + 306t) and
obtain a matching M’ C A of size |M'| = m and |V(M') N B| < m + 4t. (A matching larger than
m in the azure component A is impossible by our choice of M.)

We claim that R’ := V ;\ V(M') = (. Indeed, suppose that d € R'. Since
|B\ V(M")| > s+ 185t — (m + 46t) > 145t > 25t + 3,

by (8.5) and (8.1) we can find vertices a,b,c € B\ V(M') such that ad € 95, ab € JA, and
abd,abc € K. Then both abc and abd are red (or we can enlarge M’). But ad € 95, therefore
abd € S and, consequently, abc € S. Since {a,b,c} NV (M) = (), we can enlarge M in S, which is a
contradiction.

Thus |R'| = 0 and we are back in Case 1 with the colors red and blue interchanged and M
replaced by M’.
Case 3: |B|,|R| > 50t

Set P = RU B. In this case not only the azure component A exists, but also the blue component
Chlue guaranteed by Lemma 8.6 is A.

Observation 8.10. For every edge e € M, the bipartite induced subgraph dAle, B] of A contains
K5 |p|—gst—1 as a subgraph.

Proof. The proof follows the lines of the proof of Observation 8.8. Fix an edge zyz € M. By (8.2),
at least | P| — 30t vertices a € P are such that all three pairs xa, ya and za are active. Let the set
of such vertices be denoted by P..

Recall that a vertex a € P.NB friendly to = if za € 0SUOJA and let B, be the subset of unfriendly
vertices of P, N B. We have shown in Claim 8.9 that |B,| < 2dt. Set P, = P, \ (B, U B, U B;)
and suppose that dA[e, P[] contains no copy of Ky |p/_1. Thus, there exist two vertices a,b € P,

such that, say, ya,zb ¢ 0A. But then, combining arguments from the proofs of Observations 8.7
and 8.8 (each of @ and b can be in R or B), one can show that there exist vertices ¢,d € P such
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that yac, zbd € S. Consequently, (M \ {zyz}) U{yac, zbd} is a red matching in S larger than M —
a contradiction. 4

We apply Lemma 8.5 with Cieq = S, Cpiye = A and P = (RU B) \ {a, b} where a € R,b € B and
ab is an active pair. Let M’ be a matching in A satisfying conclusions (i) and (ii) of Lemma 8.5.
By the maximality of M, we have |M’'| = m and, by (ii) and (8.9),

[P\ V(M')| > s+ 306t — 85t — (m + 46t) > 186t.

By (8.1) and (8.5), we can choose ¢ € P\ V(M') so that ac € 39S, bc € JA and abc € K.
Consequently, abc € S if it is red and abc € A if it is blue. Also abc is disjoint from both V(M) and
V(M'). Thus, either we obtain a matching of size m+1 in S, or a matching of size |[M'|+1 =m+1
in A, contradicting the maximality of M among all matchings contained in S or A. U
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APPENDIX A. MATCHINGS AND SHORT CYCLES IN COMPONENTS
(THE REAL THING)

We may assume that n < 1/14. Given 0 < 7 < 1/14, similarly to the proof of Lemma 2.1, by
Lemma 8.1, we will assume that K has ¢ = (6 4+ 147n)s vertices, every vertex x of K is in an active
pair, and for all active pairs zy

(A1) [N (z,y)] = (1= 0)t,

where § = (7510724)2.
Since every z is in an active pair, it follows from (A.1) that for all x € V(K),

(A.2) INg(2)] = |{y : 2y € OK}| > (1 = 8)t + 1.
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Let V := V(K) and suppose there exists a coloring K = Keq U Kpye such that

(A.3) no monochromatic component contains M 5(3) and either C’f’) or Cég).

For each x € V let us choose arbitrarily one component satisfying the condition in Observation 8.2
and denote it by C;. Let

Viea ={z € V: C; is red} and Vyue = {2 € V': C, is blue}.

