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Abstract. Let C
(3)
n denote the 3-uniform tight cycle, that is the hypergraph with vertices v1, . . . , vn

and edges v1v2v3, v2v3v4, . . . , vn−1vnv1, vnv1v2. We prove that the smallest integer N = N(n) for
which every red-blue coloring of the edges of the complete 3-uniform hypergraph with N vertices

contains a monochromatic copy of C
(3)
n is asymptotically equal to 4n/3 if n is divisible by 3, and 2n

otherwise. The proof uses the regularity lemma for hypergraphs of Frankl and Rödl.

1. Introduction

Given a k-uniform hypergraph H, k ≥ 2, the Ramsey number r(H) is the smallest integer N

such that every red-blue coloring of the edges of the complete k-uniform hypergraph K
(k)
N with N

vertices yields a monochromatic copy of H. A classical result in graph Ramsey theory ([1, 2, 10])
states that for k = 2 and n ≥ 5 the Ramsey number of the graph cycle Cn with n vertices is

r(Cn) =

{

3
2n − 1 if n is even,

2n − 1 if n is odd.

Thus, the Ramsey numbers for graph cycles depend strongly on the parity of n.
In this paper we continue our study of Ramsey numbers for 3-uniform hypercycles, initiated in

[5]. There are various definitions of a cycle in a 3-uniform hypergraph. Given a suitably labeled set
of vertices {v1, . . . , vn}, a loose cycle has the edge set {v1v2v3, v3v4v5, v5v6v7, . . . , vn−1vnv1}, while

the tight cycle, denoted henceforth by C
(3)
n , has the edge set

{v1v2v3, v2v3v4, v3v4v5, . . . , vn−1vnv1, vnv1v2}.

In [5] we proved that the Ramsey number for the n-vertex loose cycle, n even, is asymptotic to 5n/4.
(Note that loose cycles do not exist for n odd.)

Here an analogous problem is investigated for the tight cycles. So far, the only known value of

the Ramsey number for a tight cycle is r(C
(3)
4 ) = 13 (see [8]). Asymptotically, it turns out that the

Ramsey number for the tight cycle is larger than that for the loose cycle, and depends on whether
n is divisible by 3. Thus in this respect, tight cycles behave more like graph cycles than loose cycles
do. Our aim is to prove the following theorem.

Theorem 1.1.

(a) For every integer n ≥ 1 and i = 0, 1, 2,

r(C
(3)
3n+i) ≥

{

4n − 1 if i = 0,

6n + 2i − 1 if i 6= 0.
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(b) Let η > 0 be given. Then for all sufficiently large n and i = 0, 1, 2,

r(C
(3)
3n+i) ≤

{

(4 + η)n if i = 0,

(6 + η)n if i 6= 0.

In the next section we prove the lower bounds and outline the proofs of the upper bounds. Their
complete proofs are deferred to Section 5.

2. Lower bounds and the outline of the main proof

Most of the work in proving Theorem 1.1 lies in the upper bounds. In this section, we begin
by establishing the lower bounds (Theorem 1.1(a)), and then we sketch the main ideas needed
for Theorem 1.1(b), which include a notion of connectedness for 3-uniform hypergraphs. Since all
hypergraphs considered in this paper are 3-uniform, we will more concisely call them hypergraphs.

2.1. Proof of lower bounds. The first lower bound is based on relation between cycles and

matchings. Let M
(3)
n be a 3-uniform 3n-vertex matching, that is, a hypergraph consisting of n

disjoint edges. Observe that C
(3)
3n contains M

(3)
n , and so r(C

(3)
3n ) ≥ r(M

(3)
n ).

Proof of Theorem 1.1(a). To prove that r(C
(3)
3n ) ≥ 4n − 1, partition the vertex set of K

(3)
4n−2 into

two parts, X and Y , where |X| = 3n − 1, |Y | = n − 1, and color all edges inside X red and all

other edges blue. It is easily seen that this coloring contains no monochromatic M
(3)
n , and thus

no monochromatic copy of C
(3)
3n . (Unlike in the case of graphs, the above extremal coloring is not

unique. For another one, see Example 1 in Subsection 2.2.)

To prove that r(C
(3)
3n+i) ≥ 6n+2i−1, i = 1, 2, partition the vertex set of K

(3)
6n+2i−2 into two parts,

X and Y , where |X| = |Y | = 3n + i − 1, and color red [blue] all edges with an odd [even] number
of elements in X. An edge containing a vertex of X and a vertex of Y is called crossing.

Suppose that there is a red copy C of C
(3)
3n+i in such a coloring. Since |X| < 3n + i, at least one

edge of C is crossing. But then, by the definition of a tight cycle, every edge of C is crossing, that
is, every edge of C contains one vertex of X and two of Y . This means that every third vertex of
C belongs to X, which is impossible when i 6= 0. �

Note that the first construction in the above proof implies that r(M
(3)
n ) ≥ 4n − 1, and so, in

view of Theorem 1.1, r(M
(3)
n ) and r(C

(3)
3n ) are asymptotically equal. In fact, it is easy to prove that

r(M
(3)
n ) = 4n − 1.

2.2. Paths, pseudo-paths and connectedness. A (tight) path is a hypergraph with vertices
v1, . . ., vp+2 and edges v1v2v3, v2v3v4, . . . , vpvp+1vp+2. The pairs (v1, v2) and (vp+2, vp+1) are called
the endpairs of the path. (Note the reverse order of the latter pair which emphasizes the symmetry
of the path.) The length of a path on p + 2 vertices is equal to p, the number of edges.

A pseudo-path in a hypergraph H is a sequence (e1, . . . , ep) of not necessarily distinct edges of H
such that |ei ∩ ei+1| = 2 for each i = 1, . . . , p − 1. In particular, the edges of every path can be
ordered (in two ways) to form a pseudo-path. If (e1, . . . , ep) is a pseudo-path in H then we say
that e1 and ep are connected in H by a pseudo-path. Unlike for paths, this defines an equivalence
relation and we call the equivalence classes the components of H.

A hypergraph H is connected if every two edges e, f ∈ H are connected by a pseudo-path. Note
that there are several ways to define connectedness in hypergraphs (cf. [5]), but in this paper we
will always mean the one defined above. A sub-hypergraph H ′ of H is externally connected (in H)
if every two edges e, f ∈ H ′ are connected in H by a pseudo-path. In other words, there is a
component C of H that contains H ′.
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Example 1. Consider a 3-uniform hypergraph with vertex set V = X ∪ Y , X, Y 6= ∅, and a red-
blue coloring where every edge with an odd intersection with X is colored red and all other edges
are colored blue. Then, the red sub-hypergraph has two components, one consisting of all edges
contained in X, the other formed by all edges with one vertex in X and two in Y .

Clearly, every red tight cycle must be entirely contained in one of these two components, a fact
utilized already in the proof of Theorem 1.1(a), i 6= 0. Moreover, with |X| = |Y | = 2n − 1 this
yields an alternative “extremal coloring” in the proof of Theorem 1.1(a), i = 0. Indeed, neither of
the two red components contains a cycle of length 3n. As a matter of fact, none of them contains
an externally connected matching of size n.

2.3. Monochromatic matchings in colorings of almost complete hypergraphs. The basic
idea of our proof, similar to that given by  Luczak [6] and Figaj and  Luczak [3] (see also [5]), is to
apply to the colored complete (hyper)graph the regularity lemma, find in the cluster (hyper)graph
a large structure of a certain type, and use this structure to obtain a long, monochromatic cycle.

Thus, a crucial role in the proof of Theorem 1.1(b) is played by the two following Ramsey-type
results on externally connected matchings. We state them now, but their proofs are deferred to the
end of the paper.

Lemma 2.1. For every η > 0 there exist δ > 0 and s0 such that the following holds. Let K be a
hypergraph with t = (4 + η)s vertices, s ≥ s0, and at least (1− δ)

(

t
3

)

edges. Then, for every red-blue

coloring K = Kred ∪ Kblue, either Kred or Kblue contains an externally connected matching M
(3)
s .

The proof, given in Section 8, is so technically involved that, for the sake of the reader, it
is preceded in Section 6 by its “idealized” version with η = δ = 0. There we will prove that the

Ramsey number r(M
(3)
s ) = 4s−1 does not increase when the matching is requested to be externally

connected in one of the colors (cf. Theorem 6.1).
To deal with the case i 6= 0, we will need the following modification of Lemma 2.1.

Lemma 2.2. For every η > 0 there exist δ > 0 and s0 such that the following holds. Let K be
a hypergraph with t = (6 + η)s vertices, s ≥ s0, and at least (1 − δ)

(

t
3

)

edges. Then, for every
red-blue coloring K = Kred ∪ Kblue, either Kred or Kblue contains an externally connected union of

a matching M
(3)
s and a cycle C

(3)
4 or C

(3)
5 .

Why does the size of the largest monochromatic, externally connected matching found in a

red-blue colored K go down from t/4 to t/6, if it has to be accompanied by a copy of C
(3)
4 or

C
(3)
5 ? The answer can be provided by the second construction in the proof of Theorem 1.1(a)

(see Section 2.1). Indeed, that construction yields a coloring of K6s+2i−2 without any externally

connected, monochromatic copy of a vertex-disjoint union of M
(3)
s1 and C

(3)
3s2+i, s = s1 + s2, i = 1, 2.

Although in Lemma 2.2 we do not assume that a copy of C
(3)
4 or C

(3)
5 has to be disjoint from the

matching, it can be reduced to the disjoint case by disregarding at most five edges of the matching.
This small loss does not affect the asymptotics of Lemma 2.2.

The proof of Lemma 2.2 is based on Lemma 2.1 and quite similar to its proof, but even more
technical. The full version can be be found in the Appendix.

2.4. Outline of the proof of upper bounds. We first consider the case of C
(3)
3n . Let K

(3)
N =

Hred∪Hblue, where N ∼ 4n, be a red-blue coloring of the edges of the complete 3-uniform hypergraph

K
(3)
N .
We apply simultaneously, to both Hred and Hblue, the hypergraph regularity lemma (Theorem 3.2)

with suitably chosen parameters, and obtain a vertex partition V = V1 ∪ . . . ∪ Vt, |Vi| ∼ N/t,
such that for almost all triples {i, j, k} one of the induced sub-hypergraphs, Hred[Vi ∪ Vj ∪ Vk] or
Hblue[Vi∪Vj∪Vk], is “well structured”, that is, enjoys high regularity and large density (see Section 5
for details).
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It will be proved in Section 4 that a “well structured” hypergraph contains a long path (Lemma 4.6),

in our case of length almost 3N/t. We will build a monochromatic copy of C
(3)
3n mostly out of such

paths, coming from about t/4 vertex disjoint “well-structured” hypergraphs. Thus, it is crucial to
find about t/4 disjoint, but mutually connected, “well-structured” sub-hypergraphs in one color.

To this end, let Kred and Kblue be two auxiliary hypergraphs on the vertex set {1, 2, . . . , t}, whose
edges are those triples {i, j, k} for which, respectively, Hred[Vi∪Vj∪Vk] or Hblue[Vi∪Vj∪Vk] contains

a “well structured” sub-hypergraph. Set K = Kred ∪Kblue and note that |K| ∼
(

t
3

)

. We call K the
cluster hypergraph and the edges of K the cluster edges.

By Lemma 2.1 either Kred or Kblue (say, Kred) contains an externally connected matching M =

M
(3)
s of size s ∼ t/4. Next, using Lemma 4.6, we will find a long path in each sub-hypergraph

Hred[Vi, Vj , Vk], where {i, j, k} ∈ M . These paths are disjoint and have total length of about
(t/4) × (3N/t) = 3N/4 ∼ 3n (in fact, 3n − O(1)).

To connect the long paths together into a red cycle of length 3n, we will construct in Hred short
paths (length O(1)) between the endpairs of long paths, being guided by the pseudo-paths linking

in Kred the cluster edges of M
(3)
s (in reality, we build the short paths first).

The case of C
(3)
3n+i, i = 1, 2, requires just one modification: in addition to an externally connected,

monochromatic matching in K, we will need a copy of a cycle of length not divisible by three in the
same color. This is provided by Lemma 2.2, which guarantees in either Kred or Kblue the existence

of an externally connected sub-hypergraph which is a union of M
(3)
s , s ∼ t/6, and a copy of either

C
(3)
4 or C

(3)
5 . Due to the presence of a cluster cycle of length not divisible by three we will be able

to adjust the length of the final cycle to be equal one or two modulo three (by running once or twice
around the cluster cycle – see Section 5 for more details).

In the next section we introduce the regularity of hypergraphs and present a corresponding
regularity lemma. In Section 4 we prove the existence of paths of prescribed length in quasi-random
hypergraphs (Lemma 4.6), one of the two main ingredients of the proof of Theorem 1.1(b). In
Section 5 we put together the main proof, and, finally, in Sections 6-8 we provide the proofs of the
second crucial ingredient, Lemmas 2.1 and 2.2.

3. Regularity of hypergraphs

In this section we describe the regularity lemma for hypergraphs established in [4], in a modified
version presented in [9]. To do this we will need to refer to the notion of ǫ-regularity for graphs,
the key idea in Szemerédi’s Regularity Lemma [11].

3.1. Graph regularity. Let G be a bipartite graph with vertex classes X and Y and let 0 ≤ d ≤ 1.
For X ′ ⊆ X and Y ′ ⊆ Y , we write EG(X ′, Y ′) for the set of edges of G that have one end in X ′

and the other in Y ′. The density dG(X ′, Y ′) of G over the pair (X ′, Y ′) is defined by

dG(X ′, Y ′) =
|EG(X ′, Y ′)|

|X ′||Y ′| .

Let ǫ > 0. We say that G is (d, ǫ)-regular, if for all X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ǫ|X|
and |Y ′| ≥ ǫ|Y |, we have

|dG(X ′, Y ′) − d| < ǫ .

We say that G is ǫ-regular if it is (d, ǫ)-regular with d = dG(X, Y ).

3.2. Hypergraph regularity. We now turn to hypergraph regularity. A triple (P 12, P 13, P 23) of
bipartite graphs with vertex sets V1 ∪ V2, V1 ∪ V3 and V2 ∪ V3, or equivalently, the 3-partite graph
P = P 12 ∪ P 13 ∪ P 23 itself, will be referred to as a triad.

In what follows we often need to focus on the set of edges of a hypergraph H that are also vertex
sets of triangles in a fixed triad P with V (P ) ⊆ V (H). We denote by Tr(P ) the family of the vertex
sets of the triangles in the graph P , and set tr(P ) = |Tr(P )|. Thus for any P , Tr(P ) is a 3-uniform
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hypergraph on the same vertex set as P . Moreover, Tr(P ) is 3-partite in the sense that every edge
intersects each set V1, V2 and V3.

Further, we define the notion of the density of H with respect to P as

dH(P ) =
|H ∩ Tr(P )|
|Tr(P )| .

Similarly, for every r-tuple of triads ~Q = (Q(1), Q(2), . . . , Q(r)), let

dH
~(Q) =

∣

∣

∣
H ∩ ⋃r

p=1 Tr(Q(p))
∣

∣

∣

∣

∣

∣

⋃r
p=1 Tr(Q(p))

∣

∣

∣

.

Note that in the definition above, the sets of triangles Tr(Q(p)) need not be pairwise disjoint.
Next, we define the notion of regularity for 3-uniform hypergraphs. Given a triad P = P 12 ∪

P 13 ∪ P 23, by a sub-triad we mean a triad Q = Q12 ∪ Q13 ∪ Q23 where

Q12 ⊆ P 12, Q13 ⊆ P 13, Q23 ⊆ P 23.

Definition 3.1. Let δ > 0 and α > 0, and let r be a positive integer. Further, let H be a 3-uniform
hypergraph with V (H) ⊇ V (P ).

• We say that H is (α, δ, r)-regular with respect to a triad P if for every r-tuple of sub-triads

~Q = (Q(1), Q(2), . . . , Q(r)) satisfying
∣

∣

r
⋃

p=1
Tr(Q(p))

∣

∣ > δ|Tr(P )|, we have |dH
~(Q) − α| < δ.

• We say that H is (δ, r)-regular with respect to P if it is (α, δ, r)-regular with α = dH(P ).
• A triad P with respect to which H is (δ, r)-regular will be called (δ, r)-regular Otherwise, it

will be called (δ, r)-irregular .
• Moreover, if each graph P 12, P 13, P 23 of an (α, δ, r)-regular triad P = P 12 ∪ P 13 ∪ P 23 is

(1/ℓ, ǫ)-regular, then we call the pair (H, P ) an (α, δ, ℓ, r, ǫ)-regular complex .

Observe that if Hc is the complement of H then dH
~(Q) = 1 − dHc

~(Q). Consequently, if H is
(α, δ, r)-regular, then Hc is (1 − α, δ, r)-regular with respect to the same triad P .

3.3. Regularity Lemma for Hypergraphs. We now state the regularity lemma for 3-uniform
hypergraphs from [4] in a simplified form presented in [9] (see Lemma 4.1 and Remark 4.1 there).
We write K(U, W ) for the complete bipartite graph with vertex sets U and W .

