by

Libero Paul Fatty

A Thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg for the Degree of Doctor of Philosophy.

Johannesburg, March 1973:
" 0

Declaration

1，Liter Paul Fatty，hereby declare that this thesis is 略 om wo r，it．that it bes not been presented to any other＇Iniversity＂0，the pup－ pose of obtaining a Degree．

L．P．Patti

March， 1979.

Abstract

In this thesis the characteristics of discriminant analysis under the random effects model are investigated.

Assuming that the elements within any randomly seTected population are normally distributed with mean vector μ and common covariance matrix Σ, and that aver different populations μ has a nomal distribution with mean vector $\bar{\xi}$ and covariance satrix T, the distributions of the popula-tici-based and sample-based Nahalanobis distances between two different populations are derived. From these, expressions and bounds are derived for the expected probabilities of nis- and correct classification under classical discriainant analysis, applied to two- and k-population problems respectively, when using either the population-bused or sample-based lipear discrifinant anctions.

The distributions and expected probabilities mentioned above are ell expressed in tess of the eigenvalues of Ts^{-1}, so the problems of hypothesis testing on, and wore particularly, estination of these eigenvalues are fully discussed.

Using the Predictive Bayesian Approach to Discriminant Analysis, expressions, for the predictive density of an observation, given that it has come from a particular population, are derived under the randon effects model. Brief consideration is also given to the etpirical Bayes and semi-Bayes approaches to discriminant analysis under this model.

Finally, the results derived in this thesis are applied to a stratigraphic problem iti, underground mining.

Acknouledgements

I would like to express ry gratitude to my supervisor Dr. D.M. Hawkins, until recently Professor of Mathematical Statistics at the University of the Nitwatersrand, for his advice and encouragenent throughout the period of research towards this thesis. I would also like to thank the following: Professors S. Geisser and D.J. de Maal and Dr. D. Bradu for useful discussions and suggestions; Dr. P.J.A. Nagel for allowing me the tise of his prograrsocs for the evaluation of Zonal poiynomials and for his assistance in running then; the National Revearch Institute for Mathumatical Sciences, CSIR, for providing me with research and computer facilities during part of 1978; and the University of South Africa for the use of their computer.

Finally, I mould like to express my thanks to my first tacher in Statistics, Professor J.E. Kerrich, for sparking off in me an enduring love for Statistics.

iv

Contents

Chapter 1 Introduction $\quad \frac{\text { Page }}{1}$
1.1 The scope of the research covered in
this thesis

A Sumary of the Classical and Predictive 6
Bayesian approaches to Discrininant Ansiysis
2.1 Classical Discriminant Analysis 6
2.1.1 Unknown parameters 14
2.2 The Predictive Bayesian Approach 22

Chapter $3 \quad$ Distribution Theory associated with Classical 25
Discriminant Analysis under the Random Effects Model
3.1 The Distribution of at? $_{3}$, 27
$3.1+1 \begin{aligned} & \text { Coiputing the density and } \\ & \text { distribution functions of } \\ & \text { dist }\end{aligned}$
${ }^{6}{ }^{3} 1$
3.2 The Distribution of $\mathcal{S}_{3}^{2}(\alpha) \quad 36$
3.2.1 Coiputing the density and 41 $6_{3}^{2}(X)$
$\begin{array}{ll}3.3 \text { The Distribution of } \mathrm{d}_{\mathrm{ij}}^{2} \text { and } \mathrm{d}_{\mathrm{j}}^{2}(\mathrm{X}) & 43 \\ \text { Appendix } 3.1\end{array}$
Appendfx 3.2 55
Evaluating the Performance of C1assical 58
Discriminant Analysis under the Randon
Effects Nodel - Probabilities of Correctand Misclassification.
4.1 Known Parameters 59
4.1.1 The case ka2 populations. $\quad 60$
4.1.2 Evaluating the probabilities of 67 nisclassification for $k=2$ populations
4.1.3 The case k>2 populations 68
4.1.4 Evaluating the bounds on the pro- 79 babilities of correct classificat fon for $k>2$ populations
4.2 Unknown Parameters 81
4.2.1 The case $k=2$ populations 82
4.2.2 Evaluating the probabilities of 88 misclassification for $k=2$ populations
4.2.3 The case k>2 populations 89
4.2.4 Evaluating the bounds on the pro* 93 babilities of correct classification for k>2 populations
Appendix 4.1
Append x 4.2 95
Appendix 4.3
v.
Page
Chapter 5 Hypothesis Testing on and Estimation of the 103
Eigenvalues of TE^{-1}.
5.1 Introduction 103
5.2 Hypothesis Testing on the λ_{1}. 105
5.3 Estination of $\left\{\lambda_{1}\right\}=$ Eigs $\left\{\mathrm{T}^{-1}\right]$ 110
5.3.1 Maximum marginal likelthood 114
5.3.2 Approxinate solution of the
5.3.2 Approxinate solution of the 118 118
maxinum 1ikelihood equations
119
5.3.3 Numerical solution of the maximam
likelihood equations
5.3.4 Large sample distribution of the 123 maximun marginal likelihood estina- tors $\left\{\hat{\gamma}_{5}\right\}$
5.4 Additional Information on $\left\{\gamma_{j}\right\}=E i g s\left\{\sum_{1} E^{-1}\right\}$ 130 130
5.4 .1 Momants of the generalfsed varjance 131
5.4.2 On the distribution of $\operatorname{Tr}\left(\mathrm{A} \mathrm{A}_{2} \mathrm{Z}\right)$ 133
5.4.3 The mean and variance of $\operatorname{Tr}(\mathrm{A}) \mathrm{A}_{2}^{-1}$
146
146
5.4.4 Moment estinators for
5.4.4 Moment estinators for
$\sum_{i=1}^{p} \lambda_{i}$ and $\sum_{i=1}^{p} \lambda_{i}^{2}$
5.4.5 Restricted maximum likelikrod esti- 152
mators of the $\left(\begin{array}{rl} \\ j\end{array}\right)$
5.4.6 Large sample distribution of the 155
restricted maximum likelithood esti-mators of the $\left\{\mathrm{Y}_{4}\right\}$
5.5 Simulation Experiments on the Various Estima- 158
tors of $\{Y ;\}=E\left\{g s\left\{Z, Z^{-}\right\}\right\}$160
5.5.1 The experimental setup
5.5.2 Results 168
5.5.3 Conclusions 173
Appendix 5. 176
Chapter 6 The Predictive Bayesian and other Approaches 200
6.1 The Univariate Case 201
6.2 The Multivariate Case 213
6.2.1 On evaluating the predictive density 225
In the muitivariate case
6.3 The Predictive Bayesian Approach using 227 Bifferent Prior Distributions
6.3.1 Box and Thao's prior distribution 228
6.3.2 Natural conjugate prior distributions 233
6.3.3 Final remarks 236
6.4 Other Bayesian Type Approaches 237
6.4 .1 The Expirical Bayes approach 238
6.4.2 The Somi-Bayes approach
6.4.2 The Somi-Bayes approach 242 242
Appendix 6.1 247
Appendix 6.2 247
Appendix 6.3 250
Appendix 6.4Appendix 6.5255
Chapter 7 A Practical Application 256
7.1 A Problet in stratigraphy 256
Chapter 8 273
Revies and Con
$8.1 \quad$ Review
274
274
8.2 Conctusions 277
References 280
List of Yables and Figures Page
Table 3.1.1 Expected value and standard deviation of 8^{2} for each 35of the three sets of eigenvalues.
Figure 3.1.1 Density function of 6^{2} 35a
Figure 3.1.2 Distribution function of δ^{2} 35a
Figure 3.2.1 Density function of $\delta_{i}^{2}(X)$ 42
Figure 3.2.2 Distribution function of $\delta_{1}^{2}(X)$ 42
Table 3.2.1 Expected value and standard deviation of 43$\delta_{i}^{2}(X) \mid X \notin \pi_{i}$ for each of the three sets of eigen-values and of $\sigma_{i}^{2}(X) \mid X \in \pi_{i}$.
Table 4.1.1 Exact and Approximate probabilities of misclassifi- 68cation when the parameters are known and $k=2$
Table 4.1.2 Bounds on the probabilities of correct classification 80for $k=5$ populations. Known parameters.
Table 4.2.1 Probabilities of misciassification when the paraineters 88
are unknown and $k=2$
Table 4.2.2 Bo'nds on the probabilitios of correct classification 94
for $=5$ populations and degrees of freedon $v=20$
Table 5.1.1 MANOYA table 104
Table 5.3.1 Approximate Means, Standar $\sqrt{5}$ Deviations and Correlation 128 Coefficients of the Maximur - ikelinood Estimators of the $\left\langle\gamma_{j}\right.$) for $p=3$ dimensions.
TabTe 5.4.1 Approximate Standard deviations of the Restricted 157Maximus Likelihood Estfrators of the $\left\{\gamma_{i}\right\}$ for $p=3$dimensions
Table 5.5.1 Neans and Standard Deviations of the five estimators 181of the $\left\{\gamma_{1}\right\}=E i g s\left(\Sigma_{1} \Sigma^{-1}\right\}$ from the simulation experi-ments for $p=2$ dimensions
Table 5.5.2 Means and Standard Deviations of the five estimators 184of the $\left\{\gamma_{1}\right\}=E \operatorname{Eigs}\left\{\sum_{1} \Sigma^{-1}\right\}$ from the simulation experi-ments for $\mathrm{p}=3$ dimensions
Table 5.5.3 Means and Standard Deviations of the five estimators 187of the $\left\{\gamma_{1}\right\}=\operatorname{Eigs}\left\{\Sigma_{1} \Sigma^{-1}\right\}$ from the simulation experi-ments for $p=5$ dimensions
Table 5.5.4 Keans and Standard Devfations of the five estimators 192of the $\left\{\gamma_{i}\right\}=\operatorname{Eigs}\left(\Sigma_{j} \Sigma^{\prime \prime}\right)$ from the side . Ation experi-ments for $p=10$ dimensions
Rable 5.5.5 Corre'ation matrices for the five estimators of the 198 $\left(\gamma_{i}\right)=\operatorname{Eigs}\left(\Sigma_{1} \Sigma^{-1}\right)$ from the simuletion experiments for $p=3$ dimensions
Page
Table 6.1.1 The Hypothetical Training Sample 212
Table 6.1.2 Computing the Posterior Probabilities 212
Table 7.1.1 The Trace Element Data (after log transformation 260
and removal of dilution effect)
Table 7.1.2 Mean Vectors 261
Table 7.1.3 Hithin Groups Covariance Matrix (degrees of 262
freedom 60)
Table 7.1.4 Between Groups Covariance Hatrix (degrees of 262
freedon 14)
Table 7.1.5 The eigenvalues of $A_{1} A_{2}^{-1}$ 264
Table 7.1.6 Estimates of $\underset{\sim}{\gamma}$ and $\underset{\sim}{\lambda}$ 265
Table 7.1.7 Estimated Distribution Functions of $\delta_{i, j}^{2}$, 267Table 7,1.8 Expected Probabilities of Correct- and Misclassi-269
fication
Table 7.1.9 Predictive densities of the two unknowns under the 271
random effects and fixed effects wodels, as well asthe corresponding Mahalanobis distances, using onevariable (CO) only.

1.

Chapter I Introduction

Suppose that $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ are k populations of p-component vectors. Let x be a vector known to have come from one of these populations. oiscriminant analysis deals with the problem of identifying the population from which x was drown.

The case covered most thoroughly in the literature is that fin which the vectors from π_{i} follow a multivariate nornal distribution with mean vector μ_{i} and a common covariance matrix ε. (Anderson, 1958). Generally, it has been assumed that $\pi_{1}, \pi_{2}, \ldots, \pi_{k}$ are fixed populations predatermined by the probleal faced.

This thesis deals with the case where the p_{i} have been randomily selected from some population in advance of the experiment. Once the k mean vectors have been selected we are then faced with a conventional problem in discriminant analysis of classifying vactors into one of the k (now fixed) populations.

In different experiments, there are different sats of μ_{i}, in general with different numbers of elerents k, all drawn independently from the same parent population.

The afm of this research is to investigate the characteristics of discriminant analysis under these circumstances. It will be assumed that the population from which the μ_{i} are drawn is wultivariate normal with mean vector ξ, and covariance metrix T.

This study was motivated by . Stratigraphic problem in mining. (Hawkins and Rasmussen (1973); Hut: n, Skinner and Bowes (1976)) In the Witwatersrand gold fields the gold bearing reef is one band (the "pay band") of a sedimentary successio and is usually visually unrecognisable. In badly faulted areas this pay band usually faults away, and the miner wishes to know the position in the sedimentary suc-

2.

cetsion of the blank band facing him, from which he can deduce the new pusition of the poy band.

One method of identification is via trace element geochemistry of the bands. It is reasonable to suppose that the geochenistry of each band can be described by a (multivariate) statistical distribution. The mean of the distribution raflects the average conditions at the tiae of deposition of the band; while the spread reflects local variation in grade. Furthernore, the average conditions at different times and localities of deposition of the bands are themselves statistically variable, being themselves drawn from some parent population. Thus the bands intersected by any given cross-saction will be fixed for the imnediate classification problen and yet will follow some randon effects model as we move frol one area in the mine to another.