Observation 8.2 tells us that V' = Vieq U Vilue and this union is disjoint by the definition of V,eq and
Vblue-

If |Vied| > 60t, we define the scarlet component S as the (unique) red component Cleq guaranteed
by Observation 8.4 and set V., = {x € Vieq : Cz = S}. Then

Vieal = [Viea| — 26t > 46t.

If |Vied| < 66t then we say that the scarlet component does not exist and V., = (). Similarly, when
|Volue| > 66t, we define the azure component A and the set V;,, = {2 € Vie : C» = A}. Then

|Vl;lue| > |Vblue| — 20t > 45t,
and Vi), = 0 if [Viie| < 60t. We also set
V/ = r/ed U Vbllue'
Since § < 1/12, we have
(A4) ’V/‘ = ’ r/ed| + ‘Vélue| Z t— 85t

For each € V., set 8S(z) = |[{y € V : zy € 0S}|, and for each z € V{ ., set 0A(z) = [{y € V :
xy € 6A}‘. By Observation 8.2 and the definitions of S and A we have

(A.5) 10S(x)], |0A(z)] = (1 — d)t.

We distinguish two complementary cases, and in each of them we obtain a contradiction to (A.3)

or its consequence, (A.6) below. In both cases we again use the fact that r(Cf)) = 13 (see [8]).

Case 1: [Vi4|, Vel = (1 + 2n)s.

We first prove that each of S and A contains a matching M ((i)rn)s.

Observation A.1. M((fin)s C A and M((fin)s cS.
Proof. Partition the set of vertices V' into sets U, Ured, Uplue such that Urea C Vg, |Urea| = (142n)s,
Upue C Vélue’ |Ub1ue‘ = (1 + 277)8, and U = V\ (Ured U Ublue)-

Since U] > t —2(1 + 2n)s > (4 +n)(1 + 2n)s, Lemma 2.1 applied to the induced coloring
Kied[U] U Kppue[U] of K[U] implies that there exists a matching M = M ((131277)5 in some component
(say red) Cieq of Kieq.

Let M' € M, U’ C Uppye be arbitrary, |M'| > 56t and |U’| > 46t. Firstly, we claim that there is
an edge ryz € M’ and a vertex a € U’ such that xya, xza, yza € K and za, ya, za € 0A. This is
a consequence of the following fact applied with X = M', Y =U’, t = 34t, s = dt.

Fact A.2. Let By and By be two bipartite graphs with the same bipartition X UY . If degp (v) >
Y| =t for all x € X, degp,(y) > |X|—=s forally € Y, and (|X|—s)(|Y|—t) > st, then there exist
r e X,yeY such that xy € B1 N Bs.

In particular, this is true for | X| > 2s and |Y| > 2t.
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Proof. Clearly, (| X| — s)(]Y| —t) > st implies
[Bi| + |Ba| = [X[(IY] =) + [Y|(|X] = 5) > [X][]Y],
from which the fact follows. g

Secondly, by (A.3), we know that Cf’) ¢ Cred, hence at least one of the edges rya, xza, yza must
be blue and also in A.

Thus, using all but at most ds vertices of Upue and all but at most 5ds edges of M, we greedily
find a matching of size (1 4+ 2n)s — 56s > (1 +n)s in A. Using (A.3) again, we have Cf) 7 A.
Replacing Cieq with A, Uppe With Uyeq, A with S, and interchanging colors red and blue in the
argument above, we obtain a matching of size (14 n)s in S. O

In view of Observation A.1, it follows from (A.3) that
(A.6) Cc® ¢ Aand CP) ¢ .

Observation A.3. For every active pair of vertices zy € (Vr;ed) there exist at most 804t vertices
z € Vi, such that zyz is blue.

Proof. Suppose there is an active pair zy € (Vr;ed) and a set Z of 1+ 8046t vertices z € V},,, such
that zyz is blue. We show that this implies the existence of vertices z; € V{} ., ¢ =1,2,...,13, such
that

(i) zizjzp € K for 1 <i<j <k <13,
(i) ziz; € OSNOAfor 1 <i < j<13.