Theorem 3.2 (Regularity Lemma for Hypergraphs). For every δ > 0, every integer t0, all integer-
valued functions r = r(t, ℓ), and all decreasing sequences ε(ℓ) > 0, there exist constants T0, L0 and
N0 such that every 3-uniform hypergraph H with at least N0 vertices admits a partition Π consisting
of an auxiliary vertex set partition V (H) = V0 ∪ V1 ∪ · · · ∪ Vt, where t0 ≤ t < T0, |V0| < t and

|V1| = |V2| = · · · = |Vt|, and, for each pair i, j, 1 ≤ i < j ≤ t, a partition K(Vi, Vj) =
ℓ
⋃

a=1
P ij

a , where

1 ≤ ℓ < L0, satisfying the following conditions:

(i) all graphs P ij
a are (1/ℓ, ε(ℓ))-regular,

(ii) H is (δ, r)-regular with respect to all but at most δℓ3t3 triads (P hi
a , P hj

b , P ij
c ).

Note that the conclusions of Theorem 3.2 hold for the complement Hc of H as well.
Since the outcome of the regularity lemma may be overwhelming, we simplify the picture a little

bit by selecting only one graph P ij
a from each K(Vi, Vj).

Claim 3.3. Given the partition produced by Theorem 3.2, there exists a family P of bipartite graphs

P ij = P ij
aij

, one between each pair (Vi, Vj), where 1 ≤ i < j ≤ t, such that H is (δ, r)-regular with

respect to all but at most 2δt3 triads (P hi, P hj , P ij).
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Proof. We apply the probabilistic method. For all 1 ≤ i < j ≤ t, choose an index aij ∈ {1, 2, . . . , ℓ}
independently and uniformly at random. The selected indices determine a (random) family P of

(

t
2

)

bipartite graphs. By condition (ii) of Theorem 3.2, the expected number of (δ, r)-irregular triads
of P is at most δt3ℓ3(1/ℓ)3 = δt3, and hence, by Markov’s inequality, the probability that there are
more than 2δt3 such triads is less than 1/2. Thus, there exists a selection P with fewer than 2δt3

(δ, r)-irregular triads. �

4. A long, long path

Our goal in this section is to find tight hyperpaths of given lengths connecting two designated
edges of P in an (α, δ, ℓ, r, ε)-complex (H, P ), as defined in Definition 3.1. To distinguish the
hypergraph edges from the graph edges, in this section the former will be called hyperedges. On the
other hand, as in the whole paper, we will use the name “path” instead of “hyperpath”.

4.1. Short paths. Recall that a tight path of length m was defined as a hypergraph with vertices
{v1, . . . , vm+2} and the m hyperedges v1v2v3, . . ., vmvm+1vm+2. We call the (ordered) pairs (v1, v2)
and (vm+2, vm+1) the endpairs of the path, while the vertices v3, . . . , vm are called internal vertices.
Two paths are said to be internally disjoint if they do not share any internal vertex.

Note that the endpairs of a 3-uniform path are ordered pairs of vertices. However, in a 3-partite
3-uniform hypergraph H on vertex set V1 ∪ V2 ∪ V3, we may designate one cyclic orientation, say
V1 → V2 → V3 → V1, as canonical, and view the endpairs of paths as unordered pairs of vertices,
or simply the edges of the underlying graph P . Then saying that a path goes from e to f is not
ambiguous and means that the endpairs of the paths are the edges e and f directed by the canonical
ordering. For example, let e = ab and f = cd be two edges, where a, d ∈ V1, b, c ∈ V2. Then, under
the above canonical orientation, a path going from edge e to edge f is a path with the endpairs
(a, b) and (c, d).

Definition 4.1. With the convention that ijk is the canonical cyclic orientation, we say that an
ordered pair of edges (e, f), where e ∈ P ij , is of type 1 if f ∈ P jk, of type 2 if f ∈ P ik, and of
type 3 if f ∈ P ij . We denote the type of (e, f) by type(e, f).

Thus, every path from e to f has some length m such that

m ≡ type(e, f) (mod 3).

Definition 4.2. Let e1, e2 be two edges of P and x, y be two integers. We say that e1 reaches e2

within H in x steps and in y ways if there exist at least y internally disjoint paths in H of length x
from e1 to e2.

Let

γ0 =
α4

5000ℓ7
.

For an edge e ∈ P we denote by Four+(e, H) the set of those edges of P , which are reached from e
within H in four steps and in γ0n ways, and by Four−(e, H) the set of all edges of P which reach
e within H in four steps and in γ0n ways (see Figure 4.1). Owing to the canonical orientation in
which all paths proceed, the sets Four+(e, H) and Four−(e, H) are contained in different subgraphs
P ij , and thus are disjoint.
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g

h

e

Vi

Vj

Vk

Figure 4.1. The fourth neighborhoods of e (g ∈ Four−(e, H), h ∈ Four+(e, H))

In [7] the following result is proved . For a subset S ⊂ V (H) a path Q ⊂ H is called S-avoiding
if V (Q) ∩ S = ∅. Given a graph G with V (G) = V (H), we denote by H − G the sub-hypergraph
of H obtained by removing from H all hyperedges containing at least one edge of G. Finally, let

R0 =

{

e ∈ P : min
{

|Four+(e, H)|, |Four−(e, H)|
}

<
α4

2000
× n2

ℓ

}

.

Theorem 4.3 ([7]). For each α ∈ (0, 1) there exists δ > 0 and sequences r(ℓ), ε(ℓ), and n0(ℓ)
such that for all integers ℓ ≥ 1 the following holds: if (H, P ) is an (α, δ, ℓ, r(ℓ), ε(ℓ))-complex with

|V1| = |V2| = |V3| = n > n0(ℓ), then there is a subgraph P0 of at most 27
√

δn2/ℓ edges of P such
that

(i) for all e ∈ P \ P0

min
(

|Four+(e, H − P0)|, |Four−(e, H − P0)|
)

≥
(

α4

2000

)

n2

ℓ
,

and
(ii) for every ordered pair of disjoint edges (e, f) ∈ (P \R0)× (P \R0), e∩ f = ∅, and for every

set S ⊂ V (H) \ (e ∪ f) of size |S| ≤ n/ log n, there is in H an S-avoiding path from e to f
of length 9 + type(e, f). �

Part (i) above is Lemma 4.2 in [7], while part (ii) is Theorem 3.4(ii) in [7] (see also Remark 4.3
there). Now we formulate a useful corollary of Theorem 4.3.

Corollary 4.4. For each α ∈ (0, 1) there exists δ > 0 and sequences r(ℓ), ε(ℓ), and n0(ℓ) such
that for all integers ℓ ≥ 1 the following holds: if (H, P ) is an (α, δ, ℓ, r(ℓ), ε(ℓ))-complex with |V1| =

|V2| = |V3| = n > n0(ℓ), then there is a subgraph P0 of at most 27
√

δn2/ℓ edges of P such that

(i) for all e ∈ P \ P0

|Four+(e, H)| ≥
(

α4

2000

)

n2

ℓ
,

and
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(ii) for every ordered pair of disjoint edges (e, f) ∈ (P \P0)× (P \P0), e∩ f = ∅, and for every
set S ⊂ V (H) \ (e ∪ f) of size |S| ≤ n/ log n, there is in H an S-avoiding path from e to f
of length 9 + type(e, f). �

Proof. Part (i) follows trivially from Theorem 4.3(i), because Four+(e, H) ⊇ Four+(e, H − P0). To
prove part (ii), observe that, by definition of R0 and Theorem 4.3(i), we have R0 ⊆ P0, and thus
(P \ R0) × (P \ R0) ⊆ (P \ P0) × (P \ P0). Hence, part (ii) follows from Theorem 4.3(ii). �

Let us conclude this subsection with an observation that, for a small decrease in the size of S,
the path length in Corollary 4.4(ii) may be specified to be any integer from {10, . . . , 17}.

Claim 4.5. Under the assumptions of Corollary 4.4, for every ordered pair of disjoint edges (e, f) ∈
(P \ P0) × (P \ P0), e ∩ f = ∅, for every set S ⊂ V (H) \ (e ∪ f) of size |S| ≤ n/ log n − 12, and
for each m ∈ {10, . . . , 17}, m = type(e, f)(mod 3), there is in H an S-avoiding path from e to f of
length m.

Proof. In view of Corollary 4.4(ii), we may assume that m ≥ 13. In this case will apply Corol-
lary 4.4(ii) twice. First we find in H an S-avoiding path Q1 from e to f of length m0 = 10, 11, or 12,
depending on the type of (e, f). Note that m0 ≡ m(mod 3), and thus m−m0 is divisible by three.

Consider the initial segment Q′
1 of Q1 of length m − m0, and call its other endpair e′ (note that

type(e′, f) = type(e, f)). Now, find in H an (S∪V (Q′
1)\e′)-avoiding path Q2 from e′ to f of length

m0. Then, the concatenation Q′
1 + Q2 forms in H an S-avoiding path from e to f of length m. �

4.2. Long paths. It was shown in [7] that (α, δ, ℓ, r, ε)-complexes contain long paths. Here we
strengthen that result by showing that, in fact, most pairs of edges of the underlying graph P are
connected in H by paths of any given, feasible length m, for a wide range of m.

Lemma 4.6. For each α ∈ (0, 1) there exists δ > 0 and sequences r(ℓ), ε(ℓ), and n1(ℓ) with
the following property: for all integers ℓ ≥ 1, if (H, P ) is a (dH(P ), δ, ℓ, r(ℓ), ε(ℓ))-complex with

dH(P ) ≥ α and |V1| = |V2| = |V3| = n > n1(ℓ), then there is a subgraph P0 of at most 27
√

δn2/ℓ
edges of P such that for all ordered pairs of disjoint edges (e, f) ∈ (P \P0)× (P \P0), for every set
S ⊂ V (H) \ (e ∪ f), |S| < n/(log n)2, and for all integers m from the range

10 ≤ m ≤ (1 − δ1/4)(3n),

with m = type(e, f)(mod 3), there is in H an S-avoiding path from e to f of length m.

Proof. Note that unlike in Claim 4.5, here we need to construct a possibly very long path from e to f .
This will be achieved by a repeated application of Corollary 4.4(i). There is a minor, but irritating
difference, however, in the set-ups of Corollary 4.4 and Lemma 4.6: in the former, the hypergraph
density was roughly equal to α, while now we have a hypergraph H satisfying dH(P ) ≥ α. To
circumvent this technical obstacle, we consider a random sub-hypergraph HR ⊂ H, where each
hyperedge of H is present independently with probability α/dH(P ). By Chernoff’s bound, the pair
(HR, P ) is an (α, 2δ, ℓ, r(ℓ), ε(ℓ))-complex. Clearly, if HR contains the desired path then so does H.
By resetting H := HR and δ := δ/2, we thus reduce Lemma 4.6 to the instance when (H, P ) is an
(α, δ, ℓ, r(ℓ), ε(ℓ))-complex.

Given α, let δ > 0 and the sequences r(ℓ), ε1(ℓ), and n0(ℓ) be such that Corollary 4.4 holds with

δ′ = 4δ
1
4 in place of δ, r(ℓ), ε1(ℓ) in place of ε(ℓ), and n0(ℓ). Set ε(ℓ) = δ

1
4 ε1(ℓ). Assume also that

(4.1) 27

√

4δ
1
4 <

α4

2000
.

We will prove Lemma 4.6 with the above choice of δ, r(ℓ) and ε(ℓ), and with a choice of n1(ℓ) ≥ n0(ℓ)
such that for all ℓ ≥ 1 and n ≥ n1(ℓ) all inequalities encountered in the proof below hold true.
Let (H, P ) be an (α, δ, ℓ, r(ℓ), ε(ℓ))-complex and P0 = P0(H) be given by Corollary 4.4, where
|V1| = |V2| = |V3| = n > n1 = n1(ℓ). Let us fix an ordered pair of disjoint edges (e, f) ∈
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(P \ P0) × (P \ P0), and a set S ⊂ V (H) \ (e ∪ f), |S| < n/(log n)2. Finally, fix an integer m from

the range 10 ≤ m ≤ (1 − δ1/4)(3n), with m ≡ type(e, f)(mod 3).
Our goal is to show that there exists an S-avoiding path from e to f of length m. Without loss

of generality, let us assume that type(e, f) = 3, e = ab ∈ P 12 and f = cd ∈ P 12, where a, d ∈ V1

and b, c ∈ V2.
The plan is to first grow, by recursive application of Corollary 4.4(i), two disjoint S-avoiding paths

Qe and Qf of equal length m′, one from e, the other from f , until their total length 2m′ reaches
roughly m. Then, making sure that 10 ≤ m− 2m′ ≤ 17, we will use Claim 4.5 to connect the other
endpairs of these two paths to form in H an S-avoiding path from e to f of length precisely m.

The two “parallel” paths will be grown recursively, in increments of four, using the property of
the sets Four+(e′, H) and Four+(f ′, H), where e′ and f ′ will denote the current endpairs. Thus,
we must take care to always choose the extending paths so that the new endpairs are outside the
exceptional set P0 of the current sub-hypergraph. To this end, at any given step of this procedure,
we will have to consider two sub-hypergraphs defined as follows.

Given two disjoint paths, Qe from e and Qf from f , of equal length m′, let H ′ = H ′(Qe, Qf ) be
the sub-hypergraph obtained from H by deleting all vertices of Qe and Qf , except for the last four
from each path (if m′ ≤ 4, we set H ′ = H). Further, let the sub-hypergraph H ′′ = H ′′(Qe, Qe) be
obtained from H by deleting all vertices of Qe and Qf (no exceptions). Set also P ′ = P [V (H ′)] and
P ′ = P [V (H ′′)]. As long as

∣

∣V (Qe) ∪ V (Qf )
∣

∣ = 2m′ <
(

1 − δ1/4
)

(3n),

the hypergraphs H ′ and H ′′ have at least δ1/4n vertices in each set Vi, i = 1, 2, 3, and so, the pairs

(H ′, P ′) and (H ′′, P ′′) are (α, 4δ
1
4 , ℓ, r, ε/δ

1
4 )-complexes (see, e.g., [9], Fact 4.2). Let P ′

0 and P ′′
0 be

the subgraphs of P ′ and P ′′, respectively, guaranteed by Corollary 4.4.
As a next step in the proof of Lemma 4.6, we show that two long paths can be grown from e and

f . Their length m′, due to the chosen method of construction, will be a multiple of four.

Fact 4.7. For every 0 ≤ m′ < 1
2(1 − δ1/4)(3n), m′ divisible by four, there exists in H a pair of

disjoint S-avoiding paths Qe and Qf of length m′, originating from e and f , respectively, and such
that their other endpairs are not in P ′

0 .

Proof. We proceed by induction on m′. There is nothing to prove for m′ = 0. Let Qe and Qf be a
pair of disjoint S-avoiding paths, one from e and the other from f , of the same length m′ ≥ 0, m′

divisible by four, and such that their other endpairs, e′ and f ′, are not in P ′
0. (If m′ = 0, we set

e′ = e and f ′ = f .) We will now show how to extend Qe and Qf to a new pair of paths Q′
e and Q′

f

of length m′ + 4, thus completing the inductive step. (The reader may be guided throughout by
Figure 4.2.)

Noticing that |V (H ′′)| < |V (H ′)| and ε/δ
1
4 = ε1(ℓ), by Corollary 4.4 applied to H ′′ we have

(4.2) |P ′′
0 | ≤ 27

√

4δ
1
4
⌈|V (H ′′)|/3⌉2

ℓ
< 27

√

4δ
1
4
⌊|V (H ′)|/3⌋2

ℓ
.

On the other hand, by Corollary 4.4(i) applied to H ′ and by the fact that e′ ∈ P ′
0, we infer that the

edge e′ reaches in four steps at least

α4

2000

⌊|V (H ′)|/3⌋2
ℓ

other edges of P ′. Therefore, since n > n1, by (4.2) and (4.1), e′ reaches in four steps at least
|P ′′

0 | + 4n other edges of P ′, where the term 4n takes care of all edges adjacent to the two vertices
of the set

Te = V (H ′) ∩ V (Qe) \ e′.
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Consequently, there is at least one edge e′′ ∈ P ′′\P ′′
0 , reached from e′ by at least γ0|V (H ′′)| internally

disjoint paths in H ′ of length four. Thus, since n > n1, at least one of them avoids S ∪ Te, and we
may extend Qe by four vertices, so that the new path Q′

e ends in e′′ 6∈ P ′′
0 .

…
…

a

b

c

d

e e′
e′′

f f ′

f ′′

Qe

Qf

Q′
e

Q′
f

H ′ = H ′(Qe, Qf ) H ′′ = H ′′(Qe, Qf )

Figure 4.2. Growing hyperpaths from e and f (illustration to the proof of Lemma 4.6).

We now similarly extend Qf by four vertices, so that the new path Q′
f is disjoint from Q′

e, avoids

S, and ends in f ′′ 6∈ P ′′
0 . Since H ′′ = H ′(Q′

e, Q
′
f ), and so P ′′

0 = P0(H ′(Q′
e, Q

′
f )), the pair of paths

(Q′
e, Q

′
f ) satisfies all conditions required in Fact 4.7. �.

Now comes the final, gluing part of the proof of Lemma 4.6. First, we have to choose the right
length m′ of the paths Qe and Qf guaranteed by Fact 4.7. Since their total length 2m′ is divisible
by eight, it is convenient to represent m in the form

m = 8k + h,

where 0 ≤ h ≤ 7. Note that in view of Claim 4.5, there is nothing to prove when k = 1, or k = 2
and h ≤ 1. If k ≥ 2 and h ≥ 2, we need m′ = 4(k−1) because then m−2m′ = 8 +h ∈ {10, . . . , 15}.
Similarly, when k ≥ 3 and h ≤ 1, we need m′ = 4(k − 2) (this time m − 2m′ = 16 or 17).