Another example of a random effects model in discriminant analysis occurs in an ${ }^{*}$ copology (de Villiers, 1973, 1976). Here the probien is to classify an ancient skull froa a certain period as having cone frow one of a number of tribes suspected to have lived in the locality in which the 5 kull was found. The classification is bi reasureaents (lengths and angles) made on the mavilia anof ur mandible, and for any given tribe, sex and age-group these hiy be regarded as having a joint distribution with fixed mean vector and covariance matrix. Different +ribes will, in general, have different mean vectors, and these may tf 地lves be considered to have cone from some multivariate distribution.

Another type of random effects model in discriminant analys is is considered by Geisser (1973), in the context if matiple birth discrimination. Supposing that a birth gives v; to t like-sexed offspring, the proble is to decive which of thes offspring have cose from the same eggs and which ones have conais is ifferent eggs. Assume

3.

that each offsjriing is characterised by a p-dimansional randon variable x, where $x \sim N_{p}\left(\mu_{i}, \Sigma_{w}\right)$. Offspring from the same egg (monozygotes) have the same μ_{i}, whereas offspring from different eggs (heterozygotes) have different μ_{i}. Different μ_{i} are assumed to have been generated by a randon effects modal;
t.e.

$$
\mu_{\mathrm{i}} \sim N_{\mathrm{p}}\left(\mu, \Sigma_{\mathrm{B}}\right), \quad \text { independently } \forall i
$$

Geisser considers the difference $z_{r}=x_{t}=x_{r}$ between the $t^{t h}$ and the $r^{\text {th }}$ offsprisg. If t and r come from the same egg, then:

$$
z_{r} \sim N_{p}\left(0,2 \varepsilon_{V}\right)
$$

and if they are from different eggs, then

$$
z_{r} \sim N_{p}\left(0,2 \varepsilon_{y}+2 \varepsilon_{B}\right)
$$

The joint distribution of z_{r} and z_{s} is also multivariate nurmal with $\operatorname{cov}\left(z_{r}, z_{g}\right)=\left\{\begin{array}{c}z_{W}+\Sigma_{B} \text { if } t, r \text { and } s \text { are all from different eggs, } \\ \Sigma_{W}+2 \Sigma_{B} \text { if } r \text { and } s \text { are fros the same egg but } \\ t \text { is fros a different one, } \\ \Sigma_{W} \quad \text { otherwise }\end{array}\right.$

Given the Soint distribution of z_{1}, \ldots, z_{k-1} for each of the various possible combinations of offspring and eggs, and the prior probabilities for each of these possible combinations, posterior probabilities can be calculated for each case, and the case for which this is a maximum is than chosen.

4.

The situation discussed in this thesis is, hovevar, entirely different from that just describea. riare ve assume that the $i^{\text {th }}$ population is characterised by a $N_{p}\left(\mu_{j}, \Sigma\right)$ distribution and that different μ_{q} are independently distributed as $N_{p}(\xi, T)$. On the basis of these assumptions the characteristics of classification in this environasht are then assessed.
1.e. Given an observation known to have cowe from one of k populations from the abovementioned randos effects model, shere the parameters of these populations are either known or estimated from training samples, how well are the classical procedures of discriminant analysis for clossifying the observation into one of these populations Tikely to perfons?

When it comes to ithe Predictise Bayc itan Approach to discriminant analysis, the randon effects model actually leads to a new procedure, for classifying the observation into one of the k populations.

1.1 The Scope of the research covered in this Thesis

As mentioned earifer, the aim of this thesis is to investigate the characteristics of discriminant analysis under the Random Effects mode1.

In order to do 50, and to provide a framework within which to conduct the investigation, a sumary of the theory of classical and Predictive Bayestan discripinant analysis is given in chapter 2. By the classical approach we liean that given by Anderson (1961,1958) and by the Predictive Bayesian approach we mean that of Geisser (1964,1966) and Dunsmore (1966).

Chapters 3 to 5 cover the classical approach. In chapter 3 the Randon Effects model is set out in more detall, and then the distributions of the four quantities contral to the classical approach are derived under this model. Chapter 4 uses the distributions derived in chaptor 3 to evaluate the performance of classical discriminant analysis

5.

under the randon effects model. Specifically, the probabilities of correct and misclassification are considered, separately for the two-group and multiplengroup problems and for the two situations where the parameters are known and unknown.

All the results in chapters 3 and 4 are expressed in terms of $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{r}>0$, the r nonzero eigenvalues of $T \Sigma^{-\dagger}$ where T and Σ are the covariancs est-fies of the mean vector μ and observation vector x, respectively, so chaptar 5 is devoted to the question of inference on these parametars. Aften a short review of hypothesis testing on the λ_{i}, the rest of the chapter addresses the question of their estimation, on the basis of "training samples" taken from a number of rapdoaly selected populations.

Whereas the treaterent of the classical approach is confined to an evaluation of the standard theory within the framework of the randon effects mode1, the application of this mode) to the Predictive Boyes fan approach results in a modification of the usual classification rule. Chapter 6 deals with this appre ch and in the predictive Gensity of a new observation, given the training samples and assuming that it comes from a specific group, is derived under the random effects model. A briaf treatnent of the Eapirical Bayes and Semi-Bayes approaches completes this chapter.

In chapter 7 the theory of the preceding chapters is applied to some data obtained from underground mining, contrasting the results with those obtained by applying the usual fixed effects theory.

The thesis is concluded in chapter 8 with a discussion of various avenues for future research and with sone comments on the opplicability and "sefulness of the theory developed here to the solution of practical probleas in discriminant analysis.

6.

Chapter 2 A Sumary of the Classical and Bayesian approaches to Biscriminant Analysis
In this chapter a brief sumpary is given of the theory of Discriminant Analysis under the Mormal distribution.

The Classical approach, pioneered by Fisher (1936), We7ch (1939), Wald (1944) and others is described by Anderson (1958); Lachenbruch (1975) and Giri (1977) so only a brief sketch of the basic theory will be given in section 2.1. The coverage is not complete, and prima emphasis will be given only to those aspects that will be of direct releyance to the treatment of the randon effects model.

The Predictive Bayesian approach, ploneered by Geisser (1964), (1956) and Dunsmore (1966) is described in section 2.2. Once again, only a brief sumerary of the approach will be given, and only one main result, useful for comparison with the results derived in this thesis, will be given A description of the approach is given in Press (1972). - A critical comparison of the Classicel and Predictive Bayesian approaches, as well as a concise description of tem that highlights the point of departure between the two is given by Attchison, Habbema and Kay (1977). This paper cones out stmongly in favour of the Bayesian approach, at least within the franowork of the "fixed effects" (Classical approach) or "Diffuse prior" (Predictive Bayesian approach) model, " It would be interesting to compare the relative afficacies of these two approacties within the randon effects framework.

2.1 Classical Discriminant Anelysis

Suppose we have a p-dingensfonal observation x known to have cove fros one of k populations $\pi_{1}, \pi_{2}, \ldots, \pi_{k} \ldots$ Anderson (1958) proves that
the Bays *ication procedure, that assigns x to one of the papulations if We What the expested loss frod misclassification is那imimised, is, under mild restrictions, an admissible procedure and that the class of Bayes procedures is minimal complete.

Assuming that the costs of misclassification from all k populations are equal, the Bayes procedure leads to the following simple classification rule:

Assign x to population π_{i} where,

$$
\begin{equation*}
q_{i} f_{f}(x)=\max _{j=1, \ldots, k} q_{j} f_{j}(x) \tag{2.1.1}
\end{equation*}
$$

where q_{j} is the prior probability that x cones frat π_{j} and $f_{j}(x)$ is the probability (density) function of x assuming that it has cone from x_{j}.

The case considered noost frequently in the isterature and in practice is that in which observations from π_{j} follow a multivariato nomal distribution with mean vector μ_{j} and common covariance matrix E . In this case,

$$
q_{j} f_{j}(x)=q_{j}(2 \pi)^{-p / 2}|z|^{-1} \exp \left(-\frac{1}{2}\left(x-\mu_{j}\right)^{\prime} \varepsilon^{-1}\left(x-\mu_{j}\right)\right\} \ldots
$$

Taking logarithms and simplifying, rule (2,1.1) becomes:
Assign x to population π_{i} where,

$$
\begin{equation*}
\left.\log _{\eta_{4}}-\frac{1}{2}\left(x-\mu_{i}\right)^{2} \varepsilon^{-\gamma}\left(x-\mu_{i}\right) \not \max _{j=1, \ldots, k}\left(\log q_{j}-\frac{1}{2}\left(x-\mu_{j}\right)\right\}_{i=1}^{\prime \hat{1}}\left(x-\mu_{j}\right)\right] \tag{2.1.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(x-\frac{1}{2}\left(\mu_{i}+\mu_{j}\right)\right)^{\prime} z^{-1}\left(\mu_{i}-\mu_{j}\right)>\log \frac{q_{j}}{q_{j}} \quad \forall j=1, \ldots, k_{i} \quad \frac{j \neq i}{i} \tag{2.1.3}
\end{equation*}
$$

8.

In the case where the prior probabilities q_{j} are all equal, rules (2.1.2) and (2.1.3) become, respectively:

Assign x to population π_{ξ} where,

$$
\begin{equation*}
\left.\left(x-\mu_{i}\right)^{\prime} \Sigma^{-1}\left(x-\mu_{1}\right)=\min _{j=1, \ldots, k}^{m+\mu_{j}}\right)^{\prime} \Sigma^{-1}\left(x-\mu_{j}\right) \tag{2.1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(x-\frac{1}{2}\left(\mu_{i}+\mu_{j}\right)\right)^{\prime} \varepsilon^{-1}\left(\mu_{i}-\mu_{j}\right)>0 \quad \forall j=1, \ldots, k ; j \neq i . \tag{2.1.5}
\end{equation*}
$$

Fron (2.1.4) it is clear that for equal prior probabilities the Bayes就 classification rule is aiso a minimum distance rule in that x is classified into that population π_{i} to which it is closest as measured by the Mahalanobis distance from x to π_{i} :

$$
\delta_{i}^{2}(x)=\left(x-\mu_{1}\right)^{4} \varepsilon^{-1}\left(x-\mu_{i}\right)
$$

The Case $k=2$

In this case rule $(2,1,3)$ becones:
Assign x to ty if:

$$
\begin{equation*}
u_{12}(x)=\left(x-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)\right)^{\prime} \varepsilon^{-1}\left(\mu_{1}-\mu_{2}\right) \times \log \frac{q_{2}}{q_{1}} \tag{2.1.6}
\end{equation*}
$$

and to π_{2} othernise.
To obtain the probabilities of misciassification under rule (2.1,6) note that if we let X be the randos vector corresponding to the observed x then, under the assumption that X is frome ${ }_{1}, u_{12}(X)$ has a univariave normal distribution with mean:
9.

$$
\begin{aligned}
E\left[u_{12}(x) \mid x_{1}\right] & =\frac{1}{2}\left(\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}\left(\mu_{1}-\mu_{9}\right) \\
& =\frac{1}{2} \delta_{12}^{2}
\end{aligned}
$$

where δ_{12}^{2} denotes the Nahalanobis distance between π_{1} and π_{2}, and varíance:

$$
\begin{aligned}
\operatorname{Var}\left[u_{12}(x) \mid \pi_{1}\right] & =E\left[\left(\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}\left(x-\mu_{1}\right)\left(x-\mu_{1}\right) \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)\right] \\
& =\left(\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right) \\
& =\delta_{12}^{2} .
\end{aligned}
$$

So, given that X is from $)_{1}$,

$$
\begin{equation*}
u_{12}(x) \sim N\left(\frac{1}{2} \delta_{12}^{2}, \delta_{12}^{2}\right) \tag{2.1.7}
\end{equation*}
$$

Where

$$
\sigma_{i 2}^{2}=\left(\mu_{1}-\mu_{2}\right)^{\prime} \tau^{-1}\left(\mu_{1}-\mu_{2}\right)
$$

Similarly, it can be show that if X is froa π_{2}, then

$$
\begin{equation*}
u_{12}(x) \sim N\left(-\frac{1}{2} \delta_{12}^{2}, \delta_{12}^{2}\right) \tag{2,1.8}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
P_{1} & =P\left[\text { Misclassify a random observation fron } \pi_{1}\right] \\
& =P\left[u_{12}(x)<c \mid v_{1}\right] \text { vhere } \approx=\log \frac{q_{1}}{q_{2}} \\
& =\rho\left(\frac{c-\frac{1}{2} \frac{\delta_{12}}{\delta_{12}}}{)}\right. \tag{2.1,9}
\end{align*}
$$

where $\%(\cdot)$ denotes the standard normal distribution function, and

$$
\begin{align*}
P_{2} & =P\left[M i s c l a s s i f y \text { a randon observation from } \pi_{2}\right] \\
& =P\left[u_{12}(x)>c \mid x_{2}\right] \\
& =0\left(-\frac{c+2 \delta_{12}^{2}}{\delta_{12}}\right) \tag{2.1.10}
\end{align*}
$$

For equal prior probabilities $q_{1}=q_{2}=\frac{1}{2}, c=0$ and $(2.1 .9)$ and (2.1.10) become:

$$
\begin{equation*}
P_{1}=P_{2}=\Phi\left(-\frac{1}{2} \delta_{12}\right) \tag{2.1.11}
\end{equation*}
$$

$k>2$ populations

This case has not received nearly as much attention as the tro population problem. Although there is not much increase in complexity at a conceptual level when moving frow the two-to the multiple population problem, the evaluation of misclassification probabllities becomes considerably more complicated. To see this, note that if we use the notation:

$$
\begin{equation*}
u_{i j}(x)=\left(x-\frac{1}{2}\left(u_{j}+\mu_{j}\right)\right)^{\prime} \Sigma^{-1}\left(\mu_{j}-u_{j i}\right)^{\prime} \tag{2.1.12}
\end{equation*}
$$

then classification rule (2.1.3) becones:
Assign x to population π_{i} where,

$$
\begin{align*}
u_{i j}(x) & >\log \frac{q_{j}}{q_{1}} \tag{2.1.13}\\
& \psi j \not j 1, \ldots, k ; \quad j x i
\end{align*}
$$

11.