Since r(Cf’)) = 13, the sub-hypergraph induced in K by z1,..., 213 contains a monochromatic copy

C of C’f’). By (ii), if C was blue then C C A — a contradiction to (A.6), and if C was red then C C S
— a contradiction to (A.6) again.

We choose z1 € Z so that xz1,yz1 € 0S. By (A.5), at most 24t vertices of Z cannot be selected.
For ¢ = 2,...13, we choose z; € Z so that xz;,yz € 09, zz; € 0A for j = 1,...,4 — 1, and
ZiijkEKf0r1§j<k‘§Z‘—1.

By (A.1) and (A.5), at most 20t + (i — 1)dt + (igl)& vertices of Z are ineligible for selection.
Since 2t + (i — 1)0t + (igl)ét < (24 12+ 66)dt = 800t < |Z|, we can always pick z;.

Vertices z1, ..., z13 clearly satisfy (i) above. All edges xyz;, where i = 1,...,13, are blue, and all
pairs z;z; € 0A, where 1 <1 < j < 13, by our assumption. In order to avoid a copy of Cf) in A,
one of the edges xz;zj, yz;z; must be red for every 1 < i < j < 13. Since xz;, 22, yz,yzj € 0S,
such an edge is in S, and we have z;z; € 9S. Thus, (ii) holds as well. O

Observation A.4. Every edge contained in V.. is blue and, consequently, K N (Vfi;cd) C Cf e for

some blue component Cf,

lue

lue*

Proof. By Observation A.3, for all zyz € K N (Vf;fd), there are at most 3 x 800t vertices a € V{| .
so that one of the edges zya,xza,yza is blue. Moreover, by (A.1) and (A.5), there are at most
30t + 30t vertices a € V., so that either one of the triples zya, zza,yza is not in K or one of the
pairs xa, ya, za is not in 0S.

Since |V{ ol = (14 2n)s > 86dt, we can select a vertex a € V;, , so that zya,zza,yza € S (all

triples are red and, thus, in S because xa,ya, za € 9S). We must have xyz blue to avoid Cf’) in S.
Clearly, any two blue edges with two common vertices are in the same blue component. If z;2923
and 232425 are two blue edges in V_,, then by (A.1) and since |V | > (1 4 27n)s, there is a vertex

red’

a € Vr’ed so that zoz3a,az3z4 € K. Hence, z92z3a and az3z4 are blue and z1z923 and 232425 are in

the same blue component.
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Finally, if z1 2923 and z4252¢ are two disjoint blue edges in V g+ We can again find a vertex a € red
so that z923a,az425 € K. These two edges are blue and in the same blue component as observed
above, therefore, 212923 and z4252¢ are in the same blue component as well. O

We can clearly interchange colors red and blue in Observations A.3 and A.4 and obtain that

Kn( blue) C O 4 for some red component C’ ;. Since one of V!, Vi, . must contain at least

[t/2] > (3 + 67)s vertices, we find greedily both a copy of Ms( ) and a copy of Cig), in either C/_,
or C} ., contradicting (A.3). O

Case 2: |V | < (14 27n)s or |V,.| < (1+2n)s.

By symmetry, we may assume that |V_ | < (1 + 27n)s and |V},,| > (5 + 11n)s. We first prove

that the azure component A contains a matching M ((3) ) whose vertex set is in V{/j ..

Observation A.5. There exists a matching My = M®

s © A with V(M) C Voo

Proof. Let V{.. = UUU’ be a partition of V}, . such that |U| = (1+42n)s. Since |U’| > (5+11n)s —
(142n)s > (4+n)(1 + 2n)s, Theorem 6.1 applied to the induced 2-coloring Kyeq[U'] U Kpiue[U’] of

K|[U’] implies that there exists a matching M = M ((112

(which is contained in some monochromatic component C' in K).

Suppose that C' is blue, but C' # A (otherwise this proof is finished). By (A.1) and (A.5), for a
given xiwoxs € M, all but at most 36¢ + 30t triples y1y2y3 € M are such that x;y; € 0A for every
1 <4,5 <3, and all triples of the form x;x;y, are the edges of K. From this we conclude that all

but at most 36t|M| pairs x122x3, y1y2y3 € M are such that z;y; € 0A for every 1 < 4,5 < 3, and
the subgraph of K induced on {x1,x2,z3,y1,y2,y3} is Kég).

