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Abstract 1
In this thesis the characteristics of discriminant anelysis under the _:"-I i

random aff\ects wodel are tnvestigated.

Assuming thet the elesents within any randomly selected population
are normally distributed with mean vector w and common covariance matrix
I, and that over different populatfons y has a normal distribution with

mean vector £ and covariance matrix T, the distributions of the popula-

ticn-based and sampla-based Mahalancbis dist between two different
populations are derived. From these, expressions and bounds are derived for

the sxpectid probabilities of mis- and correct classification under
chassical discriminant amalysis, applied to two- and k-population problems

Te-hasad

i
1
respectively, when using either the pop based or samg ;
Tinear discriminant fumctions. i
The éistributions and expected probabilities mentioned above are !
211 exapressed in tesss of the eigenvalues of ‘I'K;I, so the problems of hy- I i
pothesis testing on, and morn particularly, estimation of these efgen- N ‘
values are fully discussed. \
Using the Predictive Bayesian Approach to Discriminant Analysis,
expressions, for the predictive density of an ohservation, given that it
has come from a particular population, are derived under the random ef-
focts model. Brief consideration 13 alse given to the espirical Bayes
and semi-Bayes approsches to discriminent analysis undar this wodel, y

Finally, the results derived in this thesis are appiied to 2
stratigraphic problem in underground mining.
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"Chapter 1 Introduction

Suppose that =, Wys...,W, ure k populations of p-component vectors,
Let ® be & vector known to have come from one of these populations.
hascrnﬂnmt analysis deals with the '{woh‘len of 1dentifying the popu-
1;tim from which » was drawn.

The case covered most thoroughly in the litersture i5 that #1 which
the vectors from w, follew & multivarizte normal distribution with mean
vector and a common covariance matrix E.  (Anderson, 1958). Generally,
it has been assumed that Tys Myaeen,m, are Fixed populations predeter-
mined by the problem faced.

" This thesis deals with the case where the 1y have been randemly
selected from some population in advance of the experiment. Once the
k mean vectors have been selected we ore then faced with a conventicnal
problem in discriminant analysis of classifying vectors fnto one of the
k (now fﬁi:td} populations.

In different exporiments, there are different sets of By in general
with different numbers of elements k, a1l drawn independently from the
same parent population.

The aim of this research is to investigate the characteristics of
discriminant analysfs under these circumstances. It will be essumed that
the populaticn from which the 1y are drawn is multivariate normal with
mean vector £ and covarfance mateix T,

This study ugls_mtivated by . stratigraphic problem in mining.
{Hawkins and Rasm:ssen {1873), Hut. -3 n , Skinner and Bowes (1976))

In the Witwatersrand gold fields the qold bearing reef is one bend {the
"pay bend") of & sedimentery successic and is ususlly visually un-
recognisable. In badly faulted areas chic pay band usually faults
oway, and the miner wishes to know the position in the sedimentary suc-
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cession of the blank band facing him, from which he can deduce the new
pugd tion of the pay band.

One method of ideptification iz via trace element geochemistry of
the bands. 1t 15 reasonable to suppose that the geochemistry of each
band can be described by a {multivariate) statistical distribution.
The mean of the distribution feflacts the average conditions at the
time of deposition of the band, while the spread reflects local varia-
tion in grade. Furthermore, the average conditions. at different times
and Tocalities of deposition of the bands are themselves statistically
variable, befng themselves drawn from some parent population. Thus
the bands intersected by any given cross-section will be fixed for the
iu;ndiate classification probles and yet will follow some random ef-
fects model as we move from one ared in the mine to another.

Another example of & random effects model in discriminant analysis
occurs in ant Enpﬂogy (de ¥illiers, 1973, 1976). Here the probiem is
to classify &n ancient skull from & certain perfod as having come from

““one of o muaber of tribes suspected to have Vived in the Yocality in

which the skull was found. The classification is b ’ =jous

reasurements (Jengths and angles) made on the m'.'ui‘ua sy wandibie,

.and for any given trlbe , sex and age -group these mdy be regarded as

having a joint distribution with fixed mean vector and covariance ma-
trix. Different +vibes will, in general, have different mean vectors,
and these may tEE wlves be considered to have cosa from some multie
variate distribution,

Another type of random effacts model in discriminant analysis is

‘considered by Geisser (1973), 1n the combext +F muitiple birth dis-

crimination. Supposing that & hirth gives v 5= to t 1ike-sexed off-
spring, the prodlem s to decius which of tao offspring have cose
from the same eggs and which ones have comt © 0 different eggs. Assume
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that each offspiing i5 characterised by a p-dimensional random varisble

X, where X ~ HP(JI‘ sEy) . Offspring frem the sahe egg (monozygotes)

heve the same By whereas offspring from different eqgs (heterozygotes)
have d.t_ﬁ‘er'ﬁ;l by Different 1y are assumed to have been generated by .
4 random effects model;

o

By~ NP{M.ZB], independently ¥i .
Lr i)
Geisser considers the difference 2 = x, - x befween the £ ang
the ™ offspriag.

i

If t and r come from the same egg, then:

Z, = Ny (0,28y) H
and 1 they are from different egos, then

2, ~ np(n.zz.u * ZEE] .
Tha joint dist:ribution of . and zg 1s also sultivariate normal with

By g 6T e and s are a11 from different eggs,

xN+2£nifrandsarefruntms‘a-eegghlrt

00\’!2,.,:5] = t is from a different one,

Iy othervise

Given the Jé1nt distribution of Byavenady g for each of the \l.aﬂws

possible cosbinations of offspring and aggs, and the prior probabilities for

each of these possible comiinations, posterior probebilities can be cal-
culated for each case, and the case for which this f2 » maxisum 1s then

7 chosen.

e R




The situation discussed §n this thesis is. howaver, entirely
different from that just describen. dare we assuse that the sth
population 15 characterised by a Nphli oL} distribution and that dif-
ferent u, are fhdependently distributed as ND{E,TI, On the basis of
these nssusptions the characteristics of classification in this en~
vironeant are then assessed. .

d.e.  Given an observation known to have come From one of k popula-
tions from the abovenentioned randun effects model, where the para-
meters of these populations are eithelr_' known or estivated from train-
ing samples, how well are the classical procedures of discriminant
amalysis for cln.ssif:nng the chservation into one of these populations
Tikely to perform? :

When it comes to i%e Predictise Baye jan Approach to discriminant
analysis, the randwi effects model actuzily Teads to s new procadure,
for class{fying the observation into one of the k populations,

1.1 The Scope of the research coversd in this Thesis

As mantioned earifer, the aim of this thesis 45 to investigate
the characteristics of discriminant analysis under’the Random Effects
sedel. )

In order to do 59, and to pravide a framevork within which to wn-‘
duct the investi?;otion, & summary of the theory of classica) and Predictive

Bayestan discrininant onalysis 15 given in chapter 2. By the classical ap-
proach we mean that gfven by Andersen [1961,1952) m; by the Predictive

Bayesian approsch we mean thot of Geissor :1961,196&}; and Dunsmore {1966).

Chapters 3 to § cover the classical approsch. In chapter 3 the
Rendos Effects mode) s set out in more detedl, and then the distribu-
tlons of the four quantities centrel to the classicad approach are de-
rived under this model, Chepter 4 uses the distributions derived in
chapter 3 to eiva'kunﬁ the performance of classica) discriminant anatysis

-
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under the random effects model. Specifically, the probabilities of
correct and misclassification are considered, }epnrate'ly for the
two-group and multiple~group problems and for the two situations where
the parameters are known and unknows.

Al'l.ﬂn r;;ults in chaptersd and 4 are expressad in tevms of

T vhare T and £

11 > 12>.,.>1.r > 0, the r nonzere eigenvaluss of TE
are the covariance l‘nt:'-_t_’éw of the mean vector p and observation wector
s respectively, so cha.pter 5 45 devoted to the question of inference .
on these paraj-etars. Aftar a short _r_e_\riew of hypothesis testing on the
Ay, the rest of the chapter addresses the question of thesr estimetion,
oh the busis of "training samples" taken from a number of rardomly
selected populations. - '

Hherlas n‘h troatment of the Classical approa:h is confined ta
an. cvn'luatinn of the standard theory within the framework of the random ef-
fects m'l.tha application of this mode] to the Predictive Bayesian approach
results in 2 modification of the usual clussification rule. Chap~
te:n'ii deals with this appreegh and in it the predictive density of a
new observation, given the training samples and assuming that it comes
from & specific group, fs derived under the random effacts model. A
briaf treatment of the Empirical Bayes and Semi-Bayes approaches completes

this chapter.

. In chapter 7 the thaory of the preceding chapters is applied to
some data obtained from underground mining, tontrasting the results with
those obtained by applying the usual Fixed effects theory.

The thesls is conci;dad in chapter B with a discussion of various
avenues for futur‘.a research and with some comments on the nppH:laIMH_:y

. and Zsefulness of the theory developed here to the solution of practical

probless in discriminant analysis.
'
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Chapter 2 A Sumavy of the Classichl and Bayesian approaches te
Discriwinant Analysis :

™ this dm;tar' & brief sumary is given of the theory of Discriminant

Analysis under the Normal distribution.

‘Ihe Classical approach, pioneered by Fisher (1938), Welch (1939},
Wald (1944) and others is described by Anderson (1968); Lachenhruch
(1975} and Gird (1977) so only a brief sketch of the basic theory will
be given in section 2.1. The coverage is not compiete, and prime
emphagis will be given only to those aspects that will be off direct
relevence to the treatment of the random effects model.

The Predictive Bayesian approach, ploneered by Geisser (1964),
(1958) and Dunsmore (1366) is described in section 2.2. Once again,
enly a brief sumrary of the approach vr.lll be given, and only one main
result, wseful for comparisen with yhe results derived in this thasis,
will be given, A description of the approach is given in Fress {1372).

A critical compatison of the Classical and Predictive Bayesian
appmacﬁe_s. as well as a concise description of them that highlights
the point of deperture between the two is given by Aitchison, Hebbema
and ¥ay (1977), This paper’ cones out strongly in favour of the Bayesian
approach, at least within the framework of the "Fixed effects” {Classical
apgroach) or "Diffuse prior" (Predictive Bayesian approach) model, "It
would be fnteresting to compare the relative efficacies of these twe
approaches within the random effects framework.

2,1 Classical Discriminant Anslysis

Suppose we have 2 p-dimensional cbservation X known to have come .\-,

from one of & populations myuitge...me. . Andersen (1958) proves that
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the Bao'"g; “*jration procedure, that assigns x to one of the pupyla-

tiohs i__o; . -w that the expested loss frod misclassification is

___ujlin-inisﬁ'd.' 45, under mild restrictions, an adaissible procedure and

that the ¢lass of Bayes procedures is minimal complete.
hssuming that the costs of misclassification from 21l k populations
are equal, the Bayes procedure leads to the folliwing simple classifica-

tion rule:

‘Mssign ® to population L where,

9 fifx} - j-lrrj.‘.,l:qi fj(:J R )
where 9 is the prior probabilfty that x comes from " and fj(x} is the
probability (density) function of » assuming that 9t hes come From .,
The case considered most frequently in the Titerature and in prac-
tice s that in which chservations from Ty follow & muitiveriate novmal
distribution with mean vector Hy and comson covariance matrix £. In

this case,

ag £300 = a2 (217 e (- Joeong) £ (e

_ Taking logarithas and simplifying, rule (2.1.1) becomes:

Assigh x to population Yy where,
Tog g, -%{x~u1}':z'7{x-ﬁ+] a  max {leg qj—%(x-pi}'ahq-ujlj
R ) Ca ek Yot

N {2.1.2)

ar

q
- q
f - %“'1 DI '(p1 - nj}:'log?} ik AT (20.3)

f} ) A
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1: ) In the case where the prior probabilities 9 are all equal, rules

E i’ ! {2.1.2) and (2.1.3) become, respectively:

]

i Assign x to population y where, . o

{

i

-1 -1
. (= p ) B - s o omin (x-ope) B (k- wy) (2.1.4)
’! 1 1 B L PN 3 i 4 ¢ i

Jand

(e B+ g’ 2 g - g2 ¥ gtk B8 L (20)

From (2,1.4) it is clear that for equal pricr probabilities the
i, _Bayesfan classitication rule is also a minfmum distance rule in that
‘ 4 % is classified into that population wy to which it is closest as
uasun_e‘d by the Mzhalanobis distance from x to LI

&) = (e ) £ (k- wg)

k=2

1 The Case
1

In this case rule {2,1.3) becomes: ""i' h i

Azsign % to " if:

. i e
upal) = (5= g + )b £y = ngd e * (2.1.6)

and to v, otherwise.

To obtain the probabilities of misclassification under rule (2.1.6)
note that if we let ¥ bz the random vector corresponding to the observed
¥ then, under tha assumption that X s from vy, upp(X) has a univarface
nofwal distribution with mean: i

|
1
i
!I
i




B . - @ -Bem. oo - .
q,
ELuyp (0151 = 5y = )" E 1y = vg) .
1
=74

whare siz denotes the Mahalanobis distance between %y and wy, and

“wariance: i
g :
ERN Varfig {0073 = By - k)2 (o) 00wy sy 0 ;
* - e : ;
= (g2 (=)
¢ =5 -
e : :
. o 3o, given that X s frem v,
ok v uplX) ~ W(E 8y 8%y (2.3.71
é__‘ ) ¢ .
! Where = (g =)' By = p)
B ] L
L i, Similarly, 1t can be shown that 1f X is from =y, then .
) . [
; oK) = B~ § 82, ,8d,) (2.1.8) :
i :
! i i
- i Therefore, . . ]
]
S
Ve Py PfH1sc'Ias‘s|fy a random ebservation from w1 K l;
; 4 £
‘: = Pruy,(X) < ch]]- where .z = Tog q
: c-} &
! o[ty 21.9) ¢
E " 12 f
“. .I
[ '
o B - L .
' ¥ . - ] a




= P[Misclassify & random obsarvation from 121

= P[uu(!}_]: clny1

€ ¥, : T g ¢
RySAIL |
o
For equal prior probabilities gy =gy &, ¢ = 0 end (2.1.9) and v
(2.1.10) become: )
Py = By = 8- & Gy} ‘ . {2.'1.11).‘ s
P
k> 2 populations . :
This case has not received nearly as much attEan'n as the two - N
popuTatfon problem. Although there 1= not much tncrease in comfilexity at
& conceptual Tevel when woving from the two-to the muitiple population
problem, the evaluation of misclassification probabilities becomes con-
siderasly more complicated. To see this, note that if we use the
notation:
byghn) = (e = g+ ) 2 g - g (2.1.12)
. ! 1]
then classification rule (2.1.3) becomws: :
hssign x to population LA where, ! J'I|'l

q
Cugyln) > logaf-

¥ .1_5.1,... ki =i
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Letting X be the random vector corr to %, and i

that ¥ 15 from e have, as in the case % =2 populations:
Erugy{X)iwyd = § 88y
\rari:;aij{miij = &y

where &3, = {u; - )’ ’:_1flr1 =)

and it it easy to show that

sovTu g(0), 0, (0] =3 = 6,
where aijﬁ = {ug - HJ-}' 5-]f"i =)

Using the notatfon:
U5 = 4500

4nd noting that the k-1 random verfables uyg, $=F,..ski J#f are all
Tinear functions of the normally distributed random vector X jre have
that, given hti: ;

M= (e ity e Myggyeeeestiy )
. .. r
s @ (k1) = dimensional Normal distribution with mean vegtor:
1
¥

& 3lat i 2 2 440
R R T R

and covarianco matrix:

g
)

s e
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8= (Bigg) » Dot=hinnl et (2.1.04)

where we have used the notation:

tig5 " S
Remork 2.1.1 If k-1>p then W, will have a singular norsal distri-
butfon with its mass concentrated on & p-dimensional subspace.

Therefore, the probability of correct classification, given Ne ™
Js:
. k [ = ¢ k
nou s exln -J’ [ folu) E du, 21,5
[’i“ e ‘} ST I
=1 Jei

Where,
Cys = 1 -lf-q = 1o = To
44 og a 9 93 T a9y

and fi{gt] is the density functicn of the {k-1)-dimensional Norsal dis-
tribution given in (£,1.14),
Lachenbruch {1973) has evaluated the integral in (2.1.15) when
the prior probubiliites qd are al% equal (so that the lower Timits of
frtegration are a1l zerp) for two particular configurations of the
mean ue:tnrs'u|. The two GUHHEUI‘B“IUHS that he considers are:
{a) the by are eollinear, with equal spacing of & units between
edjacent means,
and {b) the by are placed at the vertices of a regular (k-1}-dimension-
ol simplex ‘mth side of lenglh & unf_ts.
For configuration {a), with uy and st the two extremes, (2.1.15)
bicones I
4]

K"

L]




Pleorrect clossificution|s;] = 6(%]-0 (- %] for 122,... k-1

= 0[%] for i1 and k

and for configurption (b) it becomes:

. k-1
PE E cles Mration) ]:r Lt 2 | dx
corrack €| cation|uy [ [fwz 4 6’}'2

where &4{-) is the standard normal dansity Funetion,
For n. general configuraticn of mean ve.‘.bel;'s. however, tables of
i the (k-1)-dimensional normal distribution (or an algorithm to comwbe
L them) are required to evaluate (2.1.15).

The following Jougr bounds on the minfmum probability Po of correct

classification when thiE prior probabilities a are All equal, that are
far easier to compute than (2.1.15), have bean given by Cacoullos {1973):

P 2 6y g’) (2.1.08)
and

Pyt (k1) #(~§) (2,117}

&y {+} is the distribution function of the chi-squared dis-
L tribution on v degrees of Freedom,
‘ ! and 4 = u}tn s‘d'is the minfnum Hahalanobis distance between any
: . vitd .

' two of the k popuiations. .
4 : For k = 3, {2.1,17), which is derived using Bonferroni's first
) g inaquality, gives a stronger bound than (2.1.16), whereas the opposite
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is generally true for k.> 3.

2.7.1 Unknown Parameters

Thus far it has been assuned that all the parameters in the popula-

tions e { ,',“,,k s are known. In most practical situations, however,

" these are not known, and have to be estimated from a "training sample”

consisting of ny ohservations Eige J=150.0uhy o own to have come from

7y » for each of the k populatiens = , i=l,. .k .

Fnderson {1951) proposed that the unknown parameters . , 4=1,....k

and L in {2.1.3) be replaced by their maximm Tikelihood estimators, the

sanple means,

1y
R T

and pooled sample covariance matrix, respectively

k
where v » 1i1tni - 1). This gives the sample-based classification rule:
&

o

y B
75k gty ey !

Assign x to population my where,,

Tog g -%{:« xi‘rs"tx-xi_]-dﬂmu y {10g qyé{*- *i’}'s-]{""(i‘”

[z.1.8)

] (el 4 :
\'ijw'l'“:x] = ix-\z{xh *"J“‘ 5y - xj_l >1og Eai[ {2.1.19)

LI PPN T3 T2 )

This DI‘UCEﬁuI:E of “plugging in® the sample estimates of the !
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unknown parameters into the optimal S;ayes classification rule (2.1.2}
or {2.1.3) is essentially an Empirical Bayes procedure; ses, for ex-
annle.. Maritz (1970). Aitchison, Habbama and Kay (1977} refer to it as
an "estimative" method, in contrast to the “"predictive” method used in
the "pure® Bayesian approach of Geisser [1964) that will be desn.:ribed

" in section 2.2,

Anderson (1953} justifies the use of the sasple-based discriminant
function 'i“ defined in {2_':" 'fi} in the two-population case by pointing
out that it can be written st

Vg = x50 ) -l 40 ) S g )

and thaf the first term ("Fisher's discriminant function®) s the
Tinear ;’\mctfm of % that has the greatest 'hewel\;; group” variance re-
lative o the "within group” varience. He also ap;eé'ls te the fact
that ";t seeﬂ"‘{naufafve'ly reasonable”. '
Geisser (1967) adds further justification by pointing out, in the
two ~ population case, thet the pogterior mean of the population discri-
minant function uy,, defined in (2.1.6), given the training sample end

 pssuming a noninformative prior distribution for Hys U and Eyvé, for

Fined xt
1)

Eugi 151 = 3 bl - 17') + Vi {2.1.20)

where TS denstes the training semple !'xux detoiaangs d1,2F .
Expression {2.1.20) derives from the fact thot, under the above-
mentioned prior assumptions, the posterior mean of

afie) = (=) r.":x = wy)




i
.
o

:

i

i

-1

EC83 (%) |n, 781 = p oy’ + d(x) (2121}

where
! k) = (- xg )5 (k= xy )

This resylt is clearly not cl‘:lrfim to the two-population case, and
the bias in \.1.i and dﬁ(x} evident fron (2.1.20) and {2.1.21} respective-
1y, may be fncorporated into classification rules (2.1.78) and (2.1.19)
by substituting log vy - ,}p ngl for 10g 44, d=1,...,k, in these two
rules.

!
Remsrk 3{2.1 In the situation whers the training samples from the
different populations all have the sane size,

i, nyEh, A PYPRRL

the yias % ptn? - n;‘} in \fm vanishes, snd that in di{:) is a constant,
p 0™} and therefore dues not affect rule (2.1.16).

As & flral fustification for using sample-based rules (2.1.18) and
{2.1.19) 611ek (1972) proves thet, under very general conditiens,
sample-based ¢lassification rules are esymptotically optimal in the
zense that tl;ey converge {alwost surely) to their corresponding poputa-
tion-gased optinal rules (2.1.1). i ]

k= 2 populigtions
This 48 the case that has received the most attention in the Tite=

rature. fonditional on LR and 5,-and latting X be the rondom
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\-af.tér corresponcing to X, ¥ = 't'um has a normal distribution with

€Vl » %0 S5 Xemyd o iy

Fatn, t 0 S, )
and variance
Vartilxg 5 g a5 Xemd = dxy =k sTos M - %)

Using rule (2.1.19) with k=2 and considering the case gy vy " %,
f.d.: “hasign x to m if
' V>0
and to ¥, otherwise, fza.22)
wad drguing in & way similar to that Teeding to (2.1.71) we olitain the

'i'fol'IMng expression for the gonditional probability thit & randomly
chosen sesber of L will be migclassified:
i '

p? = Prmisclassificationsy o %y o 55 Nemd
R TR R R
-0 13 P 1.2

I lxy, ~ %y )" S"‘_gs'l[x‘_ =%y J}

¥

i=1,2

(2.1.23)

John (1961), Hills (1956), Lachenbruch and Mickay {1968),0unn {1871}
Sorum (1972a), Mclachlan (T874a, by ¢, 1975, 19763, b)
have studied the conditional error rates {2.1,23) (termed the “sctual®
error rata by Hillsj, N

A sfople estimator of Pf- ¢ 1=1,2, 15 obkained by replacing uy and

- T respectively by xg and § in (2.7.23), This yields:

. an.




=

R O O 1) . (21,20
were <y =t <) S0, - %)

Glick{1972) proves that this “apparent error-rate" &(~%} converges uni-

* formly to the “optimus” error rate 4{- g«) given in {2.1.71} as the sample

size5 ny and n, increase.

Howaver, for moderate sample sizes {ZJ,?._QE may be badly biased
and give much too fayoursble en itjpression of the probability of error,
Hills (1956) proves that:

£ro(- $1 < o{- ) < erely

snd Dunn and Varady {1566) ,\' Lachenbruch and Wickey (1368} and Dunn {1971}
show empirically tMt this bias may indeed be substantial for modersts
sample sizas. ]

Keclachlan (fl??#c} gives the fol'!w'lng estinater of P.I » with bias
of urderauimhsmt to (ny', n2 vy where v w gy enp -2

# -.p(-%).u{g-:f%;—};%a(4(@-11-:1’;;}402. {2.1.25)

(0, denates ﬂm;bem of order 2 with respoct to (u‘.i-I ' n\?, s
is given explicitly in McLachlan (1775).)

Witite "the conditional error rates are of intorest in assessingithe
performonce of a particular discriminant function, the um:und1tion;\ ar
expected errar rates, obtiined by considering 0 Ky, and 5 as random
variables, are more appropriate when considering the expected parfor-
monce of the saople discriminant function V when based on randomly
thosen samples oF sizes fy and N, from my and vy , respectively. . i
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Several authors, including Dkemoto {1963, 1968) Hills (1866},
i Laghenbruch {1967, 1968), Lachenbruch and Mickey (1968), Dunn {1571,
: Sorum (1972h) and Anderson (1973a, 1973h) have studied th. expected error
i rate when the szeple-based :'Iasstficat‘]un. rule (2.7.22) 15 used.
' ’ Qkamato {1963) obtained an asymptotic expansion for the distribu-
: [ tion of the sewple discriminant function V. Applying this to the classi-
1 fication rule {2.1.22} and assuming equal-sized training samples
":I =ny =1, yialds the following expression, to terms of order n'a.
for the expected prabability of misclassification for & randomly chosen
nenber of Ty I

\ . P? = Preisclassification|ny) = ¢ (- g]-u {%)%[zg—i-% s

(2.1.26)

S {Okamoto also gives a (very compljcated) expression for the terms of
: order n'z,J “
Andersen (19733, 1973b) derives an alterpative asymptotic expansion for

vV in the "studentized® form which, for ny = n, = n has the form:

: Voo < :
& r[-{-—_—_ s rl-,} <o) + o) T[22 - by oo
o) Coqaen

___;xpmiswn {2.1.27) 15 useful when one wishes to choose the cut-off
point for ¥ for classifying » into ™y 50 48 to achieve a g-lm probabi=
Tity of misclassification. (Andarson (1973b), Mci.ad'lnn(w??}} !
. Laéhﬂ\bruch and Mickey (V968) use a simulation study to compare
lhe“wrfomnns of & nunber of estimators of I’? and P‘i’ inciuding
Okamoto's+ expansion with two differant estimators for &, and a distei-
. hution-free method proposed by Lachenbruch (1967) based on a sample : 4

rouse approach,




k > 2 Populations
Bs in tho case where the parameters are Iu;wn. the multiple popula-

tion problem has received far Tess attention then the two-population
probTem.
Mckay (1977) has considered the problem of variable selection with-

- in the context of multiple population discriminant amelysis, and

Michaelis (1973) has performed simlation experiments to assess the

wrror rate of the classification rule (2‘1.19}' based on the Jinear dis-
i

:ripinant function 'i‘s‘ in some sultiple population situations. G!iéh
(1872) proves that the "apparent non-error rate", obtained by replacing
the parameters in (2.1.15) by sample-based {maximum 1ikelihood) estima-
l tors, converges uniformly to the "optisus® probebility of correct
H classification as the semple sizes incroase.
: Assuming equal prior prwabi'lit!es a5 ® Wks i=1,... .k for the k v i
populations, classification rule (2.1.19) becomes: '

" Rssign & to ny where,

40 2 40 ]

where dh(x) ® - xg 30 ST 8 ) (2.1.28)

i KEmy . Tetting ¥ be tha random varisble corresponding to x and

[ “considering A and § a5 rondom variahles, i

v nglng + 1) ) ~ o, we bl (2.1.25)
Ia. " and . i
L : 1
¥t n‘i{n‘_}*'l]']_-:djl)‘.] =fp gopelhyy)  (2:1.30) , 4
] l- b
- 4 ’
£ =
. &
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whete,
; . fp’ y-pai denotes the central, unnorsed f-distribution with
Ioa p and w-p+1 degreas of freedom,
fp‘ v-p+ 'I(‘\ij‘ denotes the corresponding nancentral distribu-
. tion with noncentrality parameter
v W =1 ;2
4. A” - nj{n‘1 +1) :ij
i and oy lag =gt 2ty )
{See, for example, Gird {1977) chapter 7).
i So the probability of correct classification using rule (2.1.28)
;' : and given Xewy and be written: ’
. ]
. . Pleorrect classification|xe 7] = Przg < ‘,1"'“1( aJI {2.1.!1;
i g-‘i
whare,
t s v gng +1) z ~ 1
. 1(ng 17 Tp vopn
: i -1 =1 R .
. : wTinglng e )7 2y~ P,v~P+'I:AiJ‘ 31500k 3=
i T .
4
i and the z,, 1#1,...,k are not independent random variables, due to the
fact that ¥ and 5 occur in all the d;{)(], Joleeaaak o
i .
M = To evaluate the probability on the right-hand side of (2.1.31)
| reguires the joint distrioution of k correlatad random variables, k-1
2 ¢ of which have noncentral f marginal distributions, the Tast one having
j a central f marginal distribution. This problem has recefved little,
' 4f any, attention to date,
CocoulTos (1973} gives the following Tower bound on the minfmus
probability P, of correct classification using rule (2.1.28): )
P2 E bru s o-psim oo™ B -k (2ra)
0% jky P 4 (V6P “ {2.3.32)
sy e
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where,
z; denotes a (normed) F - random varigble with p and (v-p+1)
degrees of freedom,

o= min &L,
P vieg W

and ng ® 1.

2.2 The Predictive Bayesisn Approach

Given-the training sample TS = £ EERIPPRIUE SE ) PR )
from k populations T t=T,ereuk and an cbservation ¥ of unknown origing
tha Predictive Bayesian approach consists in evaluating the posterior
probability, given TS and tht undarlying mode] together with any known
parameters, that x belongs to v for r =1 %o k, and then assigning x
to that population for which this probability is the greatest.

More specifically, suppose that each L Toernak is s'pac*ﬂad
by # probsbility density function f{-ler,t‘- s where 0 45 the set of
unkm:n parameters and §, the set of known paraveters {iF any), Llet
6= \.l1 a and g = u] w be the sets of distinct unknown and known
parameters, respactively, in the k populatfons. Denoting the joind
prior distribution of o given 9 by o(g|#). then the predictive density
of x given the treining sample TS, ¢ and assuming that x comes fros T

isi

TS, 4, m ) = L #xle,0 9, )7(01TS, w)do (2.2.1)

whare P(E|TS, ¢) is the posterior density of 0 given the training
sample and 9, and is given byr

F(B|TSs w) = 4(75(8s ¢} (84} {2.2.2)
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where ${T5|8, ¢} is the joint 1ikelihood of the training sample.
When the x“ in the training sampie are ramdon observations then
£{Ts}@, §} becomes:

kM
HTs[e, 9 = 1 L Flxgleg ) {2.2.3)

Finally, given the set g = [q‘, i=%y...,k} of prior probabilities that
* belongs to LT i = Tyeeask, we obtain the posterior probahility that x
belongs to Tk °

PLx € 1|5, 40 al=g, FLXITS, 4 =) (2.2.4)
whare the constant of proportionality {s obtained from:
k
21 PLx !‘_rTS- Pl =1 (2.2.5)
r=

For the situation, considered in this thesis, where all the parame-
tars are unknown @ priord, all references to ¥ and § are deleted from
formulae {2.2.1} to (2.2.5).

Gaisser (1964, 1966) gives formuloe for the posterior probability
given by (2.2.4) for the cose where the vy, 1 = 1,...,k are each charac-
terised by & univariate or multivariate normal distribution and pssum-
ing @ moninformative prior distribution for the unknown perameters .
Different formulae are given for each of the various possidle sssumptions
about the parameters of these distributions, such as whether they are
known or unknown and whether or hot some of thes are squsl for 211 k po-
pulations, ’

For the case of interest in this thesis, viz, unknowniand different
mean vectors, and unknown but common coveriance watrix for the k popula-
tions, Gefsser darfves the following forulae for the posterior probabi -

= —
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ity that x belongs to m., given the trainipg sample T5. L

For the univariate case:

’ AT a L, =xp y-a(N-Re)
PLx € wr|TS,q]“q‘r{»r—:!-] {I + m } (2.2.6)
™

where,
s? {5 the pooled sample veriance

and M= n,
™

and for the multivariate (p-dimensional) case:

) n. 3 nfa, %) s1ix %) -3 {H-ke1)
P TS, abeg, o] [HW_
¥
(2.2.7)

uher\ 5 is the pooled sample covariance matrix.

“Remark 2.2.1 Fectors of proportionaiity that do not affect.the probabi-

Tities have been ouitted from expressions {2.2.8) and {2,2.7) .



254

apter 3 Distribution Theory associated with Classical Discrisinant

ralysis under the Random Effects Madel

In this chapter we consider some of the distributions that arise when
applying the ranéom effects mode] to the classical theory of discrimi-
nant analysis.

A5 mentioned earlier, our concern is to fnvestigate the characte-
ristics of diseriminant anzlysis undar the randem effects model. In
the classical approach this nvolves assesaing the performance of the
classification rules derived from this approach, as described in
chapter 2, when appiied o problems where the k populations have
emanated from a random effects model. Thus we are conrerned with the

performance of future classification problems; once the
have been chosen the vmbtén becomes a more conventional one of classi-
fying observations of unknown origin into one of k fized populations.

The assumption underiying the random effects model is that the k
pepulations in any particular application have, in fact, besn drawn
from the same parent population. If we know the paraseters of the
parent distribution then we should ba able fo assess the expected per-
formance of any future classification problem involving k poptlations
randomly chosen from it, (Clearly, k ey vary from one application to
the maxt),

As mentioned in ':'haptw Ts we assume that observations fivm popu-

Jatfon § have a llp{u{,:i:] distribytion and that different yy are inda-
povdent realizations from a Npt#;,r} distribution. Intuitively speak-
ing, 1F T 5 in some sense lerge conpared o E, then ve would expect
discriminant analysis to perform well, If not, then we cannot expect
very relisble clasgification.
Move specifically, it T s large compared te K, then we would
| expect that the bahalancbis distanca:




7

8=t =) 1 (g - up) (31

between any two randomly selectad populations L and wj would be large.
As pointed out by Das Gupta {1372), the probabilities of correct
classification under a large class of classification rules {including
those considerad here), based ®ither on known or estimeted paramsters,
are mnnt?_ntc increasing functions of the ‘5§j’ and 0 we would expect
reliable classification under these circumstances.

This fact iz also evident Trom the various expressions involving
sh for tha'.pmb'nbil’ities of mis - and correct classification under
the classical approach, as given in chapter 2.

Under the randos effects mdkl &7, fs a random variable, and 1t
s clear fron the preceding discussion that fte distribution is of
central {mportance in understanding the characteristics of diserimi-
nant analysis under this eodel. The distribution of s;j 1s thmfor.e
considered n section 3.1.

Another distance measure appearing in the classification rules
described in chapter 2 is the Mahalanobis distance between a new
abservation X and the 1 population L

gix) = (e =)' 2= wy) {3.2)

As mentioned there, the Bayesian classification procedure, when the
parametars are known and prior prnhabi'liﬂas.'@n equal, is eguivalent
to classifying x into that population m, to Hf.iloh it 1¢ closest in
terss of af(x). Although &3{x) does not sppear ‘,". any of the formulas
for the probabilities of mis-and correct classification, its distribu-
tdon under the random effects model 1s of interest because of the
insight it provides inte the relationship between the parameter values




and the 1{kelihood of correct classification. The distribution of
ﬁa{:(}. where ¥ is the random varjable corresponding to x, is considered
in Secl,f‘oﬂ 3.z

The sample equivalents of &3y and 83(x) are dy and di{x}, res-
pectively, where:

a3 e g, - %) sy, - %) (3.3}

) = (- k) s - %) - (3.4}

These two quantities ere important in the classical approach to discri~
minant amalysis when the parameters & and g, $=1,...,k are unknown and b

are estimated from training samples. Specifically, djj appears in some
' .. of the expressions in chapter 2 for the probabiiity of misclassifica-

tion {conditional and unconditional} wheo the “plug-in" classification
1 ruI;s are used. In turn, Eheae "plug-in" ruies, when the prior proba-

bilities are nual.. are eguivalent to a minisum distance classification
rule in terms o\'; the df{:}‘

Under the random effects model both H;i and d#(x} are randos
variehles, firstly because of their sampling distributions, and second-

Ty because the underlying papaseters p, 191,....k 1 these sampling
distributions are themselves random varfables. Thair distributions ere

considered in section 3.3 .

3,7 The Bstribution of B%L ) :
" We now investigate the distribution of shqp' - uj}'x“"n‘i - ".i} '

s Amdar the random effects model; ’ ! o
& g

N
H



i.e. where By and "j are independent reali:ati?ns from a H’Ffe, T}
distribution.

Bacause 1 and ¥y are assused to hive bazﬂ mnﬂoilv .u1ected from
a1l possible combinations vepresented by the palr of 1nd|cus [1»:[,},
Jelseoank; 1wj, the distribution of Ei.f uill not depend on the values
of § and j. In this section, therefore, the subscript if will be
omitted and the notation §7 = tsllJ will be used.

It will be assumed that ¢ is a symmetric positive definite matrix
and that T is a symetkic positive definite or semidefinite matrix of
rank r 5 P The case where £ §5 not of full rank will be given brief
cansideration.

Tha pain result of this section is given in Thesrem 3.1.1, in
which the distr_ibutinn of &% 15 exprassed as a sum of weighted chi-
squared random varjables,” The remainder of the section will be devoted

.#iﬁD ?? properties of this distribution, and in particular to cbiaining
ste:n’;r';e.ssiorls for ths density - and distribution functions of &%,

Theorens 3.1.1

Let Aj = &y 2o0az A, > O be the r(sp} nonzero edgenvalues of el

Then &% 15 distributed Mke:
2§
gV,
T
wheve: the v, are independent x} random varisbles.

Remark 3.1.1  This theores is an’y iedlate consequence of & result

_given by Sox (1954), a proof of which 1s given 1n Johnson and Kotz (1970h),

pages 150=1,  See also Ruben (1982). Howsver, becsuse of its importance
in this thesis, another proof, s11ghtly dfFforent from those mentioned

e

i
§
b

T sl
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#bave, is given here.

a .
Priof; Let X = By Ty Then ¥ ~ nn{u,ar;, Let 7 = 1,73 where Ty is
the [p » r) matrix whose colimns are the r orthonormal eigenvectors

corresponding to the r nonzero eigenvaluns of T sultiplied by the squara

root of their respective wigenvalues, and let X = 2 '!11 . #
Then T -I-Illr.{q.l,,,), and
@=prhezr ez w
were ¥ aTyE T
We can express the {r « r) spometric matrixV in the canonfcal Fform:

a 1

S 4
Vepab L

where & s the diagonal mah:tx whose diagonal elesents e the efgan
values of ¥, and P is the erthogonal matrix whose eolunns are the
corresponding orthonormal eiganveciors of V.

--.Hu_ung that: o

elgs (V] = aigs (7] 570 7)) = edos (1,7} 5710 = algs 4T £

we have: )
Be2ZVZaRT PARZ=2Y n=zé] 3
where:
Yoo (fgeeensty)’ = P T B (0,1}
and {1\1; i8l,.00ar} are the v nonzero efgenvalues of T!."1. The result
fnn"".fn!'lms from the fact énat 'i = yi s $7lau0ar 5 are indepandantly
and ideﬁti?ail:.r distributed x} ranéa:a varishles.

Repark 3.0.2 The result still holds 4f & is not of Full rait and &'

denotes the Moore-Penrose unverse of T . {see for example, Grajbd
“119763.7 Tn this case the summtion goes to ry where 1y = ranlc{T:"}.
A3 an immediate result of Thoorem 3,1.7, we obtajn the following

(W)

e,




“

exprassion for the cunulants of &% :
kg = 2257 s1)! ig: ¥ sel. ),
In parr.lcl_.l'l:ar. the mean and variance of &% are, respectively:
. .. . :
6N = K = 2151 =2t (3.1.2)
and

r
Ver (6% =k, =8 fi] A = ar(rr Ty (3.1.3)

The distribution of the sum of waighted, independent chi-squared

vandos variables has received considerable attention in the 1iterature,

afd infinite series expansfons for the density and distribution functions
have bean cbtained n the ‘Fol Towing three forms:

{1) as Power series

(i1)  as Laguerre series
and (i1} as mixtures of chi-squared distributions.

Good reviews of this work have been given by ¥otz, Johnson and
Boyd (1967) (with dewivations) and by dohnson and Kotz (19705) chapter
29, In the special case whe'»e the eigenvalues are all of even multi-
plicity, finite series expansions have been obtained. (Rebbins (1948)
and Box (1954) ), A vecent article an the power series axpansion has
been written by Davis (1977). ’

The simplest approximation to the distribution of the Sun of
weighted, independent chi-squared randem variables is the scaled chi-
squared appraximation proposed by Sattarthwaite {Box, 1058}, Other,
more accurate approximations have been considered by various authors,
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a.

1
» recent article on the subject being by Solomon and Stephens (1977).

Hisever, in view of the satisfactory computatibnal experience with the

avaluation of the exact distribution s 2 wixture of chi-squared dis-

 tributions as reportad later in this section, these anvmri:g;tiuns were

not considered in this thesis,

Robbins and Pitean (1949) derive - tha digtribution of the.sun of ¢

weighted, independent chi-squared random varisbles as an infinite ciyi-

squared series, Letbting
ve i f )
= wy Vo oma, f oA ¥ ' 304
[ - R {

wheTe,

ay au_z Eaao >0,

WL YRR = RO W
and Ny x;{ independently, i=l,...,F ,

these authors show that the distribution function of ¥ can be exurassc;{

F, - ' 3oy 1.5
y(¥) jgo € Bupglifey) {3.1.5)

where, .
e r
Bgpql") 16 the ":!ZJ distribution function, v = 'Ej vy
and the eonstants ¢ are defined by the fdantity:

r=1 =jvy 4 -5y . = g B
m 1-{1= " Fa .6
o a0 {1-{1-ay be) 1};'0 4 {3.1.8)

They also provide convenient recursion formulae whersby the

W




:3 may be computed.
+  Ruben (1860}, considering the case where uy . 15 f=)s..0r (the
case of interest here) derived the following generalization of {3.1.5):

-
Fyly) = ,120 €5 8,4 2510/ {2.1.7)

where B is &n arbitrary positive constant and the constants C4p 25 in
{3.1. B}, are defined by the {dantity:

T (e -gagnt < T oot (3.1.8)
21 ' 50 4
The follewing recursion formulae for the ':J are also given:
£ (arog)h
¢ =
CI Bl

J-1
1
=?Ii£'uh o dzl

r
where by = 121 {1 - 8/ag)d (3.1.9)

Ruben (1960} proves that for any & > 0 the serfes (3.1.7} is unforaly
canvergent in any bounded y-intarval of ¥ > 0, and uniformly convergent
for 11 y » 0 if § is chosen so that _ max i't-sfujl(h He also

=l yaaist

suggests that the value:

B ooy o (o + ) _ (3106

msy be close to the optimal chojee of B as regnrds the 'q{tu of conver-
gence of the infinite serdes (3.1.7). . 1_




Remark 3.1.3 Far t:.l.?l to be 4 true mixture distribution the 1:.i

must be nonnegative and T ¢y = 1. Ruben {1960) shaws hat, for
0<gs 3 these criteria are satisfied, so that (3.1 J it & mixture
distribution. (Here & ’“r]" Far the chaice of £ in {a..'l.!u}, (33,7

i : may or iy not be a mixture distribution, depending on the actual values
Df,lﬂ\e o0 IfFg>r (t§1 A;.I]'] then (3.1.7) 15 not a mixture distri-

3 =
butisn.

The denstty function of ¥ s, frem (3.1.7):

= -1 K
fyly) =B jgo €5 Srezyt¥/8) {3.1.11)

: where gnzj(.} is the ;(;'_'zj density function,
i From Theorem 3.1.1 the distribution of & has

ag = 2hy and wo=0,  d=lLp . {3.1.12)

: s its distribution and density functions may be expressed as {3.1.7)
1 (or as {3.1.5)) and {3.1.17), raspectively.

: A major simplification of the distribution of &% results wher ]
i Ap=h, dsl,.r For then, by the additivity property of the chi- : 5
squered distributian: Bl '

s~ oyl {3.1.13) | 2

iy,

Ky . . - - -

4] sincs (00 = wigs 0213 = edgs 77 T AV} vhare £ o AR, and K
4

B

TA

i

is a honnegative defiafte symetric matrix, this could Eu'ry wealr whent

i .
PR

or T =MBA (3.1.14} N




E
i

where B is a symwetric {dempotent matrix of rank r. (522, for sxample,
Grayhi11 (1976), Theorem 1.7.2).

For r = p {{.e. 7 15 of full rank) condition (3.7.14) implies that:

Te=aATA" = 38

f.e. that T is a sealar muitiple of I,

As mentionad earlier, the probability of correct classification is
& monotonic increasing function of §°, Therefore, for reliable classi-
fication we require the value of &% to be as large as possible, In
terms of the distribution of &%, this implies not only that the e:.pn:-
tation of §* should be Targe, but Also that the probability of low
vatues of &° be Tow, ‘

Therefore, using Chebychev's inequality, a criterion for establish-
ing whether classification is likely to be reliable (in the sense that
the probability of corvect classification 15 Targe) could be based on
the expectation and variance of §%; a high value of the former end a
Tow value of the Tatter indicéting the most favoursble sitvation.

From expressions (3.1.2) and (3.1.3) for the mean and variance of & ,
respectivaly, it {s c'.laar' that this situation is achieved when E Ay
is larga and, given [ Ags I A3 15 as small as possible,

5oy given tE1 x.l = TI‘T:'.I and r = r(t), the best situation is
=

when the 3. are 11 equal, the worst being when one is very Jarge and
the rast small, .Furbhahfum @ grester the rank of T, the better.