Letting X be the random vector corresponding to X, and assuming that X is fros π_{i} we have, as in the case $k=2$ populations:

$$
\begin{aligned}
& E\left[u_{i j}(x) \mid \pi_{i}\right]=\frac{1}{2} \delta_{i j}^{2} \\
& \operatorname{Var}\left[\eta_{i j}(x) \mid x_{j}\right]=\delta_{i j}^{2}
\end{aligned}
$$

where $\delta_{i j}^{2}=\left(\mu_{i}-\mu_{j}\right) \Sigma^{-1}\left(\mu_{i}-\mu_{j}\right)$
and it is easy to show that

$$
\left.{\operatorname{cov}\left[u_{i j}\right.}(x), t_{i 2}(x) \mid \pi_{j}\right]=\delta_{i j \ell}
$$

where $\delta_{i j g}=\left(\mu_{i}-u_{j}\right)^{\prime} \Sigma^{-1}\left(\mu_{i}-\mu_{2}\right)$

Using the notation:

$$
u_{i j}=u_{i j}(x)
$$

and noting that the $k-1$ random variables $\left.u_{i j}, j=\right\}, \ldots, k ; j \neq 1$, are all linear functions of the norvally distributed random vector X fre have that, given $\chi<\pi_{i}$:

$$
u_{i}=\left(u_{i 1}, \ldots, u_{i j-1}, u_{i i+1}, \ldots, u_{i k}\right)^{\prime}
$$

has a $(k-1)$ - dimensional Norwal distribution with mean vector:

$$
\left.\frac{1}{2} \delta_{i}^{2}=\frac{1}{d}\left(\delta_{i 1}^{2}, \ldots, \delta_{i j-1}^{2}, \delta_{i j+1}^{2}, \ldots, \delta_{i k}^{2}\right)\right)_{i}^{\prime}
$$

and covarianco matrix:

: 12.

$$
\begin{equation*}
\Delta_{i}=\left(\delta_{i, j l}\right), j, \ell=1, \ldots, k_{i} j, \ell \neq i \tag{2.1,14}
\end{equation*}
$$

where we have used the notation:

$$
\delta_{i, j j}=\delta_{i j}^{2}
$$

Remari 2.1.1 If $k=1>p$ then ${\underset{\sim}{4}}_{i}$ will have a singular norasal distributfon with its mass concentrated on a p-disensional, subspace.

Therefore, the probability of correct classification, givan $X \in \pi_{i}$ is:

$$
\begin{equation*}
p\left[\bigcap_{\substack{j=1 \\ j=1}}^{k} u_{i j}>c_{j i} \mid \pi_{i}\right]=\int_{c_{1 i}}^{\infty} \cdots \cdots \int_{c_{k i}}^{\infty} f_{i}\left(y_{i}\right) \underset{\substack{j=1 \\ j \neq i}}{k} d u_{i j} \tag{2.1.15}
\end{equation*}
$$

where,

$$
c_{j i}=\log \frac{q_{j}}{q_{i}}=\log q_{j}-\log q_{i}
$$

and $f_{i}\left(g_{i}\right)$ is the density function of the $(k-1)$-dienensional Nornal distribution given in (2,1.14),

Lachenbruch (1973) has avaluated the integral in (2.1.15) when the prior probabiliftes q_{j} are all equal (so that the lower limits of integration are all zero) for two particular configurations of the mean vectors H_{1}. The two configurations that he considers are:
(a) the μ_{f} are collinear, with equal spacing of δ units between adjacent means,
and (b) the u_{i} are placed at the vertices of a rogular ($k-1$)-dimensional simplex with side of length 8 units.
For configuration (a), with μ_{1} and μ_{k} at the two extremes, (2.1.15) bifcomes
13.

$$
\begin{aligned}
P\left[\text { correct classification } \mid \pi_{i}\right] & =\phi\left(\frac{\delta}{2}\right) \sim \theta\left(-\frac{3}{2}\right) \text { for } i=2, \ldots, k-1 \\
& =\phi\left(\frac{\delta}{2}\right) \quad \text { for } i \pi 1 \text { and } k
\end{aligned}
$$

and for configuration (b) it becomes:

$$
\text { P[correct cici, Plication } \left.\mid \pi_{1}\right]=\int_{-\infty}^{\infty}\left[\frac{\Delta}{\sqrt{\delta^{2} / 2-x}}(\sqrt[\delta^{2} / 2]{k-1}]^{k}\left(\sqrt{\frac{x}{\delta^{2} / 2}}\right) d x\right.
$$

where $\epsilon(\cdot)$ is the standard normal density function.
For a general configuration of mean vectors, however, tables of the ($k-1$)-dimensional normal distribution (or an algorithm to compute them) are required to evaluate (2.1.15).

The following liar bounds on the minimum probability p_{0} of correct classification when the prior probabilities q_{j} are all equal, that are far easier to compute than (2.1.15), have been given by Cacoullos (1973):

$$
\begin{equation*}
P_{0} \geqslant G_{k-1}\left(\frac{\delta^{2}}{4}\right) \tag{2.1.16}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{0} \geq 1-(k-1) \quad\left(-\frac{8}{2}\right) \tag{2.1.17}
\end{equation*}
$$

where,
and $\quad \delta^{2}=\min _{V 1<j} \delta_{i j}^{2}$ is the minimum Nahalanobis distance between any two of the k populations.
For $k \approx 3$, $2.1,17$), which is derived using Bonferroni's first inequality, gives a stronger bound than (2.1.16), whereas the opposite
14.
is generally true for $k>3$.

2.7.1 Unknown Parameters

Thus far it has been assumed that all the parameters in the populations $\pi_{i},\{, \ldots, k$, are known. In most practical situations, however, these are not known, and have to be estimated from a "training sample" consisting of n_{j} observations $x_{i j}, j=1, \ldots, n_{i}$, krown to have cone from π_{i}, for each of the k populaticas $\pi_{i}, f=1, \ldots, k$.
inderson (1951) proposed that the unknown paraneters $\mu_{i},\{=1, \ldots, k$ and z in $(2.1 .3)$ be replaced by their maximim likelihood astimators, the sample means,

$$
x_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} x_{i j}
$$

and pooted sample covariance eatrix, respectively

$$
s=\frac{1}{v} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-x_{i .}\right)\left\langle x_{i j}-x_{i_{*}}\right\rangle^{\prime}
$$

where $v=\sum_{i=1}^{k}\left(n_{i}-1\right)$. This gives the sample-based classi*ication rule: Assign x to population π_{i} where,
(6) $\quad \log a_{j}-\frac{1}{2}\left(x-x_{j_{e}} y s^{-1}\left(x-x_{f_{6}}\right)=\ln _{j=1, \ldots, k}^{\operatorname{nax}}\left\{\log q_{j}-\frac{1}{2}\left(x-x_{j_{4}}\right) s^{-1}\left(x-x_{j_{4}}\right)\right\}\right.$
or

$$
\begin{equation*}
v_{i j}=v_{i f}(x)=\left\langle x-\frac{1}{2}\left(x_{i,}+x_{j,}\right)\right\rangle^{-1}\left(x_{y_{2}},-x_{j,}\right)>\log \frac{q_{j}}{q_{i}} \tag{2.1.19}
\end{equation*}
$$

$v j=1, \ldots .{ }^{k} ; j w j$.

This procedure of "piugging in" the sample estimates of the
15.
unknown parameters into the optimal Bayes classification rule (2.1.2) or (2.1.3) is essentially an Enpirical Bayes procedure; see, for example, Maritz (1970). Aitchison, Habbema and Kay (1977) refer to it as an "estimative" method, in contrast to the "predictive" method used in the "pure" Bayesfan approach of Gefsser (1954) that will be described in section 2.2.

Anderson (1958) justifies the use of the sample-based discriminant function $V_{i f}$ defined in (2, f) in the two-population case by pointing out that it can be written as.

$$
v_{12}=x^{\prime} s^{-1}\left(x_{1},-x_{2}\right)-\frac{1}{2}\left(x_{1} .+x_{2}\right)^{\prime} s^{-1}\left(x_{1} .^{-x_{2}}\right)
$$

and that the first term ("Fisher's discriminant function") is the linear function of x that has the greatest "between group" variance relative to the "within group" variance. He also appeeils to the fact that "it seems intuftively reasonable".

Geisser (1967) adds further justification by pointing out, in the two ~ population case, that the posterior mean of the popalation discriminant function u_{12}, defined in (2.1.6), givan the training saaiple and assuming a noninformative prior distribution for μ_{1}, μ_{2} and $\Sigma_{3}, 1 s$, for fixed x :
8

$$
\begin{equation*}
E\left[u_{12}{ }^{j x}, T S\right]=\frac{1}{2} p\left(n_{2}^{-1}-n_{1}^{-1}\right)+v_{12} \tag{2.1.20}
\end{equation*}
$$

where TS denotes the training sample $\left\{x_{i j} ; \quad j=1_{2}, \ldots, n_{i} ; i=1,2\right)$.
Expression (2.1.20) derives from the fact that, under the abovesentioned prior assumptions, the posterior moan of

$$
\delta_{i}^{2}(x)=\left(x-\mu_{1}\right)^{\prime} \Sigma^{-1}\left(x-\mu_{1}\right)
$$

16.

is:

$$
\begin{equation*}
E\left[\delta_{i}^{2}(x) \mid x, T S\right]=p n_{i}^{-1}+d_{i}^{2}(x) \tag{̌.1.21}
\end{equation*}
$$

where

$$
d_{i}^{2}(x)=\left(x-x_{f_{1}}\right) \cdot s^{-1}\left(x-x_{i_{1}}\right)
$$

This result is clearly not confined to the two-population case, and the bias in $V_{i j}$ and $d_{1}^{2}(x)$ evident fron (2.1.20) and (2.1.21) raspectively, soy be fncorporated into classification rules (2.1.18) and (2.1.19) by substituting $\log 4_{j}-\frac{1}{2} p n_{j}^{-1}$ for $\log q_{j}, j=1, \ldots, k$, in these two rules.

Renark 2.2.1 In the situation shere the training samples froa the difforent populations all have the same size,

$$
\text { i.e. } \left.\quad n_{j}=n, \quad j=\right\}, \ldots, k
$$

the bias $\frac{1}{2} p\left(n_{j}^{-1}-n_{j}^{-1}\right)$ in $V_{i j}$ vanishes, and that in $d_{i}^{2}(x)$ is a constant, $p n^{-1}$, and therefore does not affect rule (2,1,18).