For each such a pair z1z2x3, 51923 € M, all the edges of the form z;x;y; and x;y;y, must be
red and in the same red component because x;x;,y,;yr € 0C # JA and x;y;, € OA.

A moment’s thought yields that there exist s+2 edges x;1 72253 € M such that x;1 2015, Ti1Ti2T (415 Ti2Ti
TALTIBL(i-1)55 and Ti1Ti3T(j41)j are red edges of K foralli=1,...,s+2. It follows that these edges
are in the same red component. Furthermore, z;12i2%(;41)3, ngw(i+1)1x(i+1)2, where i = 1,3,5, ...,

s 0 A monochromatic component of K[U’]

form a matching of size s with a copy of Cf) on vertices 12,13, T22,x23. This is, however, a
contradiction to (A.3).

Hence assume C' = Cieq is red. By (A.3), we have C gZ Credq- By Fact A.2 (see also the proof of
Observation A.1), for arbitrary subsets M’ C M, U” C Uppe be, each of size 53¢, there is an edge
xyz € M’ and a vertex a € U” such that zya, zza, yza € K and za, ya, za € JA. To avoid Cf)
in Cieq, at least one of the edges xya, xza, yza must be a blue edge, and, consequently, also in A.

Thus, using (1 + 2n)s vertices in U and (1 + 2n)s edges of M, we greedily find a matching My

of size (14 2n)s —5ds > (1 +mn)s in A. Clearly, V(M) CUUU = V). O
In view of Observation A.5 and the assumption (A.3), we know that C4 ¢ A. We distinguish
two subcases. In the first one we assume that almost all pairs of vertices from V} , are contained

in the shadows of at most two red components.

Subcase 2a. There exist two red components C’1 .q and C -q such that

(A7) 'C%w)\@cuuarm)<2¢t

We now prove a series of observations. Recall that the scarlet component S exists whenever V! ; # 0.
We now show that in that case either one of C’rled and C’fed equals S or can be replaced by S.



THE RAMSEY NUMBER FOR HYPERGRAPH CYCLES IIL 33

Observation A.6. If V., # 0, then there exists a red component Ceq such that

(A.8) ‘ <Vb/2lue> \ (OC4eq U AS)| < 4V/ot2.

Proof. If |0C ;N (Vblzlue)| < 3v/6t2 holds, then with Cieq = C?2 , we have

! AT !
’ (Vb21> \ (OC1eq U 85)‘ U 95 4 ’ac}ed N <Vb21ue> ‘ < 4vV/5t%.

Hence, suppose that ’601}8(1 N (Vb;lue) > 3v/6t? and ‘GCfed N (V%UE) > 3V/6t2. We claim that

there exist vertices u,v,w € V{ . and a € V., such that uv € 8Crled N oA, uw € 8C'r26d N 0A,

vw € 3C'rled U 8Cfed, ua, va, wa € 95, and vvw, uva, vwa, vwa € K.

Indeed, since every graph G contains a vertex of degree at least |G|/|V (G)| and since (A.7) holds,
there are 20t vertices u € V},,, such that

(AQ) |8Cl (u) N Vb/hm’ + ’802 (U) N Vblluc’ > ’Vl;hm’ — 44t.

Fix an arbitrary vertex a € V. ;. By (A.5), |0S(a)] > (1 — d)t, therefore, there exists a vertex u
satisfying (A.9) such that au € 9S.

Since au is an active pair, all but at most 26t> pairs vw are such that auv, avw, avw, vvw € K.
Since a € V4, all but at most §t? pairs vw satisfy va, wa € 9S. Similarly, since u € Ve all

but at most 8% pairs vw satisfy uv,uw € OA. Finally, by (A.7), there are at most 2v/6t> pairs
vw € (nglue) such that vw ¢ 8Crled U 8C’r26d. Let Z C (véluff) be the set of all such exceptional pairs.
Then |Z| < 3V/5t2.