1
HES
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3.1.7 Computing the Density and Distribution functions of ajj

In order tohave an ddea of the form of the distribution of &= 81"1.
its density and distribution functions were computed using (3.1,7),
. (3.1.11) and (3.1.12) for particular sets of efgenvalues (i} of il
! " To do this, twa Fortran subroutines were written:
CONSTS computes the constants £y using formulae (3.1.9),
and CHISER computes the chi-squared density and distribution functions,
1 using formulae (2.3.1) and (2.3.2} ir Johnson and ¥otz (1970a) for
f the latter, for degrees of freedom starting from v and going up in

a

steps of two for as many terms as necessary to cbtain the density
g -, and distribution functions of &% to the required level of accuracy.
' (See {3.1.7) and (3.1.11)}.

Finally, using these two subroutines, the density and distribution
fimctions of &% were computed in a main program for values of &° going
up in equal steps from zero to an appropriate upper Timit. Subroutines

CONSTS and CHISER are given in Appendfx 3.2,
Using r = 5, three differdnt sets of eigenvalues, all with the

same trace, were used, namely {11, 1, 1, 1, 1}, {3, 3, 3, 3, 3} and

i
|
i

1

3

{8, 4, 3, 2, 1}, representing two extreme situations and one in the

siddle, respectively., Table 3.1.1 below gives the expected value and
standard deviation of &* for each of the thres sets of eigenvalues,

Table 3.1.1

Lase Elganvaluee Ersl] _f-_[q_[;a‘;

(2) 1,000 .0 e [
{b) © 33333 30,0 9.0
(e) 6,4 32,1 30.0 2.0

Figures 3,1, and 3.1.2 give the density and _distributhm functions
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Figure 3.3.1 N

Density Function of &*

+6

Fiqure 3.1.2
Distribution Function of &%

L

;
£
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of 4%, respectively for each of the three cases (a), (b) and {c). From
them e clearly see that the remarks concerning the relative magnitudes
of the Ay are borne out in practice,

For example, considering the twe - group clostification probles, we
have from Chapter 2 in the case where the parameters Wy by and ¥ il
be known and the prior probabilities are equal, that:

Penisclasstficatian] = o= 4,67 ), i
Suppose now that we wish this probability to be less than .05. This
means thnr. 3 r‘é;mt he greater than 1.64,

fee.: g% >(2 4 1,68)% = 10.75

From Figure 3.).2 wa see that the probabilities of this occurving
in any fUture classification probability are‘l!_,‘N; ©0.88 and .86 res-
pectively, for cases {a), {b) amd (c}.

3.2 The Distribution of &}(X)

Using the distribution of s“ obtatned in Section 3.1, we now obtain
the distribution of B%{K} w (K= uiJ' I (X-w;) under the assumptions
given that saction.

Cluariy the distribution of Gi(!) depends on which of the k popula-
tions X comes from, so we consider first the situation where X is from
“iq

It follows immediately from the properties of the multivariats
narmal distribution that in this cose 63(:) has the central chi-squared !
distribution on p degrees of freadom.

fiee 8100 Kany ~ 4} {3.2.1)




i
1
i
1

3.
Shen X coses from g, §w i then, conditione) o 6t = a3y =luy-u)’
P (g=nghs 84{X) has a noncentral chi-squared a.-_istri'hutiuri on p
dugrees of freedom, with noncentrality parameter 6,

{0 5?(!}|Xnnj, &2~ x",(s’} {3.2.2)

Therefore, using the notatfon Z = ag{x;, we have the following re-
presentation of the conditional density function of sﬁx) as & mixture

of central chi-squared densities:

= 25 g ed
£ (alXen,, 6% = T L2817 b6 [z} (3.2.3
) i oy Spizs )
i 2
whera gﬁ?ﬁtz} is the density function of the X‘P'ﬁ distribution.
Tha unconditional distribution of z is now cbtained by integrating

f zfxcme, &%), as given in {3.2.3), over the distribution of 4% .
6:(!}{ [xemg, 8%) £ { }s

This s done most cnﬁ;anfanﬂy by using the fact that conditional on &
the distribution of ¢ 1s a sixture of a central chi-square distributions
with p+ 25 degrees of freodom where the wixing is done over the veris-
ble 5 which, as is evident from (.‘;.2.3}. has & Pofsson distribution with
parameter 36 . N

Since only the distribution of § depends on &%, its unconditional
distribution will first be obtained and this wil) then be substituted
into (3.2.3) to give the unconditiona) distribution of z.

©  rsese [ psse e (st (a.2.4)
. o &

where,

5 - ']
Pes u s|gy w L) 406
]
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and F a1‘,5“) 15 the density function of &%,
&

Using expressions (3.1.71) and (3.1.12), t :{sl} can ba writtan in
. &

y -
1 the following form .
i A
1 I.T ¥
” 2
felt Y=s 1‘3; € 8,,p5(8%/8) (3.2.5)
whgre,
: B {5 an arbitrary positive sonstant,
the cg are given by formulae (3.1.8) with a; = 24,
. (LI
and gp,p5(+) {8 the density function of the x,,.

@ distribution.

Substituting (3.2.8) dnte (3.2.4) and interchanging the order of

. sumation and jntegration (this is justiffed by the uniform convergence
W
of the series (3.2.5) for all &% > O when 8 1s chosen appropriately -
see the comment following {3.1.9))ylelds:

~(hr+i) -1

- c; B )
PS =575 | - _ PO el e Ui R e
[ ”-., JEU PP Lo v L] & 46

The intagral 15 resdily evaluated us 2 gamma function, giving:

1
. !
e sy (reryS (psay) § Sl 3,2.6).
. PsEsd (1.+n 37 (v 1)) JL“A“E—T“{“H; s v (3.2.6).

The unconditional density of z = si{x] is now obtained by replacing
the Poisson distribution by (3.2.6) as mixing distribution 10 (3.2.3),
yielding:

F {zlhemy) = sgﬁ a qus{z] (:p.7)

ax)

o /f . F




- ."" -
z, 5 !
1 ) 1.
J where a, = P(S = £] a5 given in (3.2.6).
£ The mean and variance of &]{K) are most easily ¢ 2luated from expression 1
:: (3.2.1) when Xy, 2nd From (3.2.7} when Xex,, §=1. For the first ¢
I cass we fmmediately get:
i :
; ELET(H) [N em 3 = Eydd 3.2.8) " ;
i L) (X em 3 = Exg1 = p (3.2.8) i
i " S !
} and ' i
1 i - . b
i © Varfa(X}|Xemy] = Varcydl = 2n [ERE) :
F % i
B For Xew, J#1, we use the following well-known resylts on conditional N
7 '," expettations: .
w SO i
g 5 ' - 83X = ELEER(N)|s1] (3.2.10)
PR and b
VA .
- Var[8}(4)] = Eglihr[s:{)t)[sJHlVarsl_Ll.a%{st]J
: (3217}
. whers £.(=] and Var [+] darote the expectation and variance, respective=
. | y .
. 1y, of =, taken over the distribution of 5. How, frem (3,2.7). condi- '
i«‘._ j o thonal on S & s, 85(N) has & ’F:»?s distribut.if:n, whonee :
; . . ' [
} : ELoflx)|a] = peis [ g
-y and \far[.s;{x]ls:l u 2pt 45, H i
] e 3 b
EAE . 4 1
et ) L
T Applying these %o (3.2.10) and {3,2.11) we get: )
ELa}(X)D = E[p+25] = p + ZE,[8) " (3.2.12} I =
i,
2, .‘-'i x
. i
Ly
“ ‘
Y i;’f\ 4 .
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¢ and iarré‘{ﬂ] = ELp+48] + Var Lp+ 21

i

«2ia ELs] + 8 vargls) (3.2,13)

Furthermore, condftional on §* = Gij » § has a Foisson distribution with

with parsmeter 8%/2, so using the above results on conditional expecta-
tions to find the mean end variance of 5, we get
[y K -~

- 2 8 .l.a 1
Els) EGQLEI:S“ 11 = lﬁa j 7 2 })E‘] ;\" from (3.1.2)

- 2
g§_1 By (3.2.14)

and \_fg:-[s] = E (Yar(s]a*3] + Var 2|:E|:s|.s=]]

§ !
SRR --

P 2l fa ries T a2 from (3.0.2) and (3.1.3)
B B e
E b i A2 ’ (3.2.15)
. . v .2
t O = B = :

satly, substituting (3.2.74) and {3 2, 15] into (3.2.12) and (3.2.18) ' B

il siwﬂ'wns‘ we get

r
Ay [3.2.16)

ECS5(X) [Xew] = p &2
il e 3 P._ *;.‘] S

r r
Yartg}(t)|Xeng] = 2p 4 al‘g e b ;;}‘:. [3..2.1?) '

Mthmh the uniferm convergence of expression {S 2 ?}
for the wnniw of s‘(!]]!: 5 1z difficult to establish divectly, the
exisl.m:e#;r the (finite) expectation {3.2.15) {mplies it, by the . b




i

4.

integrate under the suamation sign in {3.2.7), yielding the following
expression for the distribution function of &jX}Xex;

Paj(x) = zl¥ewyd -sgu 35 Gy pel2) (3.2.18)

where, N
P + 25 {z} is the xp+2! distribution function and LA PLS = 83 is

given in (3.2.8) .

Remark 3.2.2  Comparing expressions (3.2.8) and (3.2.16) and recaliing
ma* is classdfied into that population Ty for which 6‘{:(} 15 & mimimus,
t.1aar1§ demnstnus tha importence, for reliable classification, of
ha\mm [ Ay = ?:-{?r } as large &5 possible. Furthermore, as in the

case with 6i:; , exprnssiun {3,217} for the varfance of 6“(){”){. w5
r
shows that, foo given E LY E 3} should be as small as msthle,

f.e. the A should al) ha equal and = riT) should be a5 Targe as
possible, for the sost reliable classification,

3,2.1 Computing the Censity and Digiribution functions of &7 {X)

As in Section 3.1, tho density and distrioution functions of §7(X)
were computed for particular sets of parometer volues, using {3.2.7},
{3.2.7) end (2.2.18), Tha constants L given in {3.2.7} and {3.2.5}
ware computed using the Fortran subrowtine CONSTY, given in Mppendix 3.2,
and the chi~gquared dunsity and distribution functions wore conputed

., using the subroutine CHISER, described in Sgetion 3.7 .

The same three sets of efgenvalues as used in Section 3.1 were
used for the distribution of s:l!llut" and the distribution of
85(%)]X ey wos a)so computed. The expected value and standsrd devia-
tion of 6%(1{! Fgr each of these casas are given in Table 3,2.7 and the
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Figure 3.2.1 |
Donsity Function of §§(X)

Figue 3.2.2
Distribution Function of 6%{!}

T T T
L] &0 o0 120 140
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i

density .and distribution functions are given in Figures 3.2.7 and 3.2.2,

respactively. .
Table 3.2.1

¥ Marrsi(n)
Lase Elqenvalues EL85(X)1 argsd (¥)
@ Xm0 5.0 3.6
(b) Xkmy %53 5.0 221
(i Xem 54,5210 35.0 2.9
(d} Femy 5.0 1.2

As in the previous sectjon, these Figures confirm the general re-
parks, made under Remark 3.2.2, regarding the desirability of hoving the

Ay as close together as possible.

§ 3.3 The distribution of d%j and d§ [£4]

In this section we consider the distributions, under our random
effects sodel, of the two statistics d‘fj and (X} of interest in dis-
criminant analysis when the paramaters ug, f=F,....k and £ are unknown
and have to be estimeted frof a training sample,

Specifically, suppose we have the traiping sampie:

Aigor Bheeadty o Tk

from the k populations L t=1y .0k, wheré the ¥y are p-dimensional
random vectors.

Under tha assumptions emumerated eorliice:

¥ig = Mliug, £} dndependently, V4.3 .




4.
As usual, the maximum 1ikelihood estimators are, for u., i=l,....k

§oax ey 1al,0. 0k 3.3.1
BpE Ry =y '121 *i3 reees 3.3.9)
0
and forE (corrected for bias):
fesev? |7 } )
E=5=y (ng e = %y Mgy = % ) (3.2.2)
TR F I Ui < U
k
where v = F (ng -1}
i=1
and from standard multivariate normal theory we know that:

Y Kg, ~ Bplugs n] B} A=l independently
anrd . 3.3.3)
BT UP“:’ ¥} independently of the x,

wiere HP(z, v} denotas the p-dimensional Wishart

distribution with v degreas of freedom and

perameter matrix | .

.« The two statistics are defined as follows:

dy wlny, - ) 5‘1(“1. Sag) o bdELeats B (3304
and

) = (% - i )’ sk = %) tlink (3.3.5)

. whare X 45 a random observation from one of the L f=lynk o

i
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CMe il ﬂm consider the distribution of df,. From (2.3.3) it

i
follons Iumedfa taly that:

~ Boly = g [n i ]

non
and therefore that, .contitional on u; = uj, [——E;J-] di; Follows s non-
S Ay
centI_'l p-dimensional Hotelling's T* distribution with v degrees of

free (5ee Andarson (1958}, chapter 5 or Giri {1977}, chapter 7).

Thersfore, conditional on al,

; [n—iﬁ?j-] 11’-:2‘—’-) Bi~FpveprTiat)  (3.36)

where,

ot “[T:’:i‘.;ﬁ{;] {Fi - llj). :-](I(i - \-‘j)
fi, 0
[n‘.’?r%] &

and vy, v, 28 u‘; denptes the noncentral F odistribution with uy and vy
. degrees of friedon and noncentrality parametar a?,

1t will be more convenient in what follows to work with the
wnnormed noncentral fedistribution, f{v, gi a?)(s2e, for exasple
G.R. Reo (1988), pp 175-6), so if we fot

] n,
_.f g= [E_L-L} &, (3.3.7)
ther, condftional on of,

2~ f{p, v=p + 13 a®) and therefors has dansity




function:
- 5
flzla®) = SEOD?‘;-Q o Iy 26, veps 1@ {3.3.8)

where

. r{g{v+ 1)+ 35} A prs-l
9+ 25, v-p+ 1) = T FESIIE SRR PTHELEE

(3.3.9)

is the demsity fiaction of the central unnormad \'-d'lstr'!i:u.tinn with
p+2sand v - p+ ] defrees of freedom, which we will dencte by
flos2s, wop ey

To obtain the unconditional distribution of » we now integrate

fz(z|u‘) over the distribution of

whard the distribution qF.B’ ] af‘f is given in section 3.1 . As in
section 3.2, we note from (3.2.8) that the conditicnal distribution of
z 5 a mixture of unnormed f-distributions with p + 25 and v -p + 1
degrees of freddom. where the mixing variable S has @ Poisson distribu-
tion with parareter § ul. Hoting that the density function of o is,
t.‘mnl (?;..E.Ej.'

. g ni -l: [y =1

fal "‘i*"d] fs'{uzi"i*"al )
'n‘ns-I.w_ Jnnp-!
”[a—;*riﬁ;] sy G el [wl;%g] '

{3.3.10)
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it is clear that the un:nndﬂ‘lunai,dfstribuunn off 5 15 exactly the
same as in Section 3.2 , with g replaced by-,1—+dﬁ- . The unconditional
density of z therefore becones:

() = L% Spuzs, vapea®® B2

where, .
gpt 25, v_p”{zJ is the density functitn of the f(p+2s, w-p+1)
ﬁ{strfbutiﬁn given in (3,3.9),
s nen c..r{i r+4s)
n;' =[1'+ [?I':-_*'dﬁj T’(P(S"” ! ID { ]

t [
(B w] Tan

{3,3.12)

and the ¢y Bre given by formulae (3.1.9) with ay = 21' PR L PYTY O
Finally, transforming back to qd using {3.3.7) we get the follow-

) ing expression Tor fts density Function:

] ¥
¥ {dzj] . nﬂ!j-]u Lo, o nﬂ“npnj dial
(3.3.03)

The mean and varfance of ‘ii are also most mdf}l{.\' found in the
wanner of Saction 3,2 , the details of which my be found fu Sppendin
3.1, ylelding:
+n

stafyy = oy [ _;t] pez éx 5 (3.8.18) l

and

R,




B Ry

.
“a

vt i ¥
vt [[ " “j] (w1 )pu[_-—li J ey ’Er \
r i r
4[£] lg] + A{wp-1) R§1 1;} (3.3.18)

The existence of the (finite) mean of dfj pormits integration under
the simmation sign in (3,3.73) (see Remark 3,2.1) yielding iha follawing
expression for the distribytion fumction of_d,fj :

Prddsz} I 0% B, yeprl [{-;;1;%]»“ z] 13.3.16)

where GIHZS. v-p-l':'l 1s the (pe2s, v-pt1) distribution function,

v hemark 3.3.1 For the bolenced situation where the training sample con-

tains the same mumber n from each of the k pupulations, all the rele-
\rant formulae of this section may be simpTified by replacing ny "j{{“i
hf wherever ft appsars, For exaople, the mean and variance of d?

id
hlcm..
,.
- = 2
BLd3 w Erd]] [ ey ]{ + L ;\‘} (3,37
and
Ver(d®) mVarcdl A [i.".'_ll’. -{-‘l?-}. f Ay
:v—p-l}’fv-p-a]
[ 2 T
Lhafeen Fu) o e

fiote further that for large viand n expressions (2,3.17) and (3.3.18)
tand tu the corresponding expreséions (3.1,2) and (3.1.3) for the mean
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.and variance, respectively, of . 613 .

The distribution of e*(x] dapends on which of the % populations X
comes from, - If ¥ belongs to e then it follows femediately from the
definition {3.3.5) of d,lf:(} that [—r]d,‘ﬂ&} follows & central p-dimen-
sional Hotelling's 'I" distribution with v degrees of freedom, Therefore:

[Tn;"l] L_Ltlldg(xnxnr F{p, v=p+1) {3.3.19)

abere F{p, w-p21}) denotes the central (nomed) F-distribution with p
and w-p+1 degrees of fresdom, .

If X belongs to iy j=1, then from {3.3.4} and (3.3.5) it is clear
that the distribution of ¢} ) 1s the same as that for d“ with ns equal
to 1. Therefore, using expressions {3.3.13) and {3.3.16) we immediately
obtatn the following expressions for the density and distribution func-
tions of ﬂ%()‘.}: .

. - -
et Ll U AL S ) S )
(3.3.20)

Pl:d (X) s z]HwiJ = E ¥ EP*EI.\’-PH[[_'"T ) {3.3.21)

WHETE Gy 4 ae yep s p(+) and Boss,umpsl () are defined fn (3.3.11)

and {3,3.18) respc:t{vehf. and n* 15 defined in (3.3.12) with ny equal

to 1.
The mean and variance of d’(l] Tallow imdhuﬁy from (3.3, W! for
the case where X o e

1

hy o
B v s () gy Az




I
i

and
h netlya gy

Varfd2 () [yt = 2 e | T 2000l (3.3.23)

5, et [ b ] (wep=1) (vp-3)
and from {3.3.74) and {3,3,15) with fy = Twhen x & oy ¢
. g+l T Y
y 3. 24!
el wyd = gy ([ Jp 2 B ) @220

. 2t l_:jH [ n‘+i r
'l'firtd%(!}lx LR e [[-—“-1—] (v ”"”["'Tj("'”,i, Ay

r 2 1 r ®
+ 4[ & 1) ey & %) (3.3.25)

Remark 3.3.2  As 1n the case of df; we note that for Targe v and n; the
meah and varisnce of d’,t()(} tend to the corresponding expressions for
83(x) given n ?'qgfm-"a.z. both when X afn; and '"7" ER R A rm view
of this, the remarks concerning the nagnitydes of le A, and IE'I ]

as related to the reliability of classification when the parameters are
knowr, made in Sections3.1 and 3.2, also pertain to the situatien vhen

the classification rules are.basad on I parameters, di d

nithis section, [

Remark 3.3.3  The censtants af in the dlstﬂhulhns of d i3 and
d‘mlxlwi wre the same as ﬁ.e constants 2 in Section 3.2, Hiﬂi m
prrangter B replaced by t“ o ]B {"J =1 {n the case of 41‘[)(})
Tharefore the subrowtine CONST1, u:ad to compute the a, may algo be used
for the a;‘ 50, 4s done in Sections 3.1 and 3.2, the density end dis-
tribut;j_nn functions of di(X) may be computed using a subroutine that _
computes sequences of density snd distribution funciion values for the
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f(p+Es, v-p+1) distribution for valuas of 5. increasing from 2ero )
= B in steps of ona, as done for the chi-squared distributior by thé sub- N
4« routine CHISER,
i
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Appendix 3.1 Derivation of the Mean and Variance of dﬁj

From {3.3.8) ve have that, it

z= [%,f—;i—]v_‘ ‘%J

and

SR

then, conditional on o?, the distribution of z s a mixture of lrmr[pu '
f-distributions with p + 25and v = p + 1 degrees of freedom, wherae S '
has a Poisson distribution with parsseter j o, Given 5 = 5, therefors,
z has the following conditional mean and varfance (See, for example,
John_son‘ and Kotz (1970h)):

st:1s3~?;,—‘,,'-',i"1n-‘;%_-r+{

TERRY
L]
and
Varczle] = 2pHaivits] H 142 N
T ) T T )
(h2.1.2)

Usiﬁs {3.2.14), (3.2.75) and the relationship between o® and Gh given
above, we immediately get:
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sm..[—mi,_ & 5: . (4 3.1.3)
and .
. ;
Var(s] = ["1”‘ E g+ z["i”u] IE‘ I (A 3.1.4) 2

We now apply results (3.2.10) and (3.2.71) ta (A 3.1.1) and (& 3.1.2)
to obtain the momditimi nean and variance of z.

EC2] = E,LECz]s1) = {-ﬁ'i 181 g i .
[rj—rl{p + [n NJ] I3 (sl
Var[z] = [ Warfz]s1] + Var (Elz1s1]

e (sfv1) 42 15c:+4£:21 ' :
W'F'U‘!\"F 3 fn:v—J (vm‘]' 3 531} . .

z | S
4[\,_—',_7] Varls] N

Using (A 3.1.3) and (A 3.1.4) and the fact thet ECs"1 = Yar(s®)+(E[s1)? W
we get, after a 1ittle simplification,

. ng N r
vartz) = B o) + 4[] o) 3y

{u=p=1)3 (v-p-3)
o] [ o) e f o

{4 3.1.8)

P
()
@
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E o
Finally, trensforming back m_a;j we get:

. I|1+l|1 - n +0n .
Hq‘i}%{”n‘ "j] vELz] [u_-p:T][ —-—1,, wr ]p 2 E A ] A 3.1.7) A
and )

\far‘[d‘r - {_ni_%i]' w? Varfz)

> P 2t gy I oy r

' (v-p-1)*(v-b-3) { [ s } oy ‘“ ‘[ L] ] LAY
A _ (1] . §
i +4 \r£1 15] + d{v-p=1} 9}‘ J\l} (A 3.1.8)
I
o
E fri
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Appendix 3.2 . Fortran Subroutines used in computing the Density and
D-Istribut1on Functions of s” nd 830}

SUBRDLTINE CONSTS( NORD (BETASEIGS 2CVEC,RETOP. NT ERMS . ERROR )

c
S .
€ SUSROUTINE TO COMPLTE THE CONSTANTS C{J) FOR THE DISTRIBUTION DOF DELTA, '
€ USING FORNULA (3.1,91. =~ THE BARAMETERS ARE:
€ noan"- Na, oF glcEivalims, = PETA = PARAMETER SETA TH FoRMULA tz-hv:.
c e.ras = T VECTOR OF EIGEMVILUES. VEC = THE VECTOR OF COMSTAN
€ NSTOP = CERETANTE THAT WiLL BE CORPUTED NTENS o AETUAL HO
E :ous‘mm’s '-uuwl.'reu. ERRCA = MINIMUM VALUE OF THE SMALLEST CONSTAMT. . |
C
: INPLICIT REAL#Z {A=H,0-Z
% :E.uits E!?S{Ngﬁal . cuﬁc{NsTusl. H{1730), PIWERI3I0)s AVEC(30)
E AVEC(I} = BETA/EIGS(I)
PRI = 1.
oo 21w 1,
PROD = PROD * AVEC(I)
2 POWSR(I)} = 1.
PR f1) = DECRTIPROD]
© SuMz = CVEC{1)
FoBpd 3 J = 2.hsETOP .
MTERNS = J 4
J =J =1
5 = 0
of & o= 1.hORD
POWER(1) = POWEACI) ® (14 = AVECII})
4 SUM = SUM ¢ POWER(1D
H{JTOP) = SLM
SUMI = 0. q
O 5§ = 1,JT0P
k] SUML = SUML ¢ HiJ=I) & CVECII}
CUEC{J) = SLMLAL2, +JTOR)
SUHZ = 3UM3 « CVEC[J) B
IFIDABSICVEC{ 41} «LTs ERRCR} GO TO & :
3 CONTINUE - 1
& BRITE(G6.101) NSTOP, SARCA, WTERMS, BETA. § o
HTRIT A G R Ty b T g B .Tsen" TUTGEF .
IVALUET s TA0,012. 54" MO OF TERMS COMPUTED® »T30, I%/" BETA ‘0;!‘112.8( :
2t EIGENVALLUEE! /(T2 ,10012.51) H W
WRITEL G, 100} SUuz N =
100 F (Y SuUM oF ansHMB-.ﬂo.uia.al " S
i Gy102) (CVEC(L) +Iw1ahTEl # 7
1oz : }CCONSTANTS 21 2.1 00 12.53! el
El W '




A SUBROLTINE CONETILAGRD BETAFACTCVEC OV ECNT ERMS . NSTOP . NMAX ; ERROR
naLy

i . 14ERR I
i P i
i < .
€ sumROUT THE COMSTANTS A(S) FOR THE DISTRIBUYION OF DELTALXI.
: ¢ bgine = 3 QR SORTTHE DISTRIDUTION DF C'OR D(X) USING FORMULA
i It ] -
! € NORD = LSS BSTA = PARAMETER BETA IN THE FORMULAE.
©  FACT 1. = AND = NEI}SREL A (N{TY+MEJY) FOR [3.3412). CVEC
“€ VECTOR OF COMS AN J) FRO¥ SURAGUTIME CONSTS.  NTEAHS = WO, OF ELEMENT
€ I NO» OF CORSTANTS THAT WILL BE COMPUTED.
C HMAX = ACTUAL M. ONSTANTS COMPUTED.  ERADG = CUTOFF VALUE FOR
¥, g CALCULATING CONSTA EHRORL = SINIMUM VALUE OF SMALLEST CONSTANT.
H .
- IMPLECIT REAL®B 7A=H.O=Z) . .
REAL&B CVECINTERMS), DVECIRSTL ). COEFFT{1003) . ]
INTERER H{ 1000
BET =
b ARLINY = +HE
BINPLT Le + 14 /BET)
ANDZ =
TERM =
i T
DG 1 J z
COEFFRTL * TERV
) J) 1.
v 1 TEIN = v .
Nl WZC{ 1) T £
2 = .
I HL1Y i N
: TAR 1
! o 2 i
: KA H
1= N
Tap :
U . i
G 3 i v
i o E'Il | '
PROD QEFFTLJ} * START I [
5 oo 4 P »
4 PROD = PROO # (ANDE & AJd 4+ K = 2.1/K
. Ui = SUNM + PR
i £td PROD +LTs ERRCR} GO TO & N
' B VEC LM ¥ FACT P 7
- SLME (44
: A SRAOALY GC T 8 . R
af HeLL
ki b al =1 hMAK

(]} B-35-3)

1. Supz
SURT.TI0LD12.6/7 CUTDFF VALUE TN CONSTSY,
HTSe A T3001245]

EACH CORSTANTY/{T2,101121)

1

F] :

5 WRI ovecqt 1

101 FORMA ;O?NULA (3;2- 1e4s% wOw OF TEAME COMPUTEDY.

s »
END i

E
E
]
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SLEROLTINE CHIBER (A X +NETART JNSTOF sCHI +PCFCHT )

S!L(ROUTINE TO COMPUTE A SEQUENCE CF CHI-SOUARED CCF AND POF TERMS FOR
CAGREES OF FREEDOM GOING LS Ih STEPS OF TwWo. BARAMETERS ARE?Z G
A = BETA TN FORMULAE (3.1.7)s ETCus X = x-yMUE FOR WHICH PDF AND CDF
Ta BE COMPUTED. NSTART = DOGREES OF FREEDCM FOR FIRST T .

NETD ~ SEQUENCE.

ERM «
3 BE i CHI = VECTOR CDF VALUES.
POFCHT = VECTOR OF POF VALUEZS. B

IMPLIGIT REAL*S {A=H,0=Z)

REAL®2 CHICHSTOR) + PDFCHIINSTOR)

FACT SOEXP(=K/(2+®A1)

TERM = L.

F (MO0 EHSTART.2) «6T. @) GO TO 1 i
TART/Z

2l oo T o =
2oWAR T=1a) )
.

A
ril ¢ FACT & W5
Bk FACT R
2, #AJUNT + U = 2e0}

D-24) TEAN =

W% FACT &

BUM ¥ FACT -

ooLe
-5
&n

TART=1) /2
RMADSORT {Xe3u141 502653589793/ (2ewA) )

:'z 1} 6o TO 8 i
AN ¥ K 020 #AS(T = 0a8) .

Eart A
.
]
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B
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Chaper 4 Evaluating the Performance of Classical Discrisinant
Analysis under the Random Effects Model - Probabilities
of Correct and Misclzssification

In this chapter we apply the results of Chapter I fo evaluate the
probabilities of correct- end misclassification under the random
effects model when the classicel rules of discriminant enalysis are
used.

q.e. Wa are interested in the expected performance uf_\these
rules when applied fo future classification probless where the &

populations Mse 1= Toouook, will have arisen frow the random effects

model. Using the classification rule based on the parameters of these
k populations, whether known at the time or estimated from a training
sample, ve will classify on observation of unknown origin into one of
them. How well are we "tiely to perform? 0 wore specifically: Uhat
are the expected probabilities of correct- or misclaszification?

This chaptar attenpts to answer these quistions.

#s in Chapter £ we will first consider the situation where the
pereretars in the distributions of the k populaticns are known and the
classification rules are expressed in terms of them. Swee Section 2.1,
Thereafter we will discuss the more common sftuation where the para-
meters are unknown and the parameters in the sbavementioned classifi-
cation rules sre reploced by their sseple estimates,rosulting in the
"plig-in" rules discussed in Section 2.2,

In each of the above two situations separate considerstion will be
sfrun to the case where k = 2, since the results in this case are more
tr?n:uhh than those for general k. Moreover, as is clear fram CTnapter
2, far more work has _heén done on this cose, and consequently such sore
15 known about 1t. :
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It is traditional in most of the literature to tals of the nro-
bhbilities of misclessitication in the case where k = 2 but of the pro-
babilities of correct classification when k > 2. We will follow this
tradition here.

As in Chapter 3, the results will all be expressed in terms of the
eigenvalues (g, 1 # 1,...,K3 of T2, either directly or n terms of
guantities derived From them, In Chapter 5 we will address the quastion
of estimating the X; when they are unknown.

#.1 " Enown Parameters .
In this situation the"Bnyas classificazion rule, when the prior
probabiTities of each of the k populations are all egual, may be ex-

pressed either in terss of the Mahalanobis distance:

i.e. assign the new observition x to that population =y for which
83(x) = Tomin  &3(x} [CARY]
A

where 0] = (xny)'= xy)

or in teres of the linear discriminant function:

d.e. assign % to LA if
g 20 W= Tk S (4.1.2)
)

wihere 000 = (= Qg2 g).

$ee Section 2.1.




4%,

) The distribution of 5% (x), under the assumption that x either
Salongs to, or does not baiomg to "i was discussed in Sectfon 3.2,
giving & general insight into the expected probabiiities of correct-
and misclassiftication when wsing ts,i,‘!l_-} or (4.1.2), aswell as their
refationship to the elgenvalues {hy, 1 = 1,000} of 'l!:'r. Expressions
for these probabilities will now :.he derived for the specific case where
there are two populations. MWe will consider only the situstion where
the prior probabilities q; are all equal.

4.751  The cose k = 2 Populations

When the prior probabilities 94+ 1% 1,2 2re equal, we have from
{2.1.17) the following simple expression for the conditional probibility

.of misclassification, given &%:

P(&%) = Prmisclassification]s®s = a(-}8) {8.1.3)
1 i

vhere, 8% w %y = g 't tigeily)

and #(+) is the Standard Norma) Dfstr{huainln Function.

The unconditional probability of misclassification is therefore:
P o= ELP(8*)] = EC¥{-}8)1 (4.1.4)

whare the espectation 4s taken over t istribution of &%, i
Mow, rom Section 3.1 wa know bt onder the random effects modol -
N r
£ 1
6% is distributed os ZiEI Ay where A g = ho = 0 oare the nonzers

efganvalues of TE' and the v; are indeprivent ;.;?l rendom variahles,

o
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..‘j An approximation to (4.1.4) may be obtained by approximeting 3
i " B ]
Ji o~ g—] by the first three terms of its Taylor expansion about E[&™] .4
: : ~ahd then taking expectations. For any twice- differentiable function :
T(x) of a random variabh this awr.oximtinn takes the form:
1 ece(n)ace (o) o TERA varpyy (4.1.5)
i . :
i where £"(+) denotes the second derivative of {-).
So the approximation becomes:
"I .
P 3 o(-3/EEE5T) + 30"(-3/ELEET Vare 2], ) i
. Now, From section 3.7 we have that N
N " - B u
: !
i N i o3
. (. 2
i . 21; Ay
i : :
i and i . "
| - A '
M - % = !
| Var[s®] = 8 15] 3. Y {4.1.7)
= - x 1
i :
h Klse, . |
. [
| e 0 = St te(-umy i
| I JRI . ao
i =@ gy ) ) i
: i __ o - '
l g e eV, RN i
o ) 5
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Substituting (4.1.8) and (£.1.7) into (4.7.6) yields the following ap-

proxinate expression for the probability of misclassification:

r

2f /8 2 I
p“;.éfi',\imwg?e i tzf L L ;s[p

(U Ili} I

= 9(- £:1+mi Ay e 4.1.8
4 E Wz, { )

E\‘l ¥ .

where §(+) is the standard rormal density function,

An evact dipression for the prebability of misclassification mey

be obtained by evaluating EL#{-48)3 in (4,1.4) directly. To do this
we need the density function of z = &% m'ich,'.ﬂ'orl {3007 may be ex-

p'ressad as:

. iy z
fau (2) = Fj!o 25 pepgha) [4.1.10)

where [ i5 an arbitrary positive constant, gsz(-} is the fr-r?j density

) function and the Cy Bre given by (3.7.9) and {3.1J2). Thus

P fl ot 2517 1, < szgfree

4 z
3 Jzucj]: O(-3E)0 ) (a.1.11)

where the exchange of the sumation and fntegration operations is justified
by the uniform convergence of (4.1.10}. Hote that

#{~4vF) = PrX s -}Vl where X ~ N{D,1)
=g =
=301 - &) [CRRTH
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where 6 (+) denotes the distribution function of the x} distribution.
Substituting this inte (4.1.11) yields

- . .
pug 215 L cjrsliilgnﬁfé}d: AT
mere we hevo assumed that [4 1.10} 95 & mixture distribution, so that

§° e =1 (See Remark 3.1.3). Danating the integral in (4.1.73) by I,
and making the transformation y = F gives:

¢ - C1m s [ e s g
} ! Integrating by paris and sisplifying vields:
- 1y 800 - &}:s, £ )y},
Substituting IJ back inte (4.1.12) yields:
g g v 8
: P= & ] . 4.1.14
; § g [0 518 90y trer (8.1.14)
| Tha integral in (4.1.74) may be evaluated byvsing the following expras- |
‘ i sions for GNZJ-L\!,‘. obtained by direct integration (See, for exanple,

b dohnson and Kotr' (19702) page 173} )
I {q.¢ty iy j 74t for v oeven
i Y :%1

) - =g

Bp -1 -V b (ﬁ n'(hz)
for v odd, {#.1.75)
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f Considering first the case where v is even, using {4.1.74), [8.1.15)
angd the formula:
’ 59 s Gyt W0,
;
! we get
i [ —W/E 7 ;r 41 [ @i ‘-i.\rtlﬂwﬂ‘,3r
: _ do® ko T
= 31 - ;/K‘ - IF{.‘_{-} as 04 (e
1=a Kl i=0
‘ Congider now ihe case where r is odd.  Using the same approach as abova,
e get, )
i
N PN T c“r”'j]...lgji‘ll_r,r_
M‘I (e Ty 5’& 13k b (1) !
B . ' (877
% Denoting the first term in {4.71.17) by I, we get after making the trans-
! formation X = /F: -
i 2
i r ‘i{m} :
| Te=2] ax) o dx . (4.1.18)
i 5 2 kT
i.: The above integral is o particular case of Hojo's integrals (see, for
'x'. example Kendall and Stuart Voluse 1 {1969) pages 326-7). F. Downton (1973}
H i
I gives the Tollowing closely related result:
1
i
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Given
' X = Nu,0®)
¥ ~ W0,1)  independently,
then:
- L gltelieet gy R
PLY 5 X3 £ ) e t (£.1.19)

By enalogy with (4.1.19%(4.1.18)can be expressed as:

T 2PiYsXnX=0]

where
¥~ W{0,48)
¥~ W(0,1} independently
or, . .
: I =2FEN -Yz0n¥a0l. ' {4.7.20)

To evaluzte the joint probability in (4.1.20}, we noed the joint dis-
tribution of X-Y and X. Mow, by independence, the joint probability density
function of X and ¥ is:

. i
£y ylxy) = z«:ﬂm PRI I

“Haking the transformation:

Tad=-¥
u=X
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U h(uf-tustiesut /)
r f. t r— .
rattu) = e ¢ ;
i C 1 Rl R
H 2R " .
!
1 So T and U have bivariate normal distribution with zero mean vector, f
5_ variances u?. and a; and correlation coefficient p, where the Tatter three
) parameters way be obtained frem the following fdentities:
i .
! % oj18%) =3
oj1-e"} = (1 t%—)']
A 1 T
e ! " H
. | 1
! This wieldst
|.& coapels s.
8
o - %E
and .
FERIRE 4.1.21)
' - Now, applytng the result given in Anderson (1958) page 43, problem 43, viz:
N if .
o ) Pr¥z0nYa0l=n . ' N
. o
'L‘\f and y . (A
¥ : o .0, -
b dy-md G2,
E yoy
[ then
p = cos(1-2aln .
. i i 4 L |
PR e
F H -
a T " 4
o N
. % y : -
s ;
) - [P

e




e i
- I/'- .IJ. -
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or
; : . a= i1 = Feeslo)

we get, from (4,1.20) and (4.1.21) that:
T=2T=0nu201=1-2cos™ (16 57H). (4.1.22)

Substituting (4.1.22) back inte (4.1.17) and simplifying, yields the
following expression for the probability of wisclassification when r is
add; | )
* - . '
et o B osVepnaBrby g /Eop o HUHT ) s (i) :
P o3t - Zeosyh i/Ejgocj 5 L A :

(4,1.23} !

4.1.2  Evaluating the Probabilities of Misclassification for k = 2

- by puputattons

i In order to evaliate formilse (4.1.16) end (4.1,23) for the probability
of misclessification, the FORTRAM : wtise PROBS, given in Appendix 4.3,

i ) .
5 was written. This wes used to o L probability of sisclassification
- i t }
. i for the case v = 6 for the same &0, <fs of elgenvalues Dy} that were
! H used in Chapter 3, as well as m— the corresponding three sets when the
. 0
- E trace 1s halved. - The results ate given below in Table 4.1.1, togother with
: those obtaingd from the approxfmate forsula {4.1.9),
F y
ap a
P
m " 1
[ i
: i
N i
i
® (AR . i f
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Teble 6.1.7 !

Exact Proba- " roximate Proba- ¥
: 'ﬂﬁg% “of Mis- of Wis-
Case {1 Trace' cTass{fication ' Elassificakion !

1 —_=
2 17.0,1.0,1,0,1.0,1.0 5.0 0392 0334
(b} 3.0,3.0,3,0,3.0,3.0  15.0 L0204 L0140
(e} "5.0,8.0,2.0,2.0,1.0  15.0 0233 0164
(d) 5.5,0.5,0.5,0.5,0.5 7.5 0827 1044 .
i (e} 1.5,1,5,1,5,1.5,1.5 7.5 L0553 0543

o 2.5,£.0,1.5,1.0,0.5 7.5 0586 608

From 'I'ei:"l;E %.1.1 the relationship between the probability of mis-
classification ard beth the trace and relative sizes of the éigen\ralm : 4
of T:h‘, that uasvpreﬂcm i “Qmmr 3, is clearly evident, However, k
the. approximate formila {4.15. 'JI. which §s far easier to compute than the !

B exact formulae and therefore usefll for quick assessients of the proba-

P bitity of misclassification, is not very accurate,
. ! ; h
B C
1 o ¢
il -4.1.3  The case k > 2 populutions
} From classification rufe {4.1.7) the probability of corract classifi-
b I . cation, glven x ¢ vy, becomes:
I
¥ Preorrect classification|x e ;1w PBi(x) ¢ #in  S{xjiweml .
P ! alanegk 3
L : a1 .
[ - (4.1.2¢4) £
.o 1 . * B
‘; How, from Section 3,2 we have that, given x ¢ m H
o b
v rd
2 g
! x) =l
! and
i
ot a300) ~x3ls]y)  conettionally on 8y {4.1.25)
. -
=y
i :
i i
o o i
& ) e

e e e s




B9,

Unconditionslly s;(x} has the density glven in (3.2.7):
f%{x,{ﬁfifxll* e m) = sgo 25 pezslai () (4.1.26)

where g‘”a:-;" lonotes the x;»z; density function and the coefficients
a, are given by {3.2.6}. ‘Nnr*en\'er, the B}[x} are clearly
not indapendent.

So, in order to evaluate (4.1.24) we need the joiat d‘l:trilmttorl of

the minimm of & - 1 correlated, identically distributed randem varfables
{x] whose margingl densities are given by {4,1.26) and the chi—squnred.
randow variable 83(x} which §s also correlated with the 58(x).

"1t is clear, thevefors, that this approach to evaluating tHe proba~
bility of correct classification 15 not a promising sne, and will not be
pursued further here.

Anather approach would be t.c use expression {2.1 15} far the proba~
bility of corvect classification g‘l\!en X Ty, :nnditimﬂ on the values
of 16,4 » Gugmugd'E kg )y 3.2 9 Toevn ks 4,8 # 1) and Ehen o odtatn
the uncoad{tional probability by integrating it over the joint distribulion
of the Gt”.

Singe there is no analytic expression Por (2.1.15), it would have to
be evaluated mmerically or by table look-up over & muitidimensional grid
of po{nfs dafined by the s1jl. and then integrated numerically over their
Joint distribution. -

In addition to the comglexity of the ab tioned uperstion,"an [
pression for the joint distribution of the Bidl w(:ulﬂ tave to be found. As

in the previous approach, the margine] distributions of the 6”‘ are known,
Vizr the "’;j = siﬁ have the distribution derived in Theorem 3.1.1

—— L




e
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and the 51”, § = & can, in a manner very similar to Theorem 3.1., be
shown to be distributed as I X, !"s"‘s}’ where {3} = Efgs{TZ" 13 and
the Vg and W, are 1ndzpendz:t x random veriables, It can aise be
shown that the correlation uoerﬂcient betwaan "1‘1 and 43, § =1 is L

Howaver,. Me Joint distribution of the 6 148 is unknown, so this
Bpproach wll'l' also not be pursued any further,

This leaves only the lower bounds (2.1.16) and (2.1.17) on the pro-
bability of correct classification. However, these expressions give
lower bounds on the minfmum probability of correct classification.
Stronger bounds than these may be obtained from Bonferroni's first in-
equality by noting that {4.7.24) can be written:

Prcnm:t classification|x « wl= ?EJﬂ] 6*(:} < a‘*{:)|: eyl
Jed
k
Z]F[Gi(i] > Siln)jx e md .
wi
Now PLER {x! > 5‘ (31X %31 is just the probability of misclassification
with two populations L and Ty and is therefore equal to #{-3&} j}' S50

k
Preorrect classification)x ¢ md 2 1 - JE‘I 0{—}515), {a.1.27)
Jei
Under the random effects model ﬁlj is a random variahle, so {4.1.27) be-

- Comest

13
+ Pleorrect classification|x ¢ 1l=1- ‘;[‘ ‘sﬁj“‘f'ﬁnn
i

“1- {t-!}Eﬁd:a{-ga.‘ Bi {4.1.28)

since the Sﬁjyam identically distributed.
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Hote that (4.1.28) does not depend on the particular population m;

from which % comes, so it is alse the unconditional probability of correct
classification. Finelly, using results (4,1.76) and (4.1,23) of the

preyious sub-section in (4.1.28), we get

:
for r even:

el H 3'"*5
Preorrect classificationdzl- —z—ﬂ =
%jgﬂ i-u
for r odd:

PLeorrect classificationlal- 71{1—-00: {{H-E—} H
i(‘r““ﬂ -1

‘J'ET'H'”'B} li+3)y

(8.1.29)

- N
aﬁgo L L

(4.1,30)

An upper bound on the probability of correct classification may alzo

be obtained by using the fact thet,

P[misciassiﬂcai.—'.\mh. ‘.;P[nisc'lnasiﬁ:ntlnn to "y 's glosest neim\bwrlxui]

§ o #(-45;)

whore 87 = vl;il{t ah.
™

S0,

‘_Pl:cnrnec:t‘” classificationfx e "l - o(-}a‘} .

Under the rendom effects model, this becomes:

[CRIED!
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Prearrect classification|x ¢ ;1 <1 - Es:[ﬂ'“”] . (4.1.32)

To evaluate the expectation in {4.1.32) the distribution of
a§ = min ﬁ“ is required. Unfortunately, although the ﬂ’n have fdenti-

Y=
cal marginal distributions given by Theorem 3.1.1, and the correlation

cor” “-iant between s“ and 6 s known, their jeint distribution is un-
bnown, . S0 the distrnm.tm ot &} cannot be found.