As a final justification for using sample-based rules (2.1.18) and (2.1.19) G1ick (1972) proves that, under very general conditions, sample-based classification rules are esymptotically optinal in the sense that they converge (almost surely) to their corresponding populationsbased optimal rules (2,1.1).
$k=2$ populations
This is the case that has received the most attention in the literature. Conditional on x_{1}, x_{2}, and $S_{\text {s }}$ and letting X be the rondon
vector corresponding to $x, V=V_{12}(X)$ has a normal distribution with mean

$$
E\left[v \mid x_{1}, x_{2}, s ; x \in \pi_{1}\right]=\left(u_{4}, \frac{1}{2}\left(x_{1},+x_{2},\right)\right)^{\prime-1}\left(x_{1},-x_{2}\right)
$$

and variance

$$
\operatorname{Var}\left[v \mid x_{1}, x_{2}, s ; x_{c} \pi_{1}\right]=\left(x_{1},-x_{2}\right)^{\prime} s^{-1} \Sigma s^{-1}\left(x_{1},-x_{2}\right)
$$

Using rule (2.1.19) with $k=2$ and considering the case $q_{1}=q_{2}=\frac{1}{2}$, 1.ê.: मissign x to π_{1} if

$$
\begin{equation*}
V>0 \tag{2.1.22}
\end{equation*}
$$

and to π_{2}, otherrise,
and arguing in a way similar to that leading to (2.1.11) we obtain the jfollowing expression for the conditional probability thes a randonly chosen nember of π_{i} will be mistclassified:
if

$$
\begin{align*}
P_{i}^{C} & =P\left[m f s c l a s s i f i c a t i o n i x_{1}, x_{2}, s ; x_{\in} \pi_{i}\right] \\
& =0\binom{(-1)^{1}\left(\mu_{1}-\frac{1}{2}\left(x_{1},+x_{2}\right)\right)^{\prime} s^{-1}\left(x_{1},-x_{2}\right)}{\left.\int\left(x_{1}, * x_{2}\right)^{\prime} s^{-1} g s^{-1}\left(x_{1},-x_{2} .\right)\right\}}\{=1,2 \tag{2.7.23}
\end{align*}
$$

John (1961), Hills (1966), Lachenbruch and Wickey (1958), Dunn (1971) Sorum (1972a), McLachlan (1974a, b, c, 1975, 1976a, b) have studied the conditional error rates $(2.1,23)$ (termed the "ectual" error rata by Hills),

A simple estimator of $p_{i}^{c}, j=1,2$, is obtained by replacing μ_{i} and \& respectively by x_{f}, and S in (2,1.23), This yields:

$$
\begin{equation*}
\hat{p}_{i}^{c}=\hat{p}_{2}^{c}=\$\left(-\frac{d}{2}\right) \tag{2.1.24}
\end{equation*}
$$

where $d^{2}=d_{12}^{2}=\left(x_{1} .-x_{2}\right)^{\prime} s^{-1}\left(x_{1},-x_{2}.\right)$

Glick (1972) proves that this "apparent error-rate" $\Psi\left(-\frac{d}{2}\right)$ convergas uniformiy to the "optimum" error rate $0\left(-\frac{6}{2}\right)$ given in (2.1.11) as the sample sizes n_{1} and n_{2} increase.

However, for moderate sampla sizes (2.7.26) may be badly bfased and give wuch too fayourable an fippression of the probability of error. Hflls (1966) proves that:

$$
\mathrm{E}\left[\Phi\left(-\frac{d}{2}\right)\right]<\Phi\left(-\frac{8}{2}\right)<E\left[P_{1}^{C_{1}}\right]
$$

and Dunn and Varady (1956), Lachenbruch and Mickey (1958) and Dunn (1971) show empirically that this bias may indeed be substantial for moderste sample sizes.

NeLachlan ($\oint 974 \mathrm{c}$) gives the following estimator of 9_{1}^{c}, with bias of order 3 with respect to $\left(n_{1}^{-1}, n_{2}^{-1}, v^{-1}\right)$ where $v=n_{1}+n_{2}-2$:

$$
\left.\hat{p}_{1}^{c}=\phi\left(-\frac{\phi}{2}\right)+\phi\left(\frac{d}{2}\right)<\frac{p-1}{n_{1}^{d}}+\frac{d}{32 v}\left(4(4 p-1)-d^{2}\right)\right)+0_{2}
$$

(O_{2} denotes the tert of order 2 alth respect to $\left(n_{1}^{-1}, n_{2}^{-1}, v^{-1}\right)$; this is given explicitly in MeLachlan (1975).)
i
While the conditional error rates are of interest in assessing; the performance of a particular discriminant function, the unconditional or expected error rates, obtisined by considering x_{1}, x_{2}, and S as random variables, are more appropriate when considering the expected performance of the sample discriminant function V when based on randomly chosen samples of sizes n_{1} and n_{2} from n_{1} and π_{2}, respectively,
19.

Several authors, inciuding akamoto \{1963, 1968) Hills (1966), Lachenbruch (1967, 1968), Lachenbruch and Nickey (1968), Dunn (1971), Sorum (1972b) and Anderson (1973a, 1973b) have studied th. expected error rate when the sample-based classification rule (2.1.22) is used.

Okanoto (1963) obtafned an asymptotic expansion for the distribution of the sariple discriminant function V. Applying this to the classification rule (2.1.22) and assuming equal-sized training samples $n_{1} \approx n_{2}=n$, yields the following expression, to terms of order n^{-2}, for the expected probability of sisclassification for a randomly chosen nember of τ_{1};

$$
\begin{equation*}
\left.P_{1}^{e}=P[m i s c l a s s i=i t) \text { tion } \mid \pi_{1}\right]=\phi\left(-\frac{\delta}{2}\right)+\phi\left(\frac{\delta}{2}\right) \frac{1}{v}\left(\frac{p-1}{\delta}+\frac{p}{4} \delta\right)+0\left(n^{-2}\right) \tag{2.1.26}
\end{equation*}
$$

(Okamoto also gives a (very complicated) expression for the tenns of order n^{-2}.)

Anderson (1973a, 1973b) derives an alternative asymptotic expansion for V in the "studentized" fore which, for $n_{1}=n_{2}=n$ has the form:

$$
\begin{equation*}
p\left[\left.\frac{V-\frac{1}{2} d^{2}}{d}-\leq y \right\rvert\, r_{1}\right]=\varphi(y)+\phi(y) \frac{1}{v}\left(\frac{2(p-1)}{6}-\left(p+\frac{1}{4}\right) y+\frac{1}{4} y^{3}\right)+0\left(n^{-2}\right) \tag{2.7.27}
\end{equation*}
$$

Expression (2.1.27) is useful when one wishes to choose the cut-off point for V for classifying x irto π_{1} so as to achieve a given probabi11ty of misclassification. (Anderson (1973b), McLachlan(1977))

Lachenbruch and Mickey (1968) use a símilation study to compare the performances of a nurber of estimators of p_{i}^{C} and p_{i}^{e} inciuding Okamoto's. expansion with two different estimators for δ, and a distri-hution-free method proposed by lachenbruch (1967) based on a sample reuse approach,
20.

$k>2$ Popuiations

As in the case where the parameters are known, the multiple population problem has received far less attention than the two-population probTem.

McKay (1971) has considered the problem of variabie selection within the context of multiple population discriminant analysis, and Michaelis (1973) has performed simulation experiments to assess the error rate of the classification rule $(2,1,19)$ based on the linear discriminant function $V_{\text {ij }}$ in some multiple population situations. 61ick (1972) proves that the "apparent non-error rate", obtained by replacing the paraneters in (2.1.15) by sample-based (maximun likel fhood) estinators, converges uniforaly to the "optimum" probability of correct classification as the sample sizes incroase.

Assuming equal prior probabilities $q_{i}=1 / k,\{=1, \ldots, k$ for the k populations, classification rule (2.1.19) becomes:

Assign x to π_{i} where,

$$
d_{j}^{2}(x)=\min _{j=1, \ldots, k} d_{j}^{2}(x)
$$

whare

$$
\begin{equation*}
d_{j}^{2}(x)=\left(x-x_{j_{2}}\right)^{\prime} s^{-2}\left(x-x_{j}\right) \tag{2.1.28}
\end{equation*}
$$

If $X \in \pi_{i}$, letting X be tha random variable corresponding to X and considering x_{i} and S as random variables,

$$
\begin{equation*}
v^{-1} n_{i}\left(n_{1}+1\right)^{-1} d_{i}^{2}(x) \sim f_{p, v-p+1} \tag{2,1,25}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{-1} n_{j}\left(n_{j}+1\right)^{-1}\left\langle d_{j}^{2}(x) \sim f_{p, v-p+1}\left(\lambda_{i j}\right)\right. \tag{2.1.30}
\end{equation*}
$$

where,

- $f_{p, v-p+1}$ denotes the cantral, unnormed f-distribution with p and $v-p+1$ degrees of freedom,
$f_{p, v-p+1}\left(\lambda_{i j}\right)$ denotes the corresponding noncentral distribution with noncentrality parameter

$$
\begin{aligned}
& \lambda_{1 j}=n_{j}\left(n_{j}+1\right)^{-1} \delta_{i j}^{2} \\
& \text { and } \left.\quad \delta_{i j}^{2}=\left(\mu_{j}-\mu_{j}\right)\right)^{-1}\left(\mu_{i}-\mu_{j}\right) .
\end{aligned}
$$

(See, for example, Giri ${ }_{\text {〔 197 }} 1977$) chapter 7),
So the probability of correct classification using rule (2.1.28) and given $\mathrm{x} \in \tau_{i}$ and be written:

$$
\begin{equation*}
P\left[\text { correct classification } \mid x \in \pi_{i}\right]=P\left[z_{i}<\underset{\substack{j=1 \\ j \neq i}}{\sin }, \ldots k z_{j}\right] \tag{2.1.31}
\end{equation*}
$$

where,

$$
\begin{aligned}
& v v^{-1} n_{j}\left(n_{i}+1\right)^{-1} z_{i} \sim f_{p, v-p+1} \\
& v^{-1} n_{j}\left(n_{j}+1\right)^{-1} z_{j} \sim f_{p, v-p+1}\left(\lambda_{i j}\right) \quad j v 1, \ldots, k ; \quad j=1
\end{aligned}
$$

and the $z_{j}, j=1, \ldots, k$ are not independent random variabies, due to the fact that X and S occur in all the $d_{j}^{2}(X), j=1, \ldots, k$.

To evaluate the probability cn the right-hand side of (2.1.31) requires the joint distrioution of k correlated random variables, $k-1$ of which have noncentral f marginal distributions; the last one having a central f marginal distribution. This problem has received little, If any, attention to date.

Cacoultos (1973) givas the fallowing laver bound on the einimum probability P_{0} of correct classification using rule (2.1.28):

$$
\begin{equation*}
P_{0} \geq \sum_{i=0}^{k} P\left[z_{i} \leq(v-p+1) n_{i}(16 p v)^{-1} \delta^{2}\right]-n k \tag{2,1.32}
\end{equation*}
$$

22.

where,
z_{i} denotes a (normed) F - random variable with p and $(v-p+1)$ degrees of freedom, $\delta^{2}=\min _{\forall i<j} \delta_{i j}^{2}$,
and $n_{0}=1$,

2.2 The Predictive Bayesian Approsich

Given the training sample $T S=\left\{x_{i j} ; S=1, \ldots, n_{i} ; \quad 1=1, \ldots, k\right\}$ from k populations $\pi_{i}, f=1, \ldots, k$ and an otservation x of unknom origin, the Predictive Bayesian approach consists in evaluating the posterior probability, given TS and the underlying model together with any known parameters, that x belongs to π_{r} for $r \times 1$ to k, and then assigning x to that population for which this probability is the greatest.

Nore specifically, suppose that each $\pi_{p}, r=1, \ldots, k$ is speciffed by a probability density function $f\left(\cdot \mid \theta_{r}, \psi_{r}\right)$, where 0_{r} is the set of unknown parameters and ψ_{r} the set of known parameters (if any), Let
 parameters, respectively, in the k populations. Denoting the joint prior distribution of 0 given ψ by $g(\theta \mid \hat{\phi})$, then the predictive density of x given the training sample γs, $\%$ and assuming that x comes fros π_{r}, is:

$$
\begin{equation*}
f\left(x \mid T S, \psi, \pi_{r}\right)=\int_{0} f\left(x \mid \theta_{r}, \phi_{r}\right) P(0 \mid T S, \phi) d \theta \tag{2.2.1}
\end{equation*}
$$

where $\mathrm{P}(\hat{\theta} \mid \mathrm{TS}, \hat{\phi})$ is the posterior density of 0 given the training sample and ψ, and is given byt

$$
\begin{equation*}
P(\theta \mid T S, \psi) \propto \lambda(T S \mid \theta, \psi) g(\theta \mid \psi) \tag{2.2.2}
\end{equation*}
$$

Where $\ell(T S \mid \theta, \psi)$ is the joint likelihood of the training sample.
When the x_{15} in the training sample are rendon observations then e(TS $j \theta$, 申) becomes:

Finally, given the set $q=\left\{q_{i}, i=1, \ldots, k\right\}$ of prior probabilities that x belongs to $\pi_{i}, f=1, \ldots, k$, we obtain the posterior probability that x belongs to π_{r} :

$$
\begin{equation*}
P\left[x \in \pi_{r} \mid T S, \psi ; q\right] \propto q_{r} f\left(x \mid T S, \psi, \pi_{r}\right) \tag{2,2,4}
\end{equation*}
$$

where the constant of proportionality is obtained from:

$$
\begin{equation*}
\sum_{r=1}^{k} P\left[x \in \pi_{r} \mid T S, \psi, q\right]=1 \tag{2.2.5}
\end{equation*}
$$

For the situation, considered in this thesis, where all the parameters are unknown a priori, all references to ϕ_{i} and ψ are deleted fron formulae $\{2.2 .1\}$ to $(2,2.5)$.

Geisser (1964, 1966) givas formulae for the posterior probability given by $(2,2,4)$ for the case where the $\pi_{p}, 1=1, \ldots, k$ are each characterised by a univariate or multivariate nomal distribution and assuning a noninformative prior distribution for the unknown paraneters . Different formulae are given for each of the various possible assumptions about the parameters of these distributions, such as whether they are known or unknown and whether or not sone of thes are aqual for all k populations.