If |0CL  (u) NV, | - 10C2 4 (w) NV | > 3V/0t? > |Z|, then there are v € ICL  (u) NV}, and
w € 0C2 4 (u) NV, such that vw & Z.

Otherwise, we have [0C2(u) NV} | < v3V/dt and (A.9) implies that [0CL (u) N V..l >
Vel — 2V/6t. Tt follows that at most |V{) .| - 2Vt < 2V/5t? pairs of OC2, are not contained in
(acrlcd(ué)mvblue)

. Since

V/
2 blue
‘8Cred N ( 92 >

there are v, w € 8Crled(u) N Ve Such that vw € BC'rzed \ Z. In both case, the vertices a,u,v,w are
the ones we are looking for.

To avoid a copy of C’f) in A, one of wvw, uva, vwa, vwa € K must be red (because uv, uw € 0A).
It cannot be uvw because uv € 8Crled and uw € 8Crzed. Thus at least one of the edges uva, uwa, vwa
must be a red edge, say uwa. Since uw € 8C’r20d and au € 0S5, we have Crzcd = S and the proof is
completed by setting Creq = C]?ed and recalling (A.7).
From now on we assume that

> 3512 > 29512 + 13862 > 2512 + |2,

!
(A.10) ' (Vb;e> \(OCL, UAC2y)| < 4¥/622,

and that C’rled =5, if S exists.
Observation A.7. Every set X C V{ . with |X| > 25 /6t contains a copy of Cf’) in CL,or C2,.

re

Proof. Let X C V{),. with |X| > 25 ¥/6t be given. Note that by (A.10), there is a subset X’ C X,
where | X \ X’| < 8 ¥/5t such that for each u € X’ there are at most /6t vertices v € X’ such that
uv ¢ CL U C2,. Moreover, by (A.5), for each u € X', we have |0A(u) N X'| > |X'| — &t and, by
(A.1), for each active pair uv € ()g/), we have | Nk (u,v) N X'| > |X'| — 6t
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Since |X \ X'| + 12 ¥/6t + 120t + (7)ot + 13 < 25 ¥/5t < | X|, there exists a subset Xo C X' of
13 vertices such that ()go) C K and ()go) C An(oCL uac?)). o
3

Since r(Cf)) = 13, the set ()go) contains a monochromatic copy C of C,”. It cannot be blue
because all pairs of vertices of X are in 0A and so C would be in A. Hence, C must be red and,
thus, in Crled or Cfed because ()go) C 8Crled U 8C’rzed. O

Now, we are ready to finish the proof of Lemma 2.2 in Subcase 2a. Suppose first that V_,; = 0.

By (A.4), we have t — 80t < |V{}..] <t < 7s. By Observation A.7, every set of 25 /6t vertices

1

in V. contains a copy of C’f) in C, 4 or C’rzed. Hence, we can find greedily, by taking one edge

from a copy of Cf) and reusing the remaining vertex, a matching of size

Vel —325 /ot , (6:+14n)s —8;%— 25 /5 - Ts s

in Crled U Cfed. Thus, there is an index i € {1,2} such that Cfed contains Ms(g) as well as a copy
of Cf).

Assume now that V., # 0 and, thus, S exists and C’rled = 5. We know (see Observation A.5)
that A contains a matching M4, V(My) C Vilye, of size (1 + n)s but no Cf’). As in the proof
of Observation A.1, for arbitrary subsets M’ C My, U C V.4, where |[M'| > 56t and |U| > 46t,
there exist an edge e € M4, vertex € U, and an edge f € S so that x € f and |eNn f| = 2.
Hence, we can find a matching of size |V | — 4t < s in S that uses exactly 2|V | — 80t vertices
of V{ e After this, we use the greedy procedure from the previous paragraph and find a matching
in SUC2, of size (|V{},e] — 2|Vied| + 85t — 25v/5t) /3. Combining these two matchings and the fact
that |Vplue| + |Vied| = t — 80t yields a matching in S U Cfed of size

V4 (Viae! = 2|Vig| + 85t — 25 W/6t) _ t—25/6-7s

> > 9
3 = 3 =%

as before. Consequently, either S or Crged contains M, §3). Note that at least one edge of this matching

comes from a copy of C’ig) in S or Cfed. Thus, in either case, we have MS(S) and C’ig) in the same
red component.