Hivever {F we assume that by s fined, then it is possible to obtafn

the distribution of 5? and hence to evaluate the upper bound {4.1.32) on

probability of correct classification.

. In what follows, we will therefore first obtain the distribution of
&2, conditional on M- Unfortunately 1t is not possible to obtain the
unconditional distribution from ft. This distributfon will then be used
to gvaiuate (4.1.32), Finally we shall shmt_ that o very similar ax-
pression for the upper bound is obtained if instead we fgnore the fnter-
corralations Betion the 5%5 and proceed as if they were independent,

Under these circumstances {t is not necessary to assume that wy is fixed.

The distribution of 62 = min &3, conditicnal on u
Ty W i

We first consider the distribution of
151
"‘%d = !“‘1 - “il b fllj - H‘}

conditiona] on ;. under the random effects model.
Under this modei, the iy ave independently and identically distributed -
Np{}_:,!'} rardos variables, Therefore, conditionally on ug,
Hy =g NP[E-ui,Tl independently, J = Yook J= 1.
(4.1.33)
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Thearam 4.1.1, given below, allows us to find the conditions] dis-
. 2 :
tribution of dij'

Theorem 4...;I Al
Let & = X'z X, where ¥ ~ HyfwiT). Than &% fs distributed s

T and the

iEl kg¥; where the Ay are the r {sp) nonzers eigenvaluss of TE
Wy xi{m}). independently. The square root w, of the noncenirality para-
meter of v, s the i element of P'n where P is the {rer} orthogenal
matrix whose 1 colusn 15 the eigenvector (ri'T"!:"'ITl corrasponding to
A T= TTT?' and Ty is a p x v matrix of rank r = ¢(T), and n is the
sojution to Tyn = p.

I'ﬂge preof of this theorem, which 1s eszentially a generalization of
Theoren 3.1.1, is given in Appendix 4.1,

Applying Theorem 4.1.1 o (4.1.33) fmmadiately yields the distribution
of s}j. condttional on uy, in the following Jorm:

r
&y~ sl:T Ag¥gr  independently, § = Tyoiky J# 1

where ,

@} = etgslrs}
Vg ™ ;ﬁ{mg) independently, 5 = 1,...,1,
(tsgatigs e ovtt}' = Plny
P is the (e orthogonel metrix defined in Theorem 4.71.7,
n is the solutfon to l'.ln L=
and T is the {pxr} matrix defined in Theorem 4.1.7.

Clearly, 1 T fs of TUIT rank, f.2. r = p, then n = T3 (6.

S

S
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-The mean and varfance of v, are, respactively (Ses, for example
dahnson and Kotz (19706} page 134):

EvgI= 14w
Varlyv,1 = 2(T+au:J

and since the;r_; “Ia {ndependent, we cbtain the following expressions
for the conditiorn! mean and variance of s;J:

r
Byl - sgl 3 () {4.1.35)

\rnﬂ:s;‘fiuil = 2521 A2 (1s?). (4.1.36)
i
AB in the case of the sum of wightad wuentral chi-squared random

variab&s the distribution of the sum of weighted noncentral chi-squared
randnl varfables may also be axpanded as an infinite series of central
chi-squared distributions (See, for exasple, Ruben (1962), Press [1956),
Kotz, Johnson and Boyd (1967b), Johnson and Motz (1970b)). This pields
the follewing expression for the distribution- and density functiens,

. respectively, of EEJ. conditfonal on uy. Letting z = 5;1;

F"I{jhi(ﬂ - { e} H‘Z.}{F)

and

15 o T
CAMCES jzu o} g3 (8.1.37)

uhere g 45 an arbitrary positive constant, Bapgle) and g pg(s) are the -

distribution- and density functions, respectively,of the x*naj d{strtTtieﬂ
and the mnsunta'cj are given hy!

5 .

It
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The mesn and variance of vy are, respectively (See, for example

Johnson and Kotz (1970b) page 134}:

Evgd = 14wl )

Var{v,] = 2(1+3-&;)

and since the v, Bre tndependent, we obtain the following expressions

for the conditioral mean and variance of afj:
ey = foaond @.1.38)
r ! o
m:s;dluij = ang 1'sn+a.;§}. ) (4.1.36)

fs in the case of the sum of weighted central chi-squared random
variables, the distribution of the sum of weighted noncentral chi-squered
randos variables may also b= l)lpal'ﬁ!ad & an infinite series of central
chi-squared distributions (See, foriexssp’z, Ruben t:lﬂﬁz}. Press {1966),
Kotz, dohnson and Boyd (1567b), Jasén and Kotz (1970b)). This yields
the following expression for the distribution- and density fu'\ct.%onil,.

P Ty, of ﬁ“{j. ditional on ug. Letting z = s;,:

" . £ o
Foggh )7y ©5 Crs®®)

1 T
fa g f2) 75 Lo upyim) {£41.37)
il T 4y °1 fread'E R
. 1
wnere § is an arbitrary positive constant, anj!'} and 9&25('} are the
dtstr.ibutfm-'m density functions, respectively, of the ;]’,d‘i distribution
and the constants cé are given by:




75,
-3 I
N gl =0 s=1 li (B 3
SR LN ‘
R AL S

ny - In-m P z p’nsltwasa"‘

‘Ruben {1962) shews that for 0 < 8 s o (4‘_‘(_.52] is a mixture distribution
{1t may or may not be for other values of B) and that it converges ‘.!ﬁifur\ﬂj'
it any bounded z-fnterval of z > 0 for any @, and converges uniformly for
all z >0 if 8 §s chosen so that mxli. - {—-I < 1. )

Remembering that, mndieinr;any an gy e sh. = ),,.,,1:; vJow iy
are independently oistributed, all with distribution given by (4.1.37) we

| inmediataly get the distﬁbut'lora and demiu functions of 6% = “}Hn i in

ﬂn ron)wmé forrn (See, for example Gihhm (1971},

k=1
Py (2) = 1 - 0= Py, @)

h
k=
i gl 000 = Py P g ) (4130
f r

{z) and Fa | (2) are given in (4,197}
AN "

Using tm,ae:, the upper bound (4.1.32) on'the probability o:iwmct

where Faz Il‘

classification Imdnr the rendom effects sodel, piven x e w5, can r valus
ated conditionally on Wi ll'sing the notation b
h
&
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4 76. p o
‘rl ) |",£ !
| ) P".i = Preorrect classification]x e m, wd o L
Bl
1.
' we therefore have
* s X .
j ) -P“i 51- rﬂﬂ-lﬁ}fﬁﬂwlz}dz
! =300+ [ oy B, @
‘ . S v
] : 3 - .
i using result (4.1.12), where G;(-) is the x? disteibution function. In-
; tagrating by parts yields, ;
i -
! 7 s[Z-iJ [)Fenr fz}dz . ' i
g b o o i” L+ iui( ¥ B o -
@ .
where g,{} is the xi density function

i z H 2, k=1 )
1 143 - ' = ' -
. =1+ J: 50 Jgo 55 Brapylg) iz} b
i ) B .
Fl B ;
'\! from {3.1.37) and (3.1,38) T

:. s ndno - o € B0

making the transformation y "E . i

Now, uding expressiens {4.1.15) for Sﬂzjiy} and constdering the case
b,

hﬂ_‘er\r r iz even, e get Y !
(Byyd fred-1 vl .

w5 eaper s ATy ke (-T2, [

Ry 00 g]:_'%-.. S g, @ o) -

2 } .

l @ fi :
& E ) . 1 ;
IR . ' d . e
n N Lo s it . e . . ) e !

wowrormsase wasaine- £ . ) R
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% ..E\ra'lunting the above integral as & gamma function finally yields after

) is to ignore the intercorrelations betwaen the G’}‘j, J Tk J24

" the condftiona) distribution (8.1.37) 1n expression (4:_1 .38) for the

.

From the identity:

EE (7 3 SV g : B

R LT L i 41,39 : Y

(Lo Ly e 3ay (.1.9) o
whare: the a; are cbtained by equating coefficients of yJ an the left- . g

and right-hand sides {Seg Appendix 4.2 for their values) we obtain:
1 7 ]“‘ -1 gmy(k-198/4)/2

Poos il +— a. | ¥ e dy

H VEF '/g JEO LRl i

. whare mé interchange of summation and integration operztions is justi-

_'-"-jad by the wiiform convargence of (4.1.37) and hence of (4.1.39).

" some simplification,

Fag <40 /e L gt 0 (4.1.40)
wihare (a)t0= agast)... . (akge1),

Unfortunately, the case where r is odd 1s 50 complicated that it is
=not considered here.

Remark 4.1,1 The drawback to expression (4.1.40) is that it vefers to
the condi tional probability of correct classification and raquires uy to
be given bafore it can be used.

An approsch that glives an.uncundit‘lﬁ:la'l but approximste upper bound

and to proceed a5 i they wore independent. Therefore, instead of using

i
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distribution of &} = l'li!il .s;j. we use the uncondftional distributien
{4.1.7) for s;‘j that was derived in Chapter 3. WNoting that (4.1.10)
and {4.1.37) differ only in respact of their constants i:j and cj. re-
spectively, 1t s clear that the arguments go through esactly as for
the conditiona) case with :.‘i replaced by cj, 5¢ expression (4.7.40)
can a‘Is_n be used as an approximate upper bound on the unconditional
probability of correct classification §f ci is repiaced by f.} in defi-
nition (4.1.39) of the a,.

. '

Anather Tink-up betwesn the upper bouh o the conditfonal praba-
pility of correct c‘Iu:_tﬁquon and the approximete upper bo.'\lnd on
the unconditional mbu;t}'w{y is achieved if 3i; s fixed at the valie
n; = E in the former. For then it is clear from (4.1.34) that, condi-

tionally on w o= E

r
5‘;5 - 521 15 Ys

where now the Vg are central ﬁ random variables. Comraring this with
the uncondftional distribution of sh derived in Theorem 3.1.1:

" r
&5 ”i;, Ry Vg

“vhere the vy Bre also central )5' random variables, we see that for a

given sot of eigenvalues {3_}, the values of the upper bound {3.1.40)
for the probanility of correct classification conditicnal en ug =Es will
be equal t that of the corresponding approwisata bound on the uncondi-
tional p'm:w,bﬂ']ty tor the case when the eigenvalues are all half as large.
This is fntuitively reasonable, as one hnulr.i__ expact poorer classifi-
cation From pnpu'-latinns situated near the mean o.f their distribution.
4
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4.1.4  Evalusting the bounds on the probabilities of correct
classification for k » 2 populations

Expressions (4.1.28) and (4.1.30) for the Yower bound on the proba-
bility of correct classification have been derived directly from the two-
population case, snd they are also computed by the subroutine PROBS given
in Appendix 4.3, Table 4.7.2 gives the valves of the lower bound for the
same three sets of efgenvalues ui}‘ a1l with a trace of 15, that were
used in earlier examples, and for k = 5 populations. Values for k = 5,

r =4 and a similar three sets of Gy}, a1l with trace 10, are 3lso given,
for comparison with the upper bounds discussed below.

Exprassion (4.1.40) fnr.ﬂ\a upper bound on the conditional probability
of correct classification is not evalusted s easily because of the in-
creasing complexity of the formulae for the constants a; appearing in it
for valuss of § greater than } Sze Appendix 4.2,

However, for the specific case where the efgenvalues [lsl of 7271 are
all equal, say A, = h 5 = Vyee.ar, and g ds Fixed &t the value By =
it is glear from Remark 4,7.1 above and from definition (3.1.9) for the 5

that iF B =2 mncavlmciuﬂ, ¥j » 0, and that if g = 21 then
gy =1 and ey = 0, ¥j > 0. (This 45 also an fmmediate consequence of the
fact that when the "s are all equal then a“j is proportional to a x:‘_
randr*_f'-\'arhh'!e. See (3.1.13%)).

Under these circumstances (4.1.39) becomes:

1 i }l-'l -
H i 4.
(L, &' ouv {a.1.)

so that the sequence of ronzers ay terminatey after & finite nusber of
terss and they are roadily computed, especially for Tow values of r.




&0.

For example, for the case r = 4 and k = 5 populations, (recall that
formulas {4.1.39) and (4.1.40) are valid only for r even}, using either
(4.1.41) or the formulae derived in Appendix 6.2; we get the following

values for the L
o 1 ]
N e i

andaj-n LN

Using these \m'lues for the aj. the upper bound {%.7.40) on the con-
ditionsl probability of correct c1as31f1catfon with g = £, as well a5
the approximate upper bound on the unconditional probability (see Remark

4.1.2) were computed for the cise where )y = Ap mAgm g = 2.5 Fora
1

given value of the trace of TE™ ', the case where the Ay are l) equal gives
the best classification, so these upper bounds are also valid for the .

: 'ri . other cases with r = 4 given in Table 4.%.2.

Table 4.1.2
| Baunds on th i1ities of corvect classification for

i ' k = 5 populations -

k] l.lg r bound on condi-

g . onal prob. evaluated Approxijmte

Lase Lower bound at X = £ Upper btund :

: {a) 11,10, B33 - - :

i b), "3,3,3,3,3 9183 - - i

; ' (e} 6.4,3,2,1 9068 - N L

i {d) 11,1, L7517 70 BESH !

[ {e)  2.5,2.52.525 820 7970 8894 £ I
{f} 43,851 L8063 T870 JBE34 ’ i

As remarked at the end of the previcus sub-section, classification

tends to be poorar whan ﬁ]g new observation comes from a population whose [

|
i
i
i
{
a wean 15 situated at the centre of its distribution, than when it fs sifu- I
i
1
|
|
|




8. '
ated elsewhers, This is reflected by the Tow vaiuve of the upper bound

on the conditional probability evaluated at u1' = £ given in Table 4.1.2,
which is in fact léwer than the corresponding lower bound in two out

of the three cases (d) to (F). Thus it would appear that the upper o
bound on the conditional probability 1s of Timited use in practice, and
that the approximate upper bound, cbtained by assuming that the 6“,
3= Tasks § 21, are indepandent, s fer more useful.
4.2 Unknown Parameters :
In this section we consider the probabilities of correct- and mis- ; -
classification when the samplo-based classification ru!e,. with equal
prior probabilities for each of the k populations, i5 used. wviz: HAssfgn
new observation » to that population vy Tor which,
(x) = min di(x) #.2.1) e
A T 4 .
!
where b
.
= fpex. Ve i
a5 = (exg V'8 0exg ) _ !
%5, is the mean of the training sample of size ny from population Ty ,
and § s the pooled sample covariance matrix based on v degrees of freedom, ]
or equivalently, assign x to g if i
Vgl >0 Wtk §ed (8.2.2) [
. L
y |
where n
- 1570, -
\fm{x) (% “1.""3.“ 57y, “j,)‘
4
i
Vi
| B
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As described in Section 2.2, two types of misclassification pre-’
bability may be defined when the sample-based classification rule is
used, (Although we refer to the misclassification probability, the re-
marks hold equally well for the probability of correct classification).
They are the conditional probability of misclassification, P? given
particular training sample and that x « B and the expected probability
of misclessification Py given x ey, when the classification rule is
based on training samples of sfze n., J = 1,... k.

Both these probabilities mey be expressad in tzrms of the population
mRAng 4l {or functions of them) which, under the randem effects model,
are random variables. Under this model, therefore, we are interested in
the expectatiins of PS and P over the distribution of the ;.

Interpretad in a Bayesian sense, taking the expectation of rf over
the distribution of the by gives the posterior probability of misclassi-
fication, given the training sample. As shall be seen in the case of
k = 2 populations this leads to results that are not very useful from a
practical point of yiew, so the grest majority of this section will be
devoted to obtaining expressions for the expected probabilities of correct-
and misclassification under the random effects model when the classifica-
tion rules {4.2.1) and {4.2,2) are based on training samples of size nys
5= Toeenyke

T4.2.0  The case k s 2 populativns

The conditidudl probability of misclassificotion, using the classifi- "
cation rules (4.2.1) or (4.2.2) based on training samples yiciding Ay 4y,
and §, 45 given fn Section 2.1, cquation (2.1.23).  Thus, :
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83,

P:[Uf} = Plll'isc‘lasﬂﬁcatiunhl..xz',s,ui;: £ myd

gm0y 120075 g oy )

Hm.-xzb)'s":s"(x“ ) !

.

=ol(-1)t (u-a)bre) (4.2.3)

2= i)
by - %)
and - ee JEE .
Under the random effects model uy ~ WiE,T), independently, so con-

sidering the case X ey and taking expectations over the distribution
of W yields:

" . (uj-al'n
.P.l = PLwisclassification]x; o%; 53X « wIJ = E"_II[@(‘ =11

(uy-a)'b
Letting ¥ = - i :

., we have that, under the random effects madel,

LE}

v w2
14

e o A

§




- §
P

Yoo

:| . )
B 1 B4, .

i where, '

1 n = (g-a)bfc

',1| and

I ot = BT/t

|

n 50,

5w [ ey I it g, ;

i VLY m i i

N This intugral may be evaluated using the result in Downton [1973) re-

: ferred o n expression (4.1.19) in Section 4.1. This jmmediately yields:

o

i p?:o(l--—’l—,;{.)

i - kg 4%, 1157 (k1)
. ol B0 0 5T )

ki Pa Tl Pale 7508 bis.2.8)
i 2 MSTHEATIS (%) - )

Similarly,

B w Pimisclassificationlx; 4k 453k & my)

o[ 805 s ) )
l/(x.l‘-xz.}‘sdl(}:e‘r}s'l(x]b-:z_}J

i
i
i
'

(4.2.5)

Remark 8.2.7  Although ﬁsn1ts (4.2.4) and (4.2.8) ure elegont lnt.fil.‘v
tically, thay are nm‘- vary useful fl“;ﬂ & practical point of view. This

15 highlighted by the fact that since the prior probabilities qp and %
of vy &nd ¥y, raspactively, have been assumed squal, the average posterior
probebility of wisclassifisation becomes, using (4.2.4) end (4.2,5):

Prmisclassification|x) X, /51 = 3P} + BS) = & {4.2.6)
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l independantly of the values of "].'”2. and 5.
i The reason for this znemaly is that once x]" and xy are given,
1 the populations w, and ¥y, and hence py and p, are no onger randemly
Ichulen but are fixed for the present problem. Therefore it is not
fngful to take the exp of the conditional nroﬁahﬂity of

|
l: mistlassification, given the training sample, aver the distribution of —
Y -ui . ) .

i From Remark 4.2.1 above it is clear that there is no further need

for considaring the conditional probebility of misclassification under

the random effects model.

. The mest useful result on the expected probability of misclassifica-

tion for the two- population problem is that of Oksmoto (1963}, given in
erpresnialp {2.1.28) of Section 2.1 for the case of equal-sized training

samples n..ll =My = n Trom oy bnd 7,

P?{G’] = Prmisclassification|n,v,6%sx « w1

=ot- s Do o B oty 2.7

|
’ !. where, :
|

8 =8y = () ) :

v is the degrees of froedom of 5 and #{-) iz the standard normal density
functian.

The expected probability of rni_scussiﬁcaﬁw under the ramdom ef-
fecks mode) may therefore be obtai'ned by taking the expectation of (4.2.7)
over the distribution of &2, Since there 1s no difference in (4.2.7)
for % ¢ ®) or %« 7y [this is not the case i my = na) the stﬁﬁcrtpt_\.t
will b dropped From P{(s*), So,




L1
1
.

.UE.
"= Pl:tisc‘las_sif‘icn_ﬂmia_\fvil = EngPeN'lZI
= Egro(- ) + L 4@+ Pir v o) (4.2.8)

As in the case whore the parameters are known, we may approximete
{4.2.8) usihg the approximation {4.1.5). The first term in {4.2.8) is
Just the probabitity of misclassification when the paraseters are known,
end its appro. {mation is given in (#.1.9), so we need look only at the
second tarm. As before, we need the second derivative of this term with
respect to &%, ’ Some straightforward calculations yield, letting z = &%:

%g,l BB + 2
:
sL By s B a - Bhe e e . )

Applying (4.1.5), (4.1.7), (4.1.9) and (4.2.9) to (4.2.8), we get:

— {1+ § A42) F Y
Py sl Ilif’2+it/ hyf2
{21 A ,3;2
[
*%"[r’ 121 J";"IH ...ﬁ:.!..... ’ g«‘ Z‘E! l‘1
: _ fz‘E‘ A

,
@] A R

=1 . - 2 el
= | /1 ,\‘Izlfjlu e @ § oy ghie fayr

' T
P 2 [y :
el ih *]Hiiix‘

+

i
|
1,
|
!
|
i
it
i
i
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' T . ¥l e

fe Phol iy Mb v et & l"{iz ii:l lii-i['ﬂ "gifixi]
o Eoagled o)™ (oten) + @4 § 30 BT 5 0

N pEen e (-f—:a ag (Y A+

. g{é‘ )} 8.2.00)

A wﬁ accurate wxpression for P may be chtained by evaluating (1.2.8)
oxactly, using e:rprassf n (4 1.107 for the density of a’
Letting 2 = &% as Eefmne {his becoses:

iy 1o - 1y ‘ 2
- J:m» D Leghient s fing PR Sppg(liz + 00
(8.2.11)

The First term in the sbove in'éggrﬂ is just the probability of mis-
clagsification in the case where the parametors are known, and is given in
{4.1.16) and {4.7.23) for r even and odd, hespe:.tiv_tiy‘ The second term
may be evaluated, after interchanging the summation and intagration opera-
tions, in terms of gamms functioms. After some sisplification, this yields,

for_r even:

= ired-1 . " - PTTIr
L3 /B riis By=(i+d) _ I(3r (kred=3)
- /B jgn ot ko it (e -{h\, HHo e By
. {1{.\511&{{{}}',1&11 ol aeag)




-

.

b bt b 0 e i B S

.

for r odd:

-1 l:r-ﬂ».i 1 By-{441)
= '|__ - 1
s cos (;-r—gx} l/’E et Zo ]r[' {1+3)

- Mmdeb ¢ Bylrd-tl 2l SRR + o),
(4.2.13)

4.2.% Evaluating the Probabilities of Misclassification for k= 2
populations
i FORTRAN subroutine PROBI, given in Appendix 4.3, evaluates formulae
{4.2.12) and {4.2,13) for the probability of misclassification when the
parametars are unknown. Table 4.2.1 gi;les the probabilities of misclassi-

fication for the case r = § for the same three sets of eigenvalues {4},
a1 with a traca of 15, that were used in the earlier cxamples, amd two
valuas of v, wgeﬂ-er with the corresponding approximate probabilities ob-
tained from (nmula (4.2.10).

Table 4.2.1

Probabﬂf}gt{ Approximiate Pro=
case [11} ¥ Misclassi uttgn bability of

—h ) correct to O{n"E) Misclassi fication
{a) LARANE 20 0870 0585
by 3,3,3,3,3 20 L0315 0253
(e} 5,4,3,8,1 20 0354 0295
@ 1M10a0 40 -04g1 0460
C(e)  3,3,3,5,3 a0 28D 087
(1 5,4,3,2,1 50 0294 0230

Conparing the probabilities of misclassification for the cases w = 20
and v = 40 with each other and with the corresponding probabilities in
Table 4.1.1, which represent the case where v » =, clearly indicates the




;-8

effect that sample size has on them. Morsover, as in"the cBse whare the

L4
pacareters are known, the spproximation to the probability provided by *
formuls (4.2.10) i3 only correct to sbout two decimal places.

4.2.3  The case k > 2 populations 3
Using classification rule :a,z.i), the probability of cor}_r,ct classgi-

Flcation, given ¥ « v; becomes; Y

Plecorrect classification]r ¢ w;) = PI‘.d;‘tx}sj 1N1n kd’j(ﬂ‘x emd
1
{4.2.14)

Now, given that % ¢ 7;. the marginal distribution of dj(x} s proportiona)

re— - . - PRSI  JRY N * JE—

to the central Fip,w-p+1) distribution, and is given by expression {3.3.73).

On the other hand, the marginal distribution of d;(:}, e 4, s, condi-
tionally on 6:‘1. proportional to the noncentral F(p,u-p#1} distribution
with noncentrality parameter proportional to ﬁ%r Ses (3.3.6). Its un-
conditiona)l distribution 1s given by (3.3.20) and (3.3.21). ¥wever, the
qnlnt distribution of the d§(x). i= Toeeaaky 18 mm, s0 that expres-
sfon (4.2.14) cannot be evaluates | !
Using classification rule {;1.'.2'.2\1; the probability of corvect classi-

fichtion, given x ¢ wy, {52

L 2
Pleorrect classification|x :’\Ti] = Pwi‘t!” >0, ¥isTaks 4= iln e myhe
(4.2.5)

As in the above case the murginal distribution of \'“{x]. conditional en
ﬁﬁj. 15 known (Okawoto, 1983) and the unconditional distribution can, in
principle, be obtained By integrating over the distribution of 511' o=
ever, the joint distribution of the vi,f“) is again unknown, so that ex-

pression (4.2.15) can also not be evaluated.
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A5 in the case where the parameters are known, we therefore consider
boprds on the probabilfty of correct classification. As before, Cacoullos'
lower bound (2.7.32) refers to the minimm probability of correct classi=

flcation and we can Improve on them by using Benferroni’s first inequality.
Using the analogous argument as that leading up to expression {4.1.28) in
the case where the parameters are Known, and using Oksmota’s (1963) ex-
pression (4.2.7) for the probability of misclassification for two popula-
tions together with the assumption that the traiming samples from each of

the k populations are all the same size n, yields the following Tower

bound on the probability of correct classification under the random ef-
fects model:

Pleorrect classificationd = 1 - (k=1 }Esguttbisu} +% i(lﬁ‘j]

oty ,
Cx {5;-;-*—,1—112 s o2y, (6.2.16)

Finally, substituting expressions {4.2.12) and (4.2,73) for the expecta-
tion in [4.2.16), yields,

far v even:

Pleorrect classification] = 1 - ﬂ - g/g jI I Tiis {1 %}'“*i}-

. %@Hﬁ N g;“’*"“l}ztg_u B H{%ﬂ-}ﬂh}} o) (s.2.07)

for r odd:

Pleorrect classificationd = 1 - _2'““ -— cos {J.I =n} ]/5. z
Hepnet (i)

LG e g %slm

+0{n2), (4.2.18)

f=1
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fie can also shtain an upper bound on the probability of correct

i . classification in a manner sfmilar to that used when the parameters are
known, Using Okamoto's (1963) exprecs"iai\"iﬂ,z}}ﬂ and assuming training

o sepples of equal size n yielas the expression ﬂnen_'lngws to (4.1.32):

" PLeorrect ciassifif‘ntionlx el 8 7 - E@;“(‘i"’tl

b 1 1 ps o

b +3 *“‘1”{]‘ sofne oy w29
LA ) o
. ; “ where

' ] 6% = UT": 6?3-

The first terp inside the expectation was evaluated in the case whers
the parseeters are known, conditionally on'ug. The second term is, using
the distribution {4.1.38) of &%, conditionally on Byt

4 N 1, b -
, 1= [ 3 samiEl oy, e

o L1 ~3ffpel , gy L 2 0ke2} § o
L&%E' L 2B - § o@D T sl

i
s; 1 ;wa 1 2wz 55 G T
. ke - k-2 , N
&l [:a_ %*@!e 3o 8 ey

for the case whan ki3 even, where the al are dafined 1 (4.1.38) with (k-1)
replaced by {k-2) and the 1:5. are defined in (4.1.37). Interchanging the
order of integration and evajuating the resulting integral yields:

i
f

?{é;,_,.

e

SRR R
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RS- | T, 2 gresti-g
B R _ﬂ.l__ el -
77 o b T gy g Tlirts-d)

LT S (4.2.20)

Substituting (4.2.20) and (4,1.40) inte (4.2.19) and sinplifying, gives

the following upper bound on the conditional probability of correct classi-

fication, given Bys when r i3 even: - .

PLoorrect classification} e =] € 1 4 % .1§o S B

" - - ir(dresei=3) N ~
k=T ' 2 drestj-dop-1 . pvE driss
T sho jgu P e e U P

i . . (4.2.21)

{
LIS
. the 1 are defined in (4.1.39) and evaluated in Appendix-4.2, :
| “the ay sre similarly defined, but with (k-1) replaced by (k-2) and . ; L
} -
i the c‘; are defined in {4.1.37),

Remark 4.2.2  As in the case whare the parameters are kntwn, an approxi- 3
mate upper bound on the uncondftione] prebability of correct classification ",

with k populations way be obtained by fgnoring the intercorrelations be- ;
tween the £§d. J = Neoonks § = 1, and procesding as if thay were indepen~
dent. Arguing in exactly the same way es in Remark 4.1.2, we conciude, that
(4.2.21) is also an approximate upper bound on the unconditional pmhab\!‘lh(_._J
ty i‘\' the cj are replaced by g (defined {h (3.1.9)) fn this expression

and in the deﬂn'l_&inn (4.1.39) of the 2y and ag. Furthermore, for &

[ L
v -
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given set of eigenvalues {4,} the upper bound on the conditional proba-
bility of correct classification mhutgd at yiy = £ 15 axactly equal
to the approximate bound un the unconditional probability for the case
where the eigenvalues are all halved,

4.2.4  Evaluating the bounds on the probabilities of correct

classification for k > 2 populations
Expressions (#.2.17) and (4.2.18) for the Tawer bound on the proba-

h11'1Jt.v of correct classificetion are also computed by subroutine PROBT

given fn Appendia 6.3, Table 4.2.2 gives the values of this bound for
the same six sets of eigervalues that were used in Table 4.1.2.For the

case when the parameters are knewn, and for k = § populations. The de-
graas of freedom v were taken to be 20,

Upper bound (4,2.21) on the conditiona) probavility of corract classi-
ficetion, given By % E oS computad for the special case where the eipen-
~alues are squal, as was the corresponding apprmﬂmt_a bound an the un+-:
conditional probabilfty. See Sub-Section 4.1.4 for uva details and for
the values of the a when r = 4. The corraspanding values for the a are:

a"]sria{-gs,aé';. ag“%— and 3y =0, ¥s > 3,

For the same rozson gfven in Sub-Soction 4.7.4, tho upper bounds computed
for the case of equal eigenvaiues are alse valid for other sets of eigen-
values with the same troce.
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o Table 4.2.2

Bounds on the probabilities of correct claesification for
k = § populations and degress of freedom v = 20

Upper bound on
Case oLy Lower conditional prob.  Approvisate
- 1 E"L“ eveluated at 'u_]-E upper bound
() TLLLLE Rt - -
) 3,33,3.3 8733 A -
e} '5.4,3,2.1 8562 - -
‘ @y 7 E713 7416 B R
A (e} 2.5,2.5,2.5,2.5 TE7R JT416 8325
(f) 4320 7386 J418 L875

hs in the case where the parameters are known, the upper bound on the
conditional probability of correct classification, evalueted at u =k
tends, to be unrealistically lew, and is in fact fawer than the lower bound
in one case. For practical mwses: the approxisate upper bound on the
unconditional probabitity §s therefors generally more useful.

“a

:
il
iy




Appandiy 4.1

Proof of Theorem 4.7.1

Since T i3 a nonnegative definite symmetric matrix of rank r, we
way as in Theorem 3,1.1 let T = T, T} ,'vhere T) 45 a p * r mateix of
rank r. Mzking the transformation

I='I']2

we immediztaly have that

PEEETN )

where n is the solution ia 71 LER ]
Therefore ¢ » ' £ = 2T 1T Ty 2= 2V 2, vhere ¥ e T} 57 Ty

is an (r = r) positive definite symeetric matrix. How V can be e:prélied

-.4n the canonfeal form:

V=P AP

vhere & = diagin) and {g} = eigs(T] £ Ty = eies(T 71 and P 4 the
orthogons] matrix whose 1% colum is the wig of ¥ cor
t0 by

Therefore d* becomes:

r
Qe BRP I AY= | Ay
L
whare ¥ = ['\:‘} - p a-nutr'n::-'
i wlPin

S0 .\"g ~ xi(mf}. independentiy, .mre 0y 15 the 1™ glament of P'n .

S T




e ) ,
$10 . : i B i
{ 9.
; Appendix 4.2 .
i Evaluating the cosfficlents a; in 1de(it|t,y (8N 39}'
4
i
i - [PS | o :
i 1
i (J\‘:‘n 5 |§n {%} m . !?_1-!-0 g :
d E)
| 7.
bi Theorsm A 4.2.1 t
| i '
. J ”-%—E_ for §=0),.. g1 Cb
- Proof The left hand side of (4.1.39) wey be written:
- (3 o BTk gty e ) :
il _ 0 74k ) b ZETT T Ty !
B dr+j-1
i +e§ (T Foart Hoitel {1+ +...+-T-5:|-——
} {0l fw}* oty ey LRy
i P i L :
L=t i b
] e {14 ok -ﬁ-{-—-— {'I»c')-f-—-————-e.... 3
i ’5“%' {ar-1) 0 2 e ;
13 '
" i 3 e k-1 '
4 (e- T el - toannd (A 4.2.1} i
: T S T ;
: where we have assumed that {4.1,37) is a winture distribution, so that
i T ootal . :
| 5 :
i - k=1 |
] =5 b, ¥ {A 4.2.2) f
=0 i
- . 5' " wheras bs «-5;1':? for s ='o.l,... -1 !.
! L
i 0T ete g redel; § e 102 l
4 ] - T} 5! ¥ o E= ~13 ® Ldgieens i
! I . i <
1 o i
’ 1. Px "
o o
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Using the multinomial theorem to evaluate (A 4.2,2) and substituting
thic into fdentity (4.1.39) immediately yields:
v

i
i i

; . :
SRS e e b b2 b Apazz

1
where the symsation s taken pear all partitions £ "I"“’.i of k=1 for

which:

iag=g - A 2,
é1 1= (A 5.2.4)

Subsituting the values of bs given in (A 4.2.1) into (A 4.2.3) and using
(R 4,2.4) gives, for _J < jr-1:
©

1 k1)1 1ha % b R i
oy ;ﬁl;:"‘qr’m;r(w’ ) B () (8 8.2.5) !

The first few coefficients are,from {A 4.2.5):

aon?
i Mol e : Sl

- ] !{Tl'gmj‘ﬁ{‘rr}} TR : Ly

o= Sl Yl o)

ksl ) okpe) . e

28zl

FRLIN

) i
and so on. h
The vest of the proof. follows by fnduction. Assume that the result |

i3 true for a1l § = 1 and &11 k, where § < ir=1 . 1 !




%a.

|

| k1) ey
1 fe. ol -1;??- forj»l!.l,:.._.».i ’ (A 4.2.8)
!

|

1

1

where the superscript 1n asbn {ndicates its dependence on k=1,
How,

-

2 b1 _ )
{sED Be ¥l F E(I b jsusgﬂ B ¥

I apg el g oK 4y, aj'j'zl P
3 -1
stk , 1 tkeny! ;5-:1 (N~
aiﬂ YEIT, z*:z' Tt Tt Ty

by assumption (A 4.2.6) .

Therefora,

m} 1 1 pegnd
h Ay jintj}(”}

(lhe2en) ™ o kezy ™y

Lo
PaITATY

) el R
- RNCS) -“-z‘{t iflr.!‘ {n 2.2.8)

2 ¥ e

and sinee (A 4.2.8) holds identically for all k it imdlat_giy follows
i that:

1 i .
a?""“ 'j“ —  forallk (A 5.2.5)
PRUTREY

"




ﬂ v Finelly, as the thsorem has already been shown to be true for all § < 3, '
it is trua for all § s §r-1 by induction.
Remrk A €21 The coefficlents aj for J = jr are sost readity catovs
o lated fron (A 4.2.1) with the help of Theorer A £.2/). Unfortuately By
] no general result §5 availsble for then, Wrting (A 4,2.1} as: I !

I -

T S K1,
I . l:[;ﬂ:qug' ﬁ?). !!-'?—E

b= .
J"!f‘ =i 0 tH ’ i

b
(A 4.2,70)
B N .

and using the following obvious generalizetion of Taeorem A 4.2.7: TG
i S

s - - 3 . i
peo g e (& 4211 L

ot 0" =0 27

T ‘l e pbtain the ffr'st. fa! higher coefficients as follows:

et ~ g k-1 1l e
"T‘L_ ].1_'1._.. 13 L ey A ez !
e En: CATSY o )

R

n ik-n"'” k-! feg + o) ,
oA il R | ATy zaru,qH}

L -
?‘W’éﬁ)' (k=127 e%!'l =2} (drH ) 1 ..,} (h 8.213)

H

”!Nz - (k-'l { {cé-&— ¢)+ 55} o+ 'd.f'
2 gy 1 Ve eyt T et

. [e2y? }
"urp 22!

L

y




DRI B

| -

i 100.
A |

! k-] L . .

y ';F{!_)-' LA™ gl (-2 (hrs2) (1 40 k-2) (2]

| M) ! (k=1 _ cplt+ (k) (irs2) (1 eglk-2)(ar1)))
A _ :

I ol () (hrs2)) ~ gt (A A2
ﬁl L . v

1

,i and 5o o, . N

|

Result (R 4.2.13) anly holds for jr > T and (A 4.2.14} only for ir >2.

For gr=2, d.e, v = b (A 4,2.1) becomes, fnstead:

< b 7y = 2_:_1;.. (1) - g0 + Mk-23 (1 #3(k-2) = Ak-2))

“ej{tedtkez)) -l A 4,2016)

2nd for dr= 1, f.e. ¢ = 2, (A 4:2.13) and (A 4.2.14] becows, respectively:

e A 1O D e (A2

[ |
. : dy = ;:x;;l {112 - gh(1+ 32}~ 1 ~:0(k—2}—c1+:6{§.. 1)
er Bt X ;

. =eq{1+ 3Hk-2}) - 5} 42,17
o

“
v




€
€
<
<
é
<
<
€
%
&
€
€
<

L

B

[t
[

161,
}

Appendix 4.3 FORTRAN Subroutines for computing probabilitiss of correct-
© and misclassification '

Iggl;ﬂiilrm! PROBS{NDAD o SET A CVEC oNTHRNS  ERALH sHTERM1 +PROCT NEPS

FREGHRAM TO COMPUTE CROBAEILITIES CF MISCLASEIRICATion. 3 ehazs FlﬂquTERi_
THE Bnru\uc'reas ARE: .

ORE MOy OF ELGENVALLE £, BETA = THE P.MEAMETEP BETA. -
(UEC = THE WVECTOR OF CGNSTMVS ciad HTEH = LgnGTh UF VECTOR
ERRCR = HAY'I«U“ VN.I.E OF THE LAST Yl!H!l ™ YH! INF’H«ITE SUM 1IN THE Fﬂﬂll\l.(
ﬁlgu -BE a } “gﬁI:"T%‘é%:;‘ﬁ?iﬂ%%’ﬂ:"tﬂstYig GROUP
P : = 3 ‘\5'5 o D!&( =I|.U WER BOUND Ok THE PRCF:\!lLlTY a® CDRFEC!
CI.&SSH‘ICN”QR l‘il”ﬂ 'NGP!' GRCUP:

IMPLEICITY REAL*A (A-H;D-Zl
REAL ¥ C\'EE[NTE M}
DETIN = Llarila4a26%00TA}
PI = 34 14]593553!5‘9 Lk
QC\‘PI -

F m HOF
l'lluntggnﬁ 1) +G¥. 0) GO TO 19
TERM = DEOATIBETIND % SOTPI
LW = TERI
lF(lmv -sz (9 so T 2

! 1 2. 1TOR

1
\‘!RH Ed ?ERJ!V(AI-] «SI*BETIN/LAL=1e}

cOELM = BLN 4+ TE
4=
SUMl = CWECILY # SUM
b TE )
IF(HTERNME oLEs 11 G0 TC &
] Esl\‘l -

e

ir
M m TERMO(!J"“«)"BETIMiJJ" s
=

FuN T
LI chc(J) = sy
TEAM1WLTa GRROR} G0 TO 4
RML
1= su-u +
£l -3 n.~.s-us=m|’(aera BETRIRSUA L}
by = [NGPS—1s )} EBROBE

o
(RCHO=E ) /2
Es*BETIN/SOTPL
ERM

T
o eLie 03 SU = 0y
B LLE. 15 af TO 12
I iTar

mEn B BRI mAmeD
OC Meaf 1 BAEM AN T NE el L O
TREZRTT ~nEPR OdxEoRE
i 25
s

" .

= CVECIL) U i I

1 = i . .

EEME oLHs 1) G40 TD 18
s WTERMS

:

o= ha
liHMlAJ—l P hAEETINAL A= 2D
= SUl
L= :vac(.l
ERML oLTe EGRWF GC TO 14

Zalm a1 E

W N A O B

EEPEE

TERM . :
RCJJSI&SO&T(H!TDG'I'I)F'L - lMJR'HEE‘M)/U\.O‘OYH!?CSIWII
GHE=14 ) ¥FROOE i
HTERML, PREBZ: MNGRE, PRUMK Hy
eﬂlgtl.dg!l" JCATICH Kt EATRA, ITE Ffal

B

=M EaThmT,

=
484

Lul
F TEANS COMPUTEDY +T40
LUWER BOUNL 08 PROE,
Bty THElEedl N

a

uF il

e
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1z,
TINE FAGSIINDRD, MORDY « NDF (BETAL CVECHTERNE ERADR MTERNL T 0 07
lil‘lﬂﬁ?-NGPS.FﬁDn:l . . '
PREGRAM Tg COMPUTE PROBABILIT IES OF ulsu.assxﬂcn [OMa  UNKNCHN PARAMETES
THE PARAMETERS AR !
NORE = NAs OF EICENVALUESs  NORDI = THE DIMENSION OF THE PROBLEM s
NDF = DEGREES Gr FREEDON OF COVARLANCE WATRIX. = BETA = BARANETER ‘eETA.
cvac « THE VECTOR. OF cnnsrmrs Cld)s ~ WTERNS = LERGTH \r@.cmn CVECs n
FROR = MAXIHUN HE LAST TERM m ThE INEINITE sun TN THE FOAMULAL
KTERHE = WO» OF NMATION ACTUALLY SONPUTED.
Fﬁ(ﬁi " Dﬁoman. ITY cl# nlsn.uss[t ICATION WITH TWO GROUPS. :
GROUPS. PR uaK - k““ BLUND ON THE PRCBASILITY OF CORRECT
:I. les:ncn’mﬂ WITH *HGPS® .
IWPLICTT REALES (A-H,0-2)
{REALAE CYECINTERMS)
IEETIN = 1edilata2SHBETA)
PI & 3a 1415924536097
SETPI = DSOATIPI}
CF = NDF
< IFtMooiNORD. 21 WGTe 0} GO TO 30
ITOR = MORD/2
TERH = nsoar(anrml * SOTPL
M =
IR(1TOP e, 1) G0 Th 2
EQ I = 2:170H .
AL =1 . .
TEAY = 7ERM'(!I 1 SIMBETIN (Al=1a ] i
1 SN _= suu * TEAM :
2 CCHTIN . i
SOM1TMEFovicer) % (3UM — TERN/SFSLZ,#NOADL=1.)/BETA + NORD1S ;'
1 (AT, !IIBIYINH
h"?ﬁu
IF[RT snvs .Le. 1! G0 TG &
ocd 3 Il
31 1s '
TEAM = TEﬁnuJ—l.S)\sznw<1J-1.)
' SUM s SUM + : i
TERML = cvaciai * (SUM — TERR/DE#{Ze #(NOADI=14 1 FEETA + KIRD1®
l{A.l--!]tS!T iNr iy i
+LTe EAROR} GC TO 4 !
ﬂ!aul S i
3 UHL = SUAL + TE

PHD 2 = .!tl.! —;B?SORT‘BET!IISCY’I*SU‘Kl?
EFOl 1s =~ 1+ V#PROB ¢

To 2n .
1o $3oe e fNgRD-tis T
TERN = e #GETINSEDTET
SUM = TERM
TECXTOR L2, 03 SuM ~ 04 :
1|B[ WF’ .l.!g‘ xuaa O RE !

‘IERH ns'lEENAIRT 1 J#BETINACAL=wB)

11 v
= Cﬁxn :\ru(\) L] TERMIBES o 1 i )
= Mo~ TERN 2o 8 (NORRI-1, | /BETA + MORDIR . :
1iteering) , oL i
KTERML = 1 A o
TRCNTERNS LLE 11,57 79 18 : o
£0 13 4 = z.ui ;
£ =T ITOR «
mn_nsmnn-(u-la)me‘lmfltr.sl
Jgjmirf“‘;"““" * (EUH = TERHDPR{2 #{NCRDL =1- }/BITA + HORSIR
15"?%1 +LTs ERRDRY GO TO 14
RTERNL = J
13 SUEL = BUML & TERM
i PROBZ = 25 - wwcusmsam merm;)zn - e!um(aETnltu-osarnluum
PROBK » 1s = {NGPS-14 } ¥PRO
20 CENTTHUE
ABLTELS 101) =RROR: # ROL
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Chaper 6  Hypothesis Testing on and Estimetion of the Eigenvalues

ez

5.1 “Introduction

The results derived in chapter 3 and & are 411 expressed in teras r i _'

I. either ex-

::E “of A 2 g =z ¥ 0, the r nonzers efgenvalues of TL™
i plicitly as in the expressions of the means and variances, or implicitly
through the constants £y appearing in all the density and distribution
functions as well as in the probabilities of correct- and misclassifica-
' . tion. :

- 1 : It is clear, therefore, that in any practical implenentation of these
results, sample-based estimates of these quantities will be required.