For the case of interest in this thesis, viz, unknown and different rean vectors, and unknown but common covariance watrix for the k populations, Gefsser derives the following formulae for the posterior probabt -

1ity that x belongs to π_{r}, given the trainipg sample $T S$. For the univariate case:

$$
\begin{equation*}
P\left[x=\pi_{r} \mid T S, q\right]=4_{r}\left(\frac{n_{r}}{n_{r}+i}\right)^{\frac{1}{2}}\left\{1+\frac{n_{r}\left(x_{r}-x\right)^{2}}{\left(n_{r}+1\right)(N-k) s^{2}}\right\}^{-\frac{1}{2}(k-k+1)} \tag{2.2.6}
\end{equation*}
$$

where,

$$
\begin{aligned}
& s^{2} \text { is the pooled sample variance } \\
& \text { and } N=\sum_{i=1}^{k} n_{i}
\end{aligned}
$$

and for the multivariate (p-dimensional) case:

$$
\begin{equation*}
P\left[x \in \pi_{r}[T S, q] \& q_{r}\left(\frac{n_{r}}{n_{r}+T}\right)^{\frac{1 p}{2 p}}\left\{1+\frac{n_{r}\left(x_{r},-x\right)^{\prime} s^{-1}\left(x_{r},-x\right)}{\left(n_{r}+1\right)(N-k)}\right\}^{-\frac{1}{2}(N-k+1)}\right. \tag{2.2.7}
\end{equation*}
$$

whare S is the pooled sample covariance matrix.

Remark 2.2.1 Factors of proportionaility that do not affect the probabilities have been oantted from expressions $(2,2,6)$ and $(2,2,7)$.
25.

Chapter 3 Distribution Theory associated with Classical Discriminant Analysis under the Randolm Effects'Model

In this chapter we consider some of the distributions that arise when applying the randof effects model to the classical theory of discriminant analysis.

As mentioned earlier, our concern is to investigate the characteristics of discriminant analysis undar the random effects model. In the classical approach this involves assessing the perfornance of the classification rules derived from this approach, as described in chapter 2, when applied to problems where the k populations have emanated from a random effects model. Thus we are controned with the perforisance of future classification problens; once the populations have been chosen the probiem becomes a more conventional one of classifying observations of unknown origin into one of k fixed populations.

The assumption underlying the rendom effects model is that the k populations in any particular application have, in fact, been drown from the same parent population. If wa know the paraveters of the parent distribution then we should be able to assess the expected perforsance of any future classification problem involving k populations randonly chosen from it. 〈Cicarly, k way vary from ane application to the next).

As mentioned in chapter 1, we assume that observations from popuTation i have a $H_{p}\left(\mu_{i}, \Sigma\right)$ distribution and that different μ_{1} are indeNowident realizations from a $N_{p}(\xi, T)$ distribution. Intuitively speaking, if T is in some sense large compared to ε, then we vould expect discriminant analysis, to perform vell, If not, then we cannot expect vary reliable classification.

Hore specifically, if T is large compared to E , then we would expect that the piahalanobis distance:
26.

$$
\begin{equation*}
\delta_{i j}^{2}=\left(\mu_{j}-\mu_{j}\right)^{\prime} \Sigma^{-1}\left(\mu_{j}-\mu_{j}\right) \tag{3.1}
\end{equation*}
$$

between any two randomly selected populations π_{i} and π_{3} would be large. As pointed out by Das Gupta (1972), the probabilities of correct classification under a large class of classification rules (including those considerad here), based either on known or estimated parameters, are monotinnic increasing functions of the $\delta_{i j}^{2}$, and so we woutd expect rellable classification under these circuastances.

This fact is also evident from the various expressions involving $\delta_{i j}^{2}$ for the probabilities of mis - and correct classification under the classical approach, as given in chapter 2 .

Under the randon effects modtl $\delta_{i j}^{2}$ is a random variable, and it is clear from the preceding discussion that its distribution is of central isportance in understanding the characteristics of discriminant analysis under this wodel. The distribution of $\delta_{i j j}^{2}$ is therefore considered in section 3.1.

Another distance teasure appearing in the classification rules described in chapter 2 is the Nahalanobis distance between a new observation x and the $i^{\text {th }}$ population π_{i} :

$$
\begin{equation*}
\delta_{1}^{2}(x)=\left(x-\mu_{1}\right)^{\prime} \varepsilon^{-1}\left(x-\mu_{1}\right) \tag{3.2}
\end{equation*}
$$

As mentioned there, the Bayesian classification procedure, when the parameters are known and prior probabilities are equal, is equivalent to classifying x into that population π_{i} to which it is clasest in terms of $\delta_{1}^{2}(x)$. Although $\delta_{1}^{2}(x)$ does not appear in any of the formulae for the probabilities of mis-and correct classification, its distribution under the random effects model is of interast because of the insight it provides into the relationship between the parabeter values
and the likelihood of correct classification. The distribution of $\delta_{i}^{2}\langle x)$, where X is the random variable corresponding to x, is considered in Section 3.2.

The sample equivalents of δ_{ij}^{2} and $\delta_{\mathrm{f}}^{2}(x)$ are d_{ij}^{2} and $d_{i}^{2}(x)$, respectively, where:

$$
\begin{equation*}
d_{i j}^{2}=\left(x_{i},-x_{j}\right)^{\prime} s^{-1}\left(x_{i},-x_{j}\right) \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{i}^{2}(x)=\left(x-x_{1}\right)^{\prime} s^{-1}\left(x-x_{1}\right) \tag{3.4}
\end{equation*}
$$

These two quantities are important in the classical approach to discriminant analysis when the paramaters Σ and $\mu_{i}, i=1, \ldots, k$ are unknown and are estimated from traibing samples. Specifically, $d_{i j}^{2}$ appears in some of the expressions in chapter 2 for the probability of misclassification (conditional and unconditional) when the "plug-in" classification rules are used. In turn, these "plug-in" ruies, when the prior probabilities are aqual, are equivalent to a minisum distance classification rute in terms of the $d_{i}^{2}(x)$.

Under the random effects model both $d_{i j}^{2}$ and $d_{j}^{2}(x)$ are random variables, firstly because of their sampling distributions, and secondly because the underlying parameters $\mu_{i},\{=1, \ldots, k$ in these sampling distributions are themseives randoa variables. Thair distributions are considered in section 3,3.

3.1 The Distribution of $\delta_{i j}^{2}$

We now investigate the distribution of $\delta_{i j}^{2}=\left(\mu_{i}-\mu_{j}\right)^{\prime} r^{\prime-1}\left(\mu_{i}-\mu_{j}\right)$ under the random effects model;
28.
i.e. where μ_{i} and μ_{j} are independent realizations from a $u_{p}(\xi, T)$ distribution.

Because μ_{i} and μ_{j} are assuted to have bein randomly iglected from all possible combinations represented by the pair of indices ($\left.4, j_{1}\right)_{2}$, $j=1, \ldots, k_{i} 1 * j$, the distribution of $\delta_{i, f}^{2} k i 11$ not depend on the values of i and 5 . In this section, therefore, the subscript if will be onftted and the notation $\delta^{2}=\delta_{i j}^{2}$ will be used.

It will be assumed that Σ is a symetric positive definite aatrix and that T is a symetiric positive definite or senidefinite matrix of rank $r \leq p$. The case where Σ is not of full rank will be given brief consideration.

The wain result of this section is given in Theorem 3.1.1, in which the distribution of δ^{2} is expressed as a sum of weighted chisquared randon variables." The remainder of the section will be devoted to 7 properties of this distribution, and in particular to obtaining expressions for the density $=$ and distribution functions of δ^{2}.

Theoren 3.1.1

Let $\lambda_{1} \geq \lambda_{2}$ ミ., , $\geq \lambda_{r}>0$ be the $r(s p)$ nonzero eignnvalues of $T 2^{-1}$. Then δ^{2} is distributed like:

$$
2 \sum_{i=1}^{r} \lambda_{i} v_{i}
$$

Where the v_{i} are independent x_{1}^{2} random variables.

Remark 3.1.1 This theores is an is 中diate consequance of a rasult given by 30x (1954), a proof bf which is given in Johnson and Kotz (19700), pages 150-1. See also Ruben (1962). However, because of its importance in this thesis, another proof, slightly difforent from those mentioned
above, is given here.

Proof: Let $X=\mu_{i}-\mu_{j}$. Then $X \sim N_{p}(0,2 T)$, Let $T=T_{1} T_{1}$ where T_{1} is the $\langle\beta \times r\rangle$ matrix whose colpans are the r orthonormal eigenvectors corresponding to the r nonzero eigenvaluos of T multiplied by the square root of their respective eigenvalues, and $1 e t X=\sqrt{2} T_{1} Z$.

Then $Z \sim \eta_{r}\left(0, I_{r}\right)$, and

$$
\delta^{2}=X^{\prime} \Sigma^{-1} X=2 Z^{\prime} T_{1}^{\prime} \Sigma^{-1} T_{1} Z=2 Z^{\prime} V Z
$$

where $V=T_{1}^{\prime} \Sigma^{-1} T_{1}$.

We can express the $(r \times r)$ symmetric matrix. V in the canonical form:

$$
V=F_{A}^{\prime} P^{\prime}
$$

where A is the diagonal matrix whose diagonal elements are the eigenvalues of γ, and P is the orthogonal matrix whose colunns are the corresponding orthonormal eigenveciors of V.

Noting that:
eigs $\{V\}=$ eigs $\left\{T_{1}^{\prime} \Sigma^{-1} T_{1}\right\}=$ eigs $\left\{T_{1} T_{1}^{1} \Sigma^{-1}\right\}=$ eigs $\left\{T \Sigma^{-1}\right\}$ we have:

$$
6^{2}=2 Z^{\prime} V Z=2 Z^{\prime} P A P^{\prime} Z=2 Y^{\prime} A Y=2 \sum_{i=1}^{r} \lambda_{i} y_{j}^{\gamma}
$$

there:

$$
Y=\left(y_{1}, \ldots, y_{r}\right)^{\prime}=P^{\prime} 2 \sim N_{r}(0, y)
$$

and $\left\{\lambda_{1} ;\{s\}, \ldots, r\right\}$ are the r nonzero efgenvalues of γ^{-1}. The result now Follow from the fact that $v_{i}=y_{i}^{2}, i=1, \ldots, r$, are independently and identically distributed x_{1}^{2} ransug variables.

Reark 3.1.2 The result still holds if Σ is not of full raits, and Σ^{-1} denotes the Moore-Penroso unverse of Σ. (See for example, Gra/bitio (1976),) In this case the qumation goes to r_{1} where $r_{1}=$ rank $\left(T_{2}^{-1}\right)$,

As an frmediate result of Thoorem 3.1.1, ve obtain the following
expression for the cumulants of 6^{2} :

$$
\begin{equation*}
k_{s}=2^{2 s-1}(s-1)!\sum_{i=1}^{r} \lambda_{i}^{s} \quad s=1,2, \ldots \tag{3.1,1}
\end{equation*}
$$

In particular, the mand variance of δ^{2} are, respectively:

$$
\begin{equation*}
E\left[\delta^{2}\right]=K_{1}=2 \sum_{i=1}^{r} \lambda_{i}=2 \operatorname{Tr} \pi \Sigma^{-1} \tag{3.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{var}\left[\delta^{2}\right]=K_{2}=8 \sum_{i=1}^{r} \lambda_{i}^{2}=8 \operatorname{Tr}\left(T \Sigma^{-1}\right)^{2} \tag{3.1.3}
\end{equation*}
$$

The distribution of the sum of weighted, independent chi-squared . random variables has received considerable attention in the 1iterature, and infinite series expansions for the density and distribution functions have been obtained in the following three forms:
(1) as Power saries
(ii) as Laguerre series
and (14i) as mixtures of chi-squared distributions.
Good reviens of this work have been given by Kotz, Johnson and Boyd (1967a) (with derivations) and by Johnson and Kotz (1970b) chapter 29. In the special case whele the eigenvalues are all of even multiplicity, finite series expansions have been obtained. (Rotbins (1948) and Sox (1954)). A recent article on the power series expansion has been written by Davis (1977),

The simplest approximation to the distribution of the sum of woighted; independent chi-squared random variables is the scaled chisquared approximation proposed by Sătterthwaita (Box, 1954). Other, more accurate approximations have bean considered by various authors,

31.

a recent article on the subject being by Solowon and Stephens (1977). Hinever, in view of the satisfactory computational experience with the evaluation of the exact distribution as a wixture of chi-squared distributions as reportad later in this section, these approxisathons were not considered in this thesis.