Subcase 2b. Inequality (A.7) does not hold for any two red components CL ; and C2.

Similarly to Section 7, we will first show that in this case the red components can be grouped
into three large sets.

Observation A.8. There exists a partition (‘2/) = F1U F?U F?3 such that
(i) F', F? F3 are pairwise disjoint,
(il) [FiV, )| > V6 fori=1,2,3,
(iii) for every red component Cyeq there exists i € {1,2,3} such that dC,.q C F".
The proof of this observation is the same as the proof of Observation 7.10 and we omit it here.
For convenience, set F* = F*[V{, ] and deg;(v) = degp(v), i = 1,2,3, v € Vi .-
Observation A.9. For every vertex v € Ve there is an index i € {1,2,3} so that deg;(v) < 7dt.

Proof. Suppose that there is a vertex v € Vyye such that deg;(v) > 76t for all i = 1, 2, 3. Denote
by U; the neighborhood of v in Fi. We will assume that vu € 88 for all u € U, U Uy U Us since, by
(A.5), only at most dt vertices do not satisfy this.

We call an edge ujugus € K v-good if vujug, vujus, vugug € K. Notice that by (A.1), for every
vujug € K, all but at most 36t vertices ug € Us are such that ujusug € K is v-good. Hence, since
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|Us| > 36t + 1, for every pair u; € Uy, ug € Us, where vujuy € K, there exists us € Us such that
uruguz € K is v-good.

Suppose that a v-good edge wjusus € K also satisfies u; € U;, i = 1,2,3. Since the pairs
vu1, vu2, vuz belong to the shadows of distinct red components, all edges vu;uj, 1 <@ < j < 3, are
blue and thus in the azure component A (because vup, vug, vuz € OA). Consequently, since there is
no C’f)) in A, edge ujusuz must be red.

Let ujugus,vivavs € K, where u;,v; € U, i = 1,2,3, be two v-good edges. Since |Us| > 64t,
there is a vertex z3 € Us so that ujugzs, v1v223 are v-good edges. Similarly, since |U;| > 60t, there
is a vertex z; € Uy so that zjuszs and zyve, 23 are v-good. Hence, all v-good edges ujususz € K,
where u; € U;, i = 1,2,3, are in the same red component.

Consequently, all pairs of vertices w; € U; and u; € Uy, © # j, vu;u; € K, are in the shadow of
the same red component. Without loss of generality we may assume that u;u; € F1.

Take any three vertices u;, u} such that u;,u, € U; and vuu) € K. Since |U;j| > 30t + 1, there
exists u; € Uj such that u;uju; is a v-good edge. The edges vu;u; and vuju; are both in A and
04(13) ¢ A, hence either vu;u} is red or w;ulu; is red. In the first case, uju; € F¥, while in the second
case u;u; € FL.

From (A.1) we have that at most 26t pairs u;u} of F* are such that w;ufv ¢ K. Since |F*| > /5,
it follows that at least v/0t%/2 pairs of F are contained in {v} U U;, i = 2,3. Hence, there exists
a matching M; in F' of size 58t. For each uju; € M; there are at most 26t pairs v’ such that
either u;ujv or wujv’" ¢ K. From Fact A.2 we obtain that there exist vertices w;, u; € U; so that
vua, € K, uiul € F' i = 2,3,

If all four edges induced by {ug,u, ug,us} C Vie were blue, we would have Cf’) in A-a
contradiction. Hence, at least one of them is red, say usubug. Since ugus € F!, we have uguh € F'.
But then usufy € F' N F? — a contradiction with Observation A.8(i). O

For 1 <i<j <3, let Wy; ={ve V), deg;(v) > 7\/3t,degj(v) > 7v/6t}. Next, we prove that
Wia, Wis, and Wa3 have each at least 24+/5t vertices.
Observation A.10. |W;;| > 24+/6t for 1 <i < j < 3.