Since we are only concerned with the nonzero eigenvalues of Tx“,

the logical First step is to test the hypotheses that same of the seeller

B ewemr_a'lues are in fact zero. (They cannot be negative).

'In this chapter, therefore, we will consider the twoe questions of
hypothesis testing on and estimation of these efgenvalues.

Section 5.2 wil) be devoted to the first of these two questiaons,
Wone of the results given in this section are new, so only the formulas

for the various tests will be given, together with o discussion on thair

applicability to our problem. ¢
In the remaining sections of this chapter the Tess understood ques-

tion of estimation of the efgabyalues will be considered. Various estime-

tors will be proposed, and in Ssction 5.5 they will be cospared by means

of a simulation experiment,

As in Section 3.3, we will assume that we have a training sample
of random ohservations from each of ¥ populations. Furthermore, because
of the itherent problems associated with estimation in rendom effects

ST VRNCEN S RPN

models when the samples are unbalanced (see, for example Johnsen and Leons
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'ﬂo‘l I]‘. {1964} page 13) 1t will be assumed that -ﬂm sample sizes from

mh of the k populations are the same.
J,; Therefore, our sample will consist of p~d1l|lll1510tla'l random yec-

ters,

High

J=l...

g t=100k LB

" where, under our random effects model,

- “‘,{llfiﬂ ,  independently
and e, independently.
Lt
: 17 T "
' MW = i§ arnee
and .
. ) % k E
E % %
i 81 Ni-_.l-l id
Ly
wherd-— :
Bukn %
From the dat; We can cnn‘s;‘i‘-uct the following HAKOVA table:
“Tahle 5.1.1
{ Degress Expected
Squrca of Simis_of Squores o Hean Haan
Variation ":’ : frepdom  Squares  Square:
Batween groupn  Aq = ni[‘(f“ - g ex B vkl 510-1- BT
L T TR

X koni Y
Within groups “z"‘}u_zt%”*t.““u"‘t." guli-k 5z"v‘22 L

i
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Befining,
i £ =K+l (5.10.8) :
i .-._ we have, under the rindom effects medal: \
) . Ay loygy) .
- i and Ry = WoluguB)s  Indupendently {5.1.3)
i where W, (4,5) denotes the p-dimensional Wishart distribution with ¥
:' degrees of freedem and parameter metrix I.
il 5.2 MHypothesis tosting on the Ay
é In this section we discuss the problem of testing whether some, or
a1t of the rigenvaluas 1Y of 17 are equal to zevo. ¥
. ! Logt “% first hypothesis to test is Hy 1 T =0, for if it i
3 ) R '
were Lro 3y ¥y which would fmply that the k populations w( * .
1 . \
R . identical and s..c it would be fruftless to contfnue with the discristi. .
R analysis, )

From {5.1.2) this null hypethesis becomes,

LR
i v with alternative, 1
Hig 2k, {F.2.1)

Clearly H‘ would fmply thet r(T) » Q.

g !, . The uguzl WARIVA tests using the statistics Ay and A, defined in

a‘ ) Table 5.1.1 are based on; the fined a_ﬂ‘m:ts modal. Ses for exomple, de Hasl :
Tt (1976). Under the null ‘Pwnthssis. hownver, the disteibutions of these i
N : tyo statistics are not affectad 1F instaad the randow effects model per- ! '
. H o0 1} ;';

' 4

! I
o . i
g I
7 ( . ;
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tains, so the abovementioned tests are alse appropriate for ocur situn-
tion. On the other hand, wnder the alternativé hypothesis, Ay has the
noncentral Wishart distribution ltp(v.l oI St} with noncentrality parame-
ter 0 when the fixed effects mode] pertains, a5 opposed to the dis-
tribution given in [5.1.3) for the random effects mode). S0 the power
functions of these tests will be different and will have different in-
terpretations under the two models,
A1V the invariant tests of hypotheses (5.2.1) are based on

(0% G 2o ) & aigsin i1, (5.2.2)

Two frequently applied test statistics are:
() The Tikeiihood ratio statistic (Wilk's criterion)

73 = TogtIAyl IA#hyl) = j_f\ Tog{gy) .23

{11} Hotelling's 'I's statistics

« § g+ L 15.2.8)

Ty=wT2 = tr A
27vTa e b

Remark 5,2.1 Two further test statistics due to Roy end Pillai respec-
tively, also appesr fraquently fr the Tftersture, but they won't be con-
sidgred nave. " The reason for mentioning Hutel:lng's TS statistic is that
it g considered again in Sub-Section 5.4,2 wiere its distribution under

" the random effects model 15 discussed,

Anterson (1958), vzing rusulss from Sex {1949), shows that the
asymptotic null distribution of Ty can be written:
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Tz
Ptm.!T] g2} = Gpvltz} + rrrl-.l-‘. (E\W‘M{z] - %‘,‘{Z]]

+ ;1:"‘"‘“9“1*5"’ « B (210 = 48, a2 “- Gy (2D 4 0™

{5.2.5)

wheve,

B = vy + p-1)
g = g phef-5)/48

oo
g ® 35 (M) + 1050 + S0Pl ) + 159)

dnd 6 (-} 15 the xj distribution function. As a rough rule, Anderson {1358)
suggests that accuracy to three decimal places may be achieved using the
First term only in the above expression iF Pt v% s ml.-’l

The asymptotit nul) distribution of Ty 1s given by Fujikoshi (1977)

i me following fore:

(gt}
PLRgT < 23 = Gy, (2) ¢ m‘rm;l"' {8, 12)

A, 5a(2) 3 By, pafad) + o(m?) (5,2.8)

where . i\ . L

[
'.mg=v2—'p-'l.

If Wy 45 rejected, the next test of interest is whethar any subset of

. the Ay could a1l be zero. Jf true, then the distribution of &%, the
Mahabanobis distance between any two populations, under the vandom effects .
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model could be expressed in terms of the remaining non-zero )‘1'5 only.

See Theorem 3,1.1. The null hypothesis of this test is,

Hop f Ay ® Apgg enans =k, =0
where 0 < r < p,

Fu,iikoshi\_{ls_??} discusses tests for dimensionality of the noncen-
trality pnl_-n'eter 0 under the fixed effects MANOVA model. That these
tests are approprizte for testing Hyy can be sesn by the following ar-
gument,,

coruiitimlly_ 7 Liys Hgaeesally W have & fixed effects modal, in
which case Ay hus. the noncentral Wishart distribution Hpt"l S5,i1) with

noncentrality parameter,
-1 t ,
&= ot (g wg_ u) {5.2.7)
=5 . d
1 ¥ '
where y = ‘E wg. MNow, under the randow effects modal,
o 1

uy o~ Np{;.‘l‘} independently, ¥,

s0 that, -
k §
PRI RIS RS (5.2.9) +

k
Cleatly, from {5.2,7), r{o) = ri E fug=n Higu ) ],kami as long as
k> r(7), then fran (5.2.9%, with probability 1, v{ E (u1-u Hugen )" Jer(T).
50, Fm- K A FT),

wa) = (7] = (1) ‘  (s.2.10)
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and therefore any test for dimensionality of 9 will alse be a fest of
rtT:"1), Fi‘hn'l'ly. since rtTi:']} is equal to the mumber of non-zern Ay
testing "01 is equivalent to testing the hypothesis v(R) = r against
the alternative r{n) > r.

The two test statistics, corresponding to T.| and 72. ,for tasting

figy are:

Toy = Tog{1+g. 5.2.1
SR SR LT (5.2.1)
and
T 8 g (5.2.12)
a 1-?«1 i

Fujikeshi (1977} gives the following results on the asymptotic mull dis-
teibutions of Ty and Typ.

|

PLay Ty & 21 = Bylz) + o(mﬁ; . {5.2.33)
where,
= (p=r{v-r)

[ -
nr!d By * vy + dluppei) 4 {E} ).“ .

Pl Tyy = 21 = Byl2) +...{f;.‘.;_....l (Bs() = Zﬁﬂztz}”-.

+ amtzma‘m;}; (5.2.14)

b=
la\heneltz]nve-p-!+ro1£_l A

i

Jye
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To apply these tests we clearly need to knoﬂ;‘, SICE Y

appzaring in myq and Mgy » & simple empedient i's o replace 1;1 by

3\;] whire ;1 is one of the s of A di d ih the
of this chepter.

5.3, Evtimation of Gy} » Efgs{TE’}

From Table 5.1.1, expressions {5.1.2) and (5.7,3) and the usuaj
theory associated «1ih the Multivariate Normal distribution it s clear 3
that §; = v A and 5, = vy Ay are maximam Tikelihood point estimators
(corrected for bias) of Ly = 407 and T, respectively.

Thus we have the following maximum Tikelihood estimators for £ and

T
Tus,
i
and
T2 U5, L (5.3.1)

sinte the transformation i& one-to-ong, [See, for example, Anderson {1958}
page 48). ]
Woreover, as Tong 25 the By are distinet, the eigenvalues of ir

will be the mexisum 1ikelihood e s of “the corr
=1

f wigan~
[Ses, for exawple, HAnderson [1958) poges 273-80). There:
fore, noting that:

viluws of T

ARSI

,%{stsg‘ -1) (5.3.2)

[
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where 1 is the identity matrix, we have the following maximum Tikelihood
‘estaators of the Ays @5 Teng es they are distihct:

P
it e (5.3.3)
where 1) 2 g2...2 &) are the eigenvalues of SISEI. i

R -, " .
Remark 5.3.1  fote that (¢} = Eigs(5,5;") = efes(cE s = G o)

. Givshick (1939) proves that the-eipenvelues of a sewple covariance matrix

from & Normal sample are fcally i c b

and nor-
N
mally distributed s of the cor i

population efgenvaluel -
as long as they are distinct. Using the muitivarizte analogue of the
arguoent used to prove that the F-distribution tends to the chi-square

- distribution as the denominator degroes of freedom get Targe (see for

example Witks (1952} page 181} it can be shown that the above asymptotic
resylt also holds for the eigenvalues of Slsg‘ns both numerater and
denominator degrees of freedom get Jarge.

However, as will become clear from the results of tml'.'simlaticm ex=
periment described in ssetion 5.5, very large sample sizes ore necessary
before these resulfs ©on be bsfleed to hold to any reasonzble degree of
aceuracy,

For moderste valuves of v and Mg the situation i3 not so simple.
Ehatri (1967) cbtains the Joint density function of the eigenvelues
By > Gy ouad % > 0 of n‘n‘é‘lmﬁch.::an be expressed in the following form:

Bupnl) bl
. ¥ | 1*2 .
"91,“,.;],{’1"-"9[:‘ l © 151 'ri. "1 g (14vgy) tizj{g.] 9301
* JFldlyyrugds ¥1 - T, 8TeyE) ) (5.3.)
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where,
T EY R P o are the eiges alues of }:II‘.'-I

¥ 45 an arbitrary non-negative real number

T denotes the oromich 1% n
=< J1=1§=i41

T diagly;}

! ! & = diaglg;}

i P {ui A8} denote g generalized hypergectetric Ffunction with matrix
arguments, (See, fa'.‘ example, duhnson and Kotz {1272) equation {3.1.2})

and ¢ {5 a constant. ' 4

Remark §.3.2  Since vy = £+ T e haye kne fn'l'lnwing re'latlonshin be-f f
; tieen the v, and the A;:

tygd = algal(zenT)e" ') = eigstinme™'y = fhenhgh:

Therefore, estimators of the Y4 would also produce estimators of the
carresponding 3.
As it stands, fermrla (5.3.4) is not very useful for ohtaining estima~
tors of the 'ri {and hence of the 11], but Chang (1970) shows that nhen
R DR is large and uu; ¥y are distinct then the fo!'lw[ng expressinn far
j i : the 1imiting joint densiw of the gy may ba derived from {5.3.4)

blvyp1)
g’ P Broey yEe i

f & i
gi..--.up[gt,- Gp) =€ ler}.r‘ b T vgg -7 Az =l

(5.5.5)

where ¥y > vy 220 4, are the eigenvalues of £F
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P
. tribution (5.3.3) 15 exact in the imensional case, with i -

b‘-‘: value,

unbised estimator of ¥y results:

T (4,0 }

e (PPN o
S = I o .

p

p
and Foli) = nplp=1)/4 jn1rtetv—mn is the mitivariate ganma function,
=

Rs & check on formula {E.3.5) we evaluate it for the case p = i:

2oy hug)
. Ty zll A 91] /1 . ! (5.3.6)
9 g &

50 that gt‘f"l has an {unncreed} f-distribution. Se l:na\n;';'s 1imiting dis-

. )

g .
El:—‘J - '_zl? .

R .
Thus iy = é o has expected value (Tz%z} T from which the fallowing

= {‘%;] P (5.3.7),

. Far higher-dimensions, however, the caleulation of expacted values
fru_m {5.3,5) becomes intractable amalytically.

Remark 5.3.3  In & very recont paper, khatri and Srivastava (1973) give
the following asymptotic a:pnns_ion for the joint densﬂ.v‘lfr.lnction for ' ° %\a
9 > g 20 gyt 2 when the vy, are distinct: : i
I
|

+ . : TR 1 el ten)
I MR IR AL RS M e [i{i"id‘{w" ] i

& 0o a8
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where,

, e n .
fsl.‘--xgptg'l_"“‘gpl is Chang's expression (5.3.5)

RICTAR
P

egs = 051 Mepag (e}
P
and I denotes the double sum | ; .
i< i=1j=141
For the sitvation whera only the first g y; are distinct and the
tast (p-q) are equz] they give a similar, but more complicated expression
for the joint density of the 9+
Unfortunately the abovementioned paper appeared in print after
the research in this chapter had been completed, sur:'thar expresgsion
(5.3.8) was not used to obtain maxitum 1ikelihood estimators of the Yy

; However, since uy 4+ vy = kn1 and k must be greater than r{T) (which

usually equals p} to ensure that rf;'} = r(T), here T is given tn 5.3.1,
vy + uzwm tend to be lerge in most practical applications. Thus the
correction factor ‘;n (5,3.8) will be ssall in practice.

Ihverum'le%s, it would be a relatively straightforward but lengthy
matter to obtain unrestricted and restricted n;uimuu marginal 1ikelihood
estivators of the y; from (6.3.8) corresponding to thase ubtafned_\ﬂw
(5.3.5) descrited in the remainder of this section and in ‘the e’ LI
would then be fnteresting to compare these two addit{onal E__sﬂrrnto'r;s__v?’
the y; with those proposed below, by repeating the simulation experinents
deseribed in Sestion 5.5.

" 8.3.0 Maxinun Harginai Likelfhood Estimators of {ry) = Eigs(eye ™)

dames (1566}, considering the eigenvalues of 2'simple Wishert
matrix, argues that although the sample eigenvalues end efgenvectors are
Jointly maximum likelihopd estimators of their population counterparts,
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the sample eigenvalurs do not maximise the likelihood function of their
marginal distribution. He then goes on to selve the meximum 1ikel{hood
equations obtained from the 1imiting marginal distribution of the sample
efgemvalues to give estimators (to o{u‘zn of the population efgen-
vaTues, It is interesting to note that Lawley (1956} obtains the iden-
tical estimators using a quite different approach. Me now apply the
same approach as James (1966) to Chang's forsula (5.3.5) for the limiting
density of {gy} = a1gs{,s\1.lz h

Starting with the log Tikelihood ?F the ¥,

P P
CLosfylgh=T0g ¢ # jluyep-1) I Tog gy - v Tog ¥;.
rla) = i igl B - b 151 41

[
9
N - .ﬁ{“]ﬂ‘g‘i’*”igi togl) +7) + 4 21%1‘" lag-ag)

~i-£1£j Toaty;y 1) (5.3.9)

differentiating with respect to 7] and sinplifying yields:

ak__ 1 % ¥,
‘éﬁ‘ﬁ“{‘“ﬂl“l""zp’”ua jz ?j‘!v_i’ bt

i

5.3.40)
where T denotes the'single sum from J = ) to p excluding the tera where

° d
1=1.

Tguating this to zero gives:

v
oyt s} e u + I

—-‘L—-v LR P
TR TR T

{5,3.11)




4
|

-
o
A

-

el

e

16,

Bafore attempting to solve equations (5.3.17) for the v, let us
first check whether they do, in fact, give a maxisus for the log 1ikeli-
hood (5.3.9). Taking second derivatives of L:

.
+ —j—n-
. 1*91 P byrg)?

Al .

“w; -

1 -
- ?Y-{ (= + {yyhvgprl] o 71'91 JI1 -Yj—y )

Y
Fon 1;___ Ay 5.3.12
h—[ g Pe tyyea)? 1£1 Cryry)® : !

at the statfonary pn.ivlt givve_n?by (5.5.11}. CTlarTy'j.':. < & for vyt vy
s 3
v .

sufficiently Targe. i
Simitarly, %
[
atL 1
U —Y (5.3.13)
il 2y

Using the criterion (see, for example Brand {1980) page 188)

N .2l a‘L [ L ] (5.3.1
-3.14
Mg ” Wy ¥ !
we see that, for R sufficiently Targe Il“j >0, ¥i,], at the sta-
tionary point, {mplying that (5.3.11) gives a maximum,
Going back to equations {5.3.17) 1t 1s obviously no strafghtforward
matter to solve these in temms of the Y50 § = Lieop. However, solving

thes in terms of the 9 {which gives the modal value of their distribution)
o yields; - 3




n7.

“p+ 1]

-y i__.i:i_‘.,i_"‘__\?_u $2Tnp (5.3.15)
—d
54 Y5

At this stage, it is convenient to return to the

-. v - e
(2,3 = eigsis,s; ) = eigngf AT = {3% ok

The medal values of the iy are, from (6.3.15):

01 ) i‘_:rL
By __J:"_JJ__ 121,00 {6.3.16)
1. B
] "zj-1 Y5l

Ms & first check of the correctness of formuls (5.3.18), note that,
modal By by as vy and vy get large. '

Further checks on (5.3.16) can be made by noting thet, as vy o
the #; become the edgenvalues of the single (normed) Wishart Matrix S.II'I,

where v,5,27 ~ H(z,E vg). Formila (5.2.16) then raduces to:

¥

T
\,! j§| H”‘H} (5.3.17}

= 'q!‘
which 13 equivalent to Jases' (1966) equation (8.1) for the 1Hmiting maxi-
wum marginal Tikelihood estimators of the population efgenvalues of a
Wishsrt metrix {(he uses the notation L Yfl‘ Formuta (5.3.7) 15 also
equivatent (o 0(vj%)) td Lawley's (1966) exprassion for EL3,' dbtained
by using a perturbation arguuent, I "‘
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5.3.2  Approximate solution of the Maximum Likelihood Equations
To obtain the nxil_ Tikeiihood estimators of the k7] from {5.3. I'J},

note that from (5 3.18) we have:

Bl 1ol -

£ \-";-15-—*—— (5.3.18)
15

) JEi i y

and, for vy large this becomes:

- g §
Yi ¥ [‘ ) ;Ei 'fj‘Ti]

» P

= byl # 5 ‘£ + 0T e

"1 3 Tj"i

B+ 0071 {6.3.19)

"P’Iugging“ 16.3.19} into the right hand side of equation (5.3.18) yields
the following approximate forsula for the asysptotic maximes sarginal
Tikelihood estimators for the y,:

2]

‘_;i L T (5.3,20)

1t may alse be noted in passing that the method of successive approxima-
tions (see, for exanple MeCracken and Dorn (1964} for solving (5.3.18), .\
considereq as the system of equatiuns, LI ' o

ye ik J




e

i
- %

e

ns.

yields (5.3.20) in fts First step if the initial values v, = iy are
used. ' :
fs @ check on forsula (5.3.20), note sgain that, as \:z + = we get

P 4

=41+ “1 5£ : + 0{\:1 ] . (6.3.21)
which s the same as formule (B.2) of Jemes (1966) for the maximum mar-
ginn! Tikelihood estimator, as uell as Lwlej‘s (1866] farmula for the
est'lmuwr with bias of order »1 , of the 1t population efgenvalue of a
single Wishart matrix.

5.3.3  Kumerice) Solution of the Maximum LikeTihood

Since thers is no exact analytic solution to the maximum }ikelihood
equations (5“,3.1‘”. we now consider their numerical solution.

From expression (5.3.9) it 4s evident that the Timiting log-Tikeli-
hood function of {yys 1 = 1,....5} tends to fnfinity whenever any two
of the 7{'5 are equal. However, since Chang's formula (6.3.5) is valid

only for inct populativn eig these singularities in the Tog

Vikelihood pecur at inadmissible values of the yy. Nevertheless these
"inadmissible singularities" could cause considerable difficulties when
trying to selve the maxime Tikelihoo  wquations (5.3.17) numerically,

Ta get around tm; problem, we con o+ the following reparaseterian-
tion of the probiem:

Let s
1w
W wg ok °T__
and




b
i

L
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LI P S § 5 2000 (5.3.22)
i s I a3

vhere the g5a i W Taauayp are presssigned small positive quantities.

The reasons for dmns.l‘ng this reparameterigation 5 as follows:

{a) it ensures that vy > yp >..> ﬁP =0,

{b) the new parameters (851 = Toei-apl ars uncunstra‘lned in value , and
(e) the y; appear only in u\e.ﬂmns :“'-i and— ——~ » 47 i, in the
dengity function (5.3.5) of the g, {ccrlsmered ag a Tikeiihood fumc-
tion) and both these forms can be sxpressed simply in terms cof the

new parsmeters.
Viz:
2 i &
1 &,
“ = | (e )
K] k§1 i
and
: L1
1.1 k . .
3 ﬂ e kjﬂ{e +sk] .i,J Taewespi j: i.

A drawback to this reparameterization is that ¥t er\_&{iﬁls rﬁraassignhg
valves for the ey, In practice this presents no di r'f.\icun;." 2 practical

. rule {s to let &g be sane small Fraction of _d'l' —-~fur i= 2. cesp and
ool :;l— for i =1, Mwnj & y1 ara imitial est'{mboiﬁ‘o! the Ty

"
In terms of the new parameters ‘the Tog 1ikelfheoy bevomes:

4

]




.4 :
_i .
i . 4
E=L{glo.g) = Tog ¢+ dvp~p-1) [ Teg g, .
o 519:5 7L TS

i B g : » i,
i + By J!‘J 1r.1g|("£1 e g ) - ﬁ{ulﬂz—ﬁnj;‘ 'W{H’J(&I e Mg )}
el p g i

! .1
i3 = = e ¢
’ * 1!1 5-Em Tog(ay-9y) *{% .i-xiti 'W{J-Eﬂ e‘-_i “l

f vl;(l ; ekh: #uy-pr1) ] Toa(+ (‘; . N
a + - |
‘E] ¢ 341 Dg[k§1 ° ")_ e };.'! ey k=1 R

Bl p N

iy .
- k 5.3.2
(PR AN (65.28)

whare F{g) is a function of the 9 anly. Differentiating L with respect
t0 the §'s and simplifying yields the new maximum Tikelihood equations:

B B iy
: 5L 5, Sk, 1<) K, =t
; % - ie {u‘.d?:!'{k;‘I & ) - fv1w2-p¢!}j££ “1”“1'&1 & e ))
P LI S N
4 jgl&agﬂ L R

and

& P 3 n iy
aL Y k. -1 ] Kyl
e = je m‘ji‘f{é] e fag)7 - {“IWZ'F'”E_‘ g.tt""d{k§1 e g, )7}

=1, {5.3.25)

e




&

- first derivatives oﬂ{L (8)), whose

12,

K standard numerical technique fo- solwing the meximum 1ike)ihoad
equations for the maxfmum }ikelihood eslimmrnﬁ = ‘EI““‘Ep}. is
the Newton-Paphscn fterative procedurm. Defining the (px1} vector of
ot elemant is %I and the (pxp}
Hessian matrix’ BS{lTQJ). wnose (2,9)™ element s a’; o the Hewtan-
Raphson iteratipe mathod can be written (See, for example, Silvey {1978}

or Cox and Hinkluy {1974)),
R R (RTINS (5.3.2)
Given an jnitfal .'uppro:ilntion E’w) to &, successive approximations

500, 812, .. ave obtained from (5.3.26) which hopefully comverge to 3.
As an initia] approxination we may et ¥ 5 & = ()’ and

thes obtain §(0) from (5.3.22).

viz

'IL%%-JWT-%] i=2,...p
350} . Li -1 (5.3.27)

Lwe[’_{‘fﬂ}'""l] int.

Another, possibly better, initie] approximation way be obtained by using
the approximate maxisum Tikelfhood forsuls (5.3.20) for ‘}iﬂl_
Differentiating '(5,3.25) with respect to sm ytalds the elemsnts of
the Hessian matrfk:
i
by 46 [
A W 12
sde " M-v (5 et
m 1 ,t-Emr Wk
p [ Top p 1
k. =2 k. 42
+ [uytus=psl 1 goe eV e @ e ) )
oyroge) Js0snyh, e Be) oL L (L e N

a4

¢ Boame Z,nb Aem, ) {5.3.28}




- {5.3.30) is taken over the distribution of g

123,

where Top = min{2,m) = 7, Low = max(2,®). For 2 =1 orm=1 the Jast
teim in (5.3.28) 15 dropped.

o

B 8L L '
A "}G; LR {5.3.29)
. g

Far & = 1, drop the 'Ia.st term in g;%ﬁ?‘ in {6.3,29).
. " Ve,
Finally, as the transformation from § to y fs ong=to-one the maxfmum
Mielihdod estimator y of v may be cbtained from § by merely transforming

back via (5.3.22).

5.3"1 Large Sample Dist;ibutim of the Haximum Marginal Likelihood
Estimators i—;{.} :

1t 5 well known {see, for exssple Silivey (1§75), or Cox and Hinkiey
{1674)) that under certain regularity conditions that ave usually satisfied
in practice {and are'satfsfied here) the maxisuwe )ikeiihood estimatos
T % (Foesedy)® are asymptotically efficient and spproxinately noraaily
distributed with medn vestor iy = (r)a ..y} and coveriance matrix 3;1.
\uhm? BT ie Fisher's Information matrix given by:

= (byg) = - E4L0 n.{-rlsnl (5:3.30)

Lm L:-;m is tha Tog 1ikelibood of 1 given in (5.3.%) and uiumgn is
tite Hustan matrix whise (1.:1)“' e'luent is %. The expentatton it

| 1
g
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Differentiating %; given in (5.3.10) with respect to y; yields:

oL S T R [5.3.31)
Wy 20yyyy)? :

and with respect to e
3 ), ] P .,__vuf_...
’5_[ ARSI +9| R Yo

yrof R ¥
“apl e g Lt

2 ;F {\I.I—pﬂtt(\;.lwz-pﬂ]{[j—]‘ ,1 . .{——F b {6.3.32)

The nff~diaganal elements of B;{L} given in (5‘3.31) do not depend on g,

st we have immediately, from {5,3.30)

1 s ’
Bas Bede iz § s (5.3.33)
LRI

The diagomai elements bH ara given by: .
iy = = oy prietepprpi g I
M 2 1 e 90
) »—‘——-] (5.3.34)
3= (Yj'*q}’

Now

MR 9,2
Egll[m-ﬂ 1o Eg0 s g 3.38)
As noted earlist, the evaluation of the exuected. values of the 91: using
Chang's asymptotic expression (5.3.6) for their joint density is fntrac-

B,
table analytically for p = 1, and so, & fortiord, is that af (1 +%} z,

2




i
i
i
1
]

>

in (5.3.8), we get the limiting joint dansity of the uy as:

0 ; Hoypr)-1
II- u,
fyfugereotg) = k2 [t |
1.3 [AREARRE f1ra) 2 1

(5.3.36)

=1
[
whare K = cill} Yy and ¢ is defined in (5.3.5).

. Andersan (Tﬁi) has shown that if 2,4 = T,....p are the eigenvalues
of a single (normed) Wishart matrix, and ¥ie i = 1,...5p are their
carresponding population values, then the "1inkage factor”

£ H
ief 3-1;

tends to 1 with probability 7 as the sample size n + =,
Now, in our case, the "linkage factor" f5:
. I

i ““1‘] ["_] i [%1‘_;’1-}‘ ‘ ':

shere the {s; J = -1gs|sisg J. By the same argument used i

er, as
vy + =, the & become eig\m\m‘luas of & single (normed) Hts;.nrt matrix,
ard 80 by Anderson’s result cur "linkage factor® tends to 1 with proba-
bitity 1 as vy and vy +m,

Using the above result in (5.3.3§} it 45 clear that, for large v,

and vy, the u; are approximately independently distribuied as {unnormed) J
‘f-random varisbles on (vy=pt1) and v, degrees of fram Hence, u'amv- Cos

forming to beta randos variables:
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we have:

-2
tt[ ;I- 1= Er{ing )20 = EEC1-%g) )
=1 - 2ELxT + Ex]

where, for large W and gy Xy has, approximately, & beta distribution

. With parameters ny « §tv]-p~‘-i) and ny = §v,. So

&

1 s 1 nylng*)
“[""] 341 - el ¢ gt

n].{n7+2n 41}

m- (¥, Ty ¥ T

(97097 )y v t43) )
W --L B (5.3.37)

! i

Substituting this result back'into (5. _dhd (5.3.34) gives:

i
(n =1} {u, el -paa} LY 1
A 1 “le _]
by & " {W LR ERES j§1 (Ys,,..‘}a

: 7l (5.3,38)

Finally, substituting (5.3.38) and (5.3.33) inte (5.3.30) gives the approwi-

mate large sample distribution of the meximum marginel Vikelihood astimator

-~ il
¥ oof y.
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Example 5.3.1  To test how good thiz awmxiﬁtiun is, the approximate
weans, standard deviaztions and correlation coefficients of the -;1 were
calculated from the sbove formulae for the case p = , using the two
sets of eigenvalues and three of the sasple sizes, each represented by
& pair of va'l\:es for Yy and"vz, that were used Tn the simulation experi-
ments described 1n Section 5.5. In the first set the efgenvalues are

equelly spaced whereas in the secand the spacing between vy and Y2 is

. much larger than that between Yz and Yy The three sawple sizes ra-

Prssant; roughly. dius sized®, “Jarge® and "very Targe" sumples, re-

spectively. The results are given in Table 3.3.7 below, together with

the corresponding values sbtained from the simulation asperiments. {Be-
cause of the frequent failure, 'e';'r\;:\ciai'l,v in the smaller sample sizes,
of the waxinum 1ikelthaod estimitor duscribed in Sub-section 5.3.3 to
mmé wesningful results, the results from the simulations on the ap- -

proxinate maximm 1ikelihood s given in exy {5.3.20) are
used.” Admittedly (5.3.20) sonetimes also produces meaningless results,
but its alternative, the "hybrid" estimator described in Section 5.5
that alnays gives meaningfUl results, #s not & waximum Tikelihood esti-
mator. See Section 5.5 for a full discussion of these points,)




128,

Table 5.3.1

Approximate peans, Standard Deviations and Correlation Coeffi-
cients of the Maximum Likelihood Bstimators of the fy;1 for
p =3 dime Hons

“Notation: (i) Denctes the values obtained from the formulas
{11} Denctes the values obtalined from the simulation experi-,

mants.
A. Degrees of Freedom W= 15, vy = 64 B *
Heans Standard Deviations - Pair Correletion Coefficients
o opn Uy En ) @ g
] 6.70 - 2.94 (1:2) - -0B2
4 4.2 - .44 {1,3) T - ~. 098
2 1.88 - 0.86 (2.3 ]
W 1.7 a3 813 (18} -.081 -2
4 4.30 2.3 .21 (1,3) ~-.003 =135
2 1.87 0.9% 0.83 {2,3) -.25% 006

B.  Degrees of Freedom vy = 30, wy = 124

Heans Standard Deviations Patr, Correlation Coefficients
i) ) i) G4 g )
B 6.00 2.86 1.7 (1,2} -.484  -,067
[l [\ .69 219 (L3) .00 001
H 1.90 6.6z - 0.8 (2,3) 07 -8
16 1556 513 4.63 (&) -023 pas 7
] 4.33 1.9 LB {1,3)  -.006 008
i 1.94 061 0.81 (2,3) =000 =168
[}
| {
’ ¥
! i
. . "
" "o n N oy
" LA -
" DR | =

o
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€. Degraes of Fresdom vy " ED, vy = 244

Mean Standard Deviations Pafr  Corrdlation Coefficients
4 G4 b G i)
5 6.10 S 145 taz C{n2) -2 -84
4 4.33 Yopsr 1.0 {3 -om -am
z 2o 042 0.45 (2,3 .05 - .00
1626 343 3.83 (1,2) -0 .08
& 426 0.8 0.89 (1,3) -003 -.088
2 2m o042 0.6 {2.3) -.045  -.061

The missing values in part A of Tai.ﬂe E.3.7 indicate that \"arwﬂa:a
{s.s,so}. (5.3.33) and (5.3.38) broke down in that they produced nega<
tive variances. (This also peccurred in both cases when the fornulas :.
were applied to the-"sﬁ!l".sﬂpl! size with vy = 6 and vy = 28.}

Locking at means and standard devistions alone, the agreement be<
tween the approxisate and sipulakion results in the case whare the spt;-
cings between the y; increase with their values iz excellent, even fo\].
the *medium sized* samples. In the cos¢ where the spacings are equal,
the agresment between the standard deviations is not quite so good for
the "large™ semples but 45 again excellent for the “very lerge” samples.

Looking at the correlation ceafficients, the picture is not so rosy,
although thers is reasonable agreement for the “very large® sawples, This,
however, could as much be & result of the oceasional breazkdomwn in the
simulation caperiments of the approximate formula (5.3.20) for the maxi- |
mus 11kalthood estimators, ﬁs of tha poor parformance of the approXimate
formula for thelr covariance mateix. It is well known that even a small
fraction of outliers where the orderings of the varisbles are pevnuted,
can have a drastic effect on the sample correlation coefficient. This
fact is avidonced by the very lorge differences betueen the corralation

[
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copfficiant in Table 5.3.1 and the corresponding coefficients in

Table 6.5.5 whare only "well-behaved® estimates have been included in
the sample.
-k

In sumry; the formulae for the approximate mean vector and co-

variance matrix of the maximm marginal 1ikelihood estimators [;i} d-

rived in this sub-section would appear to be fairly good for large . E
samplés (as defined hare and in Sectiop 5.5) and gets better (and be= - S
L comes applicable to smaller samples) as the differences between adjacent

P . eigenvalues increase.

a. 1 _ 5.4 Additional Information on {y;} = E}gs{:]zd}

B . The maximm 1ikeTihood estintors of the vy, 1 = 1,...,p cbtained

in Sectien 5.3 are based on Chang's expression (5.3.5) for the limiting Lo
1 density of (g} = Eigs(a,A3"1, whers, R |
Ay~ Wyt
Ay HP(UE,!: ¥ independently.

In this sackion some exact results on the expected values of fune- ' i
tions of the 9 are derfved.” Those will then be used to obtain moment

estimators for the means and variances of the four quantitias: &}3,_
[ 6;{;(!-. dij and di (%) whose distributions under the random effects model
! are discussed in Chaptar 3, as well as for the approximate probabilities
i ) of misc'lasﬂfica‘uon darived in Chapter 4. In addition, some of these
i exact resulis will be used to improve the est!\_aatnrs of the -fi-ubtained
i " i Section 5.3, .
'-, Specifically, in Sub-section B.4.1, well-known results on the mosents
. o, the ganeralised variance from & muitivariste normal distribution w11,

. B
be used to obtatn an exact moment estimator of 1!11 (e In Sub-sections
=
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5.4.2 ond 5.4.3 new results on the dtstrié:uunn of 'I'r(An]ﬁi.I] ‘Ieapd to exact
expressions for the wean and varfance of g_la,- interms ol"g_lyf mﬁg]\‘f‘ These
rusults are used in Sub-section 6.4.4 to obtain moment estimators for

the means and :r\larianus of the four guantities and for the approximate
probabilit,. .f misclassification mentioned above. Finally, the com-

' . bination of ¢ serfous pleces of information to cbtain irproved estima-

; tors. of the Yy» Bither exactly or by means of the technique of resticted
lnximi Tikelihood estieatfon, iz discussed in Sub-sectiors 5.4.5 and

5.4.6, N N

5.4.1  Homents of the Generalised Variance

The h*? norent of 18], where & ~ Hp{u,i:}, for h an integer gmﬁ.r
than =plv=pel). is given by:

T, h
wi(IAD) = gt :‘“'3 (5.4.1)

where rp@v] is the sultivariate gamma functicn defined in (5.3.5) [See,
for example Johngen snd Kotz {1972)). Therefore, since Ay and ﬁz are
ke {ndependent Wishart matrices,

w13 1) = wp I D110 = w0y D 18

Toldwgsh) L (§9g=h)
Rl e

i
i

for u\lz-pﬂ} > h > =dluype)

n n(!u +h]r, {!Vg-h)

= 5 ) {5.4.2)
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b

e .
-, . P -1 h

Hoting that [A. = 0 g, and |EZ|" s @ y,, and sonsidering

ating [Ayfa’] 2% 1% LT

the case h = T, we obtain:
£ g )E (1)

p P
ELN g.d= 10 L) P E
T T, (a0, v}

and, using the definition of Tpll\'} given ia (5.3,5) this reduces to:

(5.6.3)

&

e HJI 5 -
. =l

From (5.4.3) we imeediately obtain the following moment estimator
P .

of +H ¥
=1 i

s

[ g-i-t (5.4:4)
lg—j—ﬂ g
i TG

In terms of the {1} = E'fsi(&lsil} this becomes:

E\- 1 G 11["—.m}
A A

o P
Tn & 3imilar mannar, exact mosent estimators of 1 "{’: may be obtained
from (54,20, for b = 2,3,,..,4(v-p41) = 1.

ol ") . s

In Sub-zection 5.4.5 the exact moment estimator {5.4.4) of E‘ ¥

will be uted as a constraint on the velues of the estimators of the v,

- 4n order t¢ cbtain what will hopefully be {nproved estimators, through

the method of restricted maximum 11kelihood estimation. A second con-
stra1m: on the v'. based on the exgectation of Tr{ﬂ..lﬂ ] derived {n t‘har g




nr

RE:N
pext two sil)-soctimls. will also be used in the restricted moximen 1ike-
Tihood estimation of the v, in Sub-section 5.4.5.

54.2 On m.l}_tstriwtinn of Tr{Alﬂ?}

In this sub-section the distribution of !‘r(l.IAE‘} L IEI 9 is in-
vestigated, and an expression for it as a sum of weighted, correlated
f-random variables ir "vl'imd. This will be used in Sub-section 5.4.3
t0 derive the expectation and varlanca of Tr(h,A3) which will, in furn,
be used to obtain estin.tn_rs for the means and variances of the four
quantities sfj. \i%[x). d%i and d%[x] whose distributions ars discussed
in Chaper 3, as well as for the approximate probabilities of misclassi-
fication derfved in Chapter 4. As mentioned earlier, the expectation
of Tr(nll?l wWill aiso be used in Suh—sncﬂﬂ; 5.8.5 a5 a constraint in
the restricted meximem Iikelihood estimation’of the Yye

Ta ‘fecap,

By = Hplvpaty) s
‘2 ~ Iip{\u?,r;} independently,
-, -1
{gy} = Eigsinghy'd
and Iy} = EdgsiigE ),

Remark 6.4.1 Clearly (see expression (5.2.4)) Tr(i‘IAE‘] is & mltiple
of Hotelling's Ta statistic. For the centrsl (I = L) end noncentral
cases (A ~ Np(v.l i)} 8 considersble smount of work has been dong on
the distribution of Ta. See, for vxample, Johnson and Kotz (1972) and
Fujtkoshi (1977). However, we have not boen able to Find any publications
on the disizibution of TE under the situation of interest here, where A|
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and A, both have gentral Wishart distributions h;]l with differant para-
meter matrices £, and I. '

flow, (see, for example Bellnan (1870)) {t 1s possisle to raduce I,
ond £ to diagonal form sisultaneously, i

j.e. There exists a nonsingular watrix ¥ such that,

VEV' = 1 '_
and . VEW' =4 = dlagf-f‘] .

Therefore, muking the trensformation,

.q =g

. LJ 0
and Ay = WAV
we immadiately have that,

*
.ﬂl -~ Hp[ul WA %
and Ay ~ HD:\:Z,I} indapendently.

Furthermore,

Triaag 1) = Tr{Av (uan )Ty
» Tringhy))
£0.it is clear that ‘I'r(AqA?) is invariant under this transformation.
We will therefore assume in the rest of this section thet

&




o
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Ay = Wby ,{s]
and : By~ N’{u]\:‘,i?E} .

i .
1 where 4 = diagly,} . (5.4.6)

w
T Remark 5.4.2. Fur"tl_n case where some of tha ¥4 dre zero, we Pediuce

4 the dimension p appropristely.
T It 1= well knewn (sew, for example, Anderscn (1958), Theorem 3.3.2)
': that Ay can be written as
1 T . .
i o v .
[ [ AT (5.4.7)
: e T
i where ' ¥y~ I(,tl:l,a} independently, i = F....,vq.
H
So,
v
i
) * \l-l e B \
§ - L [ A
g g T = TR )
4 v —
' = L ¥
: ok Tk Y
-
= e
! Ly ot (s
. =L A
: : TR R
i
i whare
R
! R A
:j 'i‘ ite i
1 . 1
N and S0t
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. Clearly D; can be considerad as a sample-based Mahabanohis distance

befween Y, and the origin with the difference thai'S, is a samle co-
variance matriz correspendinsg to a population coveriance matrix that
is different from that in the distribution of V. '

We how consider the disteibution of ‘I,-; LHERH n;‘ ¥y Our argu-
ment follows the same 1ines as these used by A.H. Bowker in deriving
the distribution of Hotelling's T* statistic, _Sa:e. for example,
Anderson (1858) or Giri (1977). ) !

Deﬁne a {p#p) random orthogonal matrix G, whose first row is
T;{I‘i'r‘}'l and whose remaining p-1 rows are defined arbitrarily, and
Tet

z; =048
and B =0 B 0f

The first element 2y of Z; is, from the definition of the first row
of Oy

zgy = 1 (rr by (v

whereas the other elements of z, are all fdentically zero, by the or-
thogonality of Q. Therefore

AR AL L

whers b} 35 the (1,1)% elament of B]'.  Mow

L g S
o} = oy, - Biry Bizz Byy)” = binne

e
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bip R
where B = H
By Bi22
50 we get N
| -1 v
| A ¥y b g (5.4.9) ;
i To obtain the distribution of bm.‘z. note that, conditionally on

0. B, has a "pl\lz.ll distribution, Therefore, conditionally on G,
byyy.p a5 2 My {\'z“iﬂﬂj distribution (see, for exemple Giri {1977)
Theorem 6.4.1) -

whare uy = yf ol independently of ¥,.
To find the distribution of 'l'_i'r1 , make the trensforrlatiun_

T 1.e.
i N o
! 11,2 ™ Xugpel
|4
]' and since this distribution does not depend on g, it is also the uncon-
ditfonal distribution of bypy ,. Therefore, using the notation
| .
{I a g ® byyy o we have that,
4 PR Y Ny {5.4.10)
: :
b )
i :
o

Xy = {xﬂ,.,.,x.]p)‘ = A'i\‘t

where et = atagtrily




i
i
i

a
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Therefore, from {5.4.7}, I‘ - Nﬂ{n,l}l, independently, 56 that,

: P p
1 = X! = 3. -
R e A T TR A T &4

uh&ne'rij ""“31' indepandently ¥4,], Substituting (5.4.11) inte (5.4.10)
§ wWe get L

'y .
k]

7 nz‘ Y :_uﬁ - 1 yﬂ-‘i (5.4.12)

and substituting (5.4.12) inte {5.4.8) in turn, yields
a vy op
TridgA = I T 1'::'_[1 (5.4.13)
f=l =1 7 Y4
wheere
vig ~x’1 independentiy, i = Toooovps 3% Taeiiap

and g ~ ﬁ’z‘P” independently of the Vyy. However, the Uy are _nggll:
mutually independent for different i. (For p = 1 it is easy to show that
the u; are a1l identical.}

Expression (5.4.13) can also be written as:

LY -
=1 - I
Tr(hghs') 121 5 L (5.4.14)

where the f‘.‘i have an unnormed £{1,u,-p+1) distribution, indepandently-
far different § but not for, different 1.
For the case where the (nonzere) eigenvalues Yy bre all equal, say

§=7 \rj, expression (5.4.13) reduces to:

¥




3
|
|

: ¥
5.
M
=1
Tr(AA = f, . 5.6.15
¢ e ey iE'I ] [ ) ;
where the f; are dependent f(p.vy-ptl) random variables.
Equetion: (5.4.75) leads naturally to the scaled F-approximations
to the distribution of Hotelling's T§ statistic in the central case
(y=1), proposed by Pi11ai and Semson (1959), Hughes and Saw {1972) snd
Mckeon [1874). For the case where the ¥y are unequal (i.e. Iy is not
p;wurtional to £} a scaled chi-sguared approximation {Box, 1954} to
I V3 Vig in (5.4.13) leads to an approximate expression for the dls-
=
tribution of Trtﬁ]AE‘} in the form (5.4.15). 50 2 scaled F-appronima-
tion such as any of those proposed by the abovementioned authors shoutd ¥
again be approprizte here. ;
5.8.3 The Kean -and Variance of Tr(Ag") "
He now se the distribution of Tr(A A3 )abtaines in the praviaus
syb-section to find fts mean and variance,
Expression (5.4.14) fmmediately leads to the expected value :
. -'; |
ELTr{A,A = f..l
LTr{fyhs 11 jﬂvd-‘n i
de b
E ;n }
T Ty YT !
P
" .
. ; [q_?r} 1;] - o (s.) :
; . i
i
- #
[ - .
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Resark 5.8.3  The result (5.4.76) can be confirmed by the follawing
direct derivation of the expectatfon:

- -1
ECTr(AyAp )1 = Tr{ECR,JECA; 1} .
. Pl
(This step fs justified hy the independence of .Pnl and Az and becsuse
the

their elements)

-ace operatich consists only of mn-]pﬁcauuqslf'anﬂ additions of

= Tr{ By (gt 7zl

from the properties of the Wishart and Inverse Wishart distributions
{see, for ewle; dJohnson and Kotz, 1972).