Robbins and Pitwan (1949) derive the distribution of the sum of weighted, independent chi-squared randon variables as an infinite cîisquared series. Letting

$$
\begin{equation*}
\gamma=\sum_{i=1}^{r} \alpha_{i} v_{i}=\alpha_{r} \sum_{i \neq 1}^{r} a_{i} v_{i} \tag{3.1.4}
\end{equation*}
$$

where,

$$
\begin{aligned}
a_{1} & \propto \alpha_{2} \geq \ldots \geq \alpha_{r}>0, \\
a_{i} & =\alpha_{i} / \alpha_{r}, \quad i=1, \ldots, r, \quad a_{r}=1 \\
\text { and } \quad v_{i} & \sim x_{v_{i}}^{2} \text { independentiy, } i=1, \ldots, r,
\end{aligned}
$$

these authors show that the distribution function of Y can be expressed as:

$$
\begin{equation*}
F_{Y}(y)=\sum_{j=0}^{\infty} c_{j}^{*} G_{v+2 j}\left(y / a_{r}\right) \tag{3.1.5}
\end{equation*}
$$

where,
$G_{v+2 j}(\cdot)$ is the $x_{v+2 j}^{2}$ distribution function, $v=\sum_{i=1}^{r} v_{i}$ and the constants c_{j}^{*} are defined by the identity:

$$
\begin{equation*}
\prod_{i=1}^{r-1} a_{i}^{-\frac{1}{k} v_{i}}\left(1-\left(1-a_{i}^{-1}\right) z\right)^{-\frac{1}{k} v_{i}}=\sum_{j=0}^{\infty} c_{j}^{*} z^{j} \tag{3.1.6}
\end{equation*}
$$

They also provide convenient recursion formulae whersby the

32.

c_{j}^{*} may be computed.

- Ruben (1960), considering the case where $v_{i}=1, i=1, \ldots, r$ (the case of interest hare) derived the following generalization of (3.1.5):

$$
\begin{equation*}
F_{\gamma}(y)=\sum_{j=0}^{\infty} c_{j} G_{r+2 j}(y / \beta) \tag{3.1.7}
\end{equation*}
$$

where β is an arbitrary positive oonstant and the constants c_{j}, as in (3.7. 5), are defined by the identity:

$$
\begin{equation*}
{\underset{i=1}{r}}_{i=1}^{r}\left(\beta / \alpha_{i}\right)^{\frac{1}{2}}\left(1-\left(1-\beta / \alpha_{i}\right) z\right)^{-\frac{1}{2}}=\sum_{j=0}^{\infty} c_{j} z^{j} \tag{3.1.8}
\end{equation*}
$$

The following recursion formulae for the c_{j} are also given:

$$
\begin{aligned}
& c_{0}=\underset{i=1}{\frac{r}{i}}\left\langle\beta / \alpha_{i}\right)^{\frac{1}{2}} \\
& c_{z}=\frac{1}{2 j} \sum_{i=0}^{j-i} h_{j-i} c_{i}, \quad j \geq 1
\end{aligned}
$$

$$
\begin{equation*}
\text { where } \quad h_{j}=\sum_{i=1}^{r}\left(1-B / \alpha_{i}\right)^{j} \tag{3.1.9}
\end{equation*}
$$

Ruben (1960) proves that for any $\beta>0$ the serias (3,1,7) is unforaty convergent in any bounded y-interval of $y>0$, and uniformly convergent for sil $y>0$ if B is chosen so that $\underset{j=1, \ldots, p r}{ }\left|1-\beta / \alpha_{j}\right|<$. He also suggests that the value:

$$
\begin{equation*}
\beta=2 a_{1} \alpha_{p} /\left(\alpha_{1}+\alpha_{p}\right) \tag{3.1.10}
\end{equation*}
$$

may be close to the optimal choice of β as regands the rate of convergence of the infinite series (3.1.7).

Remark 3.1.3 For (3.1.7) to be a true mixture distribution the c_{j} must be nonnegative and $\sum_{j=0}^{\infty} c_{j}=1$. Ruben (1960) shows that, for $0<\beta \leq a_{r}$ these criteria are satisfied, so that (3.1.5), is a nixture distribution. (Here $\bar{\beta}=a_{r}$). For the choice of β in $\langle 3.1,10\rangle,(3.1 .7)$ may or may not be a mixture distribution, depending on the actual values of, the α_{i}, If $\beta>r\left(\sum_{i=1}^{r} \lambda_{i}^{-1}\right)^{-1}$ then (3.1.7) is not a mixture distribution.

The density function of Y is, from (3.1.7):

$$
f_{Y}(y)=\beta^{-1} \sum_{j=0}^{\infty} c_{j} g_{r+2 j}(y / \beta)
$$

Where $g_{r+2 j}(\cdot)$ is the $\chi_{r+2 j}^{2}$ density function.
From Theoren 3.1.1 the distribution of 6^{2} has

$$
\begin{equation*}
\alpha_{i}=2 \lambda_{4} \text { and } v_{i}=1, \quad\{=\}_{3} \ldots, r \tag{3.1.12}
\end{equation*}
$$

so its distribution and density functions why be expressed as $(3,1,7)$ (or as (3.1.5)) and (3.1.11), respectively.

A major simplification of the distribution of δ^{2} resuits when $\lambda_{1}=\lambda,\{=1, \ldots, r$. For then, by the additivity property of the chisquared distribution:

$$
\begin{equation*}
\delta^{2} / 2 \lambda \sim x_{r}^{2} \tag{3,1,13}
\end{equation*}
$$

Since $\left\{\lambda_{i}\right\}=$ eigs $\left\{T \Sigma^{-1}\right\}=\operatorname{eigs}\left\{A^{-1} T A^{-1}\right\}$ whare $\Sigma=A A^{\prime}$, and $A^{-1} T A^{-1}$ is a nonnegative definite symmetric matrix, this could oniy occur when:

$$
\begin{align*}
A^{-1} T A^{-1} & =\lambda 3 \\
\text { or } \quad T & =\lambda A B A^{\prime}
\end{align*}
$$

Where B is a symetric idempotent matrix of rank r. (See, for example, Graybill (1976), Theorem 1.7.2).

For $r=p$ (i.e. i is of full rank) condition (3.1.14) implies that:

$$
T=\lambda A I A^{\prime}=\lambda \Sigma
$$

f.e. that T is a scalar multiple of Z.

As mentionad earlier, the probability of correct classification is a fanotonic increasing function of δ^{2}. Therefore, for reliable classification ve require the value of δ^{2} to be as large as possible. In terms of the distribution of δ^{2}, this implies not only that the expectation of δ^{2} should be large, but, also that tie probability of low values of δ^{2} be low.

Therefore, using Chebychev's inequality, a critarion for establistiing whether classification is likely to be reliable (in the sense that the pribability of correct classification is large) could be based on the expectation and variance of $\delta^{2} ;$ a high value of the former and a Jow value of the Iatter indicating the most favourable situation.

From expressions (3.1.2) and (3.1.3) for the mean and variance of $8{ }^{2}$, respectively, it is clear that this situation is achieved when $\int_{i=1}^{r} \lambda_{i}$ is large and, given $\int_{i=1}^{r} \lambda_{i}, \int_{j=1}^{r} \lambda_{i}^{2}$ is as sonall as possible,

So, given $\sum_{i=1}^{r} \lambda_{i}=\operatorname{Tr} T \Sigma^{-1}$ and $r=r(t)$, the best situation is when the λ_{j} are all equal, the worst being when one is very large and the rast sama17. Furthemort, the greater the runk of T, the better.

3.1.1 Computing the Density and Distribution functions of $\delta_{1 / 5}^{2}$

In order to have an idea of the form of the distribution of $\delta^{2}=\delta_{i j}^{2}$, its density and distribution functions were computed using (3.1.7), (3.1.11) and (3.1.12) for particular sets of eigenvalues $\left\{\lambda_{1}\right\}$ of $T 2^{-1}$. To do this, two Fortran subroutines were written: CONSTS computes the constants c_{j} using formulae (3.1.9), and CHISER computes the chi-squared density and distribution functions, using formulae (2.3.1) and (2.3.2) in Johnson and Kotz (1970a) for the latter, for degrees of freedom starting from r and going up in steps of two for as many terns as necessary to obtain the density and distribution functions of δ^{2} to the required level of accuracy. (See (3.1.7) and (3.1.11)).

Finally, using these two subroutines, the density and distribution functions of δ^{2} were computed in a main program for values of $\boldsymbol{\sigma}^{2}$ going up in equal steps frem zero to an appropriate upper livit. Subroutines CONSTS and CHISER are given in Appendix 3.2.

Using $r=5$, three different sets of eigenvalues, all with the same trace, were used, namely $\{11,1,1,1,1\},\{3,3,3,3,3\}$ and $\{5,4,3,2,1\}$, representing two extrene situations and one in the widdle, respectively. Table $3,1,1$ below gives the expected value and standard deviation of δ^{2} for each of the three sets of eigenvalues,

Table 3.1.1

Case	Elgnnalues	$\underline{E}\left[\delta^{2}\right]$	$\sqrt{\operatorname{Var}\left[\delta^{2}\right]}$
(a) $11,1,1,1,1$ 30.0	31.6		
(b)	$3,3,3,3,3$	30.0	19.0
(c)	$5,4,3,2,1$	30.0	21.0

Figures 3,1,1 and 3.1,2 give the density and distribution functions

of δ^{2}, respectively for each of the three cases (a), (b) and (c). From them we clearly see that the remarks concerning the relative magnitudes of the λ_{j} are borne out in practice.

For example, considering the two - group clascification problen, we have from Chapter 2 in the case where the paraneters μ_{1}, μ_{2} and Σ will be known and the prior probabilities are equal, that:

$$
\text { P[misclassification }]=\Phi\left(-\frac{1}{2}, \sqrt{8^{2}}\right) .
$$

Suppose now that we wish this probability to be less than .05. This means that i $\sqrt{6^{2}}$ must be greater than 1.64 ,

$$
\text { i.e.: } \delta^{2}>(2 \times 1.64)^{2}=10.76
$$

From Figure 3.1.2 ve see that the probabilities of this occurring in any fulture classification probability are $0,74,0.88$ and 0.86 respectively, for cases (a), (b) and (c).

3.2 The Distribution of $\delta_{i}^{2}(x)$

Using the distribution of $\delta_{i, 3}^{2}$ obtafned in Section 3.1, we now obtain the distribution of $\delta_{j}^{2}(x)=\left(x-\mu_{j}\right)^{\&} \varepsilon^{-1}\left(x-\mu_{i}\right)$ undar the assumptions given that section.

Clearly the distribution of $\delta_{1}^{2}(X)$ depends on which of the k populations X cones from, so we consider first the situation where X is from π_{i}.

It follows imediately from the propertios of the multivariate normal distribution that in this case $\delta_{i}^{2}(X)$ has the central chi-squared distribution on p degrees of freedoin.

$$
\begin{equation*}
\text { i.e. } \quad \delta_{i}^{2}(x) \mid X \in \pi_{i} \sim x_{p}^{2} \tag{3.2.1}
\end{equation*}
$$

When X comes from $\pi_{j}, j \times i$ then, conditional of $\delta^{2}=\delta_{j j}^{2}=\left(\mu_{i}-\mu_{j}\right)$. $\Sigma^{-1}\left(\mu_{j}-\mu_{j}\right), \quad \delta_{i}^{2}(X)$ has a nontentral chi-squared distributiotion p degrees of freedon, with noncentrality parameter B^{2}.

$$
\begin{equation*}
\text { i.e. } \quad \delta_{i}^{2}(x) \mid x \in \pi_{j}, \delta^{2} \sim x_{p}^{2}\left(\delta^{2}\right) \tag{3.2.2}
\end{equation*}
$$

Therefore, using the notation $Z=\delta_{1}^{2}(X)$, we have the folloring representation of the conditional density function of $B_{1}^{2}(X)$ as a mixture of central chi-squared densities:

$$
\begin{equation*}
f_{\delta \frac{1}{2}(X)}\left(z \mid X_{e} \pi_{j}, \delta^{2}\right)=\sum_{s=0}^{\infty} \frac{\left(\frac{\left.1 \delta^{2}\right)^{s}}{s!}\right.}{s} e^{-\frac{1}{2} \delta^{2}} g_{p+2 s}(z) \tag{3.2.3}
\end{equation*}
$$

whera $g_{p+2 s}(z)$ is the density function of the $x_{p+2 s}^{2}$ distribution.
The unconditional distribution of z is now obtained by integrating $f_{\delta_{i}^{2}(X)}\left(z \mid x \in \pi_{j}, \delta^{2}\right)$, as given in (3.2.3), over the distribution of.δ^{2}. This is done most corveniently by using the fact that conditional on δ^{2} the distribution of z is a tixture of a central chi-square distributions with $p+25$ degrees of freedoa where the mixing is done over the variable 5 thich, as is evident from (3.2.3), has a Poisson distribution with parameter $\frac{1}{2} \delta^{2}$.