Proof. By symmetry, we can restrict ourselves to the case ¢ = 1 and j = 2. We shall show that
[Wia| > 24V/6t. Let G; := F' N A, i = 1,2. Since |F?| > v/6t?, i = 1,2, and by (A.1), we have
|G| > Vot2 —2V/6t%, i =1, 2.

Hence, G, i = 1,2, contains a subgraph G with minimum degree at least (V8% — 2v/6t2)/8 >
1152v/6t. In G%, i = 1,2, we find greedily matching M/ of size at least 5761/0t. Finally, from M]
and M/ we select a submatchings M; C M7 and My C M), of size tg = 144/t each so that My UM,
is a matching as well. (Take such M, My with |M;| = | M| = ¢ maximum possible. If ¢ < tg, then
M, U M, intersects at most 4t < 576+/6t edges from each M{ and M and we can enlarge both M;
and My)

For any pair v1v] € My, it follows from (A.1) that all but at most &t pairs vov) € My are such
that the triples vjvjve, v1vjvh are in K. Similarly, for any pair vovh € M, all but at most §t pairs
v1v] € My are such that the triples vovhuvy, vavhv] are in K.

Hence, at least |Mi|(|Ma| — 26t)/2 pairs v1v] € M; and vevy, € My are such that all triples in
{v1,v],v2,v5} are in K. Since the azure component contains no copy of C’f), one of these triples
must be red, and, consequently, at least two of the pairs viva, vjve, v1v), vjvh, must belong to a
red component from F; U Fo.

Thus, we may assume that at least |M;|(|Ma| — 2dt)/2 > |M;||Mz|/3 edges joining vertices
saturated by pairs from M, with the vertices saturated by My are from F'. Then at least |Ms|/6 >
24+/8t vertices saturated by the pairs from My C Gy are incident to at least |M;|/6 > 76t pairs
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which are from F'. Since each vertex saturated by Ms has degree at least 1152v/6t in Gy C F?2, we
have |Wia| > 24+/6t. O

Now we claim that all except at most 14 -6t? pairs between W;j and Wy must be from Ft , where
¢ ={i,j} N{,j'}. Indeed, suppose £ = 1 and there are more than 14 - §¢> pairs between ng and
W13 that are not from F'. Then at least 76t pairs must be from, say, F®. Consequently, there is
a vertex v € Wiy incident with at least 76t edges from F3, yielding degs(v) > 76t. But v € Wio
means deg; (v),degy(v) > 76t - a contradiction with Claim A.9.

It follows that one can find vertices wi2, wiy € Wia, w1z, wis € Wig, wag, why € Wag, such that:

(i) the subgraph of K induced by {wi2, wly, wis, wis, wes, whs} is Ké3),
(ii) all pairs of vertices from {w;2, w’12, w13, W3, Wa3, Whs } are in OA,
(iii) for 1 < i < j < 3,1 <4 < j <3, {i,5} # {7, 7'}, the pairs wjjwyjr, w;

w; wl/J, are from F*, where £ = {i,j} N {i',j'}.

Indeed, by Claim A.10, each of the sets Wia, Wi3, Was has size at least 244/6t. By the previous
paragraph, (A.1), and (A.5), there are 2 vertices wig, w}y € Wiz and subsets Wiy C Wi, Wis C Wag
such that |[Wis|,|Wis| > 19V/6t, all pairs wiaz, wiyr € dAN F' for every 2 € W{,, and all pairs
w12k, Wiex € OAN F? for every z € Wis.

Since all but at most 14§t pairs between W/, and Wi, must be from F3, [W{,|, |Was| > 19v/6t,
and by (A.1) and (A.5), there exists wig, w)s € Wis, was, why € Wig such that (i), (ii), and (iii)
hold.

In the same one as in Section 7 (see page 30), we conclude that the sub-hypergraph H induced in K
(3)

by vertices wig, Wiy, w13, W3, W23, Why € Vilye contains a copy of Cs

jwlj y Wijw

in the azure component A. [
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