M dene, 1)
= v I

P
- [Vé‘-'—:p'-'f] j,Iq U

The variance of Trthqﬁal} dogs not follow in such a straightforward
manner, but is most readily obtained from expression (5.4.8):

-1
2

M
Tridghy ) w“,_g i;1 [H

where DF = ¥} S50 Y. Therefure,

. W,
1
VarCTr(hgfy')3 = 1 ¢ T vartddd + 2 | Couttd, 051 ). (6.4.17)
. vg 1= 14§
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B |
W oad
Lo ; |
i B i
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Using (5.4.12) we cbtain
4 N p ;
Ef04T wwy F oy ECwy JECLETD
117 Ve oh Yy BV
where
o b |
5 Vig ™ P {ndependently ¥j = }..Ji‘:, W H
and
ug ~ ﬁ‘z“’*‘ independentTy.
. . Sa,
Q . p R )
EDET = vy j§1 1j(\lz-p-'|f '[FF-‘T} jz'l ¥ [5.4.18)
uging the fact that the N monent of the xf, distribution is
R L L] i
N
Stmilarly, ] , -
2 F i
< EL(D})*) = whELY) J(J_Z] v Evigl+ 2 JI t3 ¥y ELVy 080 ,0) :
i <5
4 LB !
2 ) e - a
= vl {vg 1) lupmp-3)3 {JEITJ B2 jz’ Y
e t ¥
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Varf0}1 = EC(B})%1 - (ECDI)*

Ww“}, gL ) :vz-wr’if

= it f; Tl v ~n-UE ;f‘l . (5.4.19)
TRk Y R
To obtain cov[D} ,nd=:| note that, from (5.4.8)

R EARS

whera,
~ H{0,0) independently ¥ = Y,...p

vy Sy~ Wy (up,1)
am.! & - d;ag{ril.

Using Theorem 3.1.7, with slight modification, it immediately
follws that, cundltionally on S,

» p

o = Lo oy Y {5.4.20)

here

-1
o) = Hgsiss;")

and
Yoi ~x3 independantly, ¥a = Toviaspe
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Furthersore,

Cov[O3D] = ECO}04) 7 ELDFIECD]]
= 2 # - 2 .
5, TEIDOJ1S,T0 - g [EDFISNEg (EDE[5,01  (5.4.21)

where Eszt-] denotes the expection over the distribution of 5,. The
conditional expectations in [5.4.21) follow immediately from (5.4.20):

o p .
B[Sy« 1wy BT = ey = Tr(esy)

1
. [ . B
2 = .
ELO} D3] 5,1 5:521 a v HJEE’El ay Vyyd
by the independance of the v, .

P
L e (reias e

&
-1 -1
CovtDiOR) = Eg LTSy )Y ~(Eg CTras )t

“Varg ey (5.4:22)

where 'tarszr-] denotes the variance over the distribution of 5,. MNow

Teiasy!) = Triatsylad) = wytr(aiaath!
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H - -
i— 7« giagty}hy
: and
| Ry = Sy ~ Wy bpa1).
i Therefore,
| ad Aza"i ~ upfuzd—im'i}
)
o
! ~ gt}
i so that (878 807477 Fallous the ‘inverted Mishart distribution
] .
Ii;lluzwn W) [S@e, for example Press, 1972). 3o,
] -
i Trlas, Y= vyTr () (5.4.23)
- . where
W e () ~ n;‘ (vgtoelat)
Furthermore,
B P
= Yark A
VarfTr(N)1 = Var i§1 wyid = 1§1 varlwg, 1 + 2{21 i‘.uv[u“.u“]
v , These variances and covariances are given in Press (1972) on page 112,
j 50 substituting them {nto the bove and remgnbering that & = disgly;} we
H o get, after some simplification, ."::
. ¥
0 . {
VartTr(Hp) =] —— b
. . 121 {upmp=1)¥ (wpmp-3)
! 2y, v
A — (5.4.24)
B (g g3 (upmped)
- - Loy
o e i’ . o 4
: v K
S '
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Substituting (5.4.24) and {5.4.23) into (5.4.22} yields,

2
e 2

Cmr[l) 2]
& (93P} (vg=p-1}* (v,=p-3)

(29}21“2‘?1,‘151.

(5.4.28)
Finally, substituting (5.4.25) and (5.4.79) into (5.4.77} yields,
after some simplification:

1

P
leytvg-p-1) r
?arETr{ﬁ Az S IEp— {{JEI| Yj)2+ {ugap-1 JJE] ﬁa}

(v pj{vg=p=1)*{uy=p-3}

s =p-1
= _M._,_‘ {r.-f;‘s"‘”:
(ag=p) {wg=p=11" {vgp-3)

+ (o Te(eye™ e (5.4.26) "

As 2 test for the correctness of formulas (5.4.76) and (5.4.25)
Eopr the mean and variance, ré!pe:tiniy, of 'I'r{i‘llii} we consider the
case whare £y W g, e, 11'~ Tof = 1,.0.,0. The formulae then reduce
to: ’

-1 ¥ B
RTr(AA3)) = g gy

Zp\l] {uz-i vy vuz-p-'l ]

-1
VartTr{d Ay 1) = e
T2 o) (o117 (vy-0-3)

(5.4.27)
which agree with those given by Pillai and Semson (7589) as \ve!.j as by
Hughes and Saw (1972), (The farnulze given by Mckeon (1974} bath appear
to require the factor uyluy-p-1)71.}

!
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Using similar technigues to ﬁlose\ used above it is clear that with
ingreasing amounts of algebra the hzgher mrnenﬂ of TF{I\-IAZ } may be
ohtained, i

Formiulae fE 4.18) and (5.4.26) will now he used to aémn et
estimators of E Ay and I 33 where {3, 1= ElgsUE " which may dn
turn be used tn ast,imate the mzans and variances of the four distance

variables whose distributions were discussed in Chapter 3, as well as
the approximate probabilities of misclassification derived in Chapter 4.

4
5.4.4  Monent Estimators for tE1 Ay and ‘21 b5

The formulae for the means and variances of the four distance
variablos 5;_,‘ af(x], dlj and dj(x) derived in Chapter 3, as well as
those for the approximate probabilities (4.1.9) and (4.2,90) of misclassi-
fication derived in Chapter 4, arw a1l exprassad in terns aof the two
quantities:

; oeT 1
= Tr(te"'}
i=] i

2 -1
L ey

In this sub-section, moment estimators for these two quantities will be
obtained in terms of the expectation and variance of TrtS‘SE‘] [l

-‘2‘ Tr{fAy) derived in the previous sub-section. These #ay then be sub-
stituted jnto the abovesentioned ' wmilae to obtafh estimstors for the
means afd variances ofthe folr distance variables) :
probobilities of misclassification.

nd for the spproxinete
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Substituting the expression given in Remerk 5.3.2 for the rela-
tionship between the {1‘} and the {-\ri]:
Ty = 1+ fikg
1 into expressions. (5.4.16) and {5.4.26) for the mean and variance of
‘. Tr{ﬁ‘nzl), trensforming to Tr(s5;S; 531y ang simplifying, yields:
. . ErTr 5,55 w2 (p 4 E Ml (5.4.28)
t 1% 1% gl T 0L M at
] and
S 14 L ]
P VariTr(5,5;'13 = E(n*(vp-p-1) el o @
y = ¥
i P
i . * 2n(vz-731[1 g+ plvg-1)) (5.4.29)
i
] .
) . Bglvphugp-1)
n * vy tvg=pHvg=p-1)* {vy=p-3}
N ; Ss it follows fmmediately that the moment estimafors for [ iy and
i [ J.i are respactively,
i p—J
i L x‘ i 2 :mts]sz - (5.0
v | . = 1)
: I
Fa ad )
A
i
i
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1 -0 -1 . 2 Do
. B e (L7 WRP[TH(S. J - 2, H
157 ) f %) {1!‘ !

P
- ﬂ'(“z'”iE, Ay = plugm1)) o 5.4.31)

where Errr{s1szlj:| and \f;r['l'r(s.ls?]] are sasple-based estimators for
the mean and variance of Tr{s.ls;ll.

Now, the obvious estimator for E[l'rlS.ISE‘J] from the training
sample iz

Erre(s;s;h = Trisy sy} (5.4.32)

but thers is no corresponding simple for \'ar['rrfs]s;'}).

However, the Jackknife technique, originally propesed by Glenouille
(__1555} provides an attractive, if computationaily lengthy, method for
r;btaininq an estimator foi the latter.
The Jackknife ‘Feclmtgue Good descriptions of the technigue lre'uim by Gray
and Schucany, (1972} Miller {1974} and Bissel and Fergusen (1975}, so
8 l;;*iaf sumnary here will suffice.
Given an unknown parameter 8 for which & (possibly} biased esti-
mator § 1s available from a random sample, Suppose that the expected
value of B may be written,

01 =+ 0(nT) (5.4.33)
where n is the semple size. The Jdackknife technigue for reducing this

bias to U(n'zj end at the same time producing an estimate of the variance
of 3 proceeds as follows. Divide the sample into r subgroups each of

slze i t_ﬂl\ and h=1 in most applications). Removing each subgroup from
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the sample in turn, and re-estimating g From the remainder of the sawple
I ach case, produces r "partial estinates® g, J = 1,...,v, each
based on & sanple of sizg h{r-] ].. Now combine these partial estimates
T with the whole-sample estisate to form r "pseudo-values" a*j:
|
hi ' v

3*1 - {r-lis"i W Tyt | (5.

The Jackknife estimator of @ is the averege of the 3.‘1:

PO - -
a,.F.jEI Bag = 10 - (1), {5.4,35)
witers =
“ 15
DR PN

and it can essily be shown that 3* has a {possibie) bias of order rl'2 s

f.e. E0d,] = 0 4 O(n"2),

Quanowilie {1956) shows that, to order n", the .varianne of ?l, is the
same 25 that of E for & wide class of In.stimaturs, and Tukey [1958) pro-
posed the foliowing estimator for im!{ﬁ) ar \farta.'l:

§ =ity Gy - B0
T ?ﬁ:ﬁjﬂ *j
LB R AL {5.4.36)

Tukey (1958) also sugpested that a confidence interval for & may be ob-
tained by assuming that t. = tﬁk-wsr has, appmﬂﬁt\’ﬂy, a tedistribution

)

on r=1 degrees of freedom.

b




I_

150,

Going back to formula (5.4.76) we have:

“Tya o V2. -1
ELTR(S,5503 = 2 EUTr (A, 1
e S
R Tr(EyE™")
-l -1
w (1 %} )
= Tr(sE") + 003} (5.4.37)
which is clearly of the form {5,4.33), 50 it would appear that the Jack-

knife technique can provide an estimator for varnr(s1s; 11 via (5.4.36).
Jackknife Estimation of \'ar't'l'r(slséll 11, As mentioned earlier, a drewback

to the Jackknife technique 45 the fact that the amount of computation re-
quired can become very lengthy, e.spe:inﬂy when the training sample is
large and b = 1, as is usually recomsenced. However, the computation can
be raduced considerably in the case of Tr{$;5;') With h = 1 by using the
following theorem.

Theorem §.4.1

Let 1\.‘ and A2 be the {pp) “Between groups® and “within groups® sum
of squares aatrices based on k groups and n observations por group, as
defined in the MANOVA table 5.1.'!_. Let T-{i,.ﬂ denote the value of 2
statistic T computed from the HANOVA sanple with cbsorvation LT repoved
from the ith group. Then, using ‘the notation of Section 5.1, ~ °

Tr(ny! Vett gy = Teligfy') + TriagslE) + Trtaﬁif}

)
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where,
‘ E- n(m)ee'a;‘m-n[n-nea;‘;*: .
FeI+E,
.‘?, Ge= (Nen)ff' + (n=1){e-f){e-F)" - Wfg' - g{(n-T)e+f)’

sand e -f%:-:—!-'—, fﬂi:.-{-;—x: » 8= % - % . The proof is given 1n
Appendix 5.1,
From Thearem 5.4.7 only & single matrix inversion, that of Az, is
" required for the cosputation of a1 N partial estimstes Trikig b5 51
¥i.j,and since the other formulae are a1l of a sisple nature the total
computation time on a modern cosputer is very mall, even for large
values of N and moderate values of p.

Note that, since $; = vj'h, and 5, = vy 'y

. vg=1 -
rr(s1sz’1_(1 ne %, xruﬁ‘j_“ e (5.4.38)

Thevefore, using h = 1 and v = N in (2.4.38) we obtain the following
estimetor for \ur['l'r(s}s;] 11 from the jackknife method

“ Syy k¥ f -1 - rersis) :
atr(si s = B 3T s g - S0,

{5.4.39)

Substituting (5.4539] and fEI.?"-i?) into (5.4.70) and (6.4.31) yields
moment estimitors f_?ﬂ* iE'I 3y and ‘]E‘ 3§, respectively, which can in turn
LERT H
be substituted into' the relevant formulae to obtain estimators for the

means ond variances of %’{j, 41(1), dh and d’;(x] 85 well as for the approxi-
mate probabl19ties of misclassification undar the random effects model,

|
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5.4.5  Restricten Muximus Likelihood Estimators of the [y;} H

In this sub-section l;e.inmtlgate the use of the exact results
en the moments of |AA5'| and Tr{n.lhz‘] obtained in sections 5.4.1 and
5.4,3 respectively, to improve our maximum Tikelihood estimators of the
fysd = ﬂgs{z.[z“‘] based on Chang's [1570) expression for the limiting
dansity of the g} = Eias{A Ay,

But firstly we investgate the special cases p = ) and p = 2.
‘p=l. In this case Chang's (1970) formula, [n‘ng‘[ and Tr{#ﬁé‘} Fih
Tead to the swme result, viz:

E
[ﬁ} - £ {9y.)

where f{vy.vzjdenotas the unnormed f-distribution on v and v, degrees of
freedom {See (5.3.6) and (5.4.13)). Thevefore, using any one of axpres-
sions {5.3.7),(5.4-4)or (5.4.16), we obtain the following unbiased moment
estimator of yy: :

~k \az-z .02-2 .
Y =T]..g‘ " % #y (5.4.40)

where {1} = Eigs{%53'} or 8y = S3/5, in thic case.
The maximm 1ikelihood estimator is given by:

A P {5.0.01)
neE Y R

which clearly has & sVight bias.

‘p 2. In this case we can solve the moment estimators for E ¥
and [ y; obtained from the exsct first monents of in‘a;'; and :
mnlig Iy respsctively, for vy and yp. From {5.4.5) we have: i

5 i
i
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[ --"v ~i=1
LR ["2 L= 5.4.42
= l“z} FUN L) (5-4.42)

: . P g
and from (5.4,30) and {5.4.32), remembering that ii'l Ty=p n‘E1 Ags
we have

vz-p-

o
Eovge E &y = b, say. (5.4.43)

i.e‘hting the estimators ;‘I and ?z satisfy the relatienships:

RN "fi‘\fz ' .
and

Nt ?1/;\"2 (5.4,44)
(5.4.42) and {6.4.43) lesd to the following solutions:

Ty = bib + HAR)

Ty o 4o - R, {5.4.45)

For _L_Z. we use the technique of Restricted Maximum Likelihood
Esummon (ne, for example, Silvey, 1978} to incoporate the information
fm the exact moments of |B. Az ] and Tr(A nz ) as constraints into the
maximum Tikelihood equations obtained fros Chang's (1570) formula (5.3.5)
for the Timiting joint density function of the gy.
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Using the same reparaseterisation as before to get around the
prﬁbleﬂ of the "inadnissible singularities” 1nlthe 1ikelihood function
{see {5.3.22))and reformulating the constraint (56.4.42)

>

0oy, =a
[

for algehraic convenience by taking logarithws on h'oth sides, we obtain
the following constrained maxisization probles (see (5.3.24), (5.4.42)
and (5.4.43)).
Haximise:

e

°, i 4
L=fig) - iivlwz-w11_21 lou[i*sav,t'ci1 & el
5= =

-1 p i
- 1
éigl 1=%+1 w{k-gﬂ e M)

subject to:

] i &,
[S)] “151 Tog( ] & gy = tog a
pod 8 ;
“and (i b 5.4.46
and (i} jgl (kg‘l @ g ) { }

where 7 (g) 15 a funution of the g only.;  (Kote that, because of the
&
first constraint, the term: jug Togl § e *n:‘() in the objective
£ k=
function of (5.4.45) 45 & constant and has therefore been fncorporated

inta £(g)).
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Remark 5.4.4 Although the estimated value of I ¥, abtained from
the variance of Tr(n J\ ) could also have been bm'.lght in as & constraint,
it was felt that it would be unrealistic to do so, particularly in view
of the indirect method in which 1t is obtained. i

The constrained maximization problem (5.4.%6} is a nonlinear pro-
gramaing probles and is therefore post readily selved using one of the
standard algorithss {see, for example Ualsh, 1975) for the restricted
maximum 1ikelihood estimstor & . Finally, by transforming back viz {5.3.22)
we gbtain the restricted maximum 1ikelihood estimator :"(‘ of 1

5.4.8 m Sample Distribution of the Restricted Maxioum Likeiihood

Estimators of the 1‘]

Silvey {1975) shows that for large sample sizes the restricted maxi-

" mum Fikelihood estimator ;r' is approximately normally distributed with

mean vector y and covariance matrix I, where I is cbtained by the following
matrix egquality:

-1

8, )

M N [‘ "] (5.4.47)
oo

where BI is Fisher's Information Matrix given by {5.3.30), {6.3.33) and
(5,3.38) and H is the (px2) motrix of partial derivatives:




e

|

}

P .
) -
;:7!121 Log vy = Tog v} W'{ (J'T

H =
) p P E .
log v4 - log a) (L vyt
LR ARLAF LAY
=1
n ! .
= | . (5.4.48,"
=1
v 1

It follows from (514.47) that the elements of 1* will tend to have
smatier approkimate urims than those of tha 'unneri:r.ed" maximun
Hkelihood estimators \r. discussed in Section 5.3, far, as slmm by Silvey
{1975, Appendix A:

.5

see K, m[uayu: H's_:1 . (5.4.49)

The result now follows, since 'B;T_ is the approximete covarfance matrix of

¥ and BB]TRY TR 5 3 positilie semtdefinite matris.

Howaver, the above result could be rather misleading in our situstion,

since formulae {5.4.47) snd {5.4.48) are based on the assusption that the

twe constraints
P

and
P
PR
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are dal.eministi:,uhzr_en.s. .in fact, they are stochastic since a and b
are random \raris.b'les,. Thus result (5.4.49) Wil tend to give too opti-
wistic a pl:tuhe of the large sanp'le behaviour of the restricted maxi-
Bun estimator v,

This point is i1lustrated in Table 5.4.7 below, which gives the
awrmd'nau 'Iarge sarple standard deviations for the slements of -; and

'r a5 well as thi cor ding stendard devi obrtained frm the
i
simutation experiments on ? described in the vext section, for two of
the sets of parameter values used eariier in Exzmple 5.3.7.

Table 5.4.1

Standard Deviations

E:g;:,:; of Treey | Approx for -; Hpprox for ;’ From simuiated ;.

yy v B0 6 T.45 .58 1.06

vy = 244 4 0.92 0.79 0.5%
2 .42 .20 0.33

w =3 6 5.13 0.58 4,33

v ® 124 4 1.3 1.01 1.21 . i
2 0.61 0.43 .51

As iz evident from Table 5.4.1 there is & parked reduction in the
approximate standard daviations when noying frun{!_:tl:he unrestricted to the
restricted maxinum Tikelthood estimator for vy, the reduction being by far
the greatesy for the estimator of the 1ar~ges: vigenvalve yy. However, it
is also clear thet most of this reductisn is not realised in practice.

Mevertholass, the sioulstion experiments described in the next sec~
tion do suggest that with regard to both bias and standard deviation the
restricted naxfaum 1ikeifhood estinator ¢ 15 o slght “aprovanant over
jts unrestricted counterpart % " I

‘) { - '{},-'.
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5.5 * 5imulation Experiments on the Yarious Estimators of
{1y} = Bigs(z,s7) o
In this section we describe sun;a simulation experiments that were

carried out to evaluate the performances of the various estimators of

{rgd = Eigs{x‘:"} that have been praposed in the sarlier sections. 1

addition, because of the problems associated with some of these estimators

under various circumstances, another, "hybrid® estimater, dafined below,
wes also congldered. Spacifically, the following five estimaters of

Tys i= ].....‘Ip ware considered:

(1) The sa. " TikelTihosd estinator {1} = 2, whare (1) = Eigs(s; 55

{2) The approxluate maximum marginal likelihood estivatar -?_12}. given
by (5.3.20) obtained as an approximate solution to the maxisum
marginal ¥ - hood equations (6.3.17) derived fram Chang's limiting
distribution of the g,.

(3)  The "hybrid" estisstor vi°), defined below,

{4) The "unrestricted" laxiﬁ- marginal Tikelikood estimator ;i” ob-
tained by solving equations (5.3.11) numerically, as described in
Section 5,3,3,

(5} The "restrigted" maximum marginal 1ikelihood e.timetor ;55’ obtafned
by sotving the constreined Joximization problem {5.4.46).
in a sense that shall be made clear Jater, and excluding for the

momant the “hybrid™ est1wmr?(3]. the "pos'ness” of the estimators fp-

crease in the sbove order, ;[ﬁ befng worst and ?(5] best.  However, the re-

Tiability of thase estirnato;s, defined as their ;nfﬂty to producs meaning-

ful results ovar a wide range of parameter values, increases in the re-

verse order, In fect, ;ts} and -;r“} ganerally only produce meaningful ro-
sults when the sample sizes are Jarge and the efgenvalues well separated,

whereas ;“} s compietely reliable, i

s

v iz
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2 can produce meaningless results in the following ways:

n('ﬂ the ‘((2‘ may not be monotonically decreasing with i,
or (i) soms of the 'r[ }m be negative,
or (119} Both (i) and {i1) may occur.

Howewver, in many cases when failure of any nne_:."nf the above three
kimds occurs, the first few-;gzj-are well-behaved knd the failurs only
affacts the estimates of the Tower-vaiued paraseters.

For this reason, and because:

{i) the grestest fsprovenent occurs between estimators ;(1) and

?‘:2). the incramental improvement betwesn ;mhnd' qﬁbﬂng re-
Tﬂt‘l\m\y much smaller, - -
(513 32 fat1s Tess frequentty than 74 ana 3050
and (i) ;(21 is far simpler to evalunte than ;(” or ;t !

ity 'Mrid' I'tinator 1{3} has been dafined as that combination of -r“]

and Y(Z) thk makeg mxinal usa of 1( }, yet never produces mamﬂng‘ess

. N'.w'lts‘: Thus -rt &) is defined to Ba equal to '(a} whenever the latter -
* does not feil; otherwise it uses as much of the “meaningful® part of

{2’ a5 possible and uses .,f'l} for the rest. This leads to the foilowing
I"ormal definition of v {SL
mt 5 ‘,)e one of the lntegrzrs 10,1,...,p} such that, s - P if ;(ﬂ .dnns
not fail; otherwise s is the Thrgest integer for which .both -

. (i) failure of ;le oceurs for the First time when § > s
wt (11) ¥ s 300
‘llr]m iu) = [‘43’,.,,, 1;‘”:' is defined as:

i ﬂ:” " ;521 PR T PR {unless s = 0}
y . . (8.5.1)
: Tg'““ E“ s =54 1,...,0 (unless s = p).




5.5.%  The Exparimental Setup
The experiments, performed on the Counct] for Scientific and In-

dustrial Research's COC Cyhar 174 computer, consisted in:
{a) selecting the parameters Bathys Uy and I.
(t) generating twe randost matrices Ay and A, from Wishart distributions

with the selected values of the paramcters,
{e)  computing the egenvalues {g,} = cigl{li.ﬂ?],.
_{ﬁ} computing the five -estimators ;“] to ;{5] and
te) repeating steps (b) to {d) a h;m!‘ned t?nes and camputing summary
statis';:ics, separataly for each selection of parameter values.
AV the computer progroms were written in FORTRAK TV making use of
the University of the Witwatarsrand’s multivariate statistical Tibrary
developed Targely by Pref. DM, Hoking, as well as of the ‘InsL (1975) and
the MAG (1975) program 1ibraries.
{2) Selecting the Parameters

#As is often the case in sinulation experiments, the computer pro-
grans were developed end tested vsing a particular set of parameter values,
and sany of the conclusions could be obtained from just this one set of
values. It also became ar\,'-m?nt during the development stage that soms
of the estimators broke down for particuiar paraseter values and“this,
to a large extent, guided the choice of parameter values {in particular the
degrees of freedom vy and vzl used 1n the experiments.
(i)  The dimension p  Four values, 2 (see comment below), 3(*ssall®),
5("mediun”} and 10{"large"} were used. For values greater than 10 the
time jated with astt U apd 345 becone too Yaree

to &17ow enough simuTation tuns to be porformed for meaningful conclusions
to he drawn from thew. The value p = 2 was nclwded to test the estimator
{5.4.45),




-
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(i1} The degrees of freedom vy and w,  Here again, four sets of

values were chosen, corresponding to "small", “medium", "large” and "very
large” sized samples. Clearly, the “largeness" of the\_sanples depends
wery much on the diminsion p, so "small® samples Hcre_:ans':,‘.'am to have
vy = 2p Umediun® samples W= 5p and "large® samples vy = ‘ID|;, The "very
..'Iarge' category fu.l s 20p} was included beceuse of the tendency far the

! estimators -r(q} and Y{S] to fail for the smaller sample sfzes. This was par- =
; ticularly so for ‘he larger values of p and the “equal separations®

chofce of eigenvalues {see (111) below). v, has, by definition, to be

greater than W and since the results were not very sensitive to varia-

! . tions in Vg almst 217 the simulation runs reported here were done as-

suming that there were n = 5 observabions per group, so that Vg = d{v.lﬂ},

A few runs were drso performed with n = 10 observations per group.

(111) The Eigenvalues iy;} Since Iy s DenT, and T is & nonnagative de-
Finfte mt ‘e less than 1. This is easily seen by noting

that the 7] a1l satisfy the relationship:
-1

|s,x -yl =0

and since
: LI R A &
. . 1 ‘ ' —
: we have that
i - -
i RS AL L GO )
K| E Therefore, rince nlL Tisa nonnegative definite matrix

Furthermore, we may assume that 211 the i 1, sime T = 1

corresponds to Ay =0y and in the nractical situation we would have tested
for this {see Section 5.2) and iF accepted we would have no further use

1 4 v Tfor that eigenvalue.

-l e e e e

.
r\
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I
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i
‘_! Finelly, bearing in wind the fact that the y; sheuld 211 be

. .

“ ! different fron each other for Chang's expression (5.3.5) far the lini-
i ting joint density of the 9y to be valtd, the following two sets of ¥
|
i were selected for the stmulation experisents:
|
;;" Equal separations WO 6 e 1z-W 8 6 4 2
|

For p < 10 the Tower p values were used.

{b)  Beperating the Random Wishart Matricas

As discussed in Section 5.4.2, there exists a nonsfgular matrix
V that simultaneously diagonalizes £ bo the identity maefsix and I to
a diagonal matrix 4 whose diagonal elements ave the eigenvalues of
2,77, s the sigenvalues of Aysg', where Ay ~ W (u),5) and
L Up(uz.E) tl:dewndmtly. are {nvariant under this transformation,
we may assume that, for the purpose of the simulatinon, !

Ay~ s
and < Ry~ WylupuT)  dndependently

where & = diagly,} .

Given values for pwp, vy and fy;), two random natrics from the

H‘,{vi,lj and Hp{va.i) distributions, rezpectively, were ml;enteﬂ as
]th

described below and then Ay was obtalred by equating fts {1:4)"" elenent

1o v?‘_v‘i‘ times the {i,J)u‘ eloment of the First rorom matrix,¥i,3, and

Ay was obtained by equating it to the second random matrix.

The most efficiont procedire for generating 2 randan H (v, 1) natrix
fs  that of Odall and Feivesen {1966}, a mﬁ doseription of which g
given by Johnzon and Hegemann (1974). To apply their pmf_.adure.

e 3
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]
! pip-1)/2 independent standard normal random variables (x‘j, 1<jmn,
3 24..-sp} Must be generated, 23 well as a seque;te of ndependent chi-
5 tx .
5 = L g
A square random varisbles (vg, § = 1,...,p} where For each j, Vi T Hyeger
The random Wy(y,1) matrix W = {w;5) I5 then qonstructad as Follows:
i
;: Hpp e 41
d = 2 i =
i Wgg =yt iZI *y i 2..,..,p
; N]j”‘jdr'v; J = ip

i=1 B}
TR R tEI Xeq %j Fud = pe.aps 193 (5.B.2)

Subrautine RANDN, from the Witwatersrand Jibrary, an anceptionally
fast routine that generates random samples from the standard norme] dis-
tributien by transforming a uniform {0,1) randem voriable by interpolation
in 2 table of the normel inverse probability transformation (with exact
evaluation fn the tails), was wsed to gensrate the H‘J‘

The vy were generated by first gensrating k uniform (0,1) randos
variables Uy, where k 95 the integer part of Jlu=j+1), and Tetting

; k .
=2 Tog, ‘H‘ uy for v=3+1 even (5.5.3)
= -
v

ok -
-2 log, Eoug et forw=4§+1 odd

A =
7 : where ¥ is a random varisble from the standard novmal distribution. The
o j "i wire genarated by the CBC built=in mixed congruentia) gansrator RANF,
;. | Subruutine WSHAT was writton to generate random Wishart matrices
: ?4 as described above.
U
i
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e 4 Caomputing the Ejgenvalues {g.} of A]AE‘

i Subrowtine CAMON (Fatti and Hawkins (1976)) was used to find the
eilg;uwa'lm {g{} of A]J\E‘:. This subrouting solvesthe eigen probles:
(B~ M)Z * 0, (6.5.4)
ivlhe're Bk iz a pep syvmvetri:. positive definite matrix {gonerally en error
Veovariance matrix) and B i5 a pep symmetric matrix (generally an hypothesis

covariance matrix} by first obtaining the Cholesky inverse square root
R'a, where A°E 15 2 real, nonsingular Tower triangular matrix such that

& hagarEyos 1,
K855 computed efficiently in the following manser. Hote.thyt

N [M-"g:-u’xpl' is a randon vector with chserved wvarisn_'l;\ tr'i
A, then, for { = 2 to p, the residual, y;, on 1ts predictor based on the

Teast-squares regression Tine of K00 Ny aa...
Rqagy
1% by the square root of the residusl mean square of Ky O Myt g
for § = 2 to p, and let ¥ nxﬁff’ﬁﬂ‘i}'{. then y » {yr.yz,..‘,yp)' fhas co-
variance matrix 1, the p-dimensioral identity mobrix.

Clearly Y is obtainad from ¥ by the transTormation:

sk g is uncorvelated with
Xy S0, if we standardize ¥y to have unit variance by dividing

¥ o CH, : i

where C 15 a Iewer triangular matrix whose elements moy be computed from . ]
A by nerﬂ:ming suceassive plvetal sweaps on A u-oiwg the dingonal Elesents .

:.
3
" i
uf & as pivots, as described in Beale, Kendall, ahbmum {1967). H
f
i
b
I-
L o
O B ’
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Finally, we note that the covariance matrix of ¥ is

CAC' = I,
,/ ' s t=ah 5
s & The eigen preblem
Y .
- H (WAl - A =0 15.5.5) -
i
f then 15 wolved using the two subroutines TRIAG and LRVT {Sparks and Todd,
i 1973) and finally the matrix 2 of eigenvectors of the original system (5.5.4)
[ .! is o tained by teansTorming the W matrix:
3 .
; = (o
. 1 (dy o “g five Estimators )
éf:“ i v 5;,' 1= 1y, estimators, 0 ana 720 ere cth' Y
S in & strnightfordard manner from thair definitions, :
H oy
-1 Woenede et
. _.‘_ K
S
[ _’
ey, I o

Vg bk

T =i

and then ifﬁ} vias computed fros ;I’I i ;[‘} aceording to definition
{5.5.1). :




oW - . -

166.

:r{'n was cosputed by the Hewton-Raphson iteretive procedure as

described §n Section §,3.3,

Subroutine GRAD was written to compute the vector of first derd-
vatives of the 1ag 1ikelihood function [in terms of the new parameters
.6} s given in equation .(§.3.25) and subroutine HESS was written to
:ww_te the Hessian matrix whese elements are given in equations (5.3.28)
and {5;3,29}. Finally, the Newton-Raphson fterative procedure was carried
out by subroutine UNREST, using as convergence criteria both the value of
tha vector of First derivatives at the previous iteration and the ‘hange
P in value of the Tog 1ikeTihood 1 by FUNCT

over the gravious two iterations. B
" Te compute the restricted maximum marging] Jikelihood estimator

FE) the wag (1975) 1brary suhroutine EDIHAF was used to solve the non-

;inear programming problem (5.4.96), This subroutine uses a penalty

function technigue (Lootsms, 1972) tosalve constrained minimization

. problens. A full deseription of this subroutine is given in volume 1 of
- the WAG manual (1975). Subroutines FUNCT, GRAD and HESS were used to
compute the values of the function and 4%s first=- and second derivatives,
H respectively, at the various trial solutions, as required by EDMHAF,

' (e}  Hepeating and Computing Summary Statistics )

One hundred simulation runs ware performed for each combinition
of parametar veluss given in {a}. Becausa of the large ampunt of Gome
putation required for each evaluation of i{::r"", the even larger amount

. . reguired For ;{5‘ and tha fact that in meny of the simlation runs both
failed tu pm;uca meaningful results, the Tollowing procedura was Iadopud.

for each selection of porametor values:

P
T
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{#)  First perform 100 simulation runs, computing only ;
amd ;{3’, and compute summary siatistics on them. Be:aus; of the effi-
cltn:y of subroutine WSHRT and CANDE and the small amount of computation
required to obtain these thres estimators, the time requived for this step
was fairly small.

(i1} Repeat the 100 simulaticn runs, this time computing .}[U,l}le.
?{3) and ;{4) on each run. If -\:(” failed on any run, then nope of the
:sl.‘lmator: from that run were included in the summary statistics. If
;(d] produced meaningful results, then ;{5} was computed and if that too
;rwuud meaningful results all five as;tutm ware included in the
smpiary statistics, Otherwize none of them were included.

In this way a considerable amount of computing time was saved,
since ?t”. which requires by far the greatest amount of computer time,
Was |:ln‘i.g|I computed in those situations where it was Tikely to produce
meaningful results. (;{5’ wery rarely produces meaningful results when
;‘:ﬂ does net, whersas ;n reverse occurs more Frequently.)

" . The reastn for performing steps (i) and (i) above separately is
twofold. Firstly, step {i) gives a larger number of runs on which to
evaliate the first thres es.timaim‘s. {For soms sets of parameter values,
espacially for the larger values of b, ;tﬂ or ;{5; naver produced
results.) & dly, ;m a;d :((5"' ;re far more 1ikely to

produce meaningful results when the i} :tlgsfsls;ll are spaced widely
epart than bnen they are closer topether, with the result that the esti-
mators in step (11) have a built=in biss towards larger spacing bei:\\g-_;.\
the elgenvalues. Therofore the results from step {§§) are only useﬂl"l
for evaluating the relative performances of the five estimatars,

1
i
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The summery statistics for eech of the estimators were computed
and printed using the Witwatersrand Library's COVUP (Hawking, 1974) and
PRINT subroutines, producing mean vectors, stendard dewia:luns; covarf-

ence and correlation matrices over the verious sets of simulatfon runs,

5.5.2 Results

Smry statistics in the form of mean vectors and veciors of
standard deviationz for each of the five estimators are given in Tables
5.6.7 to 5.5.4, separately for each selection of parameter values. From
considerations of space and because the same conclusions seem ta hald in
a1 cases, correlation matrices are cnly given for the case of p = 3 di-
mensicns and four conbinations of the other parameter values in Table
5.5.5,

As mentfoned earlier, two sets of simulation runs were performed
for each selection of parameter values, only the first three estimstors
being corputed in the first sat. which always consisted of a hundred runs,
2nd 211 five being comprted in the second set, but only on those occa-
sions when ;“} and ;(5‘ both produted meaningful results. The enly
excephion ummmd 1; the case p = 10 when, because of converg ice
problems in the nonlinear progranming package EDAMAF, ;‘5} was mostly
nok c:mpuﬁad at all,  Because ?[3] never fails when e;thnr ;{" or
;{5} produce meaningful rv.-suits, '2) and 1(3} Wate fdcntmﬂ {sen
deﬁni tion (5.5.1)) for 211 of the simlatim runs o the second set.
Therefara sunmary statistics for Im are not included in Tobles 5.5.1
to §.5.5 for those sfmulation runs.

Faiture of 7{” ar 1“} to produce meaningful results can be de-
tacted when any of the &, assumes a Targe negative value, This i fa-
mediately clear from the definition of the b given in exprassion (5.3.22)
since it implies thot ;1‘_1 and ?‘ effoctively différ oniy by the arbi-
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1 1

trary constant ::; or, for 1 =1, that ;] is effectively equal to sj .

fis sarlier experimentation had shown that the ';a'IUEs of ;‘41' and ;{5)

are unaffefted by the choice of values of the g Over a ;atr'ly wi;e

range {for the actual simulation runs the =, were chosen to be ten per

cent of {'I.fyﬁ} - 1!’\'(3‘?- or for i = 1, of lh'{]], ;( ) was also used

as fnitial value in the maximization algorithes) a ‘la:q:e negative value

of & fisplies that the mucimisation algoritha has found a "false" maxi-

sum near one of the "“fnadmissible siﬂ',_inrities'm Chang's formula (5.3,5).
Since, as is ¢lear from Tables §.5.1 to 5.5.4, failures of 'f('“

and 1":5] occur far more frequently for smaller values of vy and v, m

for c'lnser separations betwean the 952 it would appear that under thase

circmstances the Tikelihood surfece (6.3.24) may either:

(1) have nn_maﬁmﬂ within the adwissible region, ar

(i) have extremely flat mexima within the admissible region, or

' {194} have very localised maxima which may be missed by the maximization

algorithes,

!nJar\'Jar to try and establish which of the sbove three possibili-
ties pertain, the subroutine FUNCT wos used to eveluate the 1ikelihood
function (5.3.24} over a tm-dinenntonnl'! grid for the case p = 2 dimen-
sions. A nusber of cases were tried, r*esu'lth:g in the following conclu-
stons:  For small enough valves of vy end v, and sufficiently closely
spackd gy case {i} portains, bul as the degrees of freedom andfor the

spacings increase a single maximus (for the cese p = 2, at Teast) de-

velops,  Case (111) never holds.

In the repainder of this sub-section some cosments are made on
the rosu’is of the simulations as may be gleaned from tioles 8.5.1 to
5.6.5, vnder the headings of biss, standerd deviatfon and correlation.

Bias:

In general, the top few eigenvalues are ovor-estimated and the
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bottom few under-estimated, although this bias is different for the
different estimators. This effect decreases as the degrees of freedom
Y and Y increase, but it is more efficient to increase them by in-

creasing the nunber (k) of groups than by incressing the number (n) of

observations per group, where v = k=1, vy k{n-1).

Hore specifically:

{n _;“:‘ has the greatest bias, both in the upper and Jower faw
E‘lwmm. Roughly speaking, the proportional bias in the top

i and bottan afgenvalues are the s';ne.

- {2) t?.} has markedly Tess bias than .,[’] both in the upper and
| luuer eiganvalues, For low d&gms of frecdom and aqual separa-
tions of the Tys thare are sooe anc@alous resulis in th middle

values, reflecting the relatively freguent occurrence of meaning-

. less results amangst these values.

g {3) ;‘3} has stightly greater bias than ;{2] in the upper snd Tower
:iqenvaluas but there are no nnmal;as of the middle values. The
difference batween v B3 and 7{2) virtually disappears for higher
-degrees of freedom and 1nrneaslng separations of the eigenvalues.

) As menticned earlier, in the cises where either 1“] or 7(5}

produm meaningfuly rasults, 7(2‘ and 1‘:“ Bre Identical

| :\AJ 1’; has s1ightly less bias lhen 7(21 {or *{313 in both the upper

: and lower eigenvalues. {Hhen it produces meaningful resuits).
i The Wewton-Raphson procedure (with checks to pruvent the 6‘ from

l getting twe large or top smail) nearly always converges, but is )
unlikely to produce meaningfu? veskits for equal separsiions of
the efgenvalees and low degrees of freedum; unless the dimensio.
is sm]]l.(nnf ar 3}, For p = 10 meaningful results wers only pro-
duced for increasing seperations of the eigemvalues.
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{5} The elements of ;{5} gre a1l smaller than ‘the corresponding
elements of :r(‘“: the proportional differences being approxi-
mataly cm&m. fs & result, ;{5) has the Towest bias of all
in its top elemant but tends towhawe 4 slightly worse bias than
;“] and ;(2} {or 2{3}) in ifs bottom one. For p = 10 the non-
‘{il'\aar w;gn-in;pachge EID!HN had convergence probless, with
the result that uTue- of ym could be cosputed in one case
only. Forp =2, wert-rﬁ is given explicitly by {5.4 45), the
same conclusions as abum bold.  In this case neamngml? o=

sults are characterised by imaginary solutions to (5.4.45), and
i

1 as bafore, .the Trequency GE their uccurﬂﬁc@ decreases as the de-
: grees of freedom incresse or _uhen the separation between b apd

Il Tz increases [relative to -ng.

Standerd Deviation !
| {1 Wheraas ;(T) has the greatest bias, its standard deviations, apart
from m{ of its top elmnln, are generally the seallest. Usimg
3 . Girshick's {1930) result [sQ:, for exsmple Press, 1972), and the
) conments following Remark 5.3.1, that the -;gl] = 4y are asympto-

tiaally independent, unbissed, normlly distributed estimators of
the corresganding v, with standard devistions SD{yi'))s AT,
as 2 refarente, it i5 clear that for very jarge A and Yy this
standard deviation is approximately correc‘t. Otherwise, the stan-
dard -.deviatfnns of the top (few) ;E” tend to be Targer than

V2T To;=TTy; and those of the bottos (fow) smeller. This tendancy
{5 move marked in the sealler semple sizes and when the ¥4 have

increasing separations.

e
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The standard deviation the top elemant of*;fz} 95 wsually ap-
proxwimately the same as fthat of the cms;ondfng alement of
o but those of the other elements are always larger. For
:mah sanple szes some of the middle elements can lave extremsly
large standard deviations; reflecting the frequency of occurrence
of meaningless results amongst them.

Tha standard daviation of -pm is sometimes slightly Tess than
that of YP) whereas ﬂwse of the other elesents of 1“} are al-
ways s1ightly larger than those of their counternarts in y‘:“
The standard deviations of 7{4) are slightly, but cnn;istent'ly
larger than those of their wunwrparts “n th] for 1“}} but

that of Y?]

mhy still sometimes be suﬂe_,r than that of 7‘“
¥re siandard deviations of 7(5} are nmays smaller then the

Aing one: of y{'” and soactimes even smaller than those
WET :{5!

O .r-l

of Ym for ¥ epemaey .y lins the smallest standard
deviation nf a1l the estimators &1 ¥y- This confivas that
reduction in standard deviations (especially of the estimmt - of
the top cigenvaiue) suggested in Sub-section 5.4.6 by expression
(5.4.49) and Table §.4,1 for the case whore the constraints are
deterministic, is at Teast partialty realised in our situation,
where the constraints are stochastic.” For the case p = 2,155]

always has the smallest standard deviation, and that of 7‘51 is

afways larger than that of \r{” but smaller than those of the rest.

Correlation b

The correlation coefficients in Table 5.5.5 were computed only from

W] produced meaningful results,

..n.t therefore, because of the bui'lt-m hns towards larger spacings be-

tugen the efgenvalues msulting from this, these corvelations have to be
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treated with some caution, Nevertheless certain trends are claarly evi-
dant:

(1) For ery estimator Yt 1, the carrelation coefficient batween 'rin

and J ) iwi, c.m\ be quite Yarge, especially for ad.ia:ent pairs,
but it tends to decrease as the degrees of freedom are increased.
Incrs wsing the separation between ¥4 and "j terds , however, to eli-
minate this cerrelation conpletely.

(if) The correlation coefficients are appreciably smaller for y 32 {or

g {3)] than for y(” and sTightly smaller again for ‘r[ J. el thaugh
Nsere is geneNT'Iy Tittte difference between those uf -r“"” and
25,
5.5.3  Conclusions
Geing back to the exnression for the distribution of s}i gjmr in
Theorem 3.7.1

. 3
3~ 2521 Ay vy

where
v, = xf » independantly, s = ,....r
xsu%[-fs-n S8 Tyensr
e F YpqteeTy ¥ 1

and ¥ r(T)

it is clear that ¥q» being the largest, will have the greatest influence
on the distribution, and Te the smallest,
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Frm- this point of view thersfore, 1(5) is the best estimator,
since 'r {s) has the lowest bias and often has the Towest stendard de-
wiation amongst the five estimators. The drovback to this estimator
is that, apart from the case p = 2, it requires a nonlinear program-
wing algorithm for its evaleation and frequently produces meaningless
results, Horeover, I"of' .'Iarge values of p 1t may be difficult to obtain
copvergence of the ronlinear program (although other algorithms may

gin better performance than EO4HAF).