Let

Tf = V (H ′) ∩ V (Qf ) \ f ′.

We connect e′ and f ′ by a path Qe′f ′ in H ′ of length precisely m−2m′ ∈ {10, . . . , 17}, which avoids
the set S ∪ Te ∪ Tf . This follows from Claim 4.5 above. The concatenation Qe + Qf + Qe′f ′ forms
in H an S-avoiding path from e to f of length m, as required. �

5. Proof of Theorem 1.1(b)

In Sections 5.1-5.4 we prove Theorem 1.1(b) for C
(3)
3n and then, in Section 5.5, we explain how to

adjust the proof to obtain Theorem 1.1(b) in the remaining cases of C
(3)
3n+1 and C

(3)
3n+2.
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5.1. The choice of constants and the use of the regularity lemma. Let η > 0 be given.
Set α = 1/2 and let δ′, r(ℓ), ǫ(ℓ), n1(ℓ) be as guaranteed by Lemma 4.6. Let δ′′ = δ(η/2) and
s0 = s0(η/2) be given by Lemma 2.1. Envisioning an application of Theorem 3.2, we set

δ = min

{

δ′

2
,
δ′′

40

}

,(5.1a)

t0 = max
{

δ−100, 5s0

}

,(5.1b)

and

r(t, ℓ) = r(ℓ).(5.1c)

Theorem 3.2 yields integers L0, T0, N0 from which we derive

N1 = max

{

2T0 max
ℓ≤L0

n1(ℓ), N0

}

.

Now, for an arbitrary n > 1
4N1, consider a red-blue coloring K

(3)
N = Hred ∪ Hblue, where N =

(4 + η)n > N1 ≥ N0.
We apply the hypergraph regularity lemma (Theorem 3.2) with parameters given by (5.1a)-(5.1c)

to Hred (and Hblue), yielding a partition Π satisfying conditions (i) and (ii) of Theorem 3.2. In
particular, this determines the values of t and ℓ. Note that |V1| = |V2| = · · · = |Vt| > (N −T0)/T0 >
n1(ℓ).

By Claim 3.3, setting ε = ε(ℓ), there exists a family P of (1/ℓ, ε)-regular, bipartite graphs

P ij = P ij
aij

between pairs (Vi, Vj), where 1 ≤ i < j ≤ t, such that Hred (and, by complement, Hblue)

is (δ, r(t, ℓ))-regular with respect to all but at most 2δt3 triads P ijk = P ij ∪ P jk ∪ P ik. Setting
r = r(t, ℓ), we will more concisely call these triads (δ, r)-regular.

Note that if P ijk is a (δ, r)-regular triad then

(Hred, P
ijk) is a (dHred

(P ijk), δ, ℓ, r, ε)-complex

and
(Hblue, P

ijk) is a (dHblue
(P ijk), δ, ℓ, r, ε)-complex.

Moreover, since

(5.2) dHred
(P ijk) + dHblue

(P ijk) = 1,

either dHred
(P ijk) ≥ 1/2 or dHblue

(P ijk) ≥ 1/2. (This is what we meant in Section 2.4 by a “well
structured” sub-hypergraph.)

5.2. Finding a monochromatic pseudo-path in K. We construct the cluster hypergraph K
with the vertex set {1, . . . , t}, and the edge set consisting of all triples {i, j, k} such that the triad
P ijk is (δ, r)-regular. Note that K contains at least

(

t

3

)

− 2δt3 > (1 − δ′′)

(

t

3

)

edges, where the inequality follows by (5.1a).

With the ultimate goal of finding a monochromatic cycle C
(3)
n , we first design a “big picture”

route (as a pseudo-path in K) that the monochromatic cycle will eventually follow.
To this end, define a red-blue coloring K = Kred∪Kblue of the cluster hypergraph K, by including

{i, j, k} ∈ Kred if

dHred
(P ijk) ≥ 1/2

and {i, j, k} ∈ Kblue otherwise. By (5.2), this coloring is well defined.
By Lemma 2.1 with η/2 in place of η, there exists in Kred, say, a connected matching M =

{h1, . . . , hs} of size s = t/(4 + η/2). Let Qi, i = 1, . . . , s − 1, be a shortest pseudo-path in Kred
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from hi to hi+1. Note that the edges of each Qi are all distinct, and thus the length ℓi of Qi satisfies
the bound ℓi ≤

(

t
3

)

, which is independent of n.
Given two pseudo-paths P and Q, where the last edge of P coincides with the first edge of Q,

P + Q stands for the concatenation of P and Q. The pseudo-path

Q = Q1 + · · · + Qs−1 = (e1, . . . , ep)

will serve as “a frame” for the long red cycle in Hred.

5.3. Creating a short monochromatic cycle in H. For every i = 1, . . . , p, let P i = P ei be the
triad corresponding to a cluster edge ei. Recall that all these triads are (δ, r)-regular. Let P i

0 ⊂ P i

be the subgraph of P i (of prohibited edges) given by Lemma 4.6 applied to the complex (Hred, P
i),

and, for i = 1, . . . , p − 1, set
Bi = (P i \ P i

0) ∩ (P i+1 \ P i+1
0 ).

Choose mutually distinct edges fi, gi ∈ Bi for 1 ≤ i ≤ p− 1. The bound on |P i
0| from Lemma 4.6

ensures that for sufficiently large n this is possible.
In the next step of our construction, applying repeatedly Claim 4.5, we create a short cycle C

in Hred of length divisible by 3. To this end, we connect by disjoint paths of length 10, 11, or 12,
f1 to f2 to f3 . . . to fp−1 to gp−1 and then, “backward”, gp−1 to gp−2 . . . to g1 to f1.

For the passages from fp−1 to gp−1 and from g1 to f1, we choose the triads P p and P 1, respectively,
while for all i = 1, . . . , p − 2, the paths from fi to fi+1 and from gi+1 to gi use the triad P i+1.

We have a choice of the direction around P 2 in which we connect f1 to f2, but then all other
directions are determined. For the types to be well defined (cf. Definition 4.1), we need to designate
one orientation around each triad as canonical. For convenience, we declare canonical the orientation
consistent with the direction in which our paths proceed.

Note that for each i = 1, . . . , p− 2, the paths from fi to fi+1 and from gi+1 to gi go in the same,
canonical by now, direction around P i+1. Hence,

(5.3) type(fi, fi+1) + type(gi+1, gi) = 1 + 2 = 0(mod 3).

Since also
type(g1, f1) = type(fp−1, gp−1) = 0(mod 3),

the obtained short cycle C has length divisible by 3.
To keep the paths disjoint, we apply Claim 4.5 with the set S collecting the vertices of the so far

constructed paths. Since |S| ≤ 12(2p) < n/ log n, the assumptions on the size of S in Claim 4.5 are
satisfied. For future reference, we denote by R1 the just created short path from g1 to f1, by Ri+1,
i = 1, . . . , p − 2, the paths from fi to fi+1, and by Rp the path from fp−1 to gp−1.

5.4. Creating a monochromatic cycle of length 3n. Preparing for the final step, let

I = {1, ℓ1, ℓ1 + ℓ2 − 1, . . . , p}.
Observe that |I| = s and that M = {h1, . . . , hs} = {ei : i ∈ I}.

To complete the proof, we replace the short paths Ri, i ∈ I, in C by disjoint, long paths with the
same endpairs as the Ri’s, which lie in the same triads (and thus, have the same length modulo 3
as the Ri’s), in such a way that the total length of the obtained cycle is 3n.

Specifically, let m′ be the length of C, minus the sum of the lengths of all paths Rj with j ∈ I.
Furthermore, for each i ∈ I, i 6= p, let

mi =

⌊

3n − m′

s

⌋

+ xi,

where xi = 0, 1, or 2, so that
mi − type(fi, fi+1) = 0(mod 3).

For each i ∈ I, i 6= 1, p, we apply Lemma 4.6 to the complex (Hred, P
i+1), with e = fi, f = fi+1,

S = V (C) \ (e ∪ f) (note that |S| = O(1)), and with m = mi. As a result, we obtain paths Ti
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from fi to fi+1 of length mi, i ∈ I, i 6= 1, p, and, similarly, a path T1 from f1 to g1 of length m1.
To achieve precisely the length 3n for the final cycle, we take a path Tp from fp−1 to gp−1 of length

mp = 3n −



m′ +
∑

i∈I\{p}

mi



 .

This is possible, because for large n

10 ≤ mp ≤ 3n

s
+ O(1) ≤ (1 − δ1/4)3

⌊

N

t

⌋

,

and Lemma 4.6 can again be applied. Since the edges of M are vertex-disjoint, the paths Ti do not
interfere with each other.

5.5. Adjustment to lengths 3n + 1 and 3n + 2. In order to prove the second part of Theo-
rem 1.1(b), we first choose the constants in the same way as in Section 5.1, then apply the hyper-
graph regularity lemma (Theorem 3.2) to the red-blue colored K(6+η)n = Hred ∪ Hblue, from which
we obtain the cluster hypergraph K.

Next, we color the edges of K with red and blue as in Section 5.2 and then use Lemma 2.2 to
find, say, in Kred a connected union of a matching M = {h1, . . . , hs} of size s = t/(6 + η/2) and a

copy D of C
(3)
4 or C

(3)
5 . Below we consider only the case when D = C

(3)
4 , leaving the other case to

the reader.
We use the approach from Section 5.3 to obtain a red copy of C

(3)
3n+1 [or C

(3)
3n+2]. Let, as before,

Qi, i = 1, . . . , s − 1, be a shortest red pseudo-path from hi to hi+1, and, in addition, let Qs be the
shortest red pseudo-path from hs to an edge of D. The pseudo-path

Q = Q1 + · · · + Qs = (e1, . . . , ep)

will now serve as a frame for the desired red cycle in Hred.
We define P i, P i

0, Bi and mutually distinct edges fi, gi ∈ Bi for 1 ≤ i ≤ p− 1 as before. Relying
on Claim 4.5, we construct first the short paths as before, except that now the path Rp from fp−1

to gp−1 has to be of length equal to 1 [or 2] modulo 3. To ensure this, we build Rp out of 4 pieces,
one in each triad constituting D, each piece connecting a pair of edges of type 1 [or 2].

More specifically, let V (D) = {a, b, c, d}, where ep = {a, b, c} and {a, b} ⊂ ep−1. Let us choose
disjoint, typical (that is, not belonging to respective prohibited subgraphs P xyz

0 ) edges from the
intersections of consecutive triads: fbc ∈ P abc ∩ P bcd, fcd ∈ P bcd ∩ P cda, and fda ∈ P cda ∩ P dab.

By Claim 4.5, going around each triad alphabetically, there are internally disjoint paths of length
10, connecting fp−1 to fbc to fcd to fda to gp−1. This settles the case i = 1. For i = 2, we build
paths of length 11, connecting fp−1 to fda to fcd to fbc to gp−1.

Finally, using Lemma 4.6, some s paths Ri, corresponding to the edges of M , are replaced by
long paths Ti, in exactly the same way as in Section 5.4. Of course, we now adjust the length of
the last path, so that the length of the resulting cycle is exactly 3n + 1 [or 3n + 2].

6. Matchings in components (idealized)

In this section we prove a version of Lemma 2.1 with η = δ = 0. There are two reasons for doing
this. Firstly, we exhibit here all essential ingredients of the real proof given in Section 8, not hidden
under the burden of tedious estimations. Secondly, the result we present here is interesting in its

own right, as dealing with a “connected” version of the classical Ramsey number r(M
(3)
s ) = 4s− 1.

It turns out that this Ramsey number is not affected by the additional restriction that the matching
must be contained in a monochromatic component. Interestingly, besides the extremal coloring of

K
(3)
4s−2 described in the proof of Theorem 1.1(a), which prevents any monochromatic matching of

size s, there is another one which contains monochromatic matchings of size s, but not externally
connected (see Example 1 in Section 2.2).
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Theorem 6.1. In every red-blue coloring of the complete 3-uniform hypergraph K
(3)
4s−1 = Kred ∪

Kblue, either Kred or Kblue contains an externally connected matching M
(3)
s .

The connectedness and components of a hypergraph H were defined in Section 2.2. Denote by
∂H the set of all pairs xy for which there exists z such that xyz ∈ H (∂H is usually referred to
as the shadow of H). We find it convenient to view ∂H as both a graph and a set of pairs of the
vertices of H. Observe that

(6.1) ∂H ′ ∩ ∂H ′′ = ∅ for any two distinct components H ′, H ′′ of H.

In particular, any two edges of the same color (say red), sharing two vertices must be in the same
red component.

Set t = 4s − 1, K = K
(3)
t , V = V (K), and consider an arbitrary red-blue coloring K = Kred ∪

Kblue. Our goal is to find M
(3)
s in some component of Kred or Kblue. We start our proof with two

observations.

Observation 6.2. For every x ∈ V there exists a monochromatic component C such that {xy : y ∈
V \ {x}} ⊆ ∂C.

Proof. Let Kred(x) := {yz : xyz ∈ Kred} and Kblue(x) := {yz : xyz ∈ Kblue}. Since every edge
of K is colored by only one color, Kblue(x) is the complement of Kred(x), and consequently, one
of these two graphs must be connected. Suppose that Kred(x) is connected. Then, for every two
vertices y, z ∈ V \ {x} there is a path y = x1, x2, . . . , xk = z in Kred(x) which corresponds to a red
pseudo-path e1, e2, . . . , ek−1, where ei = xxixi+1, i = 1, . . . , k − 1. This pseudo-path connects xy
with xz in Kred, and hence, there is a red component C such that xy, xz ∈ ∂C. �

For each x ∈ V let us choose arbitrarily one component satisfying the condition in Observation 6.2
and denote it by Cx. Let Vred = {x ∈ V : Cx is red} and Vblue = {x ∈ V : Cx is blue}. Note that
V = Vred ∪ Vblue and these two sets are disjoint.

Observation 6.3. If Vred 6= ∅ (Vblue 6= ∅, respectively), then there is a red component S (a blue
component A) such that Cx = S for every x ∈ Vred (Cx = A for every x ∈ Vblue).

Proof. This observation is trivial if |Vred| = 1. Suppose |Vred| ≥ 2 and let x, x′ ∈ Vred. Then
xx′ ∈ ∂Cx ∩ ∂Cx′ , and, by (6.1), we have Cx = Cx′ . �

Components A and S will play a special role, and we will refer to them as azure (A) and scarlet
(S).

The next two claims form a mechanism to build an externally connected matching in one color
given an externally connected matching of the same size in the other color (see Lemma 6.7). Clearly,
the colors in their statements can be interchanged.

Claim 6.4. Let X = {x, y, z, a, b, c, d} ⊂ V be a set of seven vertices. Suppose that xyz is an edge
of some red component Cred and ya, zb ∈ ∂Cblue for some blue component Cblue. Then at least one
of the following holds.

(1) X contains two disjoint edges of Cred,
(2) there is an edge e ⊂ X in Cblue such that |e ∩ {a, b, c}| = 1 and |e ∩ {x, y, z}| = 2,
(3) X contains two disjoint edges of Cblue.

Proof. Suppose that neither (1) nor (2) holds. Then both xya ∈ Cred and xzb ∈ Cred, and, conse-
quently, ya, zb ∈ ∂Cred. Thus, if zbc or yad were red, they would belong to Cred. Since xya ∈ Cred,
this implies that the edge zbc has to be blue, and thus zbc ∈ Cblue (because zb ∈ ∂Cblue). Similarly,
since xzb ∈ Cred, the edge yad has to be blue, and thus yad ∈ Cblue (because ya ∈ ∂Cblue), yielding
(3). �
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Claim 6.5. Let X = {u, v, w, x, y, z, a, b, c} ⊂ V be a set of nine vertices. Suppose that uvw and
xyz are edges of some red component Cred and ya, zb, vb, wc ∈ ∂Cblue for some blue component
Cblue. Then at least one of the following holds.

(1) X contains three disjoint edges of Cred,
(2) there is an edge e in Cblue such that |e ∩ {a, b, c}| = 1 and either |e ∩ {x, y, z}| = 2, or

|e ∩ {u, v, w}| = 2,
(3) there are two disjoint edges e1, e2 ∈ Cblue such that for i = 1, 2, the edge ei intersects each

of {x, y, z}, {u, v, w}, and {a, b, c} in one vertex.

Proof. If (2) does not hold, then the edges xzb, vwc, uwc and yza are all red (because ya, zb, wc ∈
∂Cblue), and thus in Cred (because xyz, uvw ∈ Cred). Consider the edges yua and xvb. If either of
them is red, then it has to be in Cred (because ya, xb ∈ ∂Cred), yielding (1), as xzb, vwc, and yua
are disjoint and in Cred, and so are uwc, yza and xvb. If both yua and xvb are blue, then they
belong to Cblue (because ya, vb ∈ ∂Cblue). Hence (3) holds. �

Remark 6.6. Note that for the proofs of Claims 6.4 and 6.5 it is not essential that K is a complete
hypergraph. In the case of Claim 6.4, we just need to assume that all triples of vertices within
X, intersecting simultaneously {x, y, z} and {a, b, c, d}, are edges of K. In the case of Claim 6.5,
all triples of vertices within X, having two vertices in {u, v, w, x, y, z} and one in {a, b, c}, must be
edges of K. This observation will be used in the full proof of Lemma 2.1 in Section 8.

Our last preliminary result relies heavily on the two previous claims. Essentially, it says that
given a maximal matching in a red component, one can construct a matching in a blue component
of roughly the same size.