Since only the distribution of s depends on δ^{2}, its unconditional distribution will first be obtained and this will then be substituted into $(3.2 .3)$ to give the unconditional distribution of z.
$S O^{+} \quad P[S=s]=\int_{0}^{\infty} P\left[S=s\left[\delta^{2}\right] \neq \delta_{\delta^{2}}\left(\delta^{2}\right) d \delta^{2}\right.$
where,

$$
P\left[S=s \mid \delta^{2}\right]=\frac{\left(\frac{1}{2} \delta^{2}\right)^{S}}{s!} e^{-\frac{1}{2} \delta^{2}}
$$

38.

and $f_{\delta^{2}}\left(\delta^{2}\right)$ is the density function of δ^{2}.
Using expressions (3.1.11) and $(3,1,12), f_{\delta^{2}}\left(\delta^{2}\right)$ can be written in the following form:

$$
\begin{equation*}
f_{\delta^{2}}\left(\delta^{2}\right)=\beta^{-1} \sum_{j=0}^{w} c_{j} g_{r+2 j}\left(\delta^{2} / B\right) \tag{3.2.5}
\end{equation*}
$$

Whpre,

: $\quad \beta$ is an arbitrary positive sonstant, the c_{j} are given by formulae $(3,1,9)$ with $\alpha_{i}=2 \lambda_{i}$.

$$
\{=1, \ldots, r
$$

and $\left.g_{r+2 j} f^{*}\right)$ is the density function of the $x_{r+2 j}^{2}$ distribution.

Substituting (3.2.5) into (3.2.4) and interchanging the order of sumation and integration (this is justin̂ed by the uniform convergence of the series $(3.2 .5)$ for all $\delta^{2}>0$ when β is chosen appropriately see the coment following (3.1.9)) yields:

$$
P[S=s]=\sum_{j=0}^{\infty} \frac{c_{j} \beta^{-\left(\frac{3}{2} r+j\right)}}{\Gamma\left(\frac{1}{2} r+j\right) 2^{\frac{1}{2} r+j+s} s!} \int_{j}^{\infty}\left(\delta^{2}\right)^{\frac{1}{2} r+j+s-1} e^{-\frac{1}{2} \delta^{2}\left(1+\beta^{-1}\right)} d \delta^{2}
$$

The integral is raedily evaluated as a gamas function, giving:

$$
\begin{equation*}
P\left[S=s 3=\left(1+\beta^{-1}\right)^{-s}(r(s+1))^{-1} \sum_{j=0}^{\infty} \frac{c_{j} r\left(\frac{1}{1} r+j+s\right)}{(1+\beta)^{\frac{1}{r+j}} r\left(\frac{1}{2} r+j\right)}\right. \tag{3.2,6}
\end{equation*}
$$

The unconditional density of $z=\delta_{1}^{2}(X)$ is now obtained by replacing the Poisson distribution by $(3,2.6)$ as sixixing distribution in $(3.2 .3)$, yielding:

$$
\begin{equation*}
f_{\delta \frac{2}{2}(x)}\left(z \mid X \in \pi_{j}\right)=\sum_{s=0}^{\infty} a_{s} g_{p+2 s}(z) \tag{3.2,7}
\end{equation*}
$$

39.

where $a_{s}=$ P[S $\left.=s\right]$ as given in (3.2.6).
The mean and variance of $5_{i}^{2}(X)$ are most easily f 2luated from expression $(3.2 .1)$ when $X \in x_{i}$, and from $(3.2 .7)$ when $X \in \pi_{j}, j=1$. For the first case we fumediately get:

$$
\begin{equation*}
E\left[\delta_{1}^{2}(X) \mid X \in \pi_{i}\right]=E\left[X_{p}^{2}\right]=p \tag{3.2,8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[\delta_{i}^{2}(X) \mid X \in \pi_{1}\right]=\operatorname{Var}\left[X_{p}^{2}\right]=2 p \tag{3.2.9}
\end{equation*}
$$

For $X \in \pi_{j}, j \neq 1$, we use the following well-known results on conditional expectations:

$$
\begin{equation*}
\left.\therefore \delta_{i}^{2}(X)\right]=\varepsilon_{s}\left[E\left[\delta_{i}^{2}(X) \mid s\right]\right] \tag{3.2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[\delta_{j}^{2}(X)\right]=E_{g}\left[\operatorname{Var}\left[\delta_{i}^{2}(X) \mid s\right]\right\}+\operatorname{Var}{ }_{s}\left[E\left[\delta_{j}^{2}(X) \mid s\right]\right] \tag{3.2.11}
\end{equation*}
$$

Where $E_{s}[\cdot]$ and $\operatorname{Var}_{5}[\cdot]$ dar the the expectation and variance, respective$1 y$, of $*$, taken over the distribution of S. Now, from $(3.2 .7)$, condjtional on $S a s, b_{f}^{\frac{2}{2}}(X)$ bas a $x_{p+2 s}^{2}$ distribution, whence

$$
\begin{array}{ll}
& \mathrm{E}\left[\delta_{j}^{2}(x) \mid s\right]=p+2 s \\
\text { and } & \operatorname{Var}\left[\delta_{1}^{2}(x) \mid s\right]=2 p+4 s
\end{array}
$$

Applying these to $(3,2,10)$ and $(3,2,11)$ we get:

$$
\begin{equation*}
E\left[6_{i}^{2}(X)\right]=E_{s}[p+2 s]=p+2 E_{s}[s] \tag{3.2.12}
\end{equation*}
$$

40.

$$
\text { and } \quad \begin{align*}
\operatorname{Var}\left[\delta_{j}^{2}(X)\right] & =\mathrm{E}_{\mathrm{s}}[2 p+4 s]+\operatorname{Var}_{s}[p+2 s] \\
& =2 p+4 \mathrm{E}_{s}[s]+4 \operatorname{var}_{s}[s] \tag{3.2.13}
\end{align*}
$$

Furthermore, conditional on $\delta^{2}=\delta_{\mathrm{if}}^{2}, S$ has a Poisson distribution with with paraneter $8^{2} / 2$, so using thie above results on conditional expectations to find the mean and variance of S, we get

$$
\begin{align*}
E[s] & =E_{\delta^{2}}\left[E\left[s \mid \delta^{2}\right]\right]=E_{\delta^{2}}\left[\frac{\delta^{2}}{2}\right]=\frac{1}{2} \cdot 2 \sum_{2=1}^{r} \lambda_{\ell} \text { fron (3.1.2) } \\
& =\sum_{\ell=1}^{r} \lambda_{l} \tag{3.2,14}
\end{align*}
$$

and $\operatorname{Var}[s]=E \delta_{\delta^{2}}\left[\operatorname{Var}\left[s \mid \delta^{2}\right]\right]+\operatorname{Var}\left[E\left[s \mid \delta^{2}\right]\right]$

$$
=E_{\delta^{2}}^{\delta^{2}}\left[\frac{\delta^{2}}{2}\right]+\operatorname{Var}_{\delta^{2}}\left[\frac{\delta^{2}}{2}\right]
$$

$$
\text {) if }=\frac{1}{2} \cdot 2 \sum_{\rho=1}^{r} \lambda_{\ell}+\frac{1}{4} \cdot 8 \sum_{\ell=1}^{r} \lambda_{2}^{2} \quad \text { from (3.1.2) and (3.1.3) }
$$

$$
\begin{equation*}
=\sum_{\ell=1}^{r} \lambda_{i}+2 \sum_{\ell=1}^{T} \lambda_{\ell}^{2} \tag{3.2.15}
\end{equation*}
$$

Wially, substituting (3.2.14) and (3.2.15) into (3.2.12) and (3.2.13) ang siaplifying, we zet

$$
\begin{align*}
& E\left[\delta_{1}^{2}(x) \mid X \in \pi_{j}\right]=p+2 \sum_{2=1}^{1} \lambda_{2} \tag{3.2.16}\\
& \left.\operatorname{Var}\left[\sigma_{j}^{3}(x) \mid X_{6} \sigma_{j}\right]=2 p+2 \int_{2=1}^{r} \lambda_{2}+\sum_{2=1}^{r} \lambda_{2}^{2}\right\}_{j}^{3} \tag{3,2,17}
\end{align*}
$$

Renark 3 , 2,I A1though the unf form convergence of exprossion $(3,2,7)$ gior the Gensity of $\delta_{1}^{2}(X) \mid X_{4} \pi_{3}$ is difficult to establish directly, the existance ${ }_{\text {fo }}$ f the (finite) expectation (3.2.16) implies it, by the Lebescuel poin iated Convergense Theores. It is therefore permissible" to

41.

integrate under the suamation sign in (3.2.7), yielding the following expression for the distribution function of $\delta_{i}^{2}(x) \mid X \in \mathbb{E}_{j}$;

$$
\begin{equation*}
P\left(\delta_{i}^{2}(X) \leq z \mid X \in \pi_{j}\right]=\sum_{s=0}^{\infty} a_{s} G_{p+2 s}(z) \tag{3.2,18}
\end{equation*}
$$

where,

$$
{ }^{6} p+2 s(z) \text { is the } x_{p}^{2}+2 s \text { distribution function and } a_{s}=P[s=s] \text { is }
$$ given in (3.2.6).

Remark 3.2.2 Comparing expressions (3.2.8) and (3.2.16) and recelting thas x is classified into that population π_{i} for which $\delta_{i}^{2}(x)$ is a mintimum, clearly deronstrates the importance, for reliable classification, of having $\sum_{\&=1}^{r} \lambda_{2}=T:\left(7 \mathrm{~K}^{-1}\right)$ as large as possible. Furthermore, as in the case with $\delta_{i, 3}$, expression (3,2.17) for the variance of $\delta_{i}^{z}(X) \mid X \in x_{j}$ shows that, for given $\sum_{i=1}^{r} \lambda_{2} \times \sum_{i=1}^{r} \lambda_{2}^{2}$ should be as small as possible, i.e. the λ_{j} should all be equal and r a $r(T)$ should be as large as possible, for the sost reliable classification.

3.2.1 Computing the Density and Dtesribution functions of $6_{i}^{2}(X)$

As in Section 3.1, the density and distrioution functions of isin $_{1}^{2}(x)$ were computed for particular sets of parametar values, using (3.2.1), (3.2.7) and (3.2.18). The constants a_{5}, given in (3.2.7) and (3.2.6) were conputed using the Fortran subroutine CoNST1, given in Appendix 3.2, and the chi-squared density and distribution functions were computed using the subroutine CHISER, described in Section 3.1 .

The same three sets of eigenvalues as used in Section 3.1 were used for the distribution of $\delta_{i}^{2}(X) \mid X+x_{1}$, and the distribution of $\delta_{i}^{2}(X) j X \subset \pi_{j}$ was also computed. The expected value and standard deviation of $\delta_{i}^{2}(X)$ for each of these casas are given in Table 3.2.1 and the
42.

43.
density and distribution functions are given in Figures 3.2.1 and 3.2.2, respectively.

Table 3.2.1

Case	Eigenvalues	$E\left[\delta_{j}^{2}(X)\right]$	$\sqrt{\operatorname{Mr[t} \delta_{i}^{2}(x)}$
(a) $x \nless \pi_{1}$	11, 1, 1, 1, 1	35.0	33.6
(b) $x \notin \pi_{1}$	$3,3,3,3,3$	35.0	22.1
(c) ${ }^{1}$) $x \notin \pi_{i}$	$5,4,3,2,1$	35.0	23.9
(d) $X \in \pi_{i}$		5.0	3.2

As in the pravious section, these figures confirm the general remarks, made under Renark 3.2.2, regarding the desirability of hiving the λ_{1} as close together as possible.

53.3 The distribution of $\mathrm{d}_{1 / 5}^{2}$ and $\mathrm{d}_{9}^{2}(\mathrm{X})$

In this section we consider the distributions, under our random effects rodel, of the tero statistics $d_{i j}^{z}$ and $d_{i}^{j}(X)$ of interest in discriminant analysis when the parameters $\mu_{i},\{=1, \ldots, k$ and Σ are unknown and have to be estiwated frofic a training sample.

Specifically, suppose we have the training sample:

$$
x_{1, j}, j=1, \ldots, n_{i} ; i=1, \ldots, k
$$

from the k populations $r_{i}, i=1, \ldots, k$, where the $x_{i j}$ are p-dimensional random vectors.

Under tha assumptions enunerated earifer:

$$
x_{i j} \sim K_{p}\left(H_{i}, \Sigma\right) \quad \text { independently, } V i s j .
$$

44.

As usual, the maximum likelihood estimators are, for $\mu_{i},\{=1, \ldots, k$;

$$
\begin{equation*}
\hat{\mu}_{i}=x_{i}=n_{i}^{-i} \sum_{j=1}^{n_{i}} x_{i j} \quad i=1, \ldots, k \tag{3.3.1}
\end{equation*}
$$

and form: (corrected for bias):

$$
\begin{align*}
& \hat{\Sigma}=S=v^{-1} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-x_{i,}\right)\left(x_{i j}-x_{i,}\right)^{\prime} \tag{3.3.2}\\
& \text { Where } v=\sum_{i=1}^{k}\left(n_{i}-1\right\rangle
\end{align*}
$$

and from standard multivariate nornal theory we know that:

$$
x_{i}, \sim N_{p}\left(\mu_{i}, n_{i}^{-1} \Sigma\right) \quad i=1, \ldots, k \quad \text { independentiy }
$$

$a n y$

$$
w S \sim H_{p}(\Sigma, v) \text { independently of the } x_{i}
$$

shere $W_{p}(\Sigma, v)$ denotes the prdimensional Hishart distribution with v degrees of freedom and parameter matrix Σ.