Wext in line 1s -r( ) its enly advantages over 1{( ) being that
it occasionally pmdm:es meaningful results when the 'Intter daes not,
end that (for dimensions up to 10, at Jeast) it does not have conver-
gence problems, o

;(3] is perhaps the most practical of all the estimators, being
shpl: to congute and, by definition, never producing meaningless re-
sults. In terms of bias, it 15 a considerable 1mmva|‘ant over 1“}
and not much worse than y‘“ or *{SJ A regards spread, its standard
davintions are not much 'Iarge‘r‘ than those of Y(” {the standard deviation
for yﬁa;‘ can in fact, be smaller than that nrrY }} \memas they are al-
ways s19ghtly smaller thanthose of ';mmld are often cved srra‘l‘lur than
those of 1‘5}

ns 703} ratains 11 of the gaod pu.<ts of (2 and rircumvents the
probles ;f its unraliabdlity, tl:ére is na m;n; Tor prafairing the
Tetter. Beceuse of its Targe bias 1‘” should not be used. I

IF the programs are available :md computer time no objact, ihe
following practical procedure for estimating y is racommanded:
(1) Comute (2, = Eigs(5,5;") atd hence 72} from formila (5.3.20).
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(2) If :.:{ZJ does not give meaningful results use Y00 es defined by
{5. 5. 1} 85 estimater of T - '.

(3 If 1[2] does give lrau:ﬁngfu'l results, cospute TIE} and use this as
estintor if it gives meaningful results. IF it does not, compute
A':ﬂ and if that alse do2s not give meaningful results, go back
o 1{2}

Remark 5.5.1 It 48 interesting that, even when the Tikelihood function

apparently has no maximum outside the “inadmissible” regions, the approwi-
wate solution to the maximum marginal 1ikelihood equations, 7{2) is a

T better astimntor than \f{ i and if it does not produce mn{ngru'[ rasulis
than Y(‘ﬂ is sti'i'i usual'ly bettar than y (”
Remark 5.5.2 It 5 clear from the results of the simiations that for
reliable estimation the Aumber of populations, k, needs to be large, pre-
ferably Bt least ten times the mumber of disensions, p. If there is a
chojce, it iz generally better to increase’k than it 4s to increase n,

the nusber of cbzervatious per growp (so Tong 45 n s at 'Iea_st equal to 2).

e e e




3
J

.uhe

176.

Ahppendixn 5.1 Proof of Theorem 5.1
Me will consider the more genetal case with (possibiy} different

sample sizes from each of the k groups. i.e. our training sanple is:
{x”; d= Ve = T,kE. Then, analogousTy to Table 5.1.1,

we defina:

K
1ok bR Nk x )

wt By - § I"‘u"‘i}‘"u"“,l'

i=1 =1
3 |
L :
B
“i JI L
iy
X =
W - ¥l Mkg,
and

ne § :
» Ny ;
(I I
Therafora, !

e




Similarly,

Applying the above:two results, we obtain,
X o
Mgy ™ b Tl s gy
ARG ) T R ) T )
- lgi ng{xy <k #f){xg ~x 41
+ (ng-(ng -x +F-e}(x; -x +#f-e)’
AL mla X ) Bt ok )¢ (e
= by ex Mg =k ) (1) {Fead(xy )
# {ng=THng -x {f-2}' + _(ni—l){f-s){f-o)'

=hy - n‘!:x.]-x”]' - n{{xi'-x“jf' + {N—n\ni]fr'

= (gl =0 3oty ok B+ (g ()




since
{ng=1){f-e) = (xg-x_ ) = =(W-n})f
and
f o
igl IR
= Ay - Hfg' = O(fe(n-10e) + (Hengdfr + (ng-l)(f-e)(te)"
[ S

Furthermore

fy
Aaeig) = E I gy Mrg ey )

g=i 3=
n

i
* L et e )

L
" o P )

n
4
* \,EJ (g eny s} (g o sa)!
= Ay = gy Mgy D0 elxggmy 07 - Drggreg Je!

+ {ng-1)ee’
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since
n

i
PRLTERAL
=hy - {ni—};’ec' = {ng=Tee’ - t_ni—‘l Jue' + (ng-1 jee’

= by N fy [n_]-'l jeat

which agrees with Lachenbruch's {1987) result.
Mow, applying the Binomial inverse theorem [Press, ‘19?2‘): “

ey = a1 - e Tusgerovn sy Tava™!
which reduces to the follewing, for u and v column vectors and B = I:
[T L N L L P PR TS I
=T .
to the above exprassion for Ai’-(i.;l)' we gat:
8l gy = gy {nhee)™!
24,9y = ety
-1 1 e ol
= 05"+ nylag-3as Tee g ) (1-ng (ng=T)e a5 e)

YL N

RO n } 4
‘Ht,s)“zln 5= Mg AgTe v aay (1)




Whance

Tria eyt begiag) ALY + TriaA5TE) + THEF).

Remark  When, Ny # M, \fi. we just vemove the subscripts from all the
n"s appearing in the above formulae.
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Te 5.5.
i Teple 5.5.1
. Means and Standard Deviations of the Five estimators of the
; & lrgd= Eig[}:‘r."1] from the simulation experiments for the case p = 2
L A, Degrees of Freedom vy = 10, v, = 44,
i A1, Estimators 7010, +12) and Y31 from 11 100 stmtations
i
A, % | iMaans . standard Deviations
i True y 1 z E] 1 2 ES
i . 4 6.76 5,90 .07 421 410 4.0
JI j’ 2 1.20 -3.456 1.5 1.12 18841 1.2
i . :
| & ies 10,78 10.78 1.99 7.67 7.87
BB 2 141 236 1.85 .26 2.7 .40
;
i - ~ ~ .
! K.2, Estimators v m, -rm. vm and \.l5) from n similations
{ Means Standard Deviztions
i
1 o Trmy L - - LI
| 53 & B.853 7.90 7.73 B.97 4,80 4.5F 4.53 4.04
|I 2 0.65 0.9 0.% 0.53 0.4 0.62 0.86 DO.BY
fi &6 8 14.84 13.44 1323 1190 8.3 T.me 7.87 1
: 2 .85 V.24 1.30 132 0.57 0.81 0.86 0.74
1
ii B. Degrees of Freedom vy = 10, v, = 44
]
i 8.1, Estimstors v, $02) und 730 £rom a11 100 steutations
? Heans - Standard I)uiatioﬁs
f Intey 1 H 3 1 z 3
4 5.28 4.83 4,85 2,24 2.21 218
2 1.46 1.86 1.73 f.82 1,28 1.00
8 9.65 9.13 5.8 4,63  4.60 A58
2 1.67 2.06 1.92 1.08 1.57 1.20
f
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I
65

a3

c.2.

gi=

9%

Estimators
Iy 1
4 5.817
2 1.08
& 10,38

2 1.3

‘Y\ﬁ}; ;{zln ;“J and ;[5) from o Si:ﬂl‘ﬂlinns

Heans Standard Deviations
2 4 5 1o 4 s
5.15 544 5.22 2.3 23 23 28
.28 T L2g .21 0.51 D.E0 O0.B4 .58

9.95 9.8 9.4B 4.67 4,56 4.56 4.3
1.5 .58 1.49 0.74 0,87 0.89 0,83

Degrees of Freedom W= i, = 84

Estimators
Trise v

4

2

B

2
Estimators
Truey 1

4 4.9

2 1.42

B a&mn

k4 1.73

+r - -
T '1}, Y(ﬂ. and 7(3} from all 100 simuTations

oy,
o

Heans Standard Deviati
1z 3 1z 3
450 421 4.2 141 1.4 .42
.7 2,09 1,87 0,70 1.47 0.7%

L
8,57 8.3 &N 283 293 2.m
.88 192 1.3 0.78 0.92 0.8

{,U}' ;{z}. ;!*1 and ;{5‘1 from n simuiations

Heans . Standard Deviations
R 102 4 8
472 4.68 4,59 142 142 14 137
1.55 1.57 1.51 0.48 0.53 0.55 0,53

8.47 844 B.24 291 2.8 2,9 282
1.8 1.87 1.82 .64 070 0.72 0.69
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B. Degress of Freedos vy = 40, v, = 164

21, Estimators vy 70T ana 3030 fram 13 100 stmulations .

. Means Standard Deviations
Truey 1oz 3 Xz 3 i
4 4,15 4.00 4.00 0.% 0.98 0,98
2 1.88  2.01  2.00 0.53 0.60 0.59 i
(2]
i ! B 8.06 7.92 7.92 .02 .0 2|
2 1.95 203 2.03 0.56 0.60 0.8
1

0.2, Estimators ;(”. ;(z)‘ {rl” m‘;{"') from n simulations.
o

Haans Standard Deviations
; n ey 12 4 % 1.z i ]
" &1 § 433 420 417 408 0.83 0.93 0.8% 0.%2
: 2 .78 1,87 1.89 1.86 0.47 0.5 0,52 0.51
_»_: v 100 & 8.06 7.9 797 7.8 02 2.0 202 .99
| 2 1.95  2.03 203 2.01 0.57 0.60 0.0 0.59 : I
5o
i i
!
o 1
|t
: ' *
oy
I
’ i
! li °
: § . . j
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A, Estimators 7010,

184,
Table 6.5.2

Feans_end Standard Deviations of the five.estimetors of the

fy,) = Eigsiz," ) from the simulation experinents for p = 3

dimengions

Degrees of Freedom vy = 6, vy = kol

T2} and 1Y from av1 100 simulations.

Means Standard Deviations

Treey LA T 10z 2
] 9.6 7.78 8.09 499 462 4.49
! 309 4.68  3.59 167 576 1.97
2 078 2.04 1.07 ., 057 3.80 O0.76
1§ 20.63 17.94 1B.15 13,04 12,33 2.0
4 3.87 4.63 #4.47 155 328 2.44
] 0.5 131 1.2 0.63 7.72 0.94

Az, €s1:il1a6r_‘s ¥, F, 314 ana 3850 from n simitattans.

Hoans Standard Deviations
Imey 3 2 4 5 1 2 4 &
B 18,06 16,01 15.60 14,50 2,91 285 2.48 2.3
4 3.07 3.6 366 3.3 091 1. 1.7 107
2 0,40 0.63 0.65 0.50 0.3 0.21 0,23 0.20

16 28,33 25,96 24.81 23.00 13.45 12,38 1280 1145
4 3.8 445 45 493 1L LE 1.9 LM
2 0.53 o0.84 90.89 0.79 0,33 0.5 0.6 0.5

=




Degreas » vy =8,

185.

vz-ﬁﬁ

B, Estimators 7010, F12) and 3030 spgm 211 100 simulations .

B.2.

47

Heans

1 2
7.68 §.70
3.53 4.2
7.37  1.85

17.83 16.71
4.04 4.30
1.44 1.87

-
L Nhﬂ!g

3
5.83
ERG
1.62

16.74
4.21
1.76

Standard Deviations

1
2.98
1.29
0.63

a.28
1.58
0.56

2 3
254 289
2.4 1.5
0.85 0.70

#8.73  8.08
221 1.84
0.83 0.75

Estimators ;{”, ;m- ;(4} and ?ts} from n simuiations-

Haans
Truey 1 2 4
6 9.47 B0 8.5
4 328 3.50 3.52
2 093 1.5 1.9
16
L]
2

19.07 17.89 17.74
450 474 472
1.22 1.48  1.53

Degrens of Freedom vy = 30, v, = 124

5

8.32
© 3.3

1.3

17.24
4.56
1.46

Estimatorsy’ Y, 712 and $13) prom a1t 100 simitations -

Means

Truey 12
5 6.5 6.09
4 L8 4.3
2 1.64 1.9
16 16,15 15.56
4 428 4.3
2 LT 1.4

E
6.20
3.9
1.82

15.56
4,34
T.87

Standard Devintions

L
253 2.3
0.8 1.0

0,32 0.4

7.74  7.48
.41 1,53
0.52 0.66

Standard Deviaty, .

1
1.65
1.01
0.52

L B
2.9 2.9
1,09 1.05
0.4 0.41

7.48 .22
1.56  1.50
0.69  0.65

!

2 2

.71 1.63
233 132
0.56  0.62

4.6 4,63

1.3 9.3

0.81 ; D62
f

T
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c.2 Estﬂlainrs;”_}. ‘F!Z}. ;Eﬂ and ;(5} from n similations

Means Standard Daviations

n ey 102 & B 1z 4708
25 & 8,00 7.52 7.42 7.3 1,71 1.6 1,63 1.60
: & 370 383 38 77 0.86 0,92 0.95 0.93
4 T.47  1.65 .68 .63 0.38  0.48 0.46 044
n 7 % 16.74 16,13 16.08 15,84 4,43 4,33 4.4) - 4,33
4 4.60 471 470 4.62 I - I R -~ B %4
' 2 1.8 1.7 1L LT 0.45 051 0.52 0.5

o Oegraes of Froeedom vy = 80, vy = 244

[ 118 PO Esr.’llatnrs;(”. ;(2} ami .;(31 from all 100 simTations .

Heans”~ Standard Deviations

True y 1 z 3 i &2 3
3 6.52 6.0 6.19 1.3 142 1.33
! 407 432 408 0.76 1.0 0.83
] 1.86 200 1.96 0.3 0.45  0.40
1 16.56 16.26 16.26 3.65  3.63 .63
I 4,25 4.26 426 L0 ™ 689 0.8
2 1.88 201 1,99 CL046 0.83

i

0.2, Estimtorsy(), y2), 8} 4pg 15} fmnjn' simarations,

Mezns ! Standerd Deviations

kS
n Tey 3 oz 4 § 1 & & 3
44 [4 742 7MW 70 .06 1.0 .06 .07 .06
4 3.3 380 3.9 §.87 0.55 ©0.58 D0.60 0.59
2 1.77  1.80 .89 .87 0.3 0.33 0.3 0.3
Ll 16 16,76 16,44 16.43 16.30 3,61 3.59 3,59 3.8

4 4,31 4,37 4.3 432 0,81 D.B4 0.B5 0.84
Z 1.82 1,83 1.84  1.82 0.3 0.3 0.40 0.40




the {Ti} " Eigs{}:l!l'l} from the simulation experiments for

@
o :
i 197, :
i :
| - 3 Tabie 5.5.3 H
FRN e }
m“'i{' Means and Standard Deviations of the Five estimators of ¥
N
i

p=5 dimensions.

1, h. Degrees of Freedom vy = 10, "2 = 4%

“o. e mt: Estimators 107, T2 and 13 from a1y 100 simnations.
, Means Standard Deviations
. True y 1 2 3 1z 3 '
i 17.85 1511 14,83 9.38 8.2 8.0
4 B 873 191 8.8 15.66 3.3
) & 427 1358 460 6305 2.2
! 4 1.8 809 2,29 4328 1.2
i 2 072 1.7 0.0 3,50 0.6 j
32 4294 33,84 36,40 24.33 2270
T 18 16,15 11.00 1608 53.48  7.69
o ) ' g 6.35 878 4693 a7 11e i
1‘ . ’ 4 T2 1.8 2,90 1.07 26.58  1.47
. H "0.83 1.8t 099 0,57 477 0.4
{“ ‘ : A2, Estimstors 01, Y&, VI8 ang $5) from o stmutations. M)
4 Fallure of either ;(“ or ;{5] in 811 simulations.
i
9
i B
i |
i :
47 P
£
B L
i ;
o I
L H
-] - ) #
. i a h
o . : R 0w
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Degrees of Freedom Vo= 25, \;2 ..m.

0.1, Estinators v+, $92) and 303} from aty 100 simutations.

I=

True y ' 1
.10 13.97
K 9.07
& 5.46

] ENE:]

2 1.43
32 37.34
16 17.81
7.96

4 3.59

z 1.48

2.02

33519
18.228
8.8
a.32
1.6

1z.21
891
5.60
3.4
1.82

3360
1178
a.47
4.02
1.78

Standard Deviations

1
3,08
1.92
1.2
0.8
0.43

8.89
5.01
2,32
1.00
0.46

2
3,27
21.52
2.08
2.8
115

3
2.77
2.13
1.46
0.98
0.59

0.60

estinators 7010, 5180, 18 2ng 3150 fram n stmulutions,
For vy} = 10,8,6,4,2) etther 14) or 3150 fatted 10 amy

similations.
Means

Iwey 1 B L] 5
2 M76 #a2 MTE 42
16 76,97 1676 16.63 16.28
] 7.58  8.74  amn 7.893
4 3.7 an an 3.67
z 1.06 1,34 1.3 1.32

Standard Deviations

1
3.8
3.07
1.18
1.01
0.41

3
3.54
3.40
1.28
140
0.56

Pu—
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C. Degrees of Freedom vy = 50, vy = 204 ;‘

e.1.  Estimetors 00, 20 ana 3030 from 217 100 simuiations.

Huans Standard Deviations
Truey 1 2 3 1 z 2

1 W 1238 T0.E .38 2,86 2,95 2,59 :
1 . 8 8.28  2.44 BT 1.50 2,87 1,63 !
| ] 5.66 6.26 5.78 0.98 4,83 1.08 :
i ] 361 421 3.8 0.68  l.24 0.7
1 H .75 209 1.87 0.3 082 0.41
i
. 2 5.9 3321 324 5.25 9.2 9,23 )
i : . 16 6.4 16,39 16.42 341 3.8 374
! 8 799 834 8.5 .73 225 2.4

4 3,94 4,30 422 0.8 1.8 .01

2 LI 2.4 200 0.3 0.8 0,43

. C.2. Estimators ?“j, ?(2]. ;f“J and ;{51 from nosimuletions.
For fy;} = 10,8,6,4,2) either 341 or 38 fat1ed 1n an

sinulations.
I Means Standard Deviations
! s STy 1 2 3 £ 1 2 4 3 ,
| 32 38.08 3611 35.89 3560 9.87 9.70 S8R 977 H
i 1681 16.% 16,79 662 299 308 3,29 3.6
p 3 B 7.8 B3 BJ2 803 1.5 1.61 1.ET .68
[ 4 3.8 411 433 408 0.58 0.8 0.82 0.8
k 2 1.8 .91 183 180 0.3 0.43 048 0.43 .
I i
i
| ,
| I it
| i
i :
i
| F
R}
I
|
|
|
|

Ja
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Dagrees of Fresdom uy 100, vy = 404

0.1, Estimators ;{'), -;!2] and ;lf’] From a11 100 simulations.

o

H Heans Standard Deviations
i True y 1 2 3 1z 3

! 10 .26 10,43 10.64 1.63 1.81 1.6%

8 808 800 7.93 £.95 1.4 1.05
. 6 588  6.1%  6.01 0.78 1.0z 0.86 :
i , [ 374 402 3.88° - 0.65 0.8 0.69 o

:i 2 180 2.05 2.0 0.27 0.30 0.3

I E] 33.64 3256 32N 5.83 6.21 6.82

16 15.52  16.58 15,84 2.40 7.8 2.56

.- B B.23 B.50 B.46 1.34  1.55  1.45

B 4 3.85 398 3.8 0,68 D75 0.75

2 192 205 204 0.27 0,30 0.30

D.2. Estimators ;“}, ;(2}. ;('} and ;15) from n simlations.

Means Standard Deviations
12z & 5 1 &z & &
12.65 12,07 tz.01 M98 .41 142 .1.44  1.43
T LB Ty 1LTE 0.55 0.55 0.55 0,55

o
a
B 6 5.3 550 552 549 0.37 0.39 0.40 0.4
. L}
2

=
=
;

525 340 340 337 0.4 .47 050 0.4%
.86 2.00 2.0 2.00 0.26 -0.30 0.31 0.30

3¢ 33.87 3292 387 313 5.32 5.3¢ 5.3 6.3
16 16,87 15.81 15,90 75.82 1.86 206 2.08 2.07
&8 8 8.4 823 828 8.2 1.2 1.3 141 Lo
4 3,91 405 D5 403 0.69 0.7 0.78 0.77
2 180 202 203 a2 0,26 0.29 0.30 0.2

-

o
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.

Degraes of Freedom vy = 60, vy = 459

Estimstors of ;Ul_ ;{2}’ ;m and ;(5} From n similations.

Madng
23 K3 5
32 .66 36,27 35.00 3490
6 1870 A T8 1880 1672
& 7.9 2 8.2% B.18
4 3.89 478 4.2 4.18
z 1.7 1.94 1.85 1.9¢

K
)

Standard Deviations

L
7.5
3,10
1.35
0,62
0.39

z
7.8
3.37
1,50
0.7
0.46

i
7.25
3.50
1.56
0.73
0.47
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Table 5.5.4

Means and Standard Deviations of the five estimators of the

tyy} = Eigs{xlx'1l from the simulstion experiments for p =10 -

dinehsions

A Degrees of Fl'e!nforl\a;1 =20, vy = 84

a1, Estimetors 701, T2} and 7030 grom a1 100 similations.

Heans Standard Deviations

True y 1 2 3 1 £ 3
i 41,19 28.01 33.83 9.25  9.08 7.4
e 27.22 23,75 ¥5.25 5.52 10.05 - 6.08
18 18,68 18,26 18.14 3,88 1007 4.0
* 13,50 10,82 13.49 2.39 46.23 245
12 9,60 12,58 9.66 207 .57 2.5
o 6.70 10,08 &.74 1.47 20,27 1.4%
] 4,50 6,84 4.52 1.00 642 1.01

6 279 445 2.8 0.82 9.13 0.83

4 1.63 383 1.65 0.57 4.56 0.60

i e 0.75 1.66 0.78 0.3¢ 224 0.41

H

1024 ©o1382, 108, T4 427.5 36,2 376.0
Cos12 554.2 368.8 527.7 188.5 1545, 194.3
| 256 246.3 260.3 247.0 73,87 1431 8420
" 18 120.8 127,% 12n.2 ©36.43 1.8 41.82
| 4 54,50 67.03 58,30 17.38 29,58 19,16
: 24.28 30,25 26.85 2.5 37,38 10.58
% .43 17,28 2.9 3,52 8¢ 5.05
4,94 6,08 5,63 177 N0 2.3

4 2,25 537 2.54 0.81 9.63 1.09

2 .. 0.8 2.3 .00 0,38 299 0.49

A2, Estimators ;“}, ;(2). ;UJ and ;(5) from o simulations.

Failure of  both ';'“) or ;ISJ in a1l simulations.

i
H
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B. Degraes of Fresdom vy = 5, vy = 204,

B3 Estimators 700, 38 ana 3030 from a11 100 stmutations.

Means Standard Deviations
Trus ¥ LA 1 & 3
20 29.90 25.84 26.37 477 531 4.57 .
18 2.0 19,89 21.00 3.00 4.97 3.57 -
16 16,80 15.40 16.65 2.00 877 207 A
14 18.62 18.4215.61 1.89 2014 1.97
12 1059 W J0.60 1.35 8.5 1.3
1 825 9.72 . [.27 108 175 1.8
8 613 B.04 5,21 0.87 3.5 0.8
& 4,45 6,27 448 0,75 3.E7 0,75
4 2.0 3.81 2,90 059 1.81 0.59
2 1.57 209 1.5 0,38 0.7 0,38
1024 3. 104 1048, 261.6 257.7 255.8
512 - 547.0 5340 534.1 124,08 1440 133
256 256.7 60,1 257.) 52.45 §5.23 57,001
128 ©122,9 1215 126.5 26.14 31.28, 26.68
5 59,26 68,70 62,21 12,50 16.48 14,98
32 28,83 31.92 30.56 6,15 8,65 §.78
16 14.30 16.24 1,58 3.20 4.47 3,97
8 6.95 B8 7.73 L3 201 LM
4 3.3 402 37 0.78 .21 0.8
2 1.60 2,96 1.96 0.3 0.61 0.59
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Ll
= 194,
]
| B.2 ., Estimators Ym Y(Z) 1:‘” and 1‘5} from i simulations.
| For {y;) = (20,18,15, 19.12,10,8,6,4,23, 7" and 35 fatred
E fn a1 'stmastions. - ~
Means Standard Deviations
5 L) Truey ) z 4 5 1 £ 3
| 3 24 N3 (0d2. 0%, B 2025 1937 195.6
. J 512 5536 627.3 5aT.7 % 78,07 80,61 83.19
i 266 260.0 260.2 . BS0.5 £ 2748 2047 0,62
o N28 1258 130.0 11300 .o 1403 1583 6.5
o 68 58,37 61.87 6189 T 9.6B 11.13 11.58
| 32 2743 29.71 2080 ;?. 3.87 450 466
' 16 4.3 16,31 643 50 163 18 182
| <l T 8 650 761 7.48 % .2 160 1.67
H oo 4 308 383 3@ 0.3 0.3 040
‘ 2 1.7 202 208 i 0.3 0.5 048
‘l o c. Degralé of Freedom vy = Tog, vy = 404
£.1  Estimators ;‘”, ;fz] and ;‘3‘ from a1l 100 simulations.
Maans Standard Deviations
Treey 1 z 3 1 E 3
i W 5,62 2210 23,10 3.02 3,56 2.93
| B 20.23 1869 197 201 3.83 .80
' % 6.8 16,24 16.27 1.5 3,32 1.87
W 1369 14,32 1369 1.3 320 1.5
) <32 108 1.7 7113 108 2.6 1.28
Tk M 10 B.81  9.62 0.8 0.93 2.3 093
o ' g 7.0 846 15 0.82 2.0 .83
L ' 6§ 506 57 B2 0.67 112 072
o 4 347 406 3.1 0.52  0.83  0.54
© ] WIE 20 L 0.20 0.36 0.29
!
] 3 024" 1083, 1048, 1048, 175.2
i 518 536.0 528,89 528.5 80,32
t 256 254.4 2504 2644 42.02
J-' 128 126.8 128.9 128.8 19.75
4 60.97 62.72 627 10,22
32 30.43 3181  31.80 5.99
16 15.27 16.19 16,19 2.55
8 7.28  7.81  7.8] 1.44
o 4 368 4,05 4,02 0.6 0.7 9.7
H 3

1.79  2.00 2,00 0.29 0.3 0

afiiantion 63 paLiey W3 idob Y

Jn

e
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Estimators ;(“, ;&J, ;“} and ;‘5} from n sirulations.

For fr;} = (20,18,16,16,12,10,8,6,5,2) Y ana 350 fatied in
211 simulations.

True

L
Jo2a 1108,
512 -526.8
26 250.3
J128 125.6
5 61.46
3 A0.24
6 153
8 7.28
4 3.66
: m

2

1064,
518.4
250.1
127.6
63.27
3.56
16.31
7.82
4.0
1.9

Meang '

082,
518.7
250.2
127
63.29
.59
16,33
7.82
4.01
1.9

fen

aB43AUS 03 palies wydtioBpy

Stapdard Deviations

1

z

744 N2z 1734

80,72
fr
1.
8.90
4.84
2.25
1.16
0.50
0.28

Degrees of Freedom wy = 200, vy = B4

83.94
36.91
19.32
8.77
5.45
2.56
1.33
0.58
0.32

#5.61
37.84

estimators 1117, Y12} and 3130 rue a11 100 simutations.
Standard eviations

True

*
18
16
14

v o1

Means
z

.23
18.08
16.21
14.53
11.73

9.95

S

21.78
13.42
Te.02
13.64
11.48
Aoid
7.56
5.64
3.80
1.87

1048,
515.1
256.1

w1267

1

2.08
1.44
1.08
1.00
0.87
'0.77
0.70
0.51
0.44
0.2

124.3
57.61

z

2.57
2.06
2.96
2.93
1.64
.86
1.19
0.68
0.56
0.23

124.3
5944
0,48
1482

7.58
3.54
1.78
0.88
0.51
0.23

3

.09
1.67
1.23
m
0.95
0,85
0.7
0.57
0.49
0.2z

124.3
59.44
30.49
14.82

7.58

1

a6190U03 ©F PALLRS U306y
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p.2  Estimators +01, 7020, 308 ang 3050 fron n simutations.
For {yg} = 120,18,16,14,12,10,8,6,8,21 7% and 750 satted in
a1l simulations. :
s Means o Standard Deviations i
Truey 1 1 L3 5 1 2z [ 5 |

5 loz4 T2, 0eF. 1096, 1094, 1454 1432 1435 1430
{out 512 567.2 663.3 563.3 G561 47.88 50,53 50.87 50.74
of 5) 256 2670 257.3 267.3 266.6 3355 39,83 3996 39.85 |
128 1210 128 121, 121.6 10,95 1245 12,49 12,46
6 6098 60.97 60.97 60.82. B.0F 845 8.49  B.4T
32 3.6 3.37 3,38 3229 592 416 407
16 15.11 16,53 15.53  15.49 1.12 l.20 .20
: -3 7.30 7.53 7.53 1.51 0.58  0.62  0.53
| : 4 4,17 4.38 4.38 4.37 G.47 052 0.53
z 1.88 2.00 2.00 .00 .3 0.8 0.3%

B3

0.63
.52
0.33
9 024 1074, 0sz. WSl 3 s g lws 2
. . Sz 5138 5144 S5 § 5RO 560 SB35
B 26 286.7 267 2867  F .27 a0 0.5 F
i 128 1282 6.1 1261 1809 3 10 g
iV B 62.37 63.25 53.26 g EREAN X K,
b S A e a9 § .33 a8 s §
i . B 1543 1587 1687 163 L5 LI
L 8 2w rw e & om om oss &8
! 4 3.85 402 402 0§ 0.48  0.52 o062 &
| LR N 0.21 0.23 023 B
- " : :
|
]
!
..
i - :
K
’
Y. " !
" I
It
It
i I
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Degrees of Freedom v, = 100, -, = 908

Estimetors of ;“}. ;(2}, ;“’ and *?{5) From ' ximulations.

Trie vy

1024
Bz
256

128

1106,
523.4
249.7
122.5
£0.40
30.24
15.50
7.21
358
1.7

Heans

2

RUITEN
521.0
52,3
126.3
52,50
.73
i6.53
7.75
4,04
1.99

[

1075,
521.0
252.5
125.3
62,65
3.73
76.54
7.78
4.04
2.00

(C

ABABAUDD 03 PILLES WRI0ELY

Stendard Deviations

155.8

B2,

371.78
16.87
.14
4.4
2.3
1.08

0.5

0.29

Z

86,4
B7.34
40.53
16.05
1010

4.52
2.63
1.2
0.63
0.33

1

4

56.2
B8.51
41.50
18.34
1032
6.00
2,67
1.22
0,64
0.34

fen

aBasauod of pajles ogliobly

e e e
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TJable 5.5.5

Correlation matrices for the five estimators of the {'r'i) = Eigs[z];"[j

from the simulation experikents for p = 3 dimensions.

C.  Degrers of Freedom vy o= H, oy = 124

G0 True {y} = {6.4,2]

Humber of L Corvelation Coefficients

- SimuTationg Pair 1 E L3 . B
G 2 - .2 758 14 o3
i 1.3) s 265 241 ]
] {(2.3) A0 328 .27 273
i Fegz True fyy) < (16,4,2)
1 iy
: Hupber of Correlation Coafficients
t Simulations Pajr O 1 2 4 5
H 4 e 033 043 .07 025
! (1,3) -0z 041 -.086 -.040
A (2,3) 508 JELT- TR 1) .20
5 B, Degrees of Freedom vy = 60, v, = 244
t
;
[ 0.1 True {yyd = {5.4,2)
3
f_ Kunber of Correlation Coefficiants
/ Simulations Pair 1 z ki 5
j 4 11,2) 425 L3856 e 328
E {1,3§ Rl AN 081 070
(2,3} 381 A4 263 28
i 0,2, True fry) = {6,4,2)
: Wurber of torrelation Coafficients
Similations Pair 1 2 4 5
9 11,2} -.034 -.087 - 060 086
(3, a2 033 032 3%
(2,37 | .zem 235 210 21
u . .
o i







Chapter 6 The Predictive Bayesisn and other Approaches

Our chief concarn in this chapter is the Predictive Bayesian approach
to discriminant analysis under the random etfects model.
As described in Section 2.2 this approach consists in evaluating the

- posterior probabilities, given the training sample and underlying modei

together with any known parzseters, that the new observation x comes from
each of the k; populations in question, and assigning it to that popula-
tign for which this pmbablilitv is the largest. Therefore, in contrast
to Chapters 3 and 4 where we are concerved with the expectad behaviour
of the standard classificaticn rules of classical discrimimant analysis
under the random effects wodel, this chapter {3 concernad with the deve-
Topment of new classification formulae appitcable to thid model.

In conformity with the rest of this thesis, we will assume that the
prior probabilities g of the k populations L {00,k are all equal,
so that the posterior probability that x comes from w, is proportional to
the predictive density of v, given the training sample and the assumption
that x comes froal w,. 3See expression (2.2.4). (It is, howsver, 2 trivi-
al matter to adjust the theory for the case where the g, are unequal,}

Therefore, in the next two sections we will derive the predictive
dansity of % under the random effects model given the training sample
and the assumption that X comes from w,, using a noninformative prior
distribution for the wknown parameters, firstly for the umivariate case
(Section 6,1) and then for the muftivariate case {Section 6.2}, In
Saction 6.3 the predictive density of x will be investigeted under twe
alternative prior distributions of the unknown parameters, namely,

{1) Box and Tiao's noninformative prior distribution for the random
effects model, and (i) the natural conjugate prier distribution.
Final"ly, in Section 6.4 two other Baysfan approaches to discriminant
analysis, the Empirical Bayes and “Semi-Bayes™ approaches, respectively,
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Chapter & The Predictive Beyesian end other Approachos

Our chief concarn in this chapter is the Predicfive Bayesian approach
to discriminant analysis under the random effects model.

As described in Section 2.2 this approach consists in evaluating the
pasterior probabilities, given the training sample and underlying model
together with any known parameters, that the new observation x comes From
each of the k'l papulations in question, and assigning 1t to that popula-
tion for which this prohabli'lita' is the largest. Therefore, in contrast
to Chaptars 3 and 4 where we are concerned with the expected behaviour
of the standard classification rules of classical discriminant amalysis
under the random effects model, this chapter 4s concerned with the deve-
Teprent of new classification formulae awH_cah'Ie to thif model.

In conformity with the rest of this thesis, we will assume that the
prior probubilities g, of the k populations my, 1= 1,0,k are all equal,
o that the posterior probabilizy that x comes from 7. is proportional to
the predictive density of %, given the training sample and the assusption
that x comes from %, See expression (2.2.4). (It is, however, & trivi-
al matter to adjust the theory for the case where the 9y are unequal. )

Therafore, in the next two sections we will derive the predictive
density of x under the random effects model given the training sample
and the assumption that x comes from T using @ noninformative prior
distribution for the unknown parameters, firstly for the univarfate case
(Section 6.1) and then for the multivariate cose (Section 6.2). In
Section 6.3 the predictive density of x will be investigaied under two
altarnative prior distributions of the unknown parameber‘s.'lnavle'l.v.

{1} Box and T{ao's roninformative prior distribution for the fm\dorl ;"

Finally, in Section 6.4 tyo other Baysian approaches tg discriminant +
enalysis, the Enpirical Bayes and "Semi-Bayes® approaches, respectively,

u g
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will be given brief consideration.’

Remark 6.1 In this chapter we have to make a distinction between the k
populations used in the training sample and the k'l(‘ k) populations from
which it 43 known that the new chservation x derives, Clearly thase k]
populations must be reprosented in the training sample, but thay may
well have been sampled at a Tater stage than the rest of the trafning
sample, possibly only at the time when the particular classification
problem in quastion arises.

6.1 The Univariate Case

For dimension p = 1 the discriminont anelysis problem under the
"random effects model becomes:
Given a training sample,

TSy riatinks §eengd

where,
Kig ~Megs o) ndapendently, ¥y 4

_and py o~ NWE, ™) independently, ¥,
1 i

classify a new observation x of unknown origin inta one of the ky popu-
Tetions vy re 1,000k where m, 15 _Fh.ara:berisnd by a #{u., ot) dis-
tribution. N

For the Predictive Baysian approach we need to make an assumption
about the prior distribution of the unknown paraweters o2, £ and ©2, and
in this section we assumz that they have the following general fype of
noninformative joint prior density:
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=¥ -V,
glo®, £, T2)det dE det =0 | 1 © ot df ert (6.1.1)

Remark §.1.1 For reasons thet will become clear later, we are consider-

ing & nom geperal form of prior distribution than the usuel diffuse oﬂ
invarfant (Jeffrays 1961) prior distribution which has vy = v, = 2. The
prior density {6.1.7) is also used in Geisser and Cornfield (1963) and?
inBetsser (1964). ) H

Given the above assumptions, the predictive density of X, assnmnﬁ
that ¥ ¢ 5, is:

I
I
[

TS o v wd = [ [ flalye ot P ot TS (61.2)
¢2 n .

{
- |
B (B Haeeenn l‘k" f
x=q H
Fla|i 02, W) = oo 83 { =}l )2} [
(s 0% Wpd = H—T)

Plus 0| TS) = P(TS| o¥)P(L, o)

ko4 LT
TSl ot) = e dyz
P18y, of) igi Jsjmoe:n{ e
1
TS 2u, 121 ji]txij - uyl®

we §
Th N

s o) =0e®) [ [ PlulEsetIp(set)cieet
* IT’.'[E

k |i‘~a S 1k
Plyleat) = 1 et i(T)‘} e e A
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¥
and

P(o)B(Es 1) = g(ots B i) wor Vw2 (513

Substituting all this into equation (6.7.2) and using the notation:

,%
nf =0y ¥iw=r ;
who=n, 1 B
e uE =i (6.7.4}
yields, ignoring all constants of proportional'lity.
) L& 0 N 3
r(:!\'s ROTRCTE N L L : m{'?;; 1§1 j;(x‘j-uin
- i
E xv'kekp[-;fihq B o Ve fdgdet dyde® : o
[ e ] By
o e -L 137 %
2ot is1 §=1
oy sl §=
'{K-Hr ] N i
-t - de? da? Low
]! i b -9 & e
T
Considering the inner pair of integrals:
“(kevy) y &
{= = - g ) dE ¢rt
!: { ’ R tdr-m e ], * |
“lke'g) ;X ; %
- L!T Exm{~2;zi§1(u|-v’l’1£§ exple ale )P HE 42
- . LY B - . i "3

’ k
(ubete 0 = £ )
I
N 4 “jlk+vy-1) 1
“L {1?) z uxp f.";:; S;]dt‘
T

" ] L
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2. »
§ ue = ueE,
whers 11'12]{1

Transforming to:

. -2 g
u..‘ i 5“
s0 that

et w0 Sy

the integral becases {ignoring

“i{k + v, = 3)
e

¥k o+ vy - 3)
= (s}

So:

3

axm (e
2a* 1
How,

=1 §=1

[

5
where  xf =Ly s
. ey

14
%, $i=r
= L
Yo, FEFT

=
v

constants of proportionality):

ikt v, - 31
ikt vy - 3) exp(-u) du

Tk + vy - 3))

oty TN ”ts;f”sz' X

x N o
E-l ‘igl (kyg = ngh) do® Ay

P . k i 3 k " [
b Ogmed® =y by ey e nitey o)

{6.1.5)

- %
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5o (6.1.5) bectmes

M
;.ii’—'tgi. _jgi T Al

(M-l ),
lf(“[TS-"r Vo ) ,J (9% (i vy kf"e_l:lp {-
o

' k4,3 K Lol
«isp M b g oL g 0% et
i 2q* 1=

(6.1.7}

W, apart from a constant of proportionality, the fmner integral in

 {6.1.7) can be thought of as th: “4{ks vz-‘sjﬂ’ nament about zers of the un-

normed sample variance: S; = E {wg = i, )* where the individual py are '.;
$ndependently distributed accerding to the N(:q‘ » c“!ng] distribution.

In order to be able to evaluate this expected value, we have to make
the assupption thail the ¥ are all equal, say,

Gy = 1= 15000k {6.1.8)

under this assumption s; has o¥/n* times a noncentral x;_‘(l"} distribu-
tion, with noncentrality parameter,

w2 o e oy g (5.1.9)
o iel
whare,
woep o ‘
and

koo
Mo koo e

flow, although the cumulants ¢f the noncentral chi-squared distribu-
thon (and hence the First moments about zero) may be expressed extremsly
simply, general expressions for the moments about zers are usually -
3

..‘._-} . | | 1
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] .

{ in uru of infinite sums, {;ee, for example, Johpson and X¥otz, lB?D‘h.)
i The following éxpmss1un for the v monent abofl,t zere of the .;Q,t:l} diz-

tribution, derived in Appendix 6.7, is convenient for the present pur-

pose:

R ul, = 2 exp(- HI_L -‘lé-?—j- {-&?ﬁ-}{-ﬂ for r >y (6.1.10)

The inner integral in(6.1.7) is therefore proportional to:

Ry -5 = e T(E{2-vy) +4)
2t A 2
4 R —_—
.. d ; 1 ,I o -3 av} JEO 'u_d"l'. ’_":i'{l{k"]*'-l'f or vy < 2
' ! ; " : {6.1.11)

The infinite series in (6,7.71) iz .]':;r‘oportional to the oenﬂuén:t Fiyper-
geometric function M{A{Z-vpls §(k-T)s §a%) {see, for exssple,

v Abreminitz and Sugun.n. _T‘SGS} and therafore it converges for all values of
L the parameter § A%, Substituting (6.1.11) into (6.1.7) and interchanging
) the order of integration and susmation yields, ignoring thé constants of

proportionality: . _
= TG ) ) (3 g, - e 252)
FIx| TS ¥q0 Vpa ) = ot
R R Frrrre e

. Ar :
* exp {'E':'i} w?

whete,

A% E E’! LI L q. z
- - +AF = - I
R N N (xgg=%f )%+ 0f ‘§] SEI [xl.i ¥ ) (6.1.12) i

Haking the transformation y = .ﬁyh’. tha 'ahnﬁ:a 1rotegral say be evalunt-

—
1 ed as a gamma function, yislding eventually:
1

[ I .

e

)
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|78 Vput) E T{EZ- ) +3) T{AN+v, 4y, + 25 l N
e L] et e .
flls v vpnds & T o 0 TR

~3(H+y ¥ +2i" 4)
saapgag O TR
= N+, v, -4) ¢
= (a5 (e }Fu{z-vz;. AN+ vy vy -4
k=10 (MA)) for vy <2 {6.1.13)

where,

w 31,7 .
Fle. 81 v; ¥) = -—-—Lrg-f-“ is the hypergessetric function,
' jgo ¥ ﬁf
[ U L S T
Since, by d.af1n1tinn,|n‘fﬂ§| <1, the hypergeopetric function in (6.1.13)

converges. {See, for exasple, Abramowitz end Stegun (1.955} or Jofmson
and Kotz {1968).) o :

Remark 6.1.1 Assumption (6.1.8) effectively implies that

My = 0% w1 Vral,,.,k
. i .
and that when evaluating ilw predictive density (6.1.13) assuming thet : X _’.
Xa L far each r = 1.....,!: in tn._q-n. one of the observotions xrd is :
choson from {xm. 3w Tyeseyn} and i raploced by x in the sample.
Under these citcusstances, theretsre,the erfective sfze of the trafning
Sample becomes N - 1.
The two terms in (8.1.13)affected by the above are A} and A%, and f%
is shown in Appendix 6.2 that, for xew :




i

|
|
1
;
1

7
t

5]

B = A 205X 00 o) i%l (k- s y)? f (51.19)

and

k n
CRRACTEL SR RS O x,ﬁhtxj b, )
(8.1.15)

where,

k 2
Ay =0 X, = L
UL R

and
{x
Ao ixl ,121 157
are the between groups end within groups sums of squares, mpectfue:._y,
ag defined in Table 6.1.1 for the case p=T. Firally, ﬁs is obtainkd
by summing AT and Ay,

i.e. .qf‘;'

(6.1.16)

Formulae {6.1.14) and (6.1.15) ﬁ}m be useful when evaluating the pre-

dictive density (6.1.13) successively for all r = 1,..00k . : . ®
Kote also \ﬂ\at_(fmdur these circumstances N should be repl'.wed by '

W= 140 (6.1.13). :

Remsrk 6.1.2 The fact that Yy MusT be Jess than 2 in (6.1.13) implies
that, for the predictive density to exist, t* cannot have the usual

diffuse prior distribution with v, = 2 ,
It is interestingto compare this with probless encountered by other y . o
authors studying related problens through the Bayestan approach. Lindlay
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and Swith (1972) and Smith (1873) studying the problem of estimation
under a Bayesjan General Linear Model, both start off with their snalysis
by assuming a1l varfances and covariznces known. When passing to the

situation whare the variances and covariances are unknown and have prior

distributions, they come up against tntmctah'[e mathematical problems

in evaluating the posterior distributions and means for the parameters

of interest, To overcome this problem they use fnstsad the mode of the
Joint posterior distribution of the parameters of jnterest and the
nuissnce parameters (the variances and covariances) and use these modal
values as Bayesfan estimates of the parameters. In practice, the modal - :
values usually have to be obtained by iterative procedures, In their
examples they use natural con:[l.luabe prior distributions for the vari-:
ances and covariances; Tn Section 5.3 we will investigate this class s
of prior distributions for gur problem. -

Box and Tiao (1973} use a different type of diffuse prior distribu-
tion when considering the random effects model, in order to get around
their analytical problems. This prier distribution will alse be consi-
dered in Section 6.3,

It is rather romarkable that it i5 the prior distribution of the
second stage “hyperparasetar” ¥ 1n our random effects model that gives
the problem, while that of the correspending first stags parmmeter o2
presents no problem at 811, at least within the frosmwork of the diffuse
prior distributions (6.1.1).