Lemma 6.7 (The Mirror Lemma). Let M be a largest matching in a red component Cred and let
P be a set of at least |M | + 3 vertices outside M . Assume further that for some blue component
Cblue and for every e ∈ M , the bipartite induced subgraph ∂Cblue[e, P ] of ∂Cblue contains K2,|P |−1.
Moreover, setting G = ∂Cblue[V (M), P ], let J be an arbitrary, non-empty subset of P such that

J ⊇
{

v ∈ P : degG(v) < |V (M)|
}

.

Then there exists a matching M ′ ⊂ Cblue such that either

(i) |M ′| = |M |,
(ii) |V (M ′) ∩ P | ≤ |M |, and

(iii) (P \ V (M ′)) ∩ J 6= ∅,
or

(iv) |M ′| = |M | + 1, and
(v) |V (M ′) ∩ P | ≤ |M | + 3.

Proof. Let M ′′ ⊂ Cblue be a largest matching such that

(6.2)
• |V (M ′′) ∩ P | ≤ |M ′′|,
• V (M ′′) intersects at most |M ′′| edges of M ,
• (P \ V (M ′′)) ∩ J 6= ∅.

We claim that |M ′′| ≥ |M | − 1. Indeed, suppose |M ′′| ≤ |M | − 2. It follows that there exist
e1, e2 ∈ M so that (e1 ∪ e2) ∩ V (M ′′) = ∅. Set P ′′ = P \ V (M ′′). Since

|P ′′| = |P | − |P ∩ V (M ′′)| ≥ |M | + 3 − (|M | − 2) = 5,

one can choose a, b, c ∈ P ′′ so that ∂Cblue[ei, {a, b, c}] ⊃ K2,3 for i = 1, 2, and (P ′′ \{a, b, c})∩J 6= ∅.
This is always possible, because at most one vertex of P can be excluded for each e1 and e2, and
these excluded vertices have to belong to J . (If no vertex is excluded then we can simply choose a,
b, and c so that a vertex of J remains in P ′′ \ {a, b, c}.)
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Claim 6.5, applied to X = e1 ∪ e2 ∪ {a, b, c}, implies that we can either enlarge M in Cred (if
(1) of Claim 6.5 occurs) or M ′′ in Cblue with conditions (6.2) preserved (if (2) or (3) of Claim 6.5
occurs), yielding a contradiction with the choice of M or M ′′, respectively.

Hence |M ′′| ≥ |M | − 1. If |M ′′| ≥ |M |, we are done. Otherwise, let xyz ∈ M be such that
{x, y, z} ∩ V (M ′′) = ∅. Since

|P ′′| ≥ |M | + 3 − (|M | − 1) = 4,

one can choose a, b, c ∈ P ′′ so that ∂Cblue[e, {a, b, c}] ⊃ K2,3 and (P ′′ \ {a, b, c}) ∩ J 6= ∅. We apply
Claim 6.4 to the set X = {x, y, z, a, b, c, d}, where d ∈ P ′′ \ {a, b, c} is arbitrary. By the maximality
of M in Cred, (1) cannot hold. If (2) holds, we enlarge M ′′ by adding the edge e, obtaining a
matching M ′ satisfying conditions (i), (ii), and (iii). If conclusion (3) holds, we enlarge M ′′ by
adding two disjoint edges, obtaining a matching M ′ satisfying conditions (iv) and (v). �

Proof of Theorem 6.1. Let M be a largest matching among all matchings contained in S or A.
Without loss of generality we assume that ∅ 6= M ⊂ S. This implies that Vred 6= ∅, but Vblue might
be empty. Suppose that

(6.3) 1 ≤ m = |M | ≤ s − 1

and set

(6.4) R = Vred \ V (M) and B = Vblue \ V (M).

Note that R ∩ B = ∅,

(6.5) t = 4s − 1 = 3m + |R ∪ B|,

and consequently, using also (6.3),

(6.6) |R ∪ B| = 4s − 1 − 3m ≥ s + 2 ≥ m + 3 ≥ 4.

Observation 6.8. All edges in R ∪ B with at least one vertex in R are blue, and therefore in the
same blue component Cblue. Furthermore, if B 6= ∅, then Cblue = A.

Proof. Note that any red edge with at least one vertex in R is in the scarlet component S and, if
disjoint from V (M), could be used to enlarge M . Hence, all edges from the set T = {e ⊂ R ∪ B :
e∩R 6= ∅} must be blue. Moreover, every pair of edges from T is connected by a pseudo-path in T ,
and thus, they all belong to the same blue component. The second part follows because any blue
edge containing a vertex from Vblue also contains a pair from A (see Observation 6.3). �

For the rest of the proof we distinguish three cases. In each of them, the Mirror Lemma plays a
central role. However, we need its technical conclusion (iii) only in the third case.
Case 1: B = ∅

In this case, R ∪ V (M) = V and thus |R| = t − 3m ≥ m + 3 ≥ 4. Denote by Cblue the blue
component guaranteed by Observation 6.8.

Observation 6.9. For every edge e ∈ M , the bipartite induced subgraph ∂Cblue[e, R] of ∂Cblue

contains K2,|R|−1 as a subgraph.

Proof. Suppose there is an edge xyz ∈ M and two vertices a, b ∈ R such that xa and yb 6∈ ∂Cblue.
Let c, d ∈ R \ {a, b} (recall that |R| ≥ 4). Note that, by Observation 6.8, ac, bd ∈ ∂Cblue, and thus
edges xac and ybd must be red.

Since ax, by ∈ ∂S, we have that xac, ybd ∈ S. Consequently, (M \ {xyz}) ∪ {xac, ybd} is a red
matching in S larger than M – a contradiction. �
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Now we apply Lemma 6.7 with P = R (recall that |R| ≥ m+3), obtaining a matching M ′ ⊂ Cblue

either of size m and with |V (M ′) ∩ R| ≤ m, or of size m + 1 and with |V (M ′) ∩ R| ≤ m + 3. Note
that by (6.3)

|R \ V (M ′)| ≥
{

4s − 1 − 3m − m ≥ 3(s − m) in the former case,

4s − 1 − 3m − (m + 3) ≥ 3(s − m − 1) in the latter case.

This allows us in either case to enlarge M ′ to size s. Indeed, since all edges contained in R are
in Cblue (cf. Observation 6.8), we can greedily find s − m or s − m − 1, respectively, disjoint edges
from Cblue and add them to M ′.
Case 2: R = ∅

In this case, B ∪ V (M) = V and thus |B| = t − 3m ≥ m + 3 ≥ 4. Since B 6= ∅, the azure
component component A exists. Furthermore, by the definition of Vblue and (6.4), we know that
for every e ∈ M the graph ∂A[e, B] is the complete bipartite graph. Thus, by the Mirror Lemma
applied with P = B, we obtain a matching M ′ ⊂ A of size |M ′| = m and such that |V (M ′)∩B| ≤ m.
(A matching of size m + 1 in the azure component A is impossible by our choice of M .)

Note that |B \ V (M ′)| ≥ 4s − 1 − 3m − m ≥ 3. We claim that R′ := Vred \ V (M ′) = ∅.
Indeed, suppose that R′ 6= ∅. Take any three vertices a, b, c ∈ B \ V (M ′) and d ∈ R′ (observe that
d 6∈ B \V (M ′) because R′ ⊂ Vred in this case). Since ab ∈ ∂A (because a ∈ Vblue), both abc and abd
are red (otherwise we could enlarge M ′ to size m + 1). But ad ∈ ∂S (because d ∈ Vred), therefore
abd ∈ S and, consequently, abc ∈ S. Since {a, b, c} ∩ V (M) = ∅, we can enlarge M , which is a
contradiction.

Thus R′ = ∅ and we are back in Case 1 with the colors red and blue interchanged and M replaced
by M ′.
Case 3: |B|, |R| ≥ 1

Set P = R ∪ B and note that, by (6.6), we have |P | ≥ m + 3. Since B 6= ∅, the blue component
guaranteed by Observation 6.8 is Cblue = A. In particular, for all pairs of vertices a, b ∈ P we have
ab ∈ ∂A.

Observation 6.10. For every e ∈ M , the bipartite induced subgraph ∂A[e, P ] of ∂A contains
K2,|P |−1 as a subgraph.

Proof. The proof follows the lines of the proof of Observation 6.9. Suppose there is an edge xyz ∈ M
and two vertices a, b ∈ P such that xa, yb 6∈ ∂A. Note that, in fact, a, b ∈ R because ∂A[e, B] is
the complete bipartite graph. Recall that |P | ≥ 4 by (6.6), and choose arbitrarily c, d ∈ P \ {a, b}.
Since ac, bd ∈ ∂A, edges xac and ybd must be red.

On the other hand, by the definition of Vred, we also have ax, by ∈ ∂S, so xac, ybd ∈ S. Hence,
(M \ {xyz}) ∪ {xac, ybd} is a red matching in S larger than M – a contradiction. �

We apply the Mirror Lemma with Cred = S, Cblue = A, P = R ∪ B, and J = R. Let M ′ be a
matching in A satisfying conclusions (i)-(iii) (again, option (iv)-(v) is excluded by the choice of M).
We have

|P \ V (M ′)| ≥ 4s − 1 − 3m − m ≥ 3.

By conclusion (iii), we can choose a, b, c ∈ P \ V (M ′) so that c ∈ R. Hence, the pair ac ∈ ∂A ∩ ∂S,
and consequently, abc ∈ S if it is red and abc ∈ A if it is blue. Also {a, b, c} is disjoint from both
V (M) and V (M ′). Thus, either we obtain a matching of size |M | + 1 in S, or a matching of size
|M ′| + 1 = |M | + 1 in A, contradicting the maximality of M among all matchings contained in S
or A. �

7. Matchings and short cycles in components (idealized)

In this section we prove a version of Lemma 2.2 with δ = 0, and with the term ηs replaced by
Ω(

√
s). The main reason for doing this is, similarly to the previous section, to show the ideas of
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the proof clearly and without tiring calculations. A complete proof of Lemma 2.2 is not included
in this paper, but can be found in the Appendix.

Theorem 7.1. There exists c0 such that the following holds. Let s ≥ c2
0 and let K be the complete 3-

uniform hypergraph with t ≥ 6s+c0
√

s vertices. Then, for every red-blue coloring K = Kred∪Kblue,

either Kred or Kblue contains an externally connected union of a matching M
(3)
s and a cycle C

(3)
4

or C
(3)
5 .

Please note that the above theorem determines only the asymptotic value of the Ramsey number

for a connected union of a matching M
(3)
s of size s and a copy of C

(3)
4 or C

(3)
5 (we do not require

them to be disjoint). At this point we do not know whether the lower bound of 6s + 2i − 1 given
in Sections 2.1 and 2.3 is optimal.

Proof. Let c0 = 25
√

7, s ≥ c2
0, and let K be the complete 3-uniform hypergraph with t = 6s + c0

√
s

vertices. For simplicity, we assume that 6s + c0
√

s is an integer and note that t ≤ 7s. Suppose that
for an arbitrary red-blue coloring K = Kred ∪ Kblue

(7.1) no monochromatic component contains M (3)
s and C

(3)
4 or C

(3)
5 .

Recall that the sets Vred and Vblue, and the scarlet component S and the azure component A were
defined in Section 6. We distinguish two complementary cases, and in each of them we obtain a

contradiction to (7.1) or its consequence, (7.2) below. In each case we use the fact that r(C
(3)
4 ) = 13

(see [8]).

Case 1: |Vred|, |Vblue| ≥ s.

In this case we are able to prove Theorem 7.1 even with t = 6s − 1 and s ≥ 37. We first prove

that each of S and A contains a matching M
(3)
s .

Observation 7.2. M
(3)
s ⊂ A and M

(3)
s ⊂ S.

Proof. Partition the set of vertices V (K) := V into sets V ′, V ′
red, V ′

blue such that V ′
red ⊂ Vred,

|V ′
red| = s, V ′

blue ⊂ Vblue, |V ′
blue| = s, and V ′ = V \ (V ′

red ∪ V ′
blue).

Since |V ′| ≥ 6s−1−2s ≥ 4s−1, Theorem 6.1 applied to the induced red-blue coloring Kred[V ′]∪
Kblue[V

′] of K[V ′] implies that there exists a matching M = M
(3)
s in a component (say red) Cred

of Kred. (This is true because each component of any sub-hypergraph of Kred is contained in some
component of Kred.)

By (7.1) we know that C
(3)
4 6⊂ Cred. Consequently, for each edge xyz ∈ M and any vertex

a ∈ V ′
blue, at least one of the edges xya, xza, yza must be blue and also in A, since a ∈ V ′

blue. Thus,
using all s vertices of V ′

blue and s edges of M , we greedily find a matching of size s in A. Using

(7.1) again, we have C
(3)
4 6⊂ A. Replacing Cred with A, Vblue with V ′

red, A with S, and interchanging
colors red and blue in the argument above, we obtain a matching of size s in S. �

In view of Observation 7.2, it follows from (7.1) that

(7.2) C
(3)
4 6⊂ A and C

(3)
4 6⊂ S.

Observation 7.3. For every pair of vertices xy ∈
(

Vred
2

)

there exist at most twelve vertices z ∈ Vblue

such that xyz is blue (and therefore in A).

Proof. Suppose there is a pair xy ∈
(

Vred
2

)

and 13 vertices z1, . . . , z13 ∈ Vblue so that xyzi ∈ A for

i = 1, 2, . . . , 13. Since r(C
(3)
4 ) = 13, the sub-hypergraph induced in K by z1, . . . , z13 contains a

monochromatic copy C of C
(3)
4 .
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On the one hand, all pairs zizj are in ∂A, because zi, zj ∈ Vblue. Therefore, if C was blue then
C ⊂ A – a contradiction to (7.2). On the other hand, all edges xyz, where z ∈ V (C), are in A by our

assumption. In order to avoid a copy of C
(3)
4 in A, one of the edges xzz′, yzz′, where z, z′ ∈ V (C),

must be red. Since x, y ∈ Vred, such an edge is in S, and we have zz′ ∈ ∂S. Hence, if C was red,
then C ⊂ S – again a contradiction to (7.2). �

Observation 7.4. Every triple of vertices in Vred is blue and, consequently,
(

Vred
3

)

⊂ C ′
blue for some

blue component C ′
blue.

Proof. By Observation 7.3, for all x, y, z ∈ Vred, there are at most 3 × 12 vertices a ∈ Vblue so that
one of the edges xya, xza, yza is blue. Since |Vblue| ≥ s ≥ 37, we can select a vertex a ∈ Vblue so

that xya, xza, yza ∈ S. We must have xyz blue to avoid C
(3)
4 in S. �

We can clearly interchange colors red and blue in Observations 7.3 and 7.4 and obtain that
(

Vblue
3

)

⊂ C ′
red for some red component C ′

red. Since one of Vred, Vblue must contain at least ⌈t/2⌉ ≥
3s vertices, we find greedily both a copy of M

(3)
s and a copy of C

(3)
4 , in either C ′

red or C ′
blue,

contradicting (7.1). �

Case 2: |Vred| < s or |Vblue| < s.

By symmetry, we may assume that |Vred| < s and |Vblue| > 5s + c0
√

s. We first prove that the

azure component A contains a matching M
(3)
s whose vertex set is in Vblue. Again, this is true even

for t = 6s − 2.

Observation 7.5. There exists a matching MA = M
(3)
s ⊂ A with V (MA) ⊂ Vblue.

Proof. Let Vblue = V ′∪V ′′ be a partition of Vblue such that |V ′| = s. Since |V ′′| ≥ 6s−2−(s−1)−s ≥
4s − 1, Theorem 6.1 applied to the induced 2-coloring Kred[V ′′] ∪ Kblue[V

′′] of K[V ′′] implies that

there exists a matching M = M
(3)
s in a monochromatic component of K[V ′′] (which is contained in

some monochromatic component C in K).
If C is blue, then it must be A, because V ′′ is a subset of Vblue, and we are done. Hence assume

C = Cred is red. By (7.1), we have C
(3)
4 6⊂ Cred. To avoid C

(3)
4 in Cred, for each edge xyz ∈ M and

any vertex a ∈ V ′, at least one of the edges xya, xza, yza must be a blue edge, and, consequently,
also in A, because a ∈ V ′ ⊂ Vblue. Thus, using all s vertices a ∈ V ′ and s edges of M , we greedily
find a matching MA of size s in A. Clearly, V (MA) ⊂ V ′ ∪ V ′′ = Vblue. �

In view of Observation 7.5 and the assumption (7.1), we know that C
(3)
4 6⊂ A. We distinguish

two subcases. In the first one we assume that almost all pairs of vertices from Vblue are contained
in the shadows of at most two red components.

Subcase 2a. There exist two red components C1
red and C2

red such that

(7.3)

∣

∣

∣

∣

(

Vblue

2

)

\ (∂C1
red ∪ ∂C2

red)

∣

∣

∣

∣

< 6t.

We now prove a series of observations. Recall that by Observation 6.3 the scarlet component S
exists whenever Vred 6= ∅. We now show that in that case one of C1

red and C2
red equals S or can be

replaced by S.

Observation 7.6. If Vred 6= ∅, then there exists a red component Cred such that

(7.4)

∣

∣

∣

∣

(

Vblue

2

)

\ (∂Cred ∪ ∂S)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

V

2

)

\ (∂Cred ∪ ∂S)

∣

∣

∣

∣

< 24t.
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Proof. Note that
(

V
2

)

\
(

Vblue
2

)

⊂ ∂S. If |∂C1
red| ≤ 18t holds, then with Cred = C2

red we have
∣

∣

∣

∣

(

V

2

)

\ (∂Cred ∪ ∂S)

∣

∣

∣

∣

(7.3)
< 6t + |∂C1

red| ≤ 24t.

Hence, suppose that |∂C1
red| > 18t and |∂C2

red| > 18t. We claim that there exist vertices u, v, w ∈
Vblue such that uv ∈ ∂C1

red, uw ∈ ∂C2
red, and vw ∈ ∂C1

red ∪ ∂C2
red.

This follows from a simple graph-theoretic fact.

Fact 7.7. Let the edges of the complete graph Kn be partitioned into three sets E1, E2, E3 so that,
with ei = |Ei|, i = 1, 2, 3, we have min{e1, e2} > 3e3. Then there exists a triangle with at least one
edge in E1, at least one edge in E2 and no edge in E3.

Proof. Since the average degree in E3 is 2e3/n, there is a vertex u such that degE1
(u) + degE2

(u) ≥
n−1−2e3/n. If degE1

(u), degE2
(u) >

√
e3, then there is a non-E3 edge between the neighborhoods

NE1(u) and NE2(u), completing a desired triangle.
Suppose now that, say, degE1

(u) ≤ √
e3. If there is an edge xy ∈ E1 with x ∈ NE1(u) and

y ∈ NE2(u), then u, x, y is a triangle with the desired triangle. Otherwise, the number of edges
of E1 not contained in NE2(u) is at most

degE1
(u) +

(

degE1
(u)

2

)

+ degE3
(u) × n ≤ 1

2
(
√

e3 + e3) + 2e3 < 3e3 < e1.

Hence, there is an edge of E1 with both endpoints in NE2(u), yielding again a desired triangle. �

We apply Fact 7.7 to E1 := ∂C1
red, E2 := ∂C2

red and E3 :=
(

Vblue
2

)

\ (∂C1
red ∪ ∂C2

red) (note that the
assumptions hold).

Take any x ∈ Vred and vertices u, v, w ∈ Vblue such that uv ∈ ∂C1
red, uw ∈ ∂C2

red, and vw ∈
∂C1

red ∪ ∂C2
red. Since all three pairs of vertices contained in any red edge are in the shadow of the

same red component, uvw must be a blue edge and hence in A. To avoid a copy of C
(3)
4 in A, at

least one of the edges uvx, uwx, vwx must be a red edge, say uvx. Since uv ∈ ∂C1
red and xu ∈ ∂S,

we have C1
red = S and the proof is completed by setting Cred = C2

red and recalling (7.3). �

From now on we assume that

(7.5)

∣

∣

∣

∣

(

Vblue

2

)

\ (∂C1
red ∪ ∂C2

red)

∣

∣

∣

∣

< 24t,

and that C1
red = S, if S exists.

Observation 7.8. Every set X ⊂ Vblue with |X| ≥ 25
√

t contains a copy of C
(3)
4 in C1

red or C2
red.

Proof. Let X ⊂ Vblue with |X| ≥ 25
√

t be given. Note that by (7.5)
∣

∣

∣

∣

(∂C1
red ∪ ∂C2

red) ∩
(

X

2

)∣

∣

∣

∣

≥
(|X|

2

)

− 24t >
11

24
|X|2.

Thus, by the Turán Theorem, there is a complete graph K13 in ∂C1
red ∪∂C2

red. Let X0 be the vertex

set of one such K13. Since r(C
(3)
4 ) = 13, the set

(

X0

3

)

contains a monochromatic copy C of C
(3)
4 . It

cannot be blue because all pairs of vertices of X are in ∂A and so C would be in A. Hence, C must
be red and, thus, in C1

red or C2
red because

(

X0

2

)

⊂ ∂C1
red ∪ ∂C2

red. �

Now, we are ready to finish the proof of Theorem 7.1 in Subcase 2a. Recall that c0 = 25
√

7 and
t ≤ 7s. Suppose first that Vred = ∅. By Observation 7.8, every set of 25

√
t vertices in Vblue = V

contains a copy of C
(3)
4 in C1

red or C2
red. Hence, we can find greedily, by taking one edge from a copy

of C
(3)
4 and reusing the remaining vertex, a matching of size

(

t − 25
√

t
)

/3 ≥
(

6s + c0

√
s − 25

√
7s

)

/3 ≥ 2s
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in C1
red ∪ C2

red. Thus, there is an index i ∈ {1, 2} such that Ci
red contains M

(3)
s as well as a copy

of C
(3)
4 .

Assume now that Vred 6= ∅ and, thus, S exists and C1
red = S. We know (see Observation 7.5) that

A contains a matching MA, V (MA) ⊂ Vblue, of size s but no C
(3)
4 . As in the proof of Observation

7.2, for every vertex x ∈ Vred and each edge e ∈ MA, there exists a edge f ∈ S so that x ∈ f and
|e ∩ f | = 2. Hence, we can find a matching of size |Vred| < s in S that uses exactly 2|Vred| vertices
of Vblue. After this, we use the greedy procedure from the previous paragraph and find a matching
in S ∪ C2

red of size (|Vblue| − 2|Vred| − 25
√

t)/3. Combining these two matchings and the fact that
|Vblue| + |Vred| = |V | = t yields a matching in S ∪ C2

red of size

|Vred| +
(

|Vblue| − 2|Vred| − 25
√

t
)

/3 =
(

t − 25
√

7s
)

/3 ≥ 2s,

as before. Consequently, either S or C2
red contains M

(3)
s . Note that at least one edge of this matching

comes from a copy of C
(3)
4 in S or C2

red. Thus, in either case, we have M
(3)
s and C

(3)
4 in the same

red component.

Subcase 2b. Inequality (7.3) does not hold for any two red components C1
red and C2

red.

We will first show that in this case the red components can be grouped into three large sets. To
this end, we need the following simple fact. (We will only need part (b) now; part (a) will be used
twice in Section 8.)

Fact 7.9. For given numbers a1 ≥ a2 ≥ · · · ≥ ak ≥ 0, let N = a1 + · · · + ak.

(a) Let d ≥ 2N/3 and k ≥ 2. If a1 ≤ d, then there exists 1 ≤ ℓ0 ≤ k − 1 such that N − d ≤
ℓ0
∑

i=1
ai ≤ d.

(b) Let N ≥ 5r and k ≥ 3. If a1 + a2 ≤ N − 2r, then there exist 1 ≤ ℓ1 < ℓ2 ≤ k − 1 such that
ℓ1
∑

i=1
ai ≥ r,

ℓ2
∑

i=ℓ1+1

ai ≥ r, and
k
∑

i=ℓ2+1

ai ≥ r.

Proof. (a) Define ℓ0 = min
{

ℓ :
ℓ

∑

i=1
ai ≥ N − d

}

. If ℓ0 = 1 then we are done. Otherwise, aℓ0 ≤ a1 <

N − d, and so

N − d ≤
ℓ0

∑

i=1

ai ≤ (N − d) + aℓ0 < 2(N − d) ≤ d.

(b) If a1 ≥ a2 ≥ r, take ℓ1 = 1 and ℓ2 = 2. If a1 ≥ r but a2 < r, take ℓ1 = 1 and define

ℓ2 = min{ℓ :
ℓ

∑

i=2
ai ≥ r}. Then,

ℓ2
∑

i=1

ai = a1 +

ℓ2−1
∑

i=2

ai + aℓ2 < a1 + r + a2 ≤ N − r,

and so,
k
∑

i=ℓ2+1

ai ≥ r as well. Finally, if a2 ≤ a1 < r, define ℓ1 = min
{

ℓ :
ℓ

∑

i=1
ai ≥ r

}

and

ℓ2 = min
{

ℓ :
ℓ

∑

i=ℓ1+1

ai ≥ r
}

. Then

ℓ1
∑

i=1

ai ≤
ℓ1−1
∑

1

ai + a1 ≤ 2r



22 P.E. HAXELL ET AL.

and, similarly,
ℓ2
∑

i=ℓ1+1

ai ≤ 2r. Hence,

k
∑

i=ℓ2+1

ai ≥ N − 4r ≥ r.

�

Now we can prove the following consequence of negating (7.3).

Observation 7.10. There exists a partition
(

V
2

)

= F 1 ∪ F 2 ∪ F 3 such that

(i) F 1, F 2, F 3 are pairwise disjoint,
(ii) |F i[Vblue]| ≥ 3t for i = 1, 2, 3,

(iii) for every red component Cred there exists i ∈ {1, 2, 3} such that ∂Cred ⊂ F i.

Proof. The shadows of all red components, intersected by
(

Vblue
2

)

, form a partition of
(

Vblue
2

)

into
disjoint sets of pairs. (Each pair that is not in any red edge is in a partition class by itself.)
Let a1 ≥ a2 ≥ . . . be the sizes of these partition classes. If (7.3) does not hold for any two red

components then a1 + a2 ≤
(

|Vblue|
2

)

− 6t and, by Fact 7.9(b) with N =
(

|Vblue|
2

)

and r = 3t, the
ai’s can be grouped into three sums, each at least 3t. Let the corresponding three sets of pairs,
forming a partition of

(

Vblue
2

)

, be denoted by F̃ i, i = 1, 2, 3. Then the conclusion follows with F i’s

being arbitrary extensions of F̃ i’s such that for each red component Cred if ∂Cred∩
(

Vblue
2

)

⊂ F̃i then
∂Cred ⊂ Fi. �

For convenience, set F̃ i = F i[Vblue] and degi(v) = degF̃ i(v), i = 1, 2, 3, v ∈ Vblue.

Observation 7.11. For every vertex v ∈ Vblue there is an index i ∈ {1, 2, 3} so that degi(v) = 0.

Proof. Suppose that there is a vertex v ∈ Vblue such that degi(v) > 0 for all i = 1, 2, 3. Denote by

Ui the neighborhood of v in F̃ i and take any three vertices ui ∈ Ui, i = 1, 2, 3.
Since the pairs vu1, vu2, vu3 belong to the shadows of distinct red components, all edges vuiuj ,

1 ≤ i < j ≤ 3, are blue and thus in the azure component A (because v ∈ Vblue).

Consequently, since there is no C
(3)
4 in A, the edge u1u2u3 must be red. Thus, all pairs of vertices

ui ∈ Ui and uj ∈ Uj , i 6= j, are in the shadow of the same red component. Without loss of generality

we may assume that uiuj ∈ F̃ 1.
Take any three vertices ui, u′

i, uj , such that ui, u
′
i ∈ Ui and uj ∈ Uj . Since the edges vuiuj and

vu′
iuj are both in A and C

(3)
4 6⊂ A, either vuiu

′
i is red or uiu

′
iuj is red. In the first case, uiu

′
i ∈ F̃ i,

while in the second case uiu
′
i ∈ F̃ 1.

From this it follows that all pairs of F̃ i are contained in {v} ∪ Ui, i = 2, 3. Since |F̃ i| ≥ 3t >

degi(v), there exist vertices ui, u
′
i ∈ Ui so that uiu

′
i ∈ F̃ i, i = 2, 3.

If all four edges induced by {u2, u
′
2, u3, u

′
3} ⊂ Vblue were blue, we would have C

(3)
4 in A – a

contradiction. Hence, at least one of them is red, say u2u
′
2u3. Since u2u3 ∈ F̃ 1, we have u2u

′
2 ∈ F̃ 1.

But then u2u
′
2 ∈ F̃ 1 ∩ F̃ 2 – a contradiction with Observation 7.10(i). �

For 1 ≤ i < j ≤ 3, let Wij = {v ∈ Vblue : degi(v) > 0, degj(v) > 0}. Next, we prove that
W12, W13, and W23 have each at least two vertices.

Observation 7.12. |Wij | ≥ 2 for 1 ≤ i < j ≤ 3.

Proof. By symmetry, we can restrict ourselves to the case i = 1 and j = 2. Since |F̃ i| > 3t, i = 1, 2,

there is a matching Mi of size four in |F̃ i|. Let u1u
′
1 ∈ M1 and u2u

′
2 ∈ M2 be vertex disjoint. Since

the copy of C
(3)
4 induced by {u1, u

′
1, u2, u

′
2} cannot be blue, at least one of its edges must be red.

However then at least one pair from u1u2, u1u
′
2, u′

1u2, u′
1u

′
2 is in F̃ 1 or F̃ 2. This implies that at least

one of these vertices is adjacent to an edge of F̃ 1 and an edge of F̃ 2 and, thus, belongs to W12. Now
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we remove that vertex and find another pair of disjoint edges, one from M1, the other from M2.
Repeating the above reasoning, we obtain another vertex in W12, completing the proof. �

Let w12, w
′
12 ∈ W12, w13, w

′
13 ∈ W13, w23, w

′
23 ∈ W23. Clearly, by Observation 7.11 for all

1 ≤ i < j ≤ 3 and 1 ≤ i′ < j′ ≤ 3, {i, j} 6= {i′, j′}, the pairs wijwi′j′ , w′
ijwi′j′ , wijw

′
i′j′ , w′

ijw
′
i′j′ are

from F ℓ, where ℓ = {i, j} ∩ {i′, j′}.
We show now that the sub-hypergraph H induced in K by vertices w12, w′

12, w13, w′
13, w23,

w′
23 ∈ Vblue contains a copy of C

(3)
5 in the azure component A.

Since F 1 ∩ F 2 = ∅, we may assume that the pair w12w
′
12 is not contained in F 1. Also, at least

one edge of the sub-hypergraph of K induced by vertices w12, w
′
12, w13, w

′
13 must be red (or we have

C
(3)
4 in the azure component).
Edges w12w

′
12w13 and w12w

′
12w

′
13 must be blue because w12w13, w12w

′
13 ∈ F 1 and w12w

′
12 does

not belong to F 1. Hence, either w12w13w
′
13 or w′

12w13w
′
13 is red, and the pair w13w

′
13 must lie in F 1

(and, consequently, not in F 3). Using the same argument we infer that w23w
′
23 belongs to F 3 and

w12w
′
12 to F 2.

Observe now that all edges of the form v12v13v23, where vij ∈ {wij , w
′
ij}, are blue because the

pairs contained in them belong to different F i’s and the shadow of every component is contained in
a unique F i. Moreover, the edges w12w

′
12w13, w12w

′
12w

′
13, w13w

′
13w23, w13w

′
13w

′
23, w23w

′
23w12, and

w23w
′
23w

′
12 must be blue as well because, again, all the pairs contained in any red edge belong to

the shadow of the same red component (and to a unique F i), which is not the case here.
Therefore, all edges w12w23w13, w23w13w

′
13, w13w

′
13w

′
23, w′

13w
′
23w12, and w′

23w12w23 of the cycle

C
(3)
5 on vertices w12, w23, w13, w

′
13, w

′
23 are colored blue and belong to the azure component. �

8. Matchings in components (the real thing)

In this section we prove Lemma 2.1. Since the hypergraph K appearing in Lemma 2.1 is almost
complete, we will be guided by the proof of Theorem 6.1 presented in Section 6. However, it will
be convenient to replace K with a large sub-hypergraph K1 with a more regular structure. Its
existence is guaranteed by the following simple lemma.

For a vertex x in a hypergraph H, let NH(x) = {y : xy ∈ ∂H}. For two vertices x, y, let
NH(x, y) = {z : xyz ∈ H}. Note that if y ∈ NH(x) (equivalently, x ∈ NH(y)), then NH(x, y) 6= ∅.
We call all such pairs xy of vertices active. Thus, the active pairs in H are exactly those pairs of
vertices which belong to the shadow ∂H of H.

Lemma 8.1. Fix δ > 0 and set δ1 = 10δ1/6. Let K be a 3-uniform hypergraph with t vertices and
at least (1−δ)

(

t
3

)

edges. Then K contains a sub-hypergraph K1 with t1 ≥ (1−δ1)t vertices such that
every vertex x of K1 is in an active pair and for all active pairs xy we have |NK1(x, y)| ≥ (1−δ1)t1.

A (fairly standard) proof of Lemma 8.1 can be found in [5] (see Lemma 4.1 therein).

Proof of Lemma 2.1. We may assume that η < 1. Given 0 < η < 1, define δ = η610−24. For
any hypergraph K on t = (4 + η)s vertices and with at least (1 − δ)

(

t
3

)

edges, let K1 be the sub-

hypergraph of K satisfying the conclusions of Lemma 8.1 with δ1 = 10δ1/6 = η/1000. In particular,
using the bound t < 5s, we get

t1 = |V (K1)| ≥ (1 − δ1)t ≥ t − 5δ1s = t − (η/200)s > (4 + η/2)s.

Since every monochromatic component of K1 is contained in a monochromatic component of K, it
is enough to show the conclusion of Lemma 2.1 for K1. For the clarity of our presentation we will
reset K := K1, δ := δ1 and η := 2η. Equivalently, we will assume that K has t = (4 + η)s vertices,
0 < η < 1/2, every vertex x of K is in an active pair, and for all active pairs xy

(8.1) |NK(x, y)| ≥ (1 − δ)t,
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where δ = η/500.
Since every x is in an active pair, it follows from (8.1) that for all x ∈ V (K),

(8.2) |NK(x)| = |{y : xy ∈ ∂K}| ≥ (1 − δ)t + 1.