Therefore, in [6.1.1‘2} wa may essign the value ¥y = 2, giving ot a
neninformetive prior distribution relative to the 1ikelihood function
of the normal distribution, both in the senss tha.} 1t produces a poste-
rior distribution that is "data translatad" 2s defined by Box and Tiao
(1973} and in the sense that probebility statenents on o* besed on its

postarior distribution are imnﬁantléunder paraneter transformations.
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For ¥y We may assign the valua vy = 1 so that t* has a prior distribu-
tion that, while 1t is not meninformative, is as close as it may be to

ohe without jeopardising the e:“sbe:'nge of the predictive density (6.1.13).
Under these parameter vaiues (6.1.13) becomes (remembering that H is
replaced by N - 1):

J
- = Cdey ooyl dT (A§/03)
fx[TS, ) = (ag) (2D m——“% oL
(TS ) =0 o™ aen) it
-3(H-2) M
={A3) F(3. §(N-2); 3(k-1)s5 1-5} {6.1.17)
Remark 6.1.3 An alternative, asymptotic expression for the pmedictirédensiw

of x may be obtained by interchenging the order of integration in (6.1.5).
This yields, '

~§(H+vy=1) ¢ =ik 4wy~ 3)
F(x[TSs Vo Vo )= (A3) 1 J (COI ‘2
. i

o U T

This integral is proportional to E}e “Hktv, -3}“ moment of the .
{unnormed) sample variance s; = ‘E‘ (g = w ) whare the w15 1,0k
Jointiy have 2 multivarfate t-distribution with common denominator [see,
for example, Johnson snd Kotz (1972)). Assuning that n‘{ =Ny 'li and
that the total sample size N s large encugh for' the multivariate
t-distribution o be approximated by that of k independent normal ran-
dom varisbles with different means but common variance, the integral may
be evaluated approximetely using the -ﬂlﬂ vz—s}‘f' moment of the non-
n?ltna'l xﬁ_] distribution, This _vtf.-'[ds. aftar some algebra:
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-i{lﬂk+v1_+v2—4)

T8 s Vpu & (1) ex {- 3%}

x Mi3(Z~voki Blk=1)5 M%) For vy<2

{6.1.18}
where,
3w (W= k) MR
- and Pl
R B N
Mo 85 ®) = ii ;ETI :1-' i5 the confluent hypergecmetric

function,

It is interasting to note that again the psramster vy in the prior density
of 12 can not take the valus 2 corresponding to the usual noninformative
prior distﬂhminn_a" Assigning the values ¥ = 2 and Vg'= 1 as before,
and replacing N b§:__.N = 1 (see Rewark 6.1.1}, (6.1.78) becomes

TS, m) & (A BN 2) i oy g Bl (6.0.19)

Exzaple £.1.1  To {llustrate the use of the abwve formulae, the foilow-
ing hypothet{cal example wes considered. Given the training samples of
size h = 3 From each of k ¢ 5 populations in Table 8.1.1 aM

an shservation % = 7 of unknown origin, classify x into one of these 5
populations, assuming that they are generated by the random effects
model.

Table 6.1.2 giv«; the quantities Af, Af and AY for each of the five -,
populations, as well as the ratios [AJ/AY) and (EAY/AZ) required fn for-
a;ulae {6.1.17):and (6.1.19) for the exact and spproximate predictive den-
sities, assuming that wgrl Bnd wpsZ. FORTRAN swreuﬁlrie HYPGFR, given in
Mppendix 6.5, was written to mmputt‘:e the h:{'pargmeh'ic and confluent

hypergeanetric functions required in
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the above formulae. The posterior probabilities for the five populations,
computed using both. the exact and approximate formulae and assuming

_ enqual prior probabilities, are also given in Table 6.1.2. As recommended

in Sub-section 6.3.3 below, the cbservation closest to the mesn of the
training sample from T, was replaced by % when compluting the predictive
density given X « Fpe

Table 6.1.1
The Hypothetical Training Semple

PopuTations I 2 3 4 5
' 1 ] § 7 g
Observations 2 4 7 3 1o
3 5 B 9 n

Observation x of unknown origin: 7

Table 6.1.2
Lomputing the Fostarior Probabilitfes

I_‘q[;u'lninns: 1. 2 3 4 5
s W7 e a0 US.0T 102,00
ny 26.67  16.00 000 10.67 16,00
n M3.73 1260 13240 12073 11800
Py 0.7655  0.876 0935  0.9178 0,804
3k /28 16.33 3088 6,20 BE.E1 3.8
Exnct. Peobs, 0.0065  0.0583 04981 0,376  0.0635

Approximate Probs,. 0.0006 .0188 0,5822 0.3744 0.0228
Fixed Effect Probs. 0.0017 0,0327 05580 0,374 0.0327
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The last row of '_rable 6.1.2 gi\fes the post_:grinr provabilities for
each of the five populations computed from formula {2.2.6) for the case
where the population means u; are given a diffuse prior digtribution -
roughly speaking, this corresponds to a fixed effects model (See Box
and Tiao (1975) pages 379-80 for & discussion of this point). Comparing
these probabilities with their counterparts under the random effects
model, computed from the e:a:t. formuta {(6.1.17), it 95 clear that in the
Tatter case the pusterior probabilitias are s1ightly more comservative,
in the sense that the highest probability (that of population 3) is
somewhat Jower, and those of the other populations corrospondingly higher,
then their counterparts under the fised effects model. Intuitively
speaking this is reasonable. as one would expect classification to be
better in the situation where, a priori, the populations tend to be
further apart, s fs the case with the diffuse priv- relative to the
normal prior. (See Cox and Hinkley {1574) page 379 for a related dis-
cussion.) :

Finally, the probabilities given by the approximate forsuia (6.1.13)
are clearly too optimistic [7n & sense cosplementary to conservative)
giving values that differ even more from the exact probabilities than do
the corresponding probabilities under the fixed effects model.

6.2 The multivariate case
Analogously to tho univariate caze discussed in the previous section,
our discriminant analysis peoblew becoses: )

Given a training sampie from k populations,

TS & txyg § 2 Tt 4% bk

where,
Kig oluys ) indepandently ¥4, §
and
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' By llp(z, T}  independently \l_F .

‘classify a new chservation ¥ of unknown origin into one of the ky popu-

Tations: I
M HP“'"' ) L |
where kysk

We assume that the unknown parameters I, £ and T have the diffuse prior
digtribution with Jeint depsity:
i

E A
9T, £ TIdE dg &7 = [z} 1 |T| 2 dp dg dT (6.2.1)

Bemark 6.2.1 As in the univariate case, and for the same reason, we

are considering the more general form of diffuse prior distribution,
used by Geisser and Cornfield (1963) and Gejsser(135d4), than the usual
one for which Vp =g =t 1.

Given the above assomptions, the predictive density of X, given the

hypothesis x ¢ %, v becomes:
x| T8 vps v ) = ” flxhe £ m )P DTS JdE die (6.2.2)
ML

where,
¥ 18 the p * k matrix (tys Hgeeeeiiy)

f0rhe 2w = (207 |5 e (a1 x e w)

Pl T| TS)# P(TShe EWQL E)
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[
W e -
Ptishe 3 = 1 n (2 iy Fers =3ty 57y
. [
o gyl i B TS
ey = e -3 § jE‘ (g =mg)' £ gy

k
where Ke I n
P

P 1) = P(z) I] Pl T) P(E, T a1
£

k - o \ -
Poefe 1) = 1 (2n) Ll L IS TH )
" K
. o (e B g g RACELE e,
and
-3 =}
P8 (e T) sl ey o 2 T i 2 (6:2.9)

§
Suhstituting(6.3.3) into(6.3.2) and uvsing the potetion:

47

ey Viar
e a e
'xm‘; o x ) [6.2.4)
gives: Y
iMoot
f(xus.vpv,.«,)tii;st e L Loyt 5 g

“ilkery) k p
x[[“| o ied 3 (g 0) Tl EldeeT et
{5.2.5)
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The fnner two Integrals in (6.2.5) are evaluated using the multivarizte i

eralogues of the techniques used in the univariate case, the details of k
which are given in Appendix 6.3, yielding:

'.ﬂ(k“‘ ) k " “i(k+v,mp-2) :

- H M Pap e -0 Tag-anaein) :

i=1 .

(6.2.6) M

Lk
were As 0w )00 )
LK
ma ek o

Substituting (6.2.6) into (6.2.5) gives:
“h{H+wy 1) <dlk v, p-2)
8375, vy, ¥y 1) Ulsl LTS z
31

P
ol
xexp (-3} iE! j,:,](x”-n,} {4y gy ) 3 A

Wt

n n¥ s
Jf Ei(a ugd gy Jvf Ii [CARy LN
9 g "t_ 17T gk gk M A, TR

k- . ! 3

v L O ) )

y RS

) X i :

w tr i g 12‘{ ey - x )t e l{ui =) (6.2.7) P

* k n? [}
a = 151 j!lfxij—x?_).{x”«x?.)
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corresponds to the Nithin Groups Sum of Squares A, in Table
) th

4 . 5.1.7, with x ihcluded in the sumple from the
! En SWi=

[
T .
and ¥ = I = -
1 Ffj,"lﬁ Kr+.xnx
. A

population,

:‘ s =1

Therefore,

-3y ke1) 4 lkwgpd)
'fmts.v,.vz.',aul:s: T e e gl 2
H

k -
xexpled L nfug - ) 5 Vug - up Diohe dr

.{s.z.s}

How the fnner integral in (6.2.8) is proportional to the -Hkr\rz- p= 2}“'
“moment of the generalized variance of 2 rendom sample Wys Ygeees o, shers

o the 1y are indzpendently distributed as N(x; » mg I
A |
In ordar fo be sble to evaluate _iis exgectad value, we have, as in
the univariate case, to make the assusption that the af are a1l equal,
w sy,
. nf = o Vi (6.2.8)
&
Ursfer this assumptioh, Al!’ i (- Moy - u ) can be consider-
od to hava a p«ﬁmﬁihilnl roncentral Wishart disteibution with (k-:l}
degrees of froedom, pavameter matrix 'il*' T and noncentral Tty matrix
0 i )
» . i ¥ L
a - =g o T iEIM RRIC IR SN (6.2.10)
k
Lo

1
whete o= X
R R
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she, Tor examplo; Constantine (1963).
So the inner integral in (6.2.8) 13 proportionst to the ~j(k+vp-p -2
momznt of the generalized variance corresponding to the Up{k—'li -i.lwx.u_‘!)
distribution,

Constantine (1953} studies the mements of the generalized variznce
corresponding to the \Ip(v, ¥ @) distribution, gwmg..{ha following as
one of the 9xprassion_s for the r.u' moment:

Fukt)
Jﬂ-;——}—nﬂ expl-tr b Folivet s o)

for £ >-j{v-ptl) and w > p-l {6.2,11)

i";!EYE Pp(l\l] is the multivariate gamna function definad ip (6.3.5)

and ‘F‘{a; by 0) 15 the confluent hynergesmetric function with matriz
aeument defined by James (1954). Thus the Smner integral in (5.2.8) is
¢q|ra‘| o (64 ?"ii}-vn'th t replaced by —i(k+w2—p~2}. why k-1, Eby
e By 204 @ by @, Sibstituting this into (5.2.8) and siwplifyim,
;mes f

Ep{ksvy-p-2)r, fl[wl‘vﬂlgzl—itmiwz—p-!}

Ll

Flx] T8y W)= (} n*}

for vy« 2 and k> p ' 16.2.12}
K
Wpewt O - )k <)
AL Rl

corresponds to the Botween Groups Sum of Squares A’I in Tabla

5 1.1, with x im:'luﬂed ih the sample From the pth population,

x o h 657 A3 (P )ik 31 e
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In prder to evaluate the integrel i (6.2.12) note that, by vafinition,

= Lt}
Folvgs ves @) = B l8)/3 §.2.13
Fylvgs vgi 0) jzu :f“ 3, NI (5213}

where, f i
¥(3) is 2 partition of the integer j of waight p, of the form
Ups dgrevesdyd vhere §; 2 0 and E dy=d,
;x{j){n] is the zonal p~ljnomial in the eigeivaluerof @ correspond-
ing to partition (i), :

| L
ERCIE 1:‘? (o - 3 ¥
: =]

pldd o BB+l ). (bei-1)

and X{n denotes the sum over all possible partitions }{i) of 3 .
X

“ee, for example, Constantine (1963} or Johnson and Kotz (1972).

Sphstituting (6.2.13) into (6.2.12) and interchanging the order of
sumpation and fntegration {For Justifications; see Constantine [1963}}
yields:

§ plisigmp-2)E (3(p1v,)) = t!fw-vznixtdl}
T{Ek1)) g0 o) e BTy

f(xl'rs.u.l,vz,;rr} ={hn*)

QR v pe]
x ! 5] g }exph{ i ) cxmu:‘I He)d (6.2.14)

for vy, < z and k> p

The integral in (6,2.14) may now be evaluated using Constantine's (1963)

. fundamental integral fdentity:
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- t-3{pH)
£ exp{=tr RS}|5{77 cﬂﬂ(sr].d.s

=1t ) By (0 T IR N

" where Fpfea(d) = ey £

In order to use {6.2.15) to evaluate the integral in (5.2,14} we need

to make the transforsation:

ser!

with corresponding Jacchian (See, for example Press (1872)):
az + 5) = fs| 7P .

This yields after some simplification, and fgnoring 211 constants of
proportionality:

ey o)

FL|TSa vy Vgm ) = |RY]
1) < 1A 340 x(8) (R

gy gerge2p2)) 09D € gt st

=y (W v ~Bp-2
g M g G, sy, 20 10615 ey

(6.2.18)
for \'2'2 and k@ op

where (05, 2,5 by A1) 5 the hypergacnetric function with matrix
argusent defined by James (1954},
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Remark 6.2.1 Constantine (1963) states _that the hypargeometric function
of watrix argunent JFy(ay, 253 byi B) converges for N < 1, where i
denstes the maximum of the absolute values of the siganvalues of 0.
That ll.‘g'.'l AP B <1 95 easily shown by the following argument:

Fork > po Ay is posftive definite with probability 1 (See, for
exzmple Giri (1977) pages 74-6), so that under this condition A.j'-l' exists,

[Yience:
. -1 B w7 g
i LI s Il
i . ‘?-1 lgf‘
i . How, the zigenvalues of (I + RY"‘I Ai}'j are the retiprocals of the eigen-
R 1: values of (w.r‘ AE} and the eigenvalues {i}-of {1&;'1 Ag} are the roots
i \ of the determinanta] equation:
£
1 Jrs & ag- a1l =0
i tee A ag o)) =0 .

For k ® pand n* > 1, Af-‘-'] A% is positive definfte, so that

By-1s0 ¥§

foe, A2l i

The result now follemds, since eigs { ﬁi‘.,‘T -lﬁ} = l-xL‘ ¥ . Hence, expression
{6.2,16) for the predictive density of ¥ convarges as long as k > g, m*a ],
Retlark 6,22 To confims that (6.2.16) corresponds to (6.1.13) for the
e . i\
case p = 1, note that in this case: . #
i
i
! ¥
¢ . i I, ‘Q ’
= ' “ .c.
; . " e
i ; oy
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xd) =3

°xm““’ -
Sl

o

- [.i] Ei] E
and oFqlags a5 by w) = jE -*m:—' 'fj' :

So (6.2.16) becomes:

-3 {Hrpruged) @ (1{2-v2}Jlj](i(Niu‘+vz-ix i
(h/Ag)
{#(k-1})

fm"\re<2

which 4s exactly expression (6.1.13).

Nnarlc"ﬁ.AZ.a As in the univariste case, assumption {6.2.3) effectivaly
implies that:

ngErtEn ek

and that when evaluating the pesterior probabilfty that x belongs to T 4
7 i .

" ane of the g chosen from {xr.i‘ 3w 1yuuyn? {5 replaced by x in the

sanple. Undor these circumsten s therefore, the effective size of the ]
training sample becomes N - 1.
Analogously to results {6.1,14) and (6.1.15) for the univariate

achse we have that:

ig = a..+(x-xrj](xr_-n__}' ”’i‘-"(u”x"(r.i:" * %E'ﬁ‘“ (x-xrjj(x-xrj)'

(6.2 _ §
L ,“0"
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and

B = 8y = o)) = Dt Do, )+ e, Y eony )
(5.2.18)

llhel"a. k

I Apmo B0 X Mg mx )
!.. ko .
fond Ry = B E O Mg m R )

are the between group and within groups sums of squares, respectively,
as definad in T&LIE' .1, . Fieally, As is obtained From:

M= AR (6.2.19)

Formulae (6.2.77) and (5.2.18) will be useful when evalaating th‘e.pgp_e-
dictive density (6.2.16) for 811 groups . © = Tueeusky. Thetd, r'pf's_
are the exatt multivariate analogues of thase given in Appendix 6.2 foF
the caze p = 1 and will therefore be owitted.

1{ hould 21so ba noted that under these circumstances N should be
rep‘lau;i by ® - 1 4n {6.2.16)

Remark 6.2.4 Az in the univdriute case, the parameter ¥y may assume
the value p + 1, giving I the usual noninformative prior distribution,
whatreds ¥a has to sssume @ valus Jers than 2 to ensure that the pre-

dictive density 1s properly defined, If therefore, ahalogously to the
univariate case, we assign the valuvas:

Vpapt 1
Yy 1
o o
- °
o ®
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| _giving £ a nonfnformative prior distribution relatjve to the Vikelihood K
:l function of the multivariate normal distribution, and T ® prior distri-
Ji ) . bution that §s only very approwimutely so, then the predictive density
¥, i © becomes {remenbering that N is replaced by N-1):
i L
| #its, 5 = g e, aes b a5 A (2200
b for k> p
E |
f\"i

Remark 6.2.5  The alternate, asymptotic expression for F(x|TS, ¥1s Vaa )
corresponding to that in the univariate case is obtained by revarsing
the order of intagration in [6.2.8). This yields:

o ~Hkbvympe2) ~j{%vy-p)
IV agrn,) -_f itd 27 g +tunt aeey | T e

i3

.
8
j

shere X* ds the (p x EYmatris (% 0 24 seananf )

and A = |:'hr|(n1*; Tom Thanak} Il

The secoiw, “'1'1. the integrand is proporticral to the density mi'* -
ticn of a {p = %) matrix T-distribution centered at Jﬂ‘:‘ {See, for exawi..___ )
Dickay, 1967) so the integrai {s proportionsl to the -{k wz—p-a}‘h

ioment of L (ynnoreed) sample coveriance matrix

k
LA RO

where the py, 1 = Lo,k Jontly have the sbovenentioned digtribution,
Assuming that m¥ = 4% ¥ and that N is large ehgugh  for the
matriy T-distribution to ba approximated by the joint distribution of k

{ndepondent (since A 45 o ¢iagonal mutrix), p-veriate nomal random Iy

variables with diffarent mean vectors x‘;_. 15 Vanuosk but comon covas

v riance matrin, the above integral mey be evaluabed approximately using ’
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the = 1[k+v2»9- 2}ah moment of the generalized variance of the noncen-
tral Wishart distribution up(k-!;';}; s %)

where:
S5 =yl Mt {assuming N = kn* = kn)
. and at=4 55 M

Theis yields, after some algsbra:

: L b 2p-2) -
Tl V5w v ) & |5 expl-tr B Fy (B pevgtl b (k=110

i

: (6.2.21)

i “ far Vg <2 and k> P
4 o

‘ Once again, the parame_ter vy has to assume a value Tess than 2 so that T

j cannot have the usual noninformative:prior distribution. Assigning the

1 values vy = o +.1 and vy » 1 25 before and replacing N by H=T {see Remark
.’i 6.2.3), (6.2,21) becomes:

. o B{Nekepe1) )

| (%] T8,m,) & |Ag) oxpl= tra) Fy(d pi dlk-1}0%) {6.2.22)

6.2,1 On_Evaluating the Predictive Densities in the Multivariats case

. The exact and approximate formulae (6.2.20) and"{s.z..ZZ} for the
predictive dengity of X given that it comes from L. are expressed in

toves of the hypsresometric function of matr{gt argusent 'zF.l{i e B{H=p=1)3
alk=1)3 A}'I ﬁf} and the confulent hypergoosstric function of matrix

argument oFy {4 ps §{k=1); 0%} respactivaly, In order to try and avaluate
these Tunctionss the suite of FORTRAN prograss of van der Westhuizen and

Nagel (19793 for durpuﬂng the zonal pelynomials fn the eigerr.'a;.l'ws of &
matiiy §1, corresponding to 211 the partitions of an integer §, were usa.d._
This suite consists of a nusber of prograss that generate tobles of a1 “0°




226,

thg partition \mc‘_turs. sysmetric functions, elementary symmetris function
weights and Chi-coefFicients (Janes, 1951, 1968}, corresponding to a1l
the partitions df the integers of interest, and then store thes on files
in the computar. .Tha zgnal polynomials corresponding to these integers
are then computed by the 1ast pregram in the suite, using these tables
and the eigenvalues of the matrix in question. .
Although the sctual computation of the zoral polynomials is quite
rapid once the Files containing the sbovementihed tables exist, the
generation of thess tables is very heavy on cosputer time, particularly
for Targe integers, where the nwsber of possible partitions becomes very
large. As an indication of this, it took about 20 hours on the Univer-
sity of South Africa’s Burraughs BSBOD computor to generate the tables
corresponding to a1l the pertitions of all the integers up to 18.
Unfortunataly in a1 the ewxamples considered, the pusber of terms
required for either of the two sbovementivned hypergeometric ﬁmc_ttnns
to converge wes fer 1n axcess of what could reasonably be computed with-
out incurring prohibitive computing costs. An sttempt wos made to et
at indicetion of the values, or relative values, of the hypergecmetric

.. functions in the predictive densities corrasponding to Jifferent popule-

tions by studying the successive sums of the individual terms in the
hypergesnetric series for integers j =1 to 18, However, the graphs of

-nedther the values of these successive sums against J nor of the ratios

of these sumz corresponding to df Ffarent populations against 3, provided
any insight, éxcept that the values and relative vatves of the hyper- .

" geometric functions would be very difforent from the values and relativ, . !

vatues of the sums of the first eighteen terms in the corresponding
hypergesmetric series.

Therefore, the unhappy conclusion is that although the pragrams 01'.
van‘der Mesthuizen and Nage] (1979) are very usemf for computing the




226,

the partition vec_turs, symmetric funcf;inns. elementary sa&EFHc Function
welghts and Chi-cosfficients (Jaués, 1961, 1968) corresponding toall -
the partitions 61‘ the integers of interest, and -then stora them on files
in the computer. The rzonal polyncwials corresponding to thess integers
are then computed by the Tast progras in the suite, using these tables
and the eigenvalugs of the matrix in question.

Although the actual conp of the zonal polynamials iz quite
rapid once the files containing the abovemsntioned tshles exist, the

_generatian of these tables is very heavy on computer time, particularly

for large integers, where the number of possible partitions becomes very
Targe. As an indication of this, it took about 20 hours on the Unfver-
sity of South Africa's Burroughs BESO0D qumm* g generate the tables
corresponding to 211 the partitions of all the integers up to 18.

Unfortunately in a1l the examples considered, the numbar of terss
required for either of the two abovementicned hypergesmetric functions
to converge was far in excass of what could reasonably be computed with-
out incurring prohibitive computing costs. An ettempt was made tn gel
an indication of the values, or reletive values, of the !u-perge'olau'lc
functions in the predictive densities corresponding to diFFsrent___niopu'lr
tions by studying the successive sums of the individual tomms in the
hypergeomatric series for intelgsrs j =1 ta 18, However, the graphs of |
neither the valuss of these successive sums agafnst J nor of the ratios
of these sums corresponding to different populations against j, provided
any insight, except that the values and relative values of the hyper-
gaometrie functions would be very difforent from the values and relative
valuas of the s;ms of the first elghteen terms in the corresponding
tu'pe_rge_unet.r'ic series, .

Therefore, the unkappy canus.inn ig'that although the progrems of'
van der Masthuizen pne Bagel (1979) are very useful for computing the
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:i values of fndividua] zonal polynomials, they are unfortunately not of ]
! much practical use, given the computers presently evailable, for evaluat- ; *
, ' E ing the hypergecmetric functions of metrix argunent appearing in the nre;
i * dictive densities under the random effects model. :
1
6.3  The Predictive Bayesian Mgronch using diﬂ’ement prior
Distributions
. In this section we investigate the use of two different prior
H distributions n the evaluation of the predictive density of a new ob- ,
e servation ¥ of unknown origln; given the training sasple 7S = "%j' .
d=1s.00amgs B=T,..0,k) and the hypothesis that x « Ty one of the k
populatiens in the training sample.
i . Fhe reasun for deing this §s twofold:
' Firstly, other authors have considered different prier distribu-
. tions for the parameters in Bayesian analyses associoted with the normal
H distrsb;.lgiui\il and it s interesting to investigate their use in the
present context.
il
|
i
i | T
|
1
i
]
q
" )
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Secandly, in the Vight of the problems ercountered with the pare-
neter v, (the exponant of <" and |7|"E) vhen using the neninformative
prior distribution in evaluating the predictive density of x, it is in-
teresting to see whether similar problems cccur when different prior
assumptions are wsed. )

The following twe cases will therefore be investigated in Sub-
sections 6.3.1 and 6.3.2, respectively: .

{1} using i:.‘he distribution that Box and Tieo {1973} use as reference
prior when consfdering the random effects model in the context of
one-way analysiz of variance, and

(2} using the natural conjugate prior dlstrrbut.fm for the parameters
@*or B}, £ and < {or T).

Because of the fact that the results for the unfvarfate and milti-
varigte situations are, apart from algebraic complexity, essentially the
sane, the shove Itwu cagses will be ipvestigated only for the univariate
situation. In the first case the result obtaired will, however, aiso
be given for the corresponding multivariate situation.

Finally, some general comments about the Predictive Bayesien ap-
proach undl'nr the random effect madel will be made fn Sub-sectiem 6,3.3.

6.3.1 Box and Tiso's Prior Distribution

Gox and Tiao {1973), Chapter 5, make the point that bnder the vandom
effacts model with equal somple sizes from each group, tho sampling theory
estimator 1% for the variance ©f of the population means jiy, given by:

where ST and 5y re the betwsen groups and within groups wean squares, ro-
spactively, as.defined in Table 5.1.) for p = 1 dimension, way be negative.
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In order to avoid this possibility within the Bayesian fremework,
they propose the following noninfermative joint prior dersity for the
parsraters o, £ and *:

% Eur?)dtdds? w (o) (oane) Natdgen? 5 (6.3.1)

Remark 6.3.1  This prior distributfon con be eriticised because of the

fact that the within-groups sample size n appears in sxpression (6.3.1)
for its density. Thus the prior distribution is In'ﬁm sense depandent
on the actual Tikelihood function of the sample itself, and not only on,
the form of the 1{kelihood function, as fs usuaily the case. A
hs before, we will generalise expression (5.5.1) for the prior dan-

sity sTightly by using the following Form:

2 g By detdeded -i% 28
glod et ldotdEde® = (o) lofenr?)  Sdo'dpeet . (6.3.2)
The form uswd by Box and Tiao is therefore given by (6‘3‘3} with
\5.! = \fz = 2.

Substituting (6.2.2) inte (6.1.2) and (5.1.3) of Section 6.1 and
wsing the same notation as in [6.1.4) glves:

. - Eon
fitsigpn < f [ [ e ®ent L 1 & e
oty g

¥ - -
xRt L 1 ) M gtanety Doty

L
i
{6.3.3)
where, 'as before, 1t has baen assumed that ¥ = n, Vi, so that the i
_obsgrvation Hpj from m, has basn replaced by %, x has been re-Tabelled
¥pg and N has been replaced by K-1.
I

i P
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As shown in appendix 6.4, this eventually yields:
“hlvgth=3) | h{eupeke2)
_ FixfTS v ) o (8]] A S
> i .
i (6.3.4)
where,
= n§ (x4 =%+ )
17N T

] ane so 88t

4 275 g=1 U H. i
. P @ are the betwssn group and within group suns of squares, nspactiva,:ly;-

' 1]

i © with x replacing one of B mawrvations; X, from the ot group,

14 £ 4

: and xf and x* are the corresponatag adjusted qth grou-ond overall

; means, . .

: r{n)-rd“'e"‘au o

. ¥ 0 b

1.

15 the {ncomplete gamaa function, and the expactation is taken over the dis-
tributien of z, whers % has a g_ distribution with peramater i{mvrk-el‘
! ) Therafore, for ¥y m Vg e 2, the predictive density of X, given the train-
ing sample, Box and Tiao's prior distribution and the hypothesis that, i
i %W,y Ts,fren {6.3.4) )

x[TSa2,) = u\;r“““hngrﬁ("'*feﬂ,‘; ,_:{m--m {5.3.5)
| - %y S

i where z has a gamma distribution with parameter J{N-k).

4 id
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To evaluate expression (6,3,5), the easiest approach is to use
Pearson's (1922) formula for the incompiete gawmy function {the forsula

given by Pearsen is for the {ncomplete gamma function ratio I'y{m)h‘{oll:

=1 % U8 FTRY 3
T (m} = m expl-y} TR R 6.3.6)
o o | f
Applying (6.3.6) o (5.3.5) and interchanging the order of integration
and summation _[Just']ﬁed by the uniform convergence of {6.3.6) for all y),

yiglds: ”

o (naag) kT4

Pl Ts.m ) b (ary(EeT)pgmy-din-k)
(x]TS.m 3 ' (A7)0 AG) it f{{kﬂllm-_

* J: en[-(l{.-’ﬁ;)z}zi LML oY

#rawnd
i) § WA rg{ll-n»-j—i .
(A3)7% .1;0 l%f“mﬁj Dz axp{-(A3/AY) 2}z

whers A% = AY + A3,

The integral may be evaluated as & gamma function, and after some
sf.nquication this evantually yields the follewing expressien for the
pradictive density:

-

( -#(¥-1) {:EN‘]I?[‘“ apaerd
Flx]TS,m, ) = (& ik
(2] ) { E’ 1 k1)) fhf 3}

=t R (5 ne1; 31D mgrng) (6.3.7)

where Fle,Biyix) 18 the hypergeometric function defined in (6,1.13),

-
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Remark 5.3.2. It is interesting to rm,g the close similarity between
exprassions (6,3.7) and (6.1.17), the former based on Box and Tiae's
noninformative prior distribution {£.3.1) for the random effects medel,
and the llatber on the poninformative prior distribution (6.1.1), -with
vpoe 2 and vy = 1. In order to establish just how similar these fwo ex~
pressions are, (6.3.7) wes applied to the data of Example 6.1.1, yield-
ng the following posterior prebzbilities for each of the five populations,
assuming equal prior probabilities:

Population 1 . H 3 4 5
Posterfor prob, 0072 0560 L4921  .3V66  .06VE

These probabilities agres, to two decims] places, with those cbtained using

{6.1.17), confirming that the choice of nominforsative prior distri'mﬂ.'iun
has 1ittle effect on the predictive densities.

Finally, it is interesting to note that we do not experience any
problems with the paramstars Y and V¥p in the Box and Tiao prior distri-
butfon, in contrast to the case with the more usual noninformative prior.
Remark 6.3.3  In the multivariate case, Box and Tiao's prior distribution
for the Random Effects model js:

PET.E) = 151780 gy 2P 6.3.8)
and the predictive density of x becomss, in an analogous mammer to (6.3.7):
s = |ngl PR Gaipryaiienys ake)s a7 AR (6.0.9)

vhere AY ard AY are difined Sn Section 6.2 and 4F (a1, 351 by3 8) 4 the
hypergeomstric function of matrix argument defired in (6.2.16).

i
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6.3.2  Natural Conjugate Prior Distributions

The joist natural conjugate prior distribuion for the case p =1
for the mean and variance of the normal distribution iz the Normal-in-
verted x* distribution (see, for exasple, Press (1972)) with density
function:

ety =« (e 2 VontaE L) (6.3.10)

where Vs, bycoand d are constants and ¥, > 2. The natural conjugate
prior distributfon for o® s the inverted ¥® distribution, with density
function {see, for exasple, Box and Tiao (1873)):

B
oot} = (o) ey 2 (6.3.11)
L
whera v and a ara constents and v 2, and it would seem reasonabis .tu

assime that o is independent of (g,1%).

Substituting (6.3.10) and (6.2.71) into {6.1.2) and {6.1.3) yields the
tollowing expression for the predictive density of x, where we have

¢

assumad thak no=n, |I1 and that x has replaced soma 3er in the t!‘ahﬂng.

samp'lefmrr:
TS [15, 848, da vy V) = A
tssnngrgnd ([ ([ *omi b Losougn
k =¥,
k el - 1 L
ep o L - 0he e i)

=(¥g#] .
ww T o g By Spacentagan

il
W
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1 orat sy H
Ha FOTRREN Ezc: SR
2
. .2 F]

&, 1 k )
[ fe SR ep (- (] By oDyt dnagaiende® (5.3.12)
o 2t fsl

The inner pair of fntegrals 1] in {6.3.12) are evaluated in a manner
analagous to that used to evdluate the corresponding integkals 4n Section
1, yielding
=b{ktv,-2)
I “_Is_itr.}) 2 {6.3.13)
p . . .\

® §
vhera . T IFL N S
. alw ‘El fig =w )* e {u, =b)
Therefars,
iy 1
Fx|TSia,b 650, 0,v,) = [ [CR)] exp {-—— fa® ¢ Ll
o 2 .

“hlky2) oy no ¥ et
[ et Memp -l T uxt et (5.3.14)
i 2ot =) *
where iy = }.‘ j[1{a1j~x* e
Tha {nnar {ntegral in (5,.3.14) can be considered as the expected valug
of
~d{ktvg2) .
f f 1] where the usy 1= 1y..0ks are independently dis-
tributed H{xy , %’} random variables,
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A.wa,v of gga'lunti_ng this lxp!cud \_'ahn_- 15 to assume that.c® <k,

g0 that
ki
&2+
and

&
afy) & 1§]tu1 - b4 dt

Remark 6.3.4 The assusption c* < k implies that, a priord, £ has & dis-
tribution that is narrowly concentrated arcund the value £ = b and that
tha inforsation from this prior distribution far outwdighs the informa-
tion contained in the training sample,

Under this assumption it is clear that g{y} is distributed as:

o) ~Z ) + &

where xi(l“} represents o noncehtral chi-squared raram variable with k
degrees of freedom and noncentrality parameter:

el by
o s

5o the fnner integral in (6.3.74) can be wsidere_d to be propertional
to the -a{mz-z:“' moment. ofv:: tives & xi(l"] distribution that has

been shifted an amount nd® to the right. From Appondix 6.1 wa know that

this moment will exist enly iF

ikang2) > - K

jo0. only if Vot 2 o
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However, thiz condition violates the cond!tion s % that is necessary
for the natural conjugate prior to be a proper distributfon.,

On the surface it would tnerafore appear that when the parameters
o , £ and 77 follow their natural conjugate prior distributions, then the
predictive density of x does not exist. However, *his contradicts the fact
that since the joint distribution of %, y, o®, § and 1* i proper, the
margina] disteibution, and therefore the predictive density, of x must
exist. The reast. for this contradiction clearly lies in the approxima-
ting assumption on gy} which has apparently been so powerful as to have
rendered improper the predictive distributiun of x,

"“As 1t does not appear to be possible to evaluate the inteoral (6.3.14)
ana‘iy!.i:a“y without this approzimating assunption on glu), we will not
pursue the matter any further. It is pevertheless interasting to com-
pare the situation found here with that when of, £ and t8 follow diffuse
prior distributions. Under those circumstances the predictive density of
¥ does not exist when the parameter vy in the prior dansity of =% is given
the value 2, required for it to be noninformetive in the usual sense.

6,3,3 Final Remarks
From the results of the previous two sub-sections we therefore know hat:

1) the posterior probabilities of the ky populations from which the ob- )
servation x could have come are not materially affected by the form of
noninformative prior distribution used for the parameters ef (or I},
E and 1 {or T}, be it the more usual (Jeffreys, 1961} invariant prior
distribution {with modification to the parasmeter vy) or Box and Tiao's
(1973) prior distribution for the random effects model;

2)  if the abovementioned parameters follu their natura) conjugate prior

distributionz then the corresponding predictive densities cannot be
evaluated.

. i
Tha formuilae for the predictive densities derfved in this section and

in the previous two are all expressed compactiy in terms of hyper-

geometric functions, which are readily evaluated on a cospiyter or
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even & modern programmible pecket calculator for the case p=1. For

higher dimensions however, :n spite of the existence of the programs of
van der Westhuizen and Nagel (1578} for camputing zonal polyremials,
described in sub-section §.2.1, the ca-_pc!atiun of the hypergeometric
fun_gtions of matrix argument, and hance:! the predictive densities and pos-
wr}nr pmh.ahi'mias, iz not yet & practical proposition.

The only arbiguity in a1} the sbovenantioned formulae derives from
the fact that x can replace any one of the n obsarvations x,_j. J=T,euean
in the training semple from LN when computing the gquantities A{. AE and
A appearing in them,

. A& sensible rule for getting arcund this ambiguity would be to replace
that cbsarvation xr!' that is closest to the sample mean from the rﬂ' po~
pulation, as measured by the Mahalanobis distance. 1.8, Choose LR such
that

o g = Oregx ) S kg )

is minimised when J = j,-
This rule would aveid the possibility of anomalous results due to, for

example, an extrame observation fros L being raplaced by x.

6.4 Other Bavesfan Tvpe Approsches
In this section two further approaches to discriminant analysis, the

Empirfcal Bayes and Semi-Bayes approsches, are discussed ip the context
of the random effects wodel, In each .a.x the discussion §s confined to
& brief description of the approach, its application to the present pro-

blam, the derivation of preliminary resul . and recommendations for fur-

ther research.
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6.4.7 The Enpirico) Bayes Approach

‘uod dascriptions of the Espirical Bayes approach to statistical
infr +ce may be found in many texts (see, for exavgle, Maritz {1970},
Cok .an.d Hinglay (1374} and van Niekerk (1978 and therefors a brief
skotch here will suffice.

Suppose we have an observation x gade on a random varfable X whose
distribution function F{¥|a) depends on an unknown (vector) parmtev;. Av
In both the “pure" Bayes and Enpirical Bayes methods the paremeter A is
assused to have a prior distribut.ion, the point of departure bolween the
two baing the way in which this prior distribution is"traaud. As we
have seen, the “pure” Bayes appromch assumes that the prior distribution
of & is either completely specified or that any unknown parameters in
it themsalves have prior distributf that are Tetely specifiéd.

In contrast, the Empirical Bayes {EB) approach gives the prior distribu-

' tion of A a fregquency intarpretation whase parameters may be estimated

from previcus data by classical techniques. Therofore the E.B. approsch
uses the nﬂ:am'éd:ca'r techniques and results of the "pure” Bayes approach,
but-avoids the problem in this approach of having to specify the prior
distribution completeiy. i

|
For example, it is well known (see, for exmp'la.?ﬁsn'}- ) ) that
the Bayes point astimator of h given x is, using 2 quaEﬁ-ati
tion:

Sny = LdELby dapy i
i ;'»}Ml (6.4.1)

where,
G(A) 15 the prior distribution function of & wnd the integration
"' is performed with respect to G(1).

The E.B. estimator of A is now obtafned from (8,7 . by replacing G(a)

e




o
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by ;{ti}. the sample-based estimator of the prior distribution function

of L.
we may apply formula (6.4.1) to our random effects model as follows.

Assume that
Kl = Hyfw, B) (6.4.2)
where, 4 prieri, i
» e T) (0.3)

Given an ubsei'\r&tion % of X, our Bayesian pnfnt}hst‘]labor of the corres-
ponding u is: °

~ Ly fix]

W) = P ey o : (6.4.4)
where F(x{n) and g{u) ere the deasity furctiens of the distribu-
tions (6.4.2) and [6.4.3) respectively.

This yields, after sowe algebra (see, for exemple, Maritz (1970) for the

univariate case):
g e x-oz+0 (-0 (6.4.5)

The E.B. estimator of u 5 now obteined by replacing the unknown pakame-
ters B, £ and T in (6.4,5) by their samplo-based estimators I, S and T,
respactively.

In uraﬁtta, particularly in diseriminant analysis, we will general-
1y have more than gne observation x on which to base our estimator of u ,
In the sftuation considered in this thesis, where we have a training
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sample {:“. 3 = Vewooun} of sfze n from each of ¥ populations wy,
tom Tyiaaaky 25 described in Section 5.1, then our E.B. estimator of
the mean u, of w, will be based on the sample mean x; . Remesbering
that
1
iy g o bng 5 E)
and vsing ti:e notation of Vable 5.1.1, the E.B. estimator of Wy s,
from (6.4.5):
A 1e1e A “
) "i{m3"1-'ﬁt{ﬁz+n (xi_-z}
-1
=y Sy flg s X (5.4.6}

where ST and 52 are the betwean group and within group mean square
matrices, (espactively.
© Coming now to cur discriminant analysis problem, the Bayesian clas-

sification rule that minimises the i loss from ification
{assuming equal costs of misclassification} is to lassify the chserva-

tion x of unknown origin into that population =; for whichi
-1 q
(= By Fig) 27 g - ug) > 1»,% ¥islaoki doi (64.7)

where 93 1s the prior probability that x comes from g (See {ELCI‘S]
in Chapter 2). ‘
Rs mentioned in Sub-section 2.1.1, Anderson's (1851) “plug-in® rule
(2.1.19) obtainud by replacing the unknown paremeters 1.|1'. uy and L In:
{6.4.7) by their maxfmsum Tikelihood estimators LIRS and Sz, raspag
tively, is an E.B. procedure under the fixed effects model. Under the

" randos effects model the E.B. procedure is to replace ¥y and g by ﬁi{a)
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and ﬁicsn} respectively, given in (84.6), and I by 5, This yields the
following E.B. classification rule: :

Classify x inte that population wy for which

o i01-5y 5710011y 04557 3" 5510555720 1) > Tog

¥isl,oonky Jwi - (6.4.8)

Therefore under the random effects model, the classification rule corres-
ponding to Andarson’s (1951) rule foi the Fixed effects case is given
by (6.4.8),

The properties wnd behaviour of lassification rule (6.4.8) have
not yet been studied, and this indicates a promising area for future
raszarch,

It is interesting to note that the E.B. estimator (6.4.6) for py,
which may also be written as: :

Hi(e8) = (1-R)x |+ Afx ) (6.4.9)

where A=s, S:]"
is the multivariate analegue of the Jemes - Stein (1961) I'shr-intage'
estimator (slightly modified) of uy. See, for exasple, Cox and ltini&'le.v
(1974). It also corresponds to the approximate Targe sample posterior
mean of g under the randem affects model, given by Box and Tiao (1973)
when th_g_ir prior distribution, discussed in Sub-section 6.3@. is 'used:
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6.4.2 The Sewi-Bayes Approach

Geisser (1_96?} coing the term :'S!li-Bﬂ!s" to describe the Bayesian
+anelysis of the properties of the class%cnl spproach to discriminant
analysis based on the Linear Diseriminant Function [or the Quadratic
Diseriminant Function in the case of unequal within-group covariance

watrices). Considering the two population problem, he investipates both .
situations where the paraseters are known and the c¢lassificition rule N
(givan in (2.1.6)) is based on the population discriminant function: 4
Upplx) = (= By 410} 57 g - 1y) {6.4.10}
and where they are unknown, &nd the classificstion rule (given In (2.1.19)) L

is based on the sample discriminant functions’

Vigbd = xm by v DS ) (e

Given trafning sawples of size ny and n, {denoted collectively by

T§) from the two poputations wy and m, o p Ty, and g a
diffuse prior distribution for the paraseters yy , 1, and 51, the joint

posterior density of thess paramstars bDecomas:

#le g 118} = 1RO e ey T 7T

+ gl =yl LTV AR nz{KE_ ~upd{ag mupltl (8.412)

whare the notation is the seme as that used in earlier sections. v 3

Using (6.4.12) as his starting point, Geisser (1967) first investigates X '

. the msu.rior distribution of 1112!31] and hence obtains expressions for \? |
the posterior limits on the "true® probebilities of misclassification ¢ i
I: 4

when classification rule (2.1.6), based on Mo (x), 15 used. It turns
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out that thesa Iy bE_ abtained directly from the posterior dis-
tribution of ui = [N !:'_rtu,| “by), for which the #ollowing expres-
‘sian for its density Tunction is derived:

faalx) = j-f-o Wy Gpps¥) {6.4.13)

whera,
the Wy are the individual terms of a negative binomial density
- 2
and qmjt } 15 the donsity function of the Xpazg distribution.

Remark 6.4.1 It is interesting to note the similarity betwsen (6.4,13)
2nd expressions {3.1.11) and (2,1.72) for the density Function of &2
under the random effects model,

Secondly, Bejsser (V987) obtains posterior Timits on the conditienal
or "indax" probabilities of misclassification when using classification
wale {2.1.19) based on the sampie discriminant function F‘z{x]‘ Becausa
of the complicated distribution theory involved, asymptotic theory is
used to ohtafn approximate Timits in werms of the standard normal integral
which he shows shouid be reasonobly accurate even for moderste sample
sizes. Finally, he obtains expressions, in terms of the t-distribution
function, for the unconditional {or posterior predictive) prebabilities
of misclassification when the, sample-based clissification rule is used.