Let V = V (K) and fix a coloring K = Kred ∪ Kblue. Our ultimate goal is to show that either

in Kred or in Kblue there is an externally connected matching M
(3)
s . We begin with some preliminary

results. Our first observation establishes for every x ∈ V the existence of a dominant monochromatic
component Cx the shadow of which contains most pairs of vertices xy. (For the complete hypergraph
K this was done in Observation 6.2.)

Observation 8.2. For every vertex x ∈ V there exists a monochromatic component Cx such that

(8.3)
∣

∣{y ∈ V : xy ∈ ∂Cx}
∣

∣ ≥ (1 − δ)t.

The observation will follow from a simple graph theoretic result.

Fact 8.3. Let G be a graph with n vertices and minimum degree d. If n > d ≥ 3n/4, then for every
red-blue coloring of the edges of G there is a monochromatic component with at least d + 1 vertices.

Proof. Let G = Gred∪Gblue be a red-blue coloring of the edges of G. Suppose that no component of
Gred has more than d vertices. Then, by Fact 7.9(a) in Section 7 there is a partition V (G) = V1∪V2,
where

n − d ≤ |V1| ≤
n

2
≤ |V2| ≤ d and EGred

(V1, V2) = ∅.
Observe that in Gblue every vertex of V2 has a neighbor in V1 and every vertex of V1 has more than
|V2|/2 neighbors in V2. Thus, the graph Gblue is connected, and so there is a blue component on all
n ≥ d + 1 vertices. �

Proof of Observation 8.2. Note that δ < 1/4 and that, by (8.1), for every vertex x ∈ V the graph
K(x) = {yz : xyz ∈ K} has minimum degree at least (1 − δ)t ≥ 3t/4 (and at most t vertices). The
coloring K = Kred∪Kblue induces a coloring K(x) = Kred(x)∪Kblue(x) which, by Fact 8.3, contains
a monochromatic component with at least (1−δ)t vertices. Consequently, there is a monochromatic
component C in K such that ∂C contains at least (1 − δ)t pairs xy. �

For each x ∈ V let us choose arbitrarily one component satisfying the condition in Observation 8.2
and denote it by Cx. Let

Vred = {x ∈ V : Cx is red} and Vblue = {x ∈ V : Cx is blue}.
Observation 8.2 tells us that V = Vred ∪Vblue and this union is disjoint by the definition of Vred and
Vblue.

Our next result says that for most x ∈ Vred, as well as for most x ∈ Vblue, the components Cx are
the same. (For the complete hypergraph K this is Observation 6.3.)

Observation 8.4. If |Vred| ≥ 6δt (|Vblue| ≥ 6δt, respectively) then there is a red component Cred

(a blue component Cblue) so that Cx = Cred (Cx = Cblue) for all but at most 2δt vertices x ∈ Vred

(x ∈ Vblue).

Proof. Consider a graph G defined on Vred by putting an edge between x and y whenever xy ∈
∂Cx ∩ ∂Cy (note that by (6.1) this means that Cx = Cy). By Observation 8.2 every vertex “spoils”
at most δt edges, and thus |E(G)| ≥

(

v
2

)

− vδt, where v = |Vred|. Our goal is to show that G has
a component of order at least v − 2δt. Suppose this is not true. Then, by Fact 7.9(a) in Section 7
with d = v − 2δt, there is a partition Vred = V1 ∪ V2 with

2δt ≤ |V1|, |V2| ≤ v − 2δt and EG(V1, V2) = ∅,
which yields at least 2δt(v − 2δt) > vδt edges in the complement of G – a contradiction. �
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If |Vred| ≥ 6δt, we define the scarlet component S as the (unique) red component Cred guaranteed
by Observation 8.4 and set

V ′
red = {x ∈ Vred : Cx = S}.

Then
|V ′

red| ≥ |Vred| − 2δt ≥ 4δt.

If |Vred| < 6δt then e say that the scarlet component does not exist and V ′
red = ∅. Similarly, when

|Vblue| ≥ 6δt, we define the azure component A and the set

V ′
blue = {x ∈ Vblue : Cx = A}.

Then
|V ′

blue| ≥ |Vblue| − 2δt ≥ 4δt,

and V ′
blue = ∅ if |Vblue| < 6δt. We also set

V ′ = V ′
red ∪ V ′

blue.

Since δ < 1/12,

(8.4) |V ′| = |V ′
red| + |V ′

blue| ≥ t − 8δt.

For each x ∈ V ′
red, set

∂S(x) =
∣

∣{y ∈ V : xy ∈ ∂S}
∣

∣,

and for each x ∈ V ′
blue, set

∂A(x) =
∣

∣{y ∈ V : xy ∈ ∂A}
∣

∣.

By Observation 8.2 and the definitions of S and A we have

(8.5) |∂S(x)|, |∂A(x)| ≥ (1 − δ)t.

Our last preliminary result is the Mirror Lemma (cf. Lemma 6.7) adjusted to non-complete
hypergraphs.

Lemma 8.5 (The Blurred Mirror Lemma). Let M be a largest matching in a red component Cred

and let P ⊂ V , where P ∩ V (M) = ∅ and |P | ≥ |M | + 30δt. Assume further that for some blue
component Cblue and for every e ∈ M , the bipartite induced subgraph ∂Cblue[e, P ] of ∂Cblue contains
K2,|P |−9δt−1. Then there exists a matching M ′ ⊂ Cblue such that

(i) |M ′| ≥ |M | and
(ii) |V (M ′) ∩ P | ≤ |M | + 4δt.

Proof. Let M ′′ ⊂ Cblue be a largest matching such that

(8.6)
• |V (M ′′) ∩ P | ≤ |M ′′| and
• V (M ′′) intersects at most |M ′′| edges of M .

We first claim that |M ′′| ≥ |M | − 4δt. Indeed, suppose |M ′′| ≤ |M | − 4δt. We will show that
there exist e1, e2 ∈ M and a, b, c ∈ P ′′ := P \ V (M ′′) such that (e1 ∪ e2) ∩ V (M ′′) = ∅ and the set
X = e1 ∪ e2 ∪ {a, b, c} satisfies the assumptions of Claim 6.5 (see Remark 6.6).

From the second part of (8.6) and our supposed bound on |M ′′|, it follows that there exist at
least 4δt edges of M disjoint from V (M ′′). Let e1 = uvw ∈ M be any such edge. Below we suppress
the dependence on K and write N(x) for the neighborhood of x in the shadow of K, and N(x, y)
for the neighborhood of x, y in K. By (8.2),

∣

∣V \ (N(u) ∩ N(v) ∩ N(w))
∣

∣ ≤ 3t − |N(u)| − |N(v)| − |N(w)| ≤ 3δt

and so, there exists e2 = xyz ∈ M such that e2 ∩ V (M ′′) = ∅ and every pair of vertices p, q ∈
e1 ∪ e2 = {u, v, w, x, y, z} is active.

By the first part of (8.6) and our bounds on |P | and |M ′′|, we have

|P ′′| = |P | − |P ∩ V (M ′′)| ≥ |M | + 30δt − (|M | − 4δt) = 34δt.
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Among the vertices of P ′′ at most 18δt+2 do not belong to the bipartite cliques K2,|P |−9δt−1 between
ei, i = 1, 2, and P , guaranteed by the assumptions. Also, by (8.1),

∣

∣

∣

∣

∣

P ′′ \
⋂

p,q

N(p, q)

∣

∣

∣

∣

∣

≤
(

6

2

)

δt = 15δt,

where the intersection is taken over all pairs of vertices p, q ∈ e1∪e2. Since (34−18−15)δt−2 ≥ 3,
one can choose a, b, c ∈ P ′′ so that

(a) ∂Cblue[ei, {a, b, c}] ⊃ K2,3 for i = 1, 2, and
(b) all triples of vertices having two vertices in {u, v, w, x, y, z} and one in {a, b, c} are edges

of K.

Thus, we can apply Claim 6.5 (see Remark 6.6) to the set X = e1∪e2∪{a, b, c}. But then we can
either enlarge M in Cred (if (1) of Claim 6.5 occurs) or M ′′ in Cblue with conditions (8.6) preserved
(if (2) or (3) of Claim 6.5 occurs), yielding a contradiction with the choice of M or M ′′, respectively.

Hence |M ′′| ≥ |M | − 4δt. If |M ′′| ≥ |M |, we are done. Otherwise, we repeat the following
procedure which keeps enlarging M ′′ by increments of two until its size reaches |M | (for convenience,
we assume that |M | − |M ′′| is even). Let the current matching be denoted by M ′, |M ′| < |M |. It
is important that in each step we will

• not delete any edge of M ′, that is, M ′′ ⊆ M ′,
• add to V (M ′) at most four vertices of P , and
• maintain the second part of (8.6).

Since there are (|M | − |M ′′|)/2 steps, for the final M ′ we have

|V (M ′) ∩ P | ≤ |M ′′| + 2(|M | − |M ′′|) = |M | + (|M | − |M ′′|) ≤ |M | + 4δt,

so (ii) holds. Now we describe a single step of the procedure. Let e = xyz ∈ M be such that
e ∩ V (M ′) = ∅. Denote by P0 the set of at most 9δt + 1 vertices of P which do not belong to the
bipartite clique K2,|P |−9δt−1 between e and P , guaranteed by the assumptions.

Set P ′ = P \ (V (M ′) ∪ P0). Similarly to the above,

|P ′| ≥ |M | + 30δt − (|M | + 4δt) − |P0| ≥ 16δt.

Set N1 = P ′ ∩ N(x, y) ∩ N(x, z) ∩ N(y, z). By (8.1), |N1| > (16 − 3)δt = 13δt. Let a ∈ N1 and set
N2 = N1 ∩ N(a, x) ∩ N(a, y) ∩ N(a, z). We have, again by (8.1), |N2| > 10δt. Similarly, for every
b ∈ N2 and every c ∈ N3 = N2 ∩ N(b, x) ∩ N(b, y) ∩ N(b, z), we have

|N3 ∩ N(c, x) ∩ N(c, y) ∩ N(c, z)| > 4δt ≥ 1.

Thus, one can choose a, b, c, d ∈ P ′ so that

(a) ∂Cblue[e, {a, b, c}] ⊃ K2,3

(b) all triples of vertices within {x, y, z, a, b, c, d} intersecting simultaneously {x, y, z} and {a, b, c, d}
are edges of K.

We apply Claim 6.4 (see Remark 6.6) to the set X = e ∪ {a, b, c, d}. By the maximality of M
in Cred and the maximality of M ′′ with respect to (8.6) in Cblue (note that V (M ′′) ∩ X = ∅),
conclusions (1) and (2) of Claim 6.4 cannot hold. Thus, (3) holds, which allows us to enlarge M ′

by adding the edges e1 and e2 guaranteed by Claim 6.4(3). Note that, indeed, in a single step we
have used four vertices of P and one edge of M . �

We are now ready to complete the proof of Lemma 2.1. Since δ < 1/12, in view of Observation
8.4, either the scarlet component S or the azure component A (or both) does exist.

Let M be a matching of maximum size in K among all matchings that lie in S or A. Without
loss of generality we assume that ∅ 6= M ⊂ S. This implies that |V ′

red| ≥ 4δt, but V ′
blue might be

empty, that is, the azure component A might not exist. Suppose that

1 ≤ m = |M | ≤ s − 1



THE RAMSEY NUMBER FOR HYPERGRAPH CYCLES II. 27

and set

R = V ′
red \ V (M) and B = V ′

blue \ V (M).(8.7)

According to this definition, if B 6= ∅, then V ′
blue 6= ∅, and consequently, the azure component A

does exist. Note that R ∩ B = ∅ and

(8.8) t = (4 + η)s = 3m + |R ∪ B| + |V \ V ′|,
and, using m < s and (8.4),

(8.9) |R ∪ B| ≥ (4 + η)s − 3m − |V \ V ′| ≥ (1 + η)s − 8δt.

Observe that by (8.9) and our choice of δ, whenever one of the sets R or B has size at most 5δt
then the other one has size at least

(1 + η)s − 13δt ≥ m + 30δt.

We first show the following variant of Observation 6.8.

Observation 8.6. If |R| ≥ 2δt, then all edges xyz ∈ K[R ∪ B] with x ∈ R and xy ∈ ∂S belong to
the same blue component Cblue. Furthermore, if also |B| ≥ 2δt, then Cblue = A.

Proof. First note that any red edge xyz ∈ K[R ∪B] with xy ∈ ∂S would be in S and disjoint from
V (M), and thus it could be added to M , contradicting the maximality of M . Hence, every such
edge is blue. Let x, y, z ∈ R∪B and xy and xz be two pairs in ∂S. Since |B∪R| ≥ 2δt and the pairs
xy and xz are active, by (8.1) there is w ∈ R ∪ B such that xyw ∈ K and xzw ∈ K. Hence, both
edges are blue and in the same blue component. Now, by (8.5), the subgraph ∂S[R] has minimum
degree at least |R| − δt ≥ |R|/2 and, thus, it is connected. This implies that all pairs xy ∈ ∂S such
that x ∈ R and y ∈ R ∪ B are in the shadow of the same blue component Cblue.

To prove the second part, notice that if both |R|, |B| ≥ 2δt then, again by (8.5), the number of
edges of ∂S with one endpoint in R and the other in B is more than |R||B|/2, and the same is true
for the edges of ∂A. Hence, there is a pair x ∈ R and y ∈ B such that xy ∈ ∂S ∩ ∂A. It follows
that Cblue = A. �

For the rest of the proof of Lemma 2.1 we distinguish three cases analogous to the three cases
considered in the proof of Theorem 6.1.
Case 1: |B| ≤ 5δt

Denote by Cblue the blue component guaranteed by Observation 8.6.

Observation 8.7. For every edge e ∈ M , the bipartite induced subgraph ∂Cblue[e, R] of ∂Cblue

contains K2,|R|−3δt−1 as a subgraph.

Proof. Let e = xyz ∈ M . By (8.2), at least |R| − 3δt vertices a ∈ R are such that all three pairs xa,
ya and za are active. Let the set of such vertices be denoted by Re.

Suppose that ∂Cblue[e, Re] contains no copy of K2,|Re|−1. Then there exist two vertices a, b ∈ Re

such that, say, ya, zb 6∈ ∂Cblue. Since |R| ≥ 2δt + 5, by (8.5) and (8.1) there are c, d, u ∈ R \ {a, b}
such that ac, bd ∈ ∂S and yac, zbd, uac, ubd ∈ K. By Observation 8.6, uac, ubd ∈ Cblue and thus
ac, bd ∈ ∂Cblue. Hence, the edges yac and zbd must be red. Consequently, yac, zbd ∈ S and
(M \ {xyz}) ∪ {yac, zbd} is a matching in S larger than M – a contradiction. �

Now we apply Lemma 8.5 with Cred = S, Cblue and P = R (recall that |R| ≥ m+30δt), obtaining
a matching M ′ ⊂ Cblue of size |M ′| := m′ ≥ m and with |V (M ′) ∩ R| ≤ m + 4δt.

If m′ ≥ s, we are done. Otherwise, by (8.9) and (8.4), we have

|R \ V (M ′)| ≥ (4 + η)s − 3m − 13δt − (m + 4δt) ≥ 3(s − m′) + 3δt.

This allows us to enlarge M ′ to size s by adding blue edges contained in R \ V (M ′). Indeed, by
(8.1) and (8.5), we can greedily find s−m′ disjoint edges xyz ∈ K[R] with xy ∈ ∂S. Since all such
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edges belong to Cblue (cf. Observation 8.6), we can add them to M ′ obtaining a matching of size s
in a blue component.
Case 2: |R| ≤ 5δt

By our assumptions and (8.9), B 6= ∅ and thus the azure component A exists.

Observation 8.8. For every edge e ∈ M , the bipartite induced subgraph ∂A[e, B] of ∂A contains
K2,|B|−9δt−1 as a subgraph.

Proof. Fix an edge xyz ∈ M . By (8.1), at least |B| − 3δt vertices a ∈ B are such that all three
pairs xa, ya and za are active. Let the set of such vertices be denoted by Be. Call a vertex a ∈ Be

friendly to x if xa ∈ ∂S ∪ ∂A and let Bx be the subset of Be containing all unfriendly vertices to x.

Claim 8.9. |Bx| < 2δt

Proof. Suppose that |Bx| ≥ 2δt, recall that |V ′
red| ≥ 4δt (since S exists), and consider the bipartite

induced subgraphs GS and GA of ∂S and ∂A, respectively, with vertex set Bx ∪ V ′
red. Assume for

simplicity that |Bx| = 2δt and |V ′
red| = 4δt, taking subsets if necessary. Recalling that Bx ⊂ V ′

blue,
by (8.5), |GS | ≥ 4(δt)2 and |GA| ≥ 6(δt)2, and consequently, |GS ∩ GA| ≥ 2(δt)2. Let a ∈ Bx

have degree at least δt in GS ∩ GA. Then, by (8.1) and the definition of Be, one can find a vertex
u ∈ V ′

red such that xau ∈ K and au ∈ GS ∩ GA ⊂ ∂S ∩ ∂A, which contradicts the assumption that
a is unfriendly to x, no matter how xau is colored. �

Set B′
e = Be \ (Bx ∪By ∪Bz). It is sufficient to show that ∂A[e, B′

e] contains a copy of K2,|B′

e|−1.
Suppose it does not. Then there exist two vertices a, b ∈ B′

e such that, say, ya, zb 6∈ ∂A (and thus,
they must be in ∂S). Since |B| ≥ 2δt + 4, by (8.5) and (8.1), there are c, d,∈ B \ {a, b} such
that ac, bd ∈ ∂A and yac, zbd ∈ K. Hence, the edges yac and zbd must be red. Consequently,
yac, zbd ∈ S and (M \ {xyz}) ∪ {yac, zbd} is a matching in S larger than M – a contradiction. �

We apply Lemma 8.5 with Cred = S, Cblue = A and P = B (recall that |B| ≥ m + 30δt) and
obtain a matching M ′ ⊂ A of size |M ′| = m and |V (M ′) ∩ B| ≤ m + 4δt. (A matching larger than
m in the azure component A is impossible by our choice of M .)

We claim that R′ := V ′
red \ V (M ′) = ∅. Indeed, suppose that d ∈ R′. Since

|B \ V (M ′)| ≥ s + 18δt − (m + 4δt) ≥ 14δt ≥ 2δt + 3,

by (8.5) and (8.1) we can find vertices a, b, c ∈ B \ V (M ′) such that ad ∈ ∂S, ab ∈ ∂A, and
abd, abc ∈ K. Then both abc and abd are red (or we can enlarge M ′). But ad ∈ ∂S, therefore
abd ∈ S and, consequently, abc ∈ S. Since {a, b, c} ∩ V (M) = ∅, we can enlarge M in S, which is a
contradiction.

Thus |R′| = 0 and we are back in Case 1 with the colors red and blue interchanged and M
replaced by M ′.
Case 3: |B|, |R| ≥ 5δt

Set P = R∪B. In this case not only the azure component A exists, but also the blue component
Cblue guaranteed by Lemma 8.6 is A.

Observation 8.10. For every edge e ∈ M , the bipartite induced subgraph ∂A[e, B] of ∂A contains
K2,|P |−9δt−1 as a subgraph.

Proof. The proof follows the lines of the proof of Observation 8.8. Fix an edge xyz ∈ M . By (8.2),
at least |P | − 3δt vertices a ∈ P are such that all three pairs xa, ya and za are active. Let the set
of such vertices be denoted by Pe.

Recall that a vertex a ∈ Pe∩B friendly to x if xa ∈ ∂S∪∂A and let Bx be the subset of unfriendly
vertices of Pe ∩ B. We have shown in Claim 8.9 that |Bx| ≤ 2δt. Set P ′

e = Pe \ (Bx ∪ By ∪ Bz)
and suppose that ∂A[e, P ′

e] contains no copy of K2,|P ′

e|−1. Thus, there exist two vertices a, b ∈ P ′
e

such that, say, ya, zb 6∈ ∂A. But then, combining arguments from the proofs of Observations 8.7
and 8.8 (each of a and b can be in R or B), one can show that there exist vertices c, d ∈ P such
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that yac, zbd ∈ S. Consequently, (M \ {xyz}) ∪ {yac, zbd} is a red matching in S larger than M –
a contradiction. �

We apply Lemma 8.5 with Cred = S, Cblue = A and P = (R∪B) \ {a, b} where a ∈ R, b ∈ B and
ab is an active pair. Let M ′ be a matching in A satisfying conclusions (i) and (ii) of Lemma 8.5.
By the maximality of M , we have |M ′| = m and, by (ii) and (8.9),

|P \ V (M ′)| ≥ s + 30δt − 8δt − (m + 4δt) ≥ 18δt.

By (8.1) and (8.5), we can choose c ∈ P \ V (M ′) so that ac ∈ ∂S, bc ∈ ∂A and abc ∈ K.
Consequently, abc ∈ S if it is red and abc ∈ A if it is blue. Also abc is disjoint from both V (M) and
V (M ′). Thus, either we obtain a matching of size m+1 in S, or a matching of size |M ′|+1 = m+1
in A, contradicting the maximality of M among all matchings contained in S or A. �
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Appendix A. Matchings and short cycles in components
(the real thing)

We may assume that η < 1/14. Given 0 < η < 1/14, similarly to the proof of Lemma 2.1, by
Lemma 8.1, we will assume that K has t = (6 + 14η)s vertices, every vertex x of K is in an active
pair, and for all active pairs xy

(A.1) |NK(x, y)| ≥ (1 − δ)t,

where δ = (η610−24)2.
Since every x is in an active pair, it follows from (A.1) that for all x ∈ V (K),

(A.2) |NK(x)| =
∣

∣{y : xy ∈ ∂K}
∣

∣ ≥ (1 − δ)t + 1.
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Let V := V (K) and suppose there exists a coloring K = Kred ∪ Kblue such that

(A.3) no monochromatic component contains M (3)
s and either C

(3)
4 or C

(3)
5 .

For each x ∈ V let us choose arbitrarily one component satisfying the condition in Observation 8.2
and denote it by Cx. Let

Vred = {x ∈ V : Cx is red} and Vblue = {x ∈ V : Cx is blue}.
Observation 8.2 tells us that V = Vred ∪Vblue and this union is disjoint by the definition of Vred and
Vblue.

If |Vred| ≥ 6δt, we define the scarlet component S as the (unique) red component Cred guaranteed
by Observation 8.4 and set V ′

red = {x ∈ Vred : Cx = S}. Then

|V ′
red| ≥ |Vred| − 2δt ≥ 4δt.

If |Vred| < 6δt then we say that the scarlet component does not exist and V ′
red = ∅. Similarly, when

|Vblue| ≥ 6δt, we define the azure component A and the set V ′
blue = {x ∈ Vblue : Cx = A}. Then

|V ′
blue| ≥ |Vblue| − 2δt ≥ 4δt,

and V ′
blue = ∅ if |Vblue| < 6δt. We also set

V ′ = V ′
red ∪ V ′

blue.

Since δ < 1/12, we have

(A.4) |V ′| = |V ′
red| + |V ′

blue| ≥ t − 8δt.

For each x ∈ V ′
red, set ∂S(x) =

∣

∣{y ∈ V : xy ∈ ∂S}
∣

∣, and for each x ∈ V ′
blue, set ∂A(x) =

∣

∣{y ∈ V :

xy ∈ ∂A}
∣

∣. By Observation 8.2 and the definitions of S and A we have

(A.5) |∂S(x)|, |∂A(x)| ≥ (1 − δ)t.

We distinguish two complementary cases, and in each of them we obtain a contradiction to (A.3)

or its consequence, (A.6) below. In both cases we again use the fact that r(C
(3)
4 ) = 13 (see [8]).

Case 1: |V ′
red|, |V ′

blue| ≥ (1 + 2η)s.

We first prove that each of S and A contains a matching M
(3)
(1+η)s.

Observation A.1. M
(3)
(1+η)s ⊂ A and M

(3)
(1+η)s ⊂ S.

Proof. Partition the set of vertices V into sets U , Ured, Ublue such that Ured ⊂ V ′
red, |Ured| = (1+2η)s,

Ublue ⊂ V ′
blue, |Ublue| = (1 + 2η)s, and U = V \ (Ured ∪ Ublue).

Since |U | ≥ t − 2(1 + 2η)s ≥ (4 + η)(1 + 2η)s, Lemma 2.1 applied to the induced coloring

Kred[U ] ∪ Kblue[U ] of K[U ] implies that there exists a matching M = M
(3)
(1+2η)s in some component

(say red) Cred of Kred.
Let M ′ ⊂ M , U ′ ⊂ Ublue be arbitrary, |M ′| ≥ 5δt and |U ′| ≥ 4δt. Firstly, we claim that there is

an edge xyz ∈ M ′ and a vertex a ∈ U ′ such that xya, xza, yza ∈ K and xa, ya, za ∈ ∂A. This is
a consequence of the following fact applied with X = M ′, Y = U ′, t = 3δt, s = δt.

Fact A.2. Let B1 and B2 be two bipartite graphs with the same bipartition X ∪ Y . If degB1
(x) ≥

|Y | − t for all x ∈ X, degB2
(y) ≥ |X| − s for all y ∈ Y , and (|X| − s)(|Y | − t) > st, then there exist

x ∈ X, y ∈ Y such that xy ∈ B1 ∩ B2.
In particular, this is true for |X| > 2s and |Y | > 2t.



THE RAMSEY NUMBER FOR HYPERGRAPH CYCLES II. 31

Proof. Clearly, (|X| − s)(|Y | − t) > st implies

|B1| + |B2| ≥ |X|(|Y | − t) + |Y |(|X| − s) > |X||Y |,
from which the fact follows. �

Secondly, by (A.3), we know that C
(3)
4 6⊂ Cred, hence at least one of the edges xya, xza, yza must

be blue and also in A.
Thus, using all but at most δs vertices of Ublue and all but at most 5δs edges of M , we greedily

find a matching of size (1 + 2η)s − 5δs > (1 + η)s in A. Using (A.3) again, we have C
(3)
4 6⊂ A.

Replacing Cred with A, Ublue with Ured, A with S, and interchanging colors red and blue in the
argument above, we obtain a matching of size (1 + η)s in S. �

In view of Observation A.1, it follows from (A.3) that

(A.6) C
(3)
4 6⊂ A and C

(3)
4 6⊂ S.

Observation A.3. For every active pair of vertices xy ∈
(V ′

red
2

)

there exist at most 80δt vertices
z ∈ V ′

blue such that xyz is blue.

Proof. Suppose there is an active pair xy ∈
(V ′

red
2

)

and a set Z of 1 + 80δt vertices z ∈ V ′
blue such

that xyz is blue. We show that this implies the existence of vertices zi ∈ V ′
blue, i = 1, 2, . . . , 13, such

that

(i) zizjzk ∈ K for 1 ≤ i < j < k ≤ 13,
(ii) zizj ∈ ∂S ∩ ∂A for 1 ≤ i < j ≤ 13.

Since r(C
(3)
4 ) = 13, the sub-hypergraph induced in K by z1, . . . , z13 contains a monochromatic copy

C of C
(3)
4 . By (ii), if C was blue then C ⊂ A – a contradiction to (A.6), and if C was red then C ⊂ S

– a contradiction to (A.6) again.
We choose z1 ∈ Z so that xz1, yz1 ∈ ∂S. By (A.5), at most 2δt vertices of Z cannot be selected.

For i = 2, . . . 13, we choose zi ∈ Z so that xzi, yzi ∈ ∂S, zizj ∈ ∂A for j = 1, . . . , i − 1, and
zizjzk ∈ K for 1 ≤ j < k ≤ i − 1.

By (A.1) and (A.5), at most 2δt + (i − 1)δt +
(

i−1
2

)

δt vertices of Z are ineligible for selection.

Since 2δt + (i − 1)δt +
(

i−1
2

)

δt ≤ (2 + 12 + 66)δt = 80δt < |Z|, we can always pick zi.
Vertices z1, . . . , z13 clearly satisfy (i) above. All edges xyzi, where i = 1, . . . , 13, are blue, and all

pairs zizj ∈ ∂A, where 1 ≤ i < j ≤ 13, by our assumption. In order to avoid a copy of C
(3)
4 in A,

one of the edges xzizj , yzizj must be red for every 1 ≤ i < j ≤ 13. Since xzi, xzj , yzi, yzj ∈ ∂S,
such an edge is in S, and we have zizj ∈ ∂S. Thus, (ii) holds as well. �

Observation A.4. Every edge contained in V ′
red is blue and, consequently, K ∩

(V ′

red
3

)

⊂ C ′
blue for

some blue component C ′
blue.

Proof. By Observation A.3, for all xyz ∈ K ∩
(V ′

red
3

)

, there are at most 3 × 80δt vertices a ∈ V ′
blue

so that one of the edges xya, xza, yza is blue. Moreover, by (A.1) and (A.5), there are at most
3δt + 3δt vertices a ∈ V ′

blue so that either one of the triples xya, xza, yza is not in K or one of the
pairs xa, ya, za is not in ∂S.

Since |V ′
blue| ≥ (1 + 2η)s > 86δt, we can select a vertex a ∈ V ′

blue so that xya, xza, yza ∈ S (all

triples are red and, thus, in S because xa, ya, za ∈ ∂S). We must have xyz blue to avoid C
(3)
4 in S.

Clearly, any two blue edges with two common vertices are in the same blue component. If z1z2z3

and z3z4z5 are two blue edges in V ′
red, then by (A.1) and since |V ′

red| ≥ (1 + 2η)s, there is a vertex
a ∈ V ′

red so that z2z3a, az3z4 ∈ K. Hence, z2z3a and az3z4 are blue and z1z2z3 and z3z4z5 are in
the same blue component.
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Finally, if z1z2z3 and z4z5z6 are two disjoint blue edges in V ′
red, we can again find a vertex a ∈ V ′

red
so that z2z3a, az4z5 ∈ K. These two edges are blue and in the same blue component as observed
above, therefore, z1z2z3 and z4z5z6 are in the same blue component as well. �

We can clearly interchange colors red and blue in Observations A.3 and A.4 and obtain that

K ∩
(V ′

blue
3

)

⊂ C ′
red for some red component C ′

red. Since one of V ′
red, V ′

blue must contain at least

⌈t/2⌉ ≥ (3 + 6η)s vertices, we find greedily both a copy of M
(3)
s and a copy of C

(3)
4 , in either C ′

red
or C ′

blue, contradicting (A.3). �

Case 2: |V ′
red| < (1 + 2η)s or |V ′

blue| < (1 + 2η)s.

By symmetry, we may assume that |V ′
red| < (1 + 2η)s and |V ′

blue| > (5 + 11η)s. We first prove

that the azure component A contains a matching M
(3)
(1+η)s whose vertex set is in V ′

blue.

Observation A.5. There exists a matching MA = M
(3)
(1+η)s ⊂ A with V (MA) ⊂ V ′

blue.

Proof. Let V ′
blue = U ∪U ′ be a partition of V ′

blue such that |U | = (1+2η)s. Since |U ′| ≥ (5+11η)s−
(1 + 2η)s ≥ (4 + η)(1 + 2η)s, Theorem 6.1 applied to the induced 2-coloring Kred[U ′] ∪Kblue[U

′] of

K[U ′] implies that there exists a matching M = M
(3)
(1+2η)s in a monochromatic component of K[U ′]

(which is contained in some monochromatic component C in K).
Suppose that C is blue, but C 6= A (otherwise this proof is finished). By (A.1) and (A.5), for a

given x1x2x3 ∈ M , all but at most 3δt + 3δt triples y1y2y3 ∈ M are such that xiyj ∈ ∂A for every
1 ≤ i, j ≤ 3, and all triples of the form xixjyk are the edges of K. From this we conclude that all
but at most 3δt|M | pairs x1x2x3, y1y2y3 ∈ M are such that xiyj ∈ ∂A for every 1 ≤ i, j ≤ 3, and

the subgraph of K induced on {x1, x2, x3, y1, y2, y3} is K
(3)
6 .

For each such a pair x1x2x3, y1y2y3 ∈ M , all the edges of the form xixjyk and xiyjyk must be
red and in the same red component because xixj , yjyk ∈ ∂C 6= ∂A and xiyk ∈ ∂A.

A moment’s thought yields that there exist s+2 edges xi1xi2xi3 ∈ M such that xi1xi2xi−1j , xi1xi2x(i+1)j , xi2xi3

xi1xi3x(i−1)j , and xi1xi3x(i+1)j are red edges of K for all i = 1, . . . , s+ 2. It follows that these edges
are in the same red component. Furthermore, xi1xi2x(i+1)3, xi3x(i+1)1x(i+1)2, where i = 1, 3, 5, . . . ,

form a matching of size s with a copy of C
(3)
4 on vertices x12, x13, x22, x23. This is, however, a

contradiction to (A.3).

Hence assume C = Cred is red. By (A.3), we have C
(3)
4 6⊂ Cred. By Fact A.2 (see also the proof of

Observation A.1), for arbitrary subsets M ′ ⊂ M , U ′′ ⊂ Ublue be, each of size 5δt, there is an edge

xyz ∈ M ′ and a vertex a ∈ U ′′ such that xya, xza, yza ∈ K and xa, ya, za ∈ ∂A. To avoid C
(3)
4

in Cred, at least one of the edges xya, xza, yza must be a blue edge, and, consequently, also in A.
Thus, using (1 + 2η)s vertices in U and (1 + 2η)s edges of M , we greedily find a matching MA

of size (1 + 2η)s − 5δs > (1 + η)s in A. Clearly, V (MA) ⊂ U ∪ U ′ = V ′
blue. �

In view of Observation A.5 and the assumption (A.3), we know that C
(3)
4 6⊂ A. We distinguish

two subcases. In the first one we assume that almost all pairs of vertices from V ′
blue are contained

in the shadows of at most two red components.

Subcase 2a. There exist two red components C1
red and C2

red such that

(A.7)

∣

∣

∣

∣

(

V ′
blue

2

)

\ (∂C1
red ∪ ∂C2

red)

∣

∣

∣

∣

< 2
3
√

δt2.

We now prove a series of observations. Recall that the scarlet component S exists whenever V ′
red 6= ∅.

We now show that in that case either one of C1
red and C2

red equals S or can be replaced by S.
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Observation A.6. If V ′
red 6= ∅, then there exists a red component Cred such that

(A.8)

∣

∣

∣

∣

(

V ′
blue

2

)

\ (∂Cred ∪ ∂S)

∣

∣

∣

∣

< 4
6
√

δt2.

Proof. If |∂C1
red ∩

(V ′

blue
2

)

| ≤ 3 6
√

δt2 holds, then with Cred = C2
red we have

∣

∣

∣

∣

(

V ′
blue

2

)

\ (∂Cred ∪ ∂S)

∣

∣

∣

∣

(A.7)
< 2

3
√

δt2 +

∣

∣

∣

∣

∂C1
red ∩

(

V ′
blue

2

)∣

∣

∣

∣

≤ 4
6
√

δt2.