To apply this Senﬁ-Ba.J;esia:r approach to our randem evfects mr"\:l. we
need first to cbtafn the joint wsté;\ior distribution of the param; -3
in this model corresponding to expression (6.4.12) in the fixed effects

casa. In what follows, therefore, we will derive this distribution
~1

using @ diffuse prior on the parameters !:"i, £ and + A shall be .seenl,
howaver, applying this distribution to the diseriminant aralysis problem
[H
h a manner anzlogous to Geisser (1957) does not promise to be ¥ scraight-
S -

forward matter.

o
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Considering first the two-group case, the joint posterior density
of the parameters . ks £ 5 § and ¥, given the training sample
6 5 Txygs d=Voeenyi 121525, may bo written:

Pliganiget W& T L TS i £ Py gl 6T BELET) (54004

where, a2 n, ol e
TSy iz 1‘151 jEIfziJ [ER R S TEPR T A A E AT )
!

ane s
pe ey - 1E|ilpi‘)|1|ilr«*'|l

!lf_ter some simplification, and assuming that n] " "2 = n, Hiis bec:?cs:

i
|

. 2

U ptnaglet™ - A (20 3TN exploplgry T gmE
Lu,.uz,z“.;,r"im« [z B PN g g 1r s )
I B
\

z T
s L Tog st gan
£ ) :

J [6.4.15)
where, - K
Hoazn 3,
2 h .
and g ® igl jzi{:” - x"}(x” AT

We may simplify the awt in {6,4.75) by using the following identity
Fim_i.w Box and Tiae {1973) in their appendix AT.T:

(xa}" A{x-a)a{n-b)® B{a-bye(iec) (s8] {x-c}+{a-b) (A" 4871} Tia-b) W
=
] ‘? P
HRRES Vs
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For the glnerai‘k-gmw case (6.4.16) becomes, assuming ng=n, o=tk
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where, )
¥y @ and b are p-dimensional vectors, A and B are {p = p}

symaetric nonsinguiar matrices
and = (A+B) {An+b)

" This Finally yields the following expression for the joint posterior

density of wy, e 577, € and 770 |

Pligs s 715 5 17T [N E-T) : St

. & .- . 2
®aip -~ Trrr Ay +(m ] 4 1}i[‘(,.i - eydlyg - ¢!
&

- ., 2 A
gy Lo Mg o 5t 63, 6003
{6.4.36)

where ¢, = {nz'!\t Ty e W, 4T 1=

Plageven e 50250 1) = 5] HIBT) kT
. K ) i

woeup (= TRLE Ay#{nt™ + 17 ]1Il(u|~¢1](u‘-q)' p

ey a ke < a)tx -8 6.6,17)

wher.t,
¢y fs ‘t:ne same as in (6.4,16)
A= tE‘I (g, =% Mg =% )

koo
md by = b ﬁ,"n’*i.“’m‘:‘i‘f_'

i
I3 =]

T e
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Expressions [s.t\,lsj or (sd,'l?l} should therefore be used instead
of {G.:t_.lz] as starting point for the Semi-Bayesion analysis under the
random effects model. o

Cosparing thess expressions, it s apparent that the Semi-Bayesian
analysis under the randos ‘Frects mode] will be considerably more diffi~
cult then under the fixed effects model, and we will therefore not pro~
ceed any Further with it is this thesis,

Hevertheless, this promises to be an interesting direction for
research, especiatly if it 45 applied to the classification rule based
on the modified discriminant function {(6.4. 8) derived in Sub-section
6.4.1 uging the Empirical Bayes approach. ) ]

Finally i¢ is interesting to note that the approach of Chapter 3
and 4 95 the clessica) analogue, under the random effects model, of
Geisser's Semi-Bayesian approach to the analysis of the properties of the

classical rules of discriminant analysis.
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Appendix 8.1 Derivation of the r'f moment of the 32(3) distribution

The density function of ¥ ~ 1;{,\,1 can be written in the following form
{see, for ewsmple CR. Aao, 1965):

Ty :
il = o) i LB g a5t {5.1:1)
whare gmtx) is the density of the central x"”z‘i distribution. Therefore,
= 4
1 = wpt-pd T e,,0" ARY
exp{-}, J§0 = B0 ) (A6.1.7)

by the uniform convergence of the infinite serfes n (R6.1.1). Now, it
95 well known that

€l = 2" TR {86.1.3)

for > -3{w2j) and 5 not defined otherwise. Substituting (A5.1.3) inte
{M6.1.2) yields:

gl
T o 2 aunie A1 Tifvder
EEREC S SR UL M) {6.1.9)

where X = (1),

Appendix 6.2

Derivation of the computatfonal forsulas for

s

" E n
Ragra) = by (b i Tt #6.2.1)

and

* k ,.
Mray = "‘,2,1 “i"ﬂ‘ Jra (46.2.2)

]
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where the subseript {r,2) denotes that chservation X, from the pih

population has been replaced by x.  The computational formulae derive
immediately from the following two general results:
Let A5 be m;ew:ed by x in the sasple {x;, § = Ta.uesnd. Then:

X,
{1) x‘u] A b . (AB.2.3)
: (e}
(i1} SSL” = 55 - {lj-!_]! + {:-x_}‘ - —g {AG.2.4)
where
* -% igi i
and

sse ey
- X =%
P T
and the subscript {§) has the some meaning as above.

Proof:

1,0 Hei
ar x5 hﬁ‘!L Ky} = X +T1
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n
() sy = B Ogex )™ = e gg)® + Do gy
b 2 b 2 o2
ui;ﬂ b Pl e Bl (o e e e B Ly

-3, )2 )2
. iiT w) ._('%i}__ (xj—;g'P ‘iz\‘("j"‘,}“"‘j] - _(.’_‘...‘;J)_
(n-;)
+ fan ) -%{x-x_)(n—xj} a_.;;l_
[=a51* 4
= 55 - (xj-x‘}‘ + {u=x P >—“1—- R (aox ~Rge )

= 55 ~ (xj—x‘}‘ + [x—x_}‘ - {x——:j]— . 9.E.D.

Applying (AG.23) and (A6.2A) to A%(r,2) yields:

=1 =
e

L n
fagroay = j iT gk 10 L U Mg

Eop .
=4 j§1 trygmng )2+ ji, N s S L b
fur
(xxg)?
s

n
4 é‘ jzl{xu-x{_}‘- (’ﬁ-;"‘n]z LR Il,(x-xu)* .

(A6, 2.5)

)

Considering n,’[, uys ota that, from (A6.2.3),
N

o2
S

Trorag) T e F
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Therefora, applying(A6.2.4) to (AB.2.2), with n replaced by k, %
IS
hsf_ Hoex by % by &, and x by %, + —:""- gives:

* |3 X=X
" %‘“I [ 121 “L“_.P - ("r,"x‘.}j R b - x"]'

k
= B0 0 x0T ko 0 Bl e ey
+ :—2(1&—)5,&}‘ - ﬁ;{x—xnl’

B s B, ¢ Bl

(RE.2.6)

Appendix 6.3

Evaluating:
~hlksv,) k
T= l 1 I %2 N{*!‘EIEH‘—E)'T'l{ui-E)NF.GT {h6.3.1)
where ,

' T is a (pep) symsetric satrix
ahd E s a px1 vector.

HNote that:
i
. i ¥
v h v
< - o
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121(111,-5!'1"]{“"5? . ig:ui-u)'f‘iw-u.l - kg )T (e )

- Tr(f-l!\‘} e kg )TN ) [#6.3.2)

and .
¥ .
LY 1;‘ fug=n w1

Substituting (A6.3.2) into (A6.3.7} yields:

<k,
1 .Im 2D pterrr”? w}i 171 Bexpt-tk(es, )7 Gaphasar

(#6.3.3)

Since the intagrand of the fnner fntegral in (A6.3.3) is proportional
to the multivariate normal density Tunctiom, we have that:

bk

1 «J’ ] exp[-mrr'hgncn, (A6.3.4)

The integrond 4n (AB.3.4) is proportional to the density function
of the Inverted Wishart Distribution {see, for example Press, 1972),
the constant of proportionality being

itmz-p-z)/zin{k+."2~p~3)

l::Mul

Tyt ikeyp-2) (A6.3.5)

-]
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i
E where (%) 1s the mitivarfate gumma fusction defined in (6.2.5).
':1 E Tence, 3
oy ~h(k Vp-2
I [ etle il Hkbrea) (A6.3.6)
Appendix 6.4

. . Evajuating

P ~(vy)

Cand 1= orpl= - X 1
§ ” = ti'i & Gy h)®
H Vo6t \n-"

% Fiatens?) M erpt- L. ‘f (04617 e dydo®
2e? 4= )
(h6.5.1)

R The exponent in the integrand in (B6,4.1)can be weitton:

7 iI'I ji (g4 i “_ I {IH - ) +L = ‘Flfﬂrﬂi}

whers xi’ 15 defined in {5.1.6}

4o+ F Rugent * ¢ Seloert)
2 1t M T

I whare

W [P

Y oo b e,

P Using the result given by Box ond Tiao {1973) in thelfr equation (A1.1.5),
vizy

Alz-a) + B{z-b)t = (AsB)(2+c)? + fonfa-b)?




263,

¢ = iglhasib),

the eiponent becomss:t~ -

. y
-kt + (R - 1 -
BRg7a® + [ il 1=]_1I-1 luygeg)? + [;ﬂ—,] (hynk(E-x 1)} (A6.4.2)

fy o éi (g )1,

and L is defined in {6.1.9). .
Interchanging the arder of integration, and using_ the abow'hsult, e

:i gt ) .
g (o g8 “ivy
tE E! L“ TR 2t . 2{atsnet) (otamst) i
T !

i
. S P e )T
’{W‘mmmﬁﬁ“lm”bmJ&M““
dudfdotdr?

=(v k) =hlugik=1} Ny Ay
" l, l’ o {ot+m?) &w[-a[a—s + ;-;-M-;}}du‘dr‘
T

(A6.4.3)

o
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If we now meke the transformation:

y=c

z gt ot

with Jecobian & = -‘1‘ 5 Wa gat:

-h{evy-k) S L a
= j:y T wiot-3 %1 fz WY dzdy. (6.4.4)
: Yy :

Denating the inner integral in (A5.4.4) by L and making the transfor-

mation:

W= iﬂ;{z

with Jacabian J = Lﬁ:fw‘ . Iy becomes:

i
Sh(Vgtke3) By L{Vptk-3)-T
. (54{)” 2 J' Sz et (-l
)
o, B{yR-3)
Ca (A 2 E (Blvg+e-3)) {AE.4.5)
i)
where F,(n) denotes the incomplete gammy function.
Hence,
o b prH=3) = {tevy-k) "
e f; ]’E{a(uzwsm el iy,
(n.a'ta.a)
£
Finally, making the transformationt ¥
nﬁ
z=} ?’2
i
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with Jacobian J = JA%/2%, we get:

e (‘T}wl(vzn-a)%}-i(uoﬁ-k-z)r h:;-:{!{;zﬂ_mzi(uurk-zyl
R
. x axp(l;?dz
‘u?j-!f'g’l-ﬂJ(ﬁE"itN"‘i"t—EJEz e )

*
Ay

where z has o ganma distribution with perameter i{m\r]-k-Z)‘

Appendix 6.5  FOHTRAN Subroutine for ing the Hy ometrie and
Lonfluent tric Functions. ’

SLERAQUTINE HYPGFHIA AL o NMAN ERROR, HYRPN ) ]I

BUBROUTINE TO SOMPUTE HYPERGECHETRIC FUNCTIONE FLASTCIX) AND
NELUENT uvbensFt‘n!rﬂc FUMCT IOME HLATCIND. T

THE BAHAMETEHS ARE:

AsBaCeX ARE !NBU' vn.ua% GEF INER I F{A.B3C

NHAX = MAXIMUM N0, CF TEWMS TO_ME CALCULATED

ERADR = MAK UM VALUZ OF Lﬂsf TERM (INPUTH.

HYPFHM = FUNCTIOM VALUE (OUTPUT).

1X)a

1 Be=1 FOR M{&ICIX)
CINBUTS .

-C-Krfﬁ"ﬂﬁ'ul‘m B i
ad

REAL®E &
HEAL®A TO~M SUN
B =14
SUM=TRRY
IP(D oLife 0.} GO TR 2
oo 4=
AJ = f
TERM = THENS[A+AI=Ls I#{AtAI=s ) A (A R] Coad=], ) ThX
SUN = Sy

M s TFAI
JIFLTERM oLTs RRACRY 6O TO &

-

sty

.i
|
!
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with Jacobian J = 3A3/2%, we get:

LR Vark=3) | <R (He-k-2) . B{Hv k=21
R R R I P YO
L ang
* exp{-2}dz
={Votk-3) =R (NeV-k-2)
R A I 4 RC s Bl
3 ™
where z has & gemma distribution with parameter }(Nw,-k-&}.
Appendix 6,5 FORTRAN Subroutine for computing the roeometric and

Confluent roeometric Functions,

SLERQUTINE HYPGEHLA R C XN PAX  ERRORHYPFN) |[

SURAROUT INA TO CDIIBUTF HI’P!RGECWTPIC FI‘J:C‘\'YDNS FlABICIND J\ND

T
CONFLUENT MYPYROFCMETRILC FUNCTIONS NLA
THE BARAMFTEHS AAS:
AuBiacex AR A mnur VALUES DEFINED IN FlA.B3ct
MMAX = G OF TERMS TO BE CALCULATED
BRABR = WAXTAUM VALUE DR LAST TeRM CTNPUF L
HYPEN = FUNCTION VALUF (OUTPUT

E3]
1IN

FEAL =2 &y By Co Xy ERWIR HYPFN
HEAL A TERM (SUN4J

o«n 1 J=F p NMAK

a BE=1 FOR MIATCIND
UTHe

'lsﬂu o rﬁut(nou-i.!tlm-u.-.l.l/:ulrrcur-l.nix .

Suip TER
trireay u.v. EhRom) 6o 70 a
1 CINTINUE
GO TD @
2 CONTINUE
DO 3 J=1,MuAX
J = J
TEAM = THRMATARAS=De ) ALAJRICoAI=10) 10K
M = HiM o+ TE
I‘F(rFPu aLTe ERRORI GC TOD &
CONT THy
H‘YFIN .= SUM
BETURN |
Ehp
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In this chapter the theory developed in the lhefis is applied to the
stratigraphic probles in gold mining mentioned in Chapter 1. Given &
training sample Fr_on each of fifteen strata, we will first evaluate the expec-
ted performance of clussical dizcriminant amalysis applied to this s;tun-
tion and then we wil) use the classical and Predictive Bayesian approaches
to classify two ebservations of unknown origin inte one of the strata.

After first transforming the data in the training ssmple to re-
move sn umvanted dilution effect, the dota is tested for mitivariate
normality and homoscedasticity, Using the methods described in Chapter 8,
tests are performed to establish whether any of the eigenvalues G;h of
Ix" are zero, and then estisates of the Ay are obtained. These estimates
are used to estimate the distribution of ‘!?j and 5?{:} given in Chapter 3,
as well as to evaluzte the expected probabilities of correct- and mis-
classification under classical discriminant analysis, given in Chapter 4,

Firally, using the Predictive Bayesian approach, two observations
of unknown origin are sach classified into ene of 2 subset of the strata
in the training sample. In this case it is possible to make direct com-
parisons with the resuits when vsing the Predictive Bayesian approach
undar the fixed effects mor -1, 35 well az with those when using the classi-
cal approach. This illustrates the effect thot the differences in the
assumptions underlying these models have on the performance of disceimf-
nant analysis i practice.

7.1 A Problem in Stratigraphy
hs mentionad in Chepter 1, this study arcse outof the problem of

fitting a particular band of rock encounteraed in a gald mine into the
W

sedimentary succession of the area. As the trace element gencluistrj«

of each rock band can reasopsbly be described by a random effects model,
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it seems an appropriate area for application of the theory developed in
this thesis.

The concentration of trace elements in rock sanpies were measured
Anslysis, a technigue that
allows accurate chemical analyses to be made down t very Tow concentra-

by means of Instrumental Heutron

tions. A pilot study was undertaken to assess the feasibility in general
"terms qf using geachemical data to relocats the pay'band. Five samples were
taken from each of 15 bands, and 12 trace glements were neasured on eath
sample, For the reasons given in Hawkins and Rasmissen {1973}, 2 Jog
transformation was applied to the data,

A complicating facter in the analysis 15 the presence of unknown
b;lt varying sapufts of $119ca in the samples which tends to §ive a pro-
portional decreage in the concentrations of the trace elesents. This
gives rise to an pdditive “dilution effect”or “growth affect® correspon-
ding to each sample when using the transformed data.

The problem of stauistical Inference, with perifcular refarence to
canonical variate analysis, on muitiveriate data in the presence of
sdditive growth effects has been studfed by Sower {1976), and an interes-

e ting application to a problem in Palacontology hos been given by Reyment

and Banfield (1978), Gower (1976) considers the case whera a p-dimen-
sional observativn x 15 contaminated by m (<p) additive growth effects,
each of which may be represdnted by a (pe1) growth vector whose elements
are the relative responses of the corresponding elemsnts of x to the un-
observable growth effect, Gower [1976) uses the fact that if K |s the
[pxm} matrix whose colusns are these growth vectors, then the symmetric
1dempotent matrix

. [ RITTIN S 1y

e
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projects x on to the space orthogonal to K so that the projected value
1s free from these growth effects. Therefore, if

y= (7.1.2)
then y is free from growth effects. Furthermore, 17 the sample space
of % has rank r (=p) then y otcupfes a sample spoce of rank r-r{K].

In the context of the present example, it is clear that the growth

effect in the rock samples diwe to d9lutdon by unknown quantities of

silica 13 the same for a1l of the log trace element concentrations, so
that it can be represented by the single p-dimensional vector

K= (1.1, (.13
Therefare, in the present situation
_i
LERES (7.1.4)

where E 45 ti3 pap matrix whose elements are a1l unity, so that the trans-
formed variable becomes

squsl-1
y=ges (1-5E

p

.
.. TR .ia‘l X
=xymn, =10 (7.1.5)

where x1 and ¥y dre the 1“‘ wlemants of x and y, respectively, So; o
rgmove the dilution effect from each observation we mnke the [intuitively
reasonsble). transformation of subtracting the average of 811 p log trace
alemant concentration values in the sample from each e(}ese @ valuesin
turn. This will clearly reduce the dimonsionality of the sample space
to pei (assuming that the original dats are of full ronk)and the easiest
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: way to handle this iz to drop one o; more !'-:ﬂr'(abies from the amalysis,
Because of the finding in Chapter 5 that the nusber of popula-
tions in the train{'ng sani')‘ll should be as large as possible, relative
to the dimgnsion p of the data vectors, for relfable estimation of the
eigcnvalue:'{:\.]] of 11:'1, ftwas decided to base the discriminant analy-
si5 on a subset of four of the twelve trace elements. The following
tﬁm elemnts were chosen, primerily because of the fact that, out of

the twelve, their morginal distributions most closely fitted the normal:

T.o Gobalt {Co)
T2 tren (Re)
3. Hafnium (HF)
4, Gold (M)

The data on these four elements (after Jog transforsation and re<

w\ml' of dilution effect) are given in Table 7.7.1 below, and in Tables

1.2y 72003 and 7.0.4, respectively, their mean vectors, within groups
and betwean groups covariance matrices are given. B

Table 7.1.1

The Trace Element Data {sfter log transformetion and removal of '
dilution effect.)

SlAdL UL

Population =3 Fe i Ay

' 1 © 0,385 0.0834 ~0.0081 -1.1839
0.5055 0.3 (7 -0 “0.3336

0.4081 olj0s7 ' -0.7308 0. 3231

0.3210 07054 ~0.4605 -0.5441

0,203 -0.1483 -0, 2902 -0.9580

N

. 0.4255 0.3744 -0.0153 0.0657

2 0.4008 0,360 -0.1572 0.0465
0.4735 02852 -0,5008 0.2523

-0.3882 0.2177 ~0.4931 1.0485

0.0569 0,2005 01784 ~0,0990




Table 7.1.1 continued

0.3033
0,4742

5
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Table 7.3.1 continued

“Fopulation

1

L4
2

mRLRSD @S m s —
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5} L
06116 =0.595]
0.5342 0. 4469
0.6603 0.4
0.2994 -0.7964
0.2138 ~f1.1079
0,0751 0.1338
-0.1939 . 195
-01,5064 0.1750

L4060 0.1644
0.2718 00311
0.0470 0.0641
-0.1525 0.0243
-0, 366 0.0121

-0.217% 0,156
-0,348% 0,0350
-0,2141 0.1451
-0, 3260 -0,1079
-0,2990 0.0718
-0,2358 0.0851
~0.3077 10,0623
-0.0016 06,3086
0.1105 0.2587
0,1967 0.3219
0,133 0.3753
~0.1168 0.5885
Tabie 7.1.2

Moan Vectors

jid Lo
0.1089 -0.3787
L2405 2631
0.2138 0.0623
L3036 .3830
0.0023 -t 6815
0.1183 06965
0,5872 L4205
-0 0.1132
0.0389 -0.15%8
0.4242 «0.579%:
10,4658 =0.4819
-0,1519 0.1474
-0.2078 0.05681
02768 0,053
0.9608 0.3886
0.1288 -0.2194

shbs

=
z

1
=
o
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Table 7.1.3 . i
Within Groups Covariance Hatrix (Desgrees of Freedom 60) :
@ Fe Bt i !
o 0.0584 0.0281 ~0.0061" 0.0122
Fe 0.0281 0.0267 -0,0016 0,0086
Hf =0.0061 =0.0016 0.0759 ~0.0384
Au 0.0122 00026 - =0.0384 0.1866
Table 7.7.4
Betwean Groups Lovariance Matrix (Degrees of Prmm 14)
[ Fe bt By
Lo 0.4167 0.2654 ~0.2990 © o 0.3089 .
Fe 0.2654 0.3177 ~0.2296 0.4297 .
Hf -0.2950 =0.2296 0.5614 ~0.4433
Au 0.3089 0.4297 - ~0.4433 0.9784

The data was tested for multivariate normality and homoscedasticily

using the tast of Hawkins (1978) based on the N = I My sample-based

Mahalanobis distances of each cbservation from its gmup mean:

= d(rgy) = (x‘j-x{‘}‘s'll(:‘j-xl') §= Teeegmgs dl, 0k (L6

where 5 s the pooled covariance matrix comsputed from all k gﬁmps.
Hawkins {1978) shows that under the null hypothesis the statistic

(N-k-p}’n,‘d?i(x‘j} . s
B g1 Ok n g (w13

follows an F-distribution with p and B-k-p degraes of Treadom, so that if

Rij = PriF > Fiq?

¢
denotes the tail area of Fi.i under this distribution then nij is digtri-
buted exactly a5 a uniform variate over the range (0,7). Departuras from

either normality or hwscadasti.city will cause departures of the J\‘j
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from the uniform distribution, and Hawkins therefore uscs the Anderson-
Barling test-statistic Wy conputed from the L] qr_ﬂe:':‘itnﬁstila of the

Ay in group 1 to tast for efther of these types of daparturd in the

i poputation, for §=) to k. Furtnermore, splitting the Wy idto coss

ponents allows for heteroscedast{city and non-normality to be tested

: separately, Finally, Hewkins uses a simulation experiment to show that,

a'It‘lQuugh asymptotic results are used at 3 few points in his bheory, his
toct may nevartheless be used for sample sizes ny as small s 5, as long
85 N is sufffcfently Targe.

Applying the abovementioned test to the data in this example reveals
modergte departures from homoscedasticity in populations 4,5,6 and 8
(6 and & having larger, and the other two smaller covariance matrices than
the average) and .a'lsn that population 4 has a s1ightly Vighter-tailed
distribution than the normal. However, because these departures are
fairly minor, and =3 as not to reduce the nuiber of populations in the
trafning sampie, it was decided not to remove these populatiens from the
example. .
As mentioned in Chapter B, the first step in applying this data to
tha random effects madel in discriminant analysis is to test the hypothesis
Hu ¢ T =0y for 1f it-15 zccepted then there is no point in continuing

“with the anglysis. Using the subroutine CANOK described earTier, the

eigenvalues {g‘_'} of ﬁ‘ﬂi‘l were computed, These are given in Teble 7.1.5,
to_qether with the two *est statistics Ty and Ty defined in (5.2.3} and
(6.2.4), respectively. .

a

' o
e
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Since mT, = B10.7 and puy = 56, Hy fs refaited rosoundingly.

> dhere £ o 430143} = 11 v .

i yields value By = 65.01, whance nn‘r” = 136.4 which again is highly

&

o0

264, . |
Table 7.1.5
The eigenvalues of .l.lﬁé] e
5 9 k] . - ﬁ:
742183 35,5174 120757 7 71888 :
4
Ty = § Teg(lig,) = 12,6614
17 i

4 .-
Ty = igt 9 = 129.9673

From (5.2.5) we hmnu that mder the null hypothesis m.ﬁ has appriki=
mately a X‘P\‘ distnhvt{on {here g i{‘ﬁ =1} and vy and vy are
the between groups and within groups degrees of freedom, respectizely.

In order to test whether any of the di} = eigs 1w e 60, We
first consider the sub- hypotr.asis 'lm thy = 0. Jur two test-statis-
tics for testing by, are: N .

1 = Log{g,) = 2,0987
and oyt = 7,188
{See (5.2.11) and {5,2.12}). ]

Using Tyqy we have from (S.2.13) that under Hyy,m) T;q has approximatety
ax; distribution '

and Ay -501-1(11«5}{-}:!‘ T

Using the estimators of the A; glven balow in the exprassion fir My

significant. So we conclude that __ql? the )y are greater than 1810,
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LU _ .
PO :| Our-next step is to estimate the :LI Using the technigues dg‘-
i scribed in Chapter 5 the five esﬂmumrs ‘(“] to Y(S} of the eigen-
J values {y;1 of 5 P (}:m?)r. were r.«rpubed lhﬂ‘or-h]mtel} the

yprestricted® and *restricted” maimum marginal tikelhood estimators

‘: '1] and Y(S} both failed to give meaningful results, so the approximate

‘ uax\‘tm margtna'[ 1ikelihood estimator y{zl {Y{:’J wes fdentical to 7(2))
- was used to compute h from the relatwnshin
-
o, 1,
Ay = lygel) LECTR PRI
j These estimates are given in Table 7.1.6. The estimation procedure was !
e then repeated with variable 3 {Hafnium) dropped from the sampie, re-
H ducing the number of varfables to 3. In this cese a1l five estimators
_ gave meaningful resutts, so that 7. coutd be obtained from 7{5] Thasa
, estimates are also given in Toble 7.1.6.
: Table 7.1.
Estimatas of 1 and )}
£ =4 variables (Ca, Fe, HE, Au)
. e p 1 2 3 I
: ¥ 136 8281 3080 1.5
B 1 Phend Y1) qaames  msese ndeoe 2563
P E(” and im failed to glve meaningful results
) « e
1 i (iron 7120) 2,7573  1.5380  0.4720  0.3006
|
o i
v 1
| )
o

i
) 2
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P £

p= 3 varlables (Co, Fe, Au) f
b

i 16,2505 62701 1.79% T
B (an 3B e 57801 2.207
$t4) 14.2456 62484 L2230
b 13,9191 g.6518  © f.zsh. .
- - . i
3 (ros 105 2,5838 1.1904 oagse

)

Using the 3 given in Table 7.1,
the Mahabanobis distance

s the estizated distribution of

sty = upugbs (i)
betwien two randomly selected populations, derived in Chapter 3, and
that of the nahabanabis distance

8Hx) s (o) g

of a random observation x ¢ wy froory, 4w §, were computed using the

subroutines given in Chapter 3..714 bla 7.1.7 valuss of the distribution
functions of B;'J and £%(x) are gi

n &t selected points, separately for

the four- and three variable cases. In addition, distribution function

values for 43{x), when xiym;, are given at the same points for comparisen.
¥

P
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i Teble 7.1.7

i Estimated Distribution Functions of ah,smnx €y and

5;{*”* @iy

P =4 varizhles {Co, Fe, Kf, Au}
Hstribution Function Values

Value of. the
randgm variable f;_‘! 5?!:‘11!)& €7y a%{x}lx € my
1 031 Mz 048
2 098 043 44 N
3 A7 .0as 264 ]
5 336 Bl 486
7 70 295 877 K
i 10 626 450 845 X
15 789 646 960 ! “
i 20 .880 78 990 :
26 k| o 998 -'
i ] 960 910 1,000
i 40 985 <063 1,000 4
50 995 985 1,000 .
i B =3 variables  (Co, Fe, Au)
* Distribution Function Yalues
i Value of the
random variable a_h 83 (x)lx " a3 e v
: 1 088 044 119
q 2 202 Tt e
i 3 1305 A28
d 5 74 857
! 7 600 W02
o a3 917
; 15 858 581
i 20 923 086 i
b 5 957 .99 'y
: 30 976 1.000 i
i a0 .59z 1.000 i
I EO .97 t.o00 ii
The expected probabilities of misclassification indicate how vell ' K
classical discriminant analysis 1s Tikely to perforst when applied to !_ !
the problem of fitting a purticular rock band iﬁbﬂ the sedimentary I )
suceession of the area, on the basis the cnnmniptinns of the four
I
{or three) t1ace elemonts in a rock sample from that band. These were A

v A A R o
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computed from the furmwlae derived in Chapter 4, using the subroutine
PRD‘IBS for the "optimum" probebilfities, uha\;n “the parameters in the 1inear

&iseriminant function are assumed to be known and
(2.1.3) is used, and subkputine PROBST for the cuse where the sample-
based classification rule (2.1,19) is used. Table 7.1.B gives tie two-

lassification rule °

population probablilities of wisclassification 49 well as the Tower and
approximate wpper bounds for the probabilities of correct classification
for the §- population case, for both situations where the population-
based and sample-based classification rules are used,

In the situation where it is possible to make more than one chserva-
tion on the unknown population (as in the case in our stratigraphic pro-
blem) it 15 well known that arbdtrarily good classification may be
achieyed by increasing the number of Tndependent chservations from the
unknown population and basing the classificatfon on their meen. It is
a trivial matter to show that the situvation where the mesn of @ chserva-
tions is used for classifying the anknown populstion is exactly equiva-
lent, under ihe tandom effects model, to that when the eigenvalues {;}

- are a11 mitiplied by w and 2 singla observation 15 used for classifica-
tion. As an {7Tustration of this,the oxpectsd probabilities corresponding
to the situstion where the classification is based on & = 2 observations
from the unknown population sre also given in Table 7.1.8.
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- Table 7.3.8
Expected Probabilities of Cerract- and Risclassification

(ce, Fe, HF, Au)

Probability of wis- Probability of correct classifi-
clessification with cation with keb populations
Known Parameters w0 Populations

Lewer Bound  Approx. upper Bound
1059 =R ~RRO: g e

p = & variables

One observation

from unknowm pop. i
Two observations 0555 g 6330
unkngwn pop.

Unkpown Parameters (degrees of freedom = 60)

One observation W73 5307 8033

from unknown pop.

Two cbservations J0ETE 7634 +8308

fros unknown pop.

p =3 variables {Co, Fe, Au)
Probnbi'ljv.ty of Lower bound to Probability
Misclasgification of correct classification

with twe popula- with k«5 populations
ons w

Known_Paramaters

One observation Al Az
; Trom unknown pop.
Two chservations 0BEQ 6561

from unknown pop.
Unknown Paraveters (Degrees of fraedom = 60)

One observation
from unknown pop. 1518 3929
Two observations
fros unknown pop. .0915 L6347

Wote that, since p 15 odd, the upper bound to the prebability of corvect
classification cannot be computed,
k¥

e
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{ Ve now tu'n to the Predictive Bayesian approach. Becausa of our
% inability, at present, tiie compute the predictive demsities under the
] random effects model in the multivariate case (see sub-section 6.2.1)
we will consider classifying two cbservations of imknown origin using
only the trace element Cobalt (Co). The concentrztion of Cobalt in
: each of the twe unknowns, after lug transformation and resovel of dilu- :
f . tion srfact, are given below:
1 & X
: Z . Unknewn T ¢ 0.2858

1 Unknown 2 & ~0,4075

i The predictive densities under the randow effects model, given by

. . “[6.1,17), were computed using the subroutine HYPGFN and are given in

Table 7.1.9 for each of the fiftesn populations and both unknowns. For
cosparison, the corresponding pradictive densities wnder the fined effects
" molel, given by (2.2,8), as well as the sample-based Mahalancbis distances
between cach of the two ynknowns and each of the fifteen populstions, are
2150 given in Table 7.1.9.

A

S .
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Table 7.1.9 b
Predictive densities of the twp unknowns under fhe random effects 3
and fixed effects models, as well as the coﬁresmhg Hahalanobis' i
using one_variable (Co} enly. :
[ Unkrown 1 \
1 I
i . Predictive Densities
i Randgm Effects Fized Effects Mahatanshis
1 Population  Model Model Bistances
1 1 0844 0955 L.0017
B 2 L0947 0899 0.745] i
i 3 .0598 0660 0. :
; 4 L0810 0847 01506
o L0875 L0805 0.4048 .
= ] L0793 OEE4 1863
7 0681 0877 JB187 -
8 0371 Rk 8425
H ] UEE3 0693 L7630
4 10 Joazaz2 0843 .03
i n 0878 0900 L1
i 12 0388 0397 L1407
H 1 o068 L0032 L4351
" 14 .0093 003 9550
i 15 L0849 . 0.0673
1
Unknown 2
' 1 L0161 L0109 L0108
i z S22 0219 k]
¥ 3 0648 o L7358
K § 0068 1 10,6259
i 5 D066 o2z 12,5063
1 o § 0056 L0037 To.8124
! i 0 14.2623
-] 1234 1506 1,405 5
! 9 il DEz4 3.9928 i
i 10 0066 9,328 b
! 1 0232 a2h 6.2250
12 1190 1188 1,9847 i
i3 2623 2T 0.0017 !
14 .2 271 0.0026
18 0084 il 9.8043
The posterior probabiiities of each of the populations are cesplted ~ : -
. ¥ 7
From the predictive densities in Table 7.1.9 by multiplying thes by b )

their respective prior probabilities. For exasple, suppose that unknown 1 !
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it equally likeiy to have come from one of the first five populations
and from none of the others. Using the classtu_'l approach ona vould
unhesitatingly classify § into population 1. On the other hond, al-
though population 1 has merginally the highest posterior probability
undar the fixed effect model, population 2 has marginally the highest
probability under the random effects model. In practice, using the Pre-
dictive Bayesfan approach under efther of the Fixed effects or randow
effects models, one would consider Unknown 1 to be unclassifisble. The
divergence between the classical and predictive Bayesien spproaches ob-
served here is in Tine with the findings of Aitchison, Hubbema and Xay
(1877} whose ganera] conclusion is that the classical (or "estimative")
approach undsl to give too gptimistic & picture of the reliability of
sam‘le—base.d discrimination procedures.

The picture is far clearer with Unknown 2. Assuming that it is

? equally Tikely to have come from one of tha last five populations,all

three classification rules come out stringly in favour of either of popu-
Jations 13 or 14, the predictive approach under the vandom effects model
giving sTight preference to population T4 whereas the other two marginally
favour the former,

The vsasen for the impraved retability of classification fn the
Tatter case is quite evident under the random effects model .  Since

.nhseriat‘lut 2 is much further then chservation 1 from the estisated mean

£ of the individual population moanspy, ane would expect batter classifi-
cation with it as populations would tend to be much less clustared in its !
vicinity than they would be neaver to £,
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Coapter 8 Ravisw znd Lonclusions

In this, the final chapter, the theory de'eloped in this thesis is
reviewed, and the areas still requiring further work,as well as the
varfous possible uvenues for future research are pointad out. Filﬂ?"h
some conclusions are drawn regarding the applicability and usefulness uf
this theary to the solution of practical problems in discriminant analysis.

Before starting the review, some comments on the practical sitwation
where this theory might be applicable, are in order, It 1. envisaged
that the investigator will, in gensral, have two (possibly overlapping)
training samples at his disposal. The First, mere properly called an )
“estimation sample" will consist of random samples from each of a number .
of popu‘lationsl.l each of them in turn being 2 random observation from a
“super-population” under the random effects model. This sample will be
usad to estimate the parameturs (1‘} in the manner dascribed in Chapter
5, Wrich will §n turn be used to estimate the distributious of any of
the four diﬁtana variables digcussed in Chapter 3, as well as the expect-
ed probabilities of correct - and misclassification under the classical
appreach, derived in Chapter 4, The second training sample, which say
only become available at-a Jater date, ﬁ‘li consist of random samples
from each of ky populations (with posétble overlap betwesn it and the
estimation sample - together they make k independant samples from the
“super-populatfon”} and ona or move observations x knows to have come
frow ope of these k'l populations. The objoctive of the inmvestigokor is
to assign x to one of these k) populations in the second sample.

Clearly, the information from the second tredning sample can be
cosbinad with that of the first to produce improved estimates of the
{hyh and of the distributions and ewpected probabilitles of correct -
and misclassification mentioned above. Under the Predictive Dayesian
spproach toa, ho _d{suncl.im need be made botween these teo somples,




274,

except when it comes to _the choice of pepulations inte which the unknown
may be clessi.\'ied. The dg':lice uged i'n Chapter 7 of assigning zeve prior
pruohabﬂities-tn all.those populations not dnvelved in amy particular
classification probles, is & convenient wey of making the sbovementioned
distinction without formally having o distinguish betusen the tuo

samples, *

8.1 Review

starting the review at Chapter 3, it s clear that while only the
dismbutfdn of 6” is of direct relevance to the evalvation of correct-
and misclassification probabilities under the random effects model, the
distributions of the other three quantities 63{x}, d‘ and di{x) are of
{nterest in that they provide further fnsight into the 1ikely performence
of classical diseriminant snalysis under this model, As has been seen,
the evaluation of the density and distribution functions of all four of
these distance varizbles §s a relatively straightforward matter on a

computer, so that approximating them by means of, sy Pearson curves, is
not considered to be worth while, "
Coming now to the svaluation of the probabilities of correct - and
_qisé!ass_il"‘lca'tiun considercd in Chapter 4, the two - population case <’:.
where th(; parameters arge knawn has clearly been solved satisfactorily
and the probability of misclassification under the vandom effacts wodel

15 readily evaluated vsing a computer. ' The k-population case s slight-
‘ Ty less satisfactory fn that enly Tower and {conditional and aﬂnroxfnau)
1 uppar bows to the probability of correct classification have been

i found, although it is evidant from the examples considered that these
two bounds can be fairly close. An exact expression for this probabi- ;
Tity will howsver only be foumd once the corresponding sxack expression h

{ {4.1.24) for the conditiona) probability of . [rect classification,

. i . ,

ot »’ o f
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givan 5 s is aveileble in 2 more tr *tab!l form.  Two further pro-
ij'lerls muwing solytion are firstly, the evaluation of the upper
botnd on the probability of correct classification for the case where
the nusber v of nonzerg 11 is odd, and secondly, the daﬂu:ptinn of

convenfent computational formulee,uhen the 2, are not all eqidl, for the

coefficients 25 dafined in (4.1.39), appearing in formuTa (4.1.40) for .

ﬂbe_ upper bound yhen r is even,
i ‘In the situstion where the sample-based :lassificatfon rule 1s
m:i: aﬂ the results derived are based on Dkamato's(1963) asymptotic

axpa um (2,1.26) to terms of order n 1, therefore, more accurate re-

suits could be qhtﬂnad, at, the cost of considerable incraase in

complexise.by including 211 the terms of order ot in Ckanote's expan-

sion.* . the k-population case exartly the same ramarks hold s in
the aituaiion wherz the parameters are known.

ﬁ.n tmpertant plece of research that is still m:tstaMmg in chaptgr
6 is to obtain wrestricted and restricted maximus marginal TikeT{hood
estimaters of {y,} = Eigs {I; S'}] based on Ehatrd and Srivastava's (1978)
asymptotic exinmtnn {5.3,8) for the joint density of {’i} = Eiss(ﬁ i\;}
rather than on Chang's (1970} inss accurste expression (5.3.5). Siula-
tion experiments on uiés_e two estimators, corresponding to those done
in Chiptar 5; 'wi]_}_ give an indication of how much an improvement they
are over those préposed in this whapter, A further area for vesearch
arising as a :au'e {ssue out of the results of Chaptor B, s the derfva-
tion of a scaled F-approsimetion to tha distribution of Hotolling's r;
for the case whors the numerator and denowinator matrices have indepen-
dont Wishart distributions but with different paraseter satrices Iy and
£, See the comments at the end of Sub-section 5.4.2.
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The treatsent of the Predictive Bayesian Approach under the
random effects modsl s firly complete, at Teagt for the case whers
the parameters B, § and T hive diffuse prior distreibutfons. A great
deficiency in this approach is, however, our inzhl1ity to coppute tha
predictjve densities in the multivariate case. Pouiblo‘jiappmbdles
towards rectifying this are, firstly, to try and evaluate the hyper-
geometric functions of matrix argument, appearing in the predictive
densitites by using the programs of van der Westhuizen and Nagel {1979}
on a very much faster computer than the University of South Africa's
Btrr‘mwts B5800 computer. Secondly, the efficiency of these programs
ouu‘id possibly be 1 d. although & red tion in puting time by
at least a few orders of magnitude would be required to ensure that a

| suffizfent musber of terms can be computed for the hypergeometric func-

tions to converyd. Two promising directions for research do, however:

'gome out of the last section fn Chapter 6. Firstly there is the Empiri-

_:_:_%_]l sayes-?appmach to discriminent enplysis under the random effects
model;  an interesiing stMy would be to investigate the properties

. of the proposed classification rule {6.4.8). Secondly, an !nmﬂgatim

£ the semi-Bayes amweadl under the random effects mode‘l using the
. v!l.erwr density (6.4.17) as stzpting point would also llr..oe an interas-
9, if complicated, study.




|

8.2 Conclusions

In this thesis, discriminant analysis un-:le;- the random effects
wade] has been treated from two viewpnints. With the classical approach, '
the properties of the classification rules hava besn investigated under
this mode], whereas with the Predictive Bayesian approach new eipressions
for the predictive densities appropriate for this model have been derived.

Considering first the clasica) approach, the assunption of the ran-
dom pffects model has allowed expressions for tiae expected probabilities
__of correct - and m1s.c!assif']:au on to be derived that depend only on the

wigenvaluss (A} of 6™\, These may be estimated with arbitrary preci

-sion as long 2§ training samples can be drawn from a suffivlent nusber
«of populations. On the other hand, under the fixed effects model, -

whather Uiing Okemoto's (1863) expression (2.1.26) or Anderson's {1973a,
b} expression {2.1.27) for the expacted probability of misclassifica-
tion with che sample-based classification rule, the value of the Maha-
Tancbis distance 5?2 belween the two populations is required. This has
to be estimated using the means of the training samples from only the
two populations concerned, althor+h & may be estimated using training
szaples from other pepulations asv well. (See Lachenbruch and Mickey
(1968) for an estimator of &, that partially corrects for the bias

)
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Therafore it would appear that as Tung as there are a suffictent -
aumber of populations in the training sumple (relative to the nuber of
variables - see Section 5.5) more relisble estimates of the probabili-
ties of correct - and misclassification will be obtained l.:n-!ei‘ the ran-
dom effacts model than under the fixed-effects model. On ‘the other hand,
the requiremsnt that there should be a large nusber of populations
{relative to the nunber of varizbles) in the training sample for relia-
ble estimation under the vendom effects model, can also be considersd
to be o drawback to this model, particularly in situwations where samples
from meny populations are hard ;o come by,

A topic that has not been discussed in this thesis is varfable
selection. Since under the random effects model the probebilities of
correct - and miscla-gification are functions only of the eigenvalues
{3} of 7571, we would want u procedure that selects variables on the
basis of the velues of the A Now, 1t is clear from {5.2.3) that the
TikeTthaod ratio statisiic Ty for testing H :7=4, is ‘& monotonte fn-
ereasing function of the eigenvalues - of MAE‘ end hance of the

v,
(6,3 ={ 55 p;b. Since the &, are mexirum 1ke1iho,! estisators of the
1

Ty T+ Bhyy ue would expect that varieble sclection based on T, would

_be appropriate for our situation. Hawkins (1976) proposes a stepwise

procedure based on Ty for selecting variables in Multivariste walysis
of Varignce, Although he applies the procedure to a problem in multiple
discriminant anlysis using the fixed effocts model, ft is,from the
abave Hmrt;. alse applicable to the randaw effects madel.

Coming now to the Predicbive Bayesian approach, an ismediate con-
c'l.u:ion “that uay be drawn fram the uxamples considared is that the pre-
dictive dansities {nn'd hence postdrinr probabis ities) are generaliy more
conservative undor the randow effects model than they are under the
fired effects model. Therefore, 1f the predictive densities for the
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Fixed lFfe:Fs model, given by (2,_2,_5} and (2.2.7), are mmput?d in a
situation where the random effects mode] holds, then they will tend to
give posterior probabilities that are too optimistic. On the other
hand, if the random effects modal {5 applied to dati where the fixed -
effacts mode] is wore appropriate, it will give rasults that are too
eunservative,

Finally, a comment on the epplicability of the random affects
model to discriminant analysis with unequal covariance matricss in
different populations, s in order. Although it s possible, from a
purely mathematical viewpoint, to perform similar analyses ln those

_given in this thesis for the heteroscedastic situation, it is our
opinfen that the results wouTd have 1ittle application in practice.
The reason for this is that 1f different populations have different
covariance matrices then it 1z highly wlikely. in any practical situ
ation, thet their mean vectors would come from the same distribution.

A mare Vikely situation would be that for any particular population the
covariance matrix of its aean vector y would be some function of the

covariance matrix within that population.
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