Hence, suppose that
∣

∣

∣∂C1
red ∩

(V ′

blue
2

)

∣

∣

∣ > 3 6
√

δt2 and
∣

∣

∣∂C2
red ∩

(V ′

blue
2

)

∣

∣

∣ > 3 6
√

δt2. We claim that

there exist vertices u, v, w ∈ V ′
blue and a ∈ V ′

red such that uv ∈ ∂C1
red ∩ ∂A, uw ∈ ∂C2

red ∩ ∂A,
vw ∈ ∂C1

red ∪ ∂C2
red, ua, va, wa ∈ ∂S, and uvw, uva, uwa, vwa ∈ K.

Indeed, since every graph G contains a vertex of degree at least |G|/|V (G)| and since (A.7) holds,
there are 2δt vertices u ∈ V ′

blue such that

(A.9) |∂C1(u) ∩ V ′
blue| + |∂C2(u) ∩ V ′

blue| > |V ′
blue| − 4δt.

Fix an arbitrary vertex a ∈ V ′
red. By (A.5), |∂S(a)| ≥ (1 − δ)t, therefore, there exists a vertex u

satisfying (A.9) such that au ∈ ∂S.
Since au is an active pair, all but at most 2δt2 pairs vw are such that auv, auw, avw, uvw ∈ K.

Since a ∈ V ′
red, all but at most δt2 pairs vw satisfy va, wa ∈ ∂S. Similarly, since u ∈ V ′

blue, all

but at most δt2 pairs vw satisfy uv, uw ∈ ∂A. Finally, by (A.7), there are at most 2 3
√

δt2 pairs

vw ∈
(V ′

blue
2

)

such that vw 6∈ ∂C1
red ∪ ∂C2

red. Let Z ⊂
(V ′

blue
2

)

be the set of all such exceptional pairs.

Then |Z| ≤ 3 3
√

δt2.

If |∂C1
red(u) ∩ V ′

blue| · |∂C2
red(u) ∩ V ′

blue| > 3 3
√

δt2 ≥ |Z|, then there are v ∈ ∂C1
red(u) ∩ V ′

blue and
w ∈ ∂C2

red(u) ∩ V ′
blue such that vw 6∈ Z.

Otherwise, we have |∂C2
red(u) ∩ V ′

blue| ≤
√

3 6
√

δt and (A.9) implies that |∂C1
red(u) ∩ V ′

blue| >

|V ′
blue| − 2 6

√
δt. It follows that at most |V ′

blue| · 2 6
√

δt ≤ 2 6
√

δt2 pairs of ∂C2
red are not contained in

(∂C1
red(u)∩Vblue

2

)

. Since
∣

∣

∣

∣

∂C2
red ∩

(

V ′
blue

2

)∣

∣

∣

∣

> 3
6
√

δt2 > 2
6
√

δt2 + 13
3
√

δt2 ≥ 2
6
√

δt2 + |Z|,

there are v, w ∈ ∂C1
red(u) ∩ V ′

blue such that vw ∈ ∂C2
red \ Z. In both case, the vertices a, u, v, w are

the ones we are looking for.

To avoid a copy of C
(3)
4 in A, one of uvw, uva, uwa, vwa ∈ K must be red (because uv, uw ∈ ∂A).

It cannot be uvw because uv ∈ ∂C1
red and uw ∈ ∂C2

red. Thus at least one of the edges uva, uwa, vwa
must be a red edge, say uwa. Since uw ∈ ∂C2

red and au ∈ ∂S, we have C2
red = S and the proof is

completed by setting Cred = C2
red and recalling (A.7).

From now on we assume that

(A.10)

∣

∣

∣

∣

(

V ′
blue

2

)

\ (∂C1
red ∪ ∂C2

red)

∣

∣

∣

∣

< 4
6
√

δt2,

and that C1
red = S, if S exists.

Observation A.7. Every set X ⊂ V ′
blue with |X| ≥ 25 12

√
δt contains a copy of C

(3)
4 in C1

red or C2
red.

Proof. Let X ⊂ V ′
blue with |X| ≥ 25 12

√
δt be given. Note that by (A.10), there is a subset X ′ ⊂ X,

where |X \X ′| ≤ 8 12
√

δt such that for each u ∈ X ′ there are at most 12
√

δt vertices v ∈ X ′ such that
uv 6∈ C1

red ∪ C2
red. Moreover, by (A.5), for each u ∈ X ′, we have |∂A(u) ∩ X ′| ≥ |X ′| − δt and, by

(A.1), for each active pair uv ∈
(

X′

2

)

, we have |NK(u, v) ∩ X ′| ≥ |X ′| − δt.
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Since |X \ X ′| + 12 12
√

δt + 12δt +
(

12
2

)

δt + 13 < 25 12
√

δt ≤ |X|, there exists a subset X0 ⊂ X ′ of

13 vertices such that
(

X0

3

)

⊂ K and
(

X0

2

)

⊂ A ∩ (∂C1
red ∪ ∂C2

red).

Since r(C
(3)
4 ) = 13, the set

(

X0

3

)

contains a monochromatic copy C of C
(3)
4 . It cannot be blue

because all pairs of vertices of X are in ∂A and so C would be in A. Hence, C must be red and,
thus, in C1

red or C2
red because

(

X0

2

)

⊂ ∂C1
red ∪ ∂C2

red. �

Now, we are ready to finish the proof of Lemma 2.2 in Subcase 2a. Suppose first that V ′
red = ∅.

By (A.4), we have t − 8δt < |V ′
blue| ≤ t ≤ 7s. By Observation A.7, every set of 25 12

√
δt vertices

in V ′
blue contains a copy of C

(3)
4 in C1

red or C2
red. Hence, we can find greedily, by taking one edge

from a copy of C
(3)
4 and reusing the remaining vertex, a matching of size

|V ′
blue| − 25 12

√
δt

3
≥ (6 + 14η)s − 8δt − 25 12

√
δ · 7s

3
≥ 2s

in C1
red ∪ C2

red. Thus, there is an index i ∈ {1, 2} such that Ci
red contains M

(3)
s as well as a copy

of C
(3)
4 .

Assume now that V ′
red 6= ∅ and, thus, S exists and C1

red = S. We know (see Observation A.5)

that A contains a matching MA, V (MA) ⊂ Vblue, of size (1 + η)s but no C
(3)
4 . As in the proof

of Observation A.1, for arbitrary subsets M ′ ⊂ MA, U ⊂ V ′
red, where |M ′| ≥ 5δt and |U | ≥ 4δt,

there exist an edge e ∈ MA, vertex x ∈ U , and an edge f ∈ S so that x ∈ f and |e ∩ f | = 2.
Hence, we can find a matching of size |V ′

red| − 4δt < s in S that uses exactly 2|V ′
red| − 8δt vertices

of V ′
blue. After this, we use the greedy procedure from the previous paragraph and find a matching

in S ∪C2
red of size (|V ′

blue| − 2|Vred| + 8δt− 25 4
√

δt)/3. Combining these two matchings and the fact
that |Vblue| + |Vred| ≥ t − 8δt yields a matching in S ∪ C2

red of size

|V ′
red| +

(

|V ′
blue| − 2|V ′

red| + 8δt − 25 12
√

δt
)

3
≥ t − 25 12

√
δ · 7s

3
≥ 2s,

as before. Consequently, either S or C2
red contains M

(3)
s . Note that at least one edge of this matching

comes from a copy of C
(3)
4 in S or C2

red. Thus, in either case, we have M
(3)
s and C

(3)
4 in the same

red component.

Subcase 2b. Inequality (A.7) does not hold for any two red components C1
red and C2

red.

Similarly to Section 7, we will first show that in this case the red components can be grouped
into three large sets.

Observation A.8. There exists a partition
(

V
2

)

= F 1 ∪ F 2 ∪ F 3 such that

(i) F 1, F 2, F 3 are pairwise disjoint,

(ii) |F i[V ′
blue]| ≥

3
√

δ for i = 1, 2, 3,
(iii) for every red component Cred there exists i ∈ {1, 2, 3} such that ∂Cred ⊂ F i.

The proof of this observation is the same as the proof of Observation 7.10 and we omit it here.
For convenience, set F̃ i = F i[V ′

blue] and degi(v) = degF̃ i(v), i = 1, 2, 3, v ∈ V ′
blue.

Observation A.9. For every vertex v ∈ Vblue there is an index i ∈ {1, 2, 3} so that degi(v) < 7δt.

Proof. Suppose that there is a vertex v ∈ Vblue such that degi(v) ≥ 7δt for all i = 1, 2, 3. Denote

by Ui the neighborhood of v in F̃ i. We will assume that vu ∈ ∂S for all u ∈ U1 ∪ U2 ∪ U3 since, by
(A.5), only at most δt vertices do not satisfy this.

We call an edge u1u2u3 ∈ K v-good if vu1u2, vu1u3, vu2u3 ∈ K. Notice that by (A.1), for every
vu1u2 ∈ K, all but at most 3δt vertices u3 ∈ U3 are such that u1u2u3 ∈ K is v-good. Hence, since
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|U3| > 3δt + 1, for every pair u1 ∈ U1, u2 ∈ U2, where vu1u2 ∈ K, there exists u3 ∈ U3 such that
u1u2u3 ∈ K is v-good.

Suppose that a v-good edge u1u2u3 ∈ K also satisfies ui ∈ Ui, i = 1, 2, 3. Since the pairs
vu1, vu2, vu3 belong to the shadows of distinct red components, all edges vuiuj , 1 ≤ i < j ≤ 3, are
blue and thus in the azure component A (because vu1, vu2, vu3 ∈ ∂A). Consequently, since there is

no C
(3)
4 in A, edge u1u2u3 must be red.

Let u1u2u3, v1v2v3 ∈ K, where ui, vi ∈ Ui, i = 1, 2, 3, be two v-good edges. Since |U3| > 6δt,
there is a vertex z3 ∈ U3 so that u1u2z3, v1v2z3 are v-good edges. Similarly, since |U1| > 6δt, there
is a vertex z1 ∈ U1 so that z1u2z3 and z1v2, z3 are v-good. Hence, all v-good edges u1u2u3 ∈ K,
where ui ∈ Ui, i = 1, 2, 3, are in the same red component.

Consequently, all pairs of vertices ui ∈ Ui and uj ∈ Uj , i 6= j, vuiuj ∈ K, are in the shadow of

the same red component. Without loss of generality we may assume that uiuj ∈ F̃ 1.
Take any three vertices ui, u′

i such that ui, u
′
i ∈ Ui and vuiu

′
i ∈ K. Since |Uj | > 3δt + 1, there

exists uj ∈ Uj such that uiu
′
iuj is a v-good edge. The edges vuiuj and vu′

iuj are both in A and

C
(3)
4 6⊂ A, hence either vuiu

′
i is red or uiu

′
iuj is red. In the first case, uiu

′
i ∈ F̃ i, while in the second

case uiu
′
i ∈ F̃ 1.

From (A.1) we have that at most 2δt2 pairs uiu
′
i of F̃ i are such that uiu

′
iv 6∈ K. Since |F̃ i| ≥ 3

√
δ,

it follows that at least 3
√

δt2/2 pairs of F̃ i are contained in {v} ∪ Ui, i = 2, 3. Hence, there exists

a matching Mi in F̃ i of size 5δt. For each uiu
′
i ∈ Mi there are at most 2δt pairs vv′ such that

either uiu
′
iv or uiu

′
iv

′ 6∈ K. From Fact A.2 we obtain that there exist vertices ui, u
′
i ∈ Ui so that

vuiu
′
i ∈ K, uiu

′
i ∈ F̃ i, i = 2, 3.

If all four edges induced by {u2, u
′
2, u3, u

′
3} ⊂ Vblue were blue, we would have C

(3)
4 in A – a

contradiction. Hence, at least one of them is red, say u2u
′
2u3. Since u2u3 ∈ F̃ 1, we have u2u

′
2 ∈ F̃ 1.

But then u2u
′
2 ∈ F̃ 1 ∩ F̃ 2 – a contradiction with Observation A.8(i). �

For 1 ≤ i < j ≤ 3, let Wij = {v ∈ V ′
blue : degi(v) ≥ 7

√
δt, degj(v) ≥ 7

√
δt}. Next, we prove that

W12, W13, and W23 have each at least 24
√

δt vertices.

Observation A.10. |Wij | ≥ 24
√

δt for 1 ≤ i < j ≤ 3.

Proof. By symmetry, we can restrict ourselves to the case i = 1 and j = 2. We shall show that
|W12| ≥ 24

√
δt. Let Gi := F̃ i ∩ ∂A, i = 1, 2. Since |F̃ i| > 3

√
δt2, i = 1, 2, and by (A.1), we have

|Gi| > 3
√

δt2 − 2
√

δt2, i = 1, 2.

Hence, Gi, i = 1, 2, contains a subgraph G′
i with minimum degree at least ( 3

√
δt2 − 2

√
δt2)/8 >

1152
√

δt. In G′
i, i = 1, 2, we find greedily matching M ′

i of size at least 576
√

δt. Finally, from M ′
1

and M ′
2 we select a submatchings M1 ⊆ M ′

1 and M2 ⊆ M ′
2 of size t0 = 144

√
δt each so that M1∪M2

is a matching as well. (Take such M1, M2 with |M1| = |M2| = t maximum possible. If t < t0, then

M1 ∪ M2 intersects at most 4t < 576
√

δt edges from each M ′
1 and M ′

2 and we can enlarge both M1

and M2)
For any pair v1v

′
1 ∈ M1, it follows from (A.1) that all but at most δt pairs v2v

′
2 ∈ M2 are such

that the triples v1v
′
1v2, v1v

′
1v

′
2 are in K. Similarly, for any pair v2v

′
2 ∈ M2, all but at most δt pairs

v1v
′
1 ∈ M1 are such that the triples v2v

′
2v1, v2v

′
2v

′
1 are in K.

Hence, at least |M1|(|M2| − 2δt)/2 pairs v1v
′
1 ∈ M1 and v2v

′
2 ∈ M2 are such that all triples in

{v1, v
′
1, v2, v

′
2} are in K. Since the azure component contains no copy of C

(3)
4 , one of these triples

must be red, and, consequently, at least two of the pairs v1v2, v′1v2, v1v
′
2, v′1v

′
2, must belong to a

red component from F1 ∪ F2.
Thus, we may assume that at least |M1|(|M2| − 2δt)/2 ≥ |M1||M2|/3 edges joining vertices

saturated by pairs from M1 with the vertices saturated by M2 are from F̃ 1. Then at least |M2|/6 ≥
24
√

δt vertices saturated by the pairs from M2 ⊆ G2 are incident to at least |M1|/6 ≥ 7δt pairs
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which are from F̃ 1. Since each vertex saturated by M2 has degree at least 1152
√

δt in G2 ⊂ F̃ 2, we
have |W12| ≥ 24

√
δt. �

Now we claim that all except at most 14 ·δt2 pairs between Wij and Wi′j′ must be from F̃ ℓ, where
ℓ = {i, j} ∩ {i′, j′}. Indeed, suppose ℓ = 1 and there are more than 14 · δt2 pairs between W12 and

W13 that are not from F̃ 1. Then at least 7δt2 pairs must be from, say, F̃ 3. Consequently, there is
a vertex v ∈ W12 incident with at least 7δt edges from F̃ 3, yielding deg3(v) ≥ 7δt. But v ∈ W12

means deg1(v), deg2(v) ≥ 7δt - a contradiction with Claim A.9.
It follows that one can find vertices w12, w

′
12 ∈ W12, w13, w

′
13 ∈ W13, w23, w

′
23 ∈ W23, such that:

(i) the subgraph of K induced by {w12, w′
12, w13, w′

13, w23, w′
23} is K

(3)
6 ,

(ii) all pairs of vertices from {w12, w
′
12, w13, w

′
13, w23, w

′
23} are in ∂A,

(iii) for 1 ≤ i < j ≤ 3, 1 ≤ i′ < j′ ≤ 3, {i, j} 6= {i′, j′}, the pairs wijwi′j′ , w′
ijwi′j′ , wijw

′
i′j′ ,

w′
ijw

′
i′j′ are from F̃ ℓ, where ℓ = {i, j} ∩ {i′, j′}.

Indeed, by Claim A.10, each of the sets W12, W13, W23 has size at least 24
√

δt. By the previous
paragraph, (A.1), and (A.5), there are 2 vertices w12, w

′
12 ∈ W12 and subsets W ′

13 ⊂ W13, W ′
23 ⊂ W23

such that |W ′
13|, |W ′

23| ≥ 19
√

δt, all pairs w12x, w′
12x ∈ ∂A ∩ F̃ 1 for every x ∈ W ′

13, and all pairs

w12x, w′
12x ∈ ∂A ∩ F̃ 2 for every x ∈ W ′

23.

Since all but at most 14 · δt2 pairs between W ′
13 and W ′

23 must be from F̃ 3, |W ′
13|, |W ′

23| ≥ 19
√

δt,
and by (A.1) and (A.5), there exists w13, w

′
13 ∈ W ′

13, w23, w
′
23 ∈ W ′

23 such that (i), (ii), and (iii)
hold.

In the same one as in Section 7 (see page 30), we conclude that the sub-hypergraph H induced in K

by vertices w12, w′
12, w13, w′

13, w23, w′
23 ∈ Vblue contains a copy of C

(3)
5 in the azure component A. �
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