The two statistics are defined as follows:

$$
\begin{equation*}
d_{i j}^{t} v\left(x_{i,}-x_{j .}\right)^{\prime} s^{-1}\left(x_{1},-x_{j .}\right) \quad i, j=1, \ldots, k_{3} \quad i w j \tag{3,3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{1}^{2}(x)=\left(x-x_{i}\right)^{\prime} s^{-1}\left(x-x_{i}\right) \quad\{=1, \ldots, k \tag{3,3,5}
\end{equation*}
$$

Whare X is a random observation from one of the $\pi_{i}, \quad\{=1, \ldots, k$.
45.
)
He will firgt consider the distribution of $d_{i j}^{2}$. Froa (3.3.3) it fallows imediately that:

$$
x_{i},-x_{j,} \sim n_{p}\left(\mu_{1}-\mu_{j},\left(\frac{n_{1}+n_{j}}{n_{i} n_{j}}\right) \Sigma\right)
$$

and therefore that, conditional on $\mu_{i}-\mu_{j},\left(\frac{n_{j} n_{j}}{n_{i}+n_{j}}\right) d d_{j j}^{2}$ follows a noncentral p-dimensional Hotelling's T^{2} distribution with v degrees of freedom. (See Andarson (1958), chapter 5 or Qiri (1977), chapter 7). Therefore, conditional on α^{2},

$$
\begin{equation*}
\left(\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right\} \frac{(v-p+1)}{v p} d_{i j}^{2} \sim F\left(p, v-p+1 ; a^{2}\right) \tag{3.3.6}
\end{equation*}
$$

where,

$$
\begin{aligned}
a^{2} & =\left(\frac{n_{j} n_{j}}{n_{i}+n_{j}}\right)\left(\mu_{j}-\mu_{j}\right)^{\prime} \varepsilon^{-1}\left(\mu_{i}-\mu_{j}\right) \\
& =\left(\frac{n_{i} n_{j}}{n_{q}+n_{j}}\right) \delta_{i j}^{2}
\end{aligned}
$$

and $F\left(v_{1}, v_{2} ; a^{3}\right)$ denotes the noncentral F distribution with y_{1} and v_{2} degrees of friedore and noncentrality paraveter α^{2}.

It will be more convenient in what follows to work with the unnormed noncentral f-distribution, $f\left(v_{1}, v_{2} ; a^{2}\right)(s e e$, for example t.R. Rao (1965). pp. 175-6), so if we iet

$$
\begin{equation*}
z=\left[\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right] v^{-1} d d_{i j}^{2} \tag{3,3.7}
\end{equation*}
$$

ther, conditional on a^{2},
function:

$$
f_{z}\left(z \mid \alpha^{2}\right)=\sum_{s=0}^{\infty} \frac{\left(\frac{1}{2} \alpha^{2}\right)^{s}}{s!} e^{-\frac{1}{2} \alpha^{2}} g_{p+2 s, v-p+1^{(z)}}
$$

where

$$
\begin{equation*}
g_{p+2 s, v-p+1}(z)=\frac{\Gamma\left(\frac{1}{2}(v+1)+s\right)}{\Gamma\left(\frac{1}{p+s}\right) \Gamma(1(v-p+7))} \frac{z^{\frac{1}{2}} p+s-1}{(1+z)^{\frac{1}{2}(v+1)+s}} \tag{3.3.9}
\end{equation*}
$$

is the density flaction of the central unnomed f-distribution with $p+2 s$ and $v-p+1$ degrees of freadom, which we will denote by $f(p+2 s, u-p+1)$.

To obtain the unconditiona? distribution of z we now integrate $f_{z}\left(z \mid a^{2}\right)$ over the distribution of

$$
=\left(\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right) \delta_{i j j}^{2}
$$

Where the distribution of $\delta^{2}=8_{i j y}^{2}$ is given in section 3.1 . As in section 3.2 , we note from (3.3 .8) that the conditional distribution of z is a mixture of unnormed f-distributions with $p+25$ and $v=p+1$ degrees of freddom, where the mixing variable S has a Poisson distribution with parareter $\frac{1}{2} a^{2}$. Noting that the density function of α^{2} is, fron (3.2 .5);

$$
\begin{align*}
f_{\alpha^{2}}\left(\alpha^{2}\right\rangle & =\left(\frac{n_{1} n_{j}}{n_{i}+n_{j}}\right)^{-1} f_{\delta^{\prime}}\left(\alpha^{2}\left(\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right)^{-1}\right) \\
& \approx\left(\frac{n_{1} n_{j} s}{n_{i}+n_{j}}\right)^{-1} \sum_{j=0}^{\infty} c_{j} n_{1+2 j}\left(\alpha^{2}\left(\frac{n_{1} n_{j} \beta}{n_{1}+n_{j}}\right)^{-1}\right) \tag{3,3,10}
\end{align*}
$$

it is clear that the unconditional distribution of S is exactly the same as in Section 3.2 , with β replaced by $\frac{n_{1} n_{j}{ }^{\beta}}{n_{i}+n_{j}}$. The unconditional density of z therefore becones:

$$
f_{2}(z)=\sum_{s=0}^{\infty} a_{s}^{*} g_{p+2 s, v-p+1^{\prime}}(z)
$$

where,
$9 p+2 s, v-p+1^{(z)}$ is the density function of the $f(p+2 s, v-p+1)$ distributibn given in $(3,3,9)$,

$$
\begin{equation*}
a_{s}^{*}=\left(T^{\beta}+\left(\frac{n_{j} n_{j} B}{n_{i}+n_{j}}\right)^{-1}\right)^{-s}(r(s+1))^{-1} \sum_{j=0}^{\infty} \frac{c_{j} r\left(\frac{1}{2} r+j+s\right)}{\left(1+\frac{n_{j} n_{j} n_{j}}{n_{j}+\frac{n_{j}}{j}}\right)^{\frac{1}{r+j}} I\left(\frac{3}{2} r+j\right)} \tag{3,3.12}
\end{equation*}
$$

and the c_{j} are given by formulac (3.1.9) with $a_{i}=2 \lambda_{1},\{=1, \ldots, r$.
Finally, transforminy back to $d_{i j}^{2}$ using $(3,3.7)$ we get the follown ing expression for its density function:

$$
f_{d_{i j}^{2}}\left(d_{i j}^{2}\right) s\left(\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right\} v^{\prime-1} \sum_{s=0}^{\infty} a_{s}^{*} s_{p+2 s, v-p+1}\left(\left\{\frac{n_{i}, n_{j}}{n_{i}+n_{j}}\right\} v^{-1} d_{1 j}^{2}\right)
$$

The mean and varfance of $d_{i j}^{2}$ are also most readily found in the manner of Saction 3.2, the detsits of wich my be found in Appendix 3.1. yiefding:

$$
\begin{equation*}
E\left[d_{i j}^{k}\right]=\frac{v}{v-p-T}\left[\left(\frac{n_{i}+n_{f}}{n_{1} n_{j}}\right) p+2 \sum_{l o l}^{r} \lambda_{l}\right] \tag{3.3.14}
\end{equation*}
$$

and

48.

$$
\begin{align*}
\operatorname{Var}\left[d_{i j}^{2}\right] & =\frac{2 v^{2}}{(v-p-1)^{2}(v-p-3)}\left(\left[\frac{n_{i}+n_{j}}{n_{i} n_{j}}\right)^{2}(v-1) p+4 \cdot\left(\frac{n_{i}+n_{j}}{n_{i} n_{j}}\right)(v-1) \cdot \sum_{l=T}^{r} \lambda_{l}\right. \\
& +4\left(\sum_{l=1}^{r} \lambda_{l}\right\}^{2}+4(v-p-1) \sum_{\ell=1}^{r} \lambda_{l}^{2} \tag{3.3.15}
\end{align*}
$$

The existence of the (finite) mean of $d_{i j}^{8}$ permits integration under the sumation sign in (3.3.13) (see Remark 3.2.1) yielding the following expression for the distribution function of $\mathrm{d}_{i j}^{2}$:

$$
\begin{equation*}
P\left[d_{j j}^{2} s z\right]=\sum_{s=0}^{\infty} a_{s}^{*} G_{p+2 s,} v-p+1\left(\left(\frac{n_{1} n_{j}}{n_{1}+n_{j}}\right) v^{-1} z\right) \tag{3.3,16}
\end{equation*}
$$

where $G_{p+2 s, v \sim p-1}(\cdot)$ is the $f(p+2 s, v-p+1)$ distribution function.

Remerk 3.3.1 For the balanced situation where the training sample con-

 tains the same number n from each of the k populations, all the relevant formiae of this section may be simplified by replacing $n_{i} n_{j} /\left(n_{i}+n_{j}\right)$ by $\frac{2}{\pi}$ wherever it appoars: For exarple, the mean and variance of $d_{i j}^{2}$ become :$$
\begin{equation*}
E\left[d^{2} \jmath=E\left[d_{i, j}^{\ell}\right]=\left(\frac{2 v}{v-p-T}\right)\left(\frac{p}{n}+\sum_{\ell=1}^{r} \lambda_{2}\right)\right. \tag{3,3,17}
\end{equation*}
$$

and

$$
\left.\begin{array}{rl}
\operatorname{Var}\left[d^{2}\right]=\operatorname{Var}\left[d_{1 j}^{2}\right]=\frac{8 y^{2}}{(v-p-1)^{2}(v-p-3)}\left(\frac{(v-1) p}{n^{2}}+\frac{2(v-1)}{n} \sum_{\ell=1}^{r} \lambda_{2}\right. \\
& +\left[\sum_{l=1}^{r} \lambda_{l}\right)^{2}+(v-p-1) \sum_{\ell=1}^{r} \lambda_{l}^{2} \tag{3,3,18}
\end{array}\right) \quad(3.3 .
$$

Note further that for large viand n expressions (3.3.17) and (3.3.18) tand to the corresponding expressions $(3.1,2)$ and $(3.1,3)$ for the mean
and variance, respectively, of $\delta_{1 \mathrm{j}}^{2}$.
The distribution of $d_{i}^{2}(X)$ depends on which of the k populations X cones from. - If X beiongs to r_{i}, then it follows fmpediateiy from the definition (3.3.5) of $d_{1}^{2}(X)$ that $\left(\frac{n_{i}}{n_{i}+1}\right) d_{1}^{2}(x)$ follows a central p-divensional Hotelling's T^{2} distribution with v degrees of freedom. Therefore:

$$
\begin{equation*}
\left.\left(\frac{n_{i}}{n_{i}+1}\right) \frac{(v-p+1)}{v p} d_{i}^{2}(X) \right\rvert\, X \in \pi_{i} \sim F(p, v-p+1) \tag{3.3.19}
\end{equation*}
$$

where $F(p, v-p+1)$ denotes the central (nommed) $F-d$ dstribution with p and $\mathrm{v}-\mathrm{p}+1$ degrees of freedom.

If X belongs to $\pi_{j}, j \neq i$, then fram $(3.3 .4)$ and (3.3.5) it is clear that the distribution of $d_{i}^{2}(X)$ is the same as that for $d_{i j}^{2}$ with n_{j} equal to 1. Therefore, using expressions (3.3.13) and (3.3.16) we imaediately obtain the following expressions for the density and distribution functions of $d_{i}^{2}(X)$:

$$
\begin{equation*}
f_{d_{i}^{2}(x)}\left(d_{i}^{2}(x)\left[x+\pi_{i}\right)=\left(\frac{n_{i}}{n_{i}+T}\right) v^{-1} \sum_{s=0}^{\infty} a_{s}^{*} g_{p+2 s, v-p+1} \int\left(\frac{n_{i}}{n_{i}+T}\right) v^{-1} d_{i}^{2}(x)\right)^{2} \tag{3.3.20}
\end{equation*}
$$

$$
\begin{equation*}
P\left[d_{i}^{2}(X) \leq z \mid X \& \pi_{i}\right]=\sum_{s=0}^{\infty} a_{s}^{*} \epsilon_{p+2 s, v-p+1}\left(\left(\frac{n_{i}}{n_{i}+1}\right) v^{-1} z\right) \tag{3.3.21}
\end{equation*}
$$

where $g_{p+2 s, v-p+1}(\cdot)$ and $G_{p+2 s, v-p+1}()$ are defined in (3.3.11) and $(3,3.16)$ respectively, and n_{s}^{*} is defined in (3.3.12) with n_{j} equal เึ่า.

The mean ank variance of $d_{1}^{2}(X)$ follow fumediateiy from (3.3.19) for the cose where $\times \in r_{1}$:

$$
\begin{equation*}
E\left[d_{i}^{2}(x) \mid x \in v_{i}\right]=\left[\frac{n_{i}+1}{n_{i}}\right] \frac{u p}{v-p-T} \tag{3.3.22}
\end{equation*}
$$

4
and

$$
\begin{equation*}
\left.\operatorname{Var[d} d_{i}^{2}(x) \mid x<\pi_{i}\right]=2\left(\frac{n_{i}+1}{n_{i}}\right)^{2} \frac{v^{2}(v-1) p}{(v-p-1)^{2}(v-p-3)} \tag{3.3.23}
\end{equation*}
$$

and from $(3.3 .14)$ and $(3,3,15)$ wh $n_{j}=1$ when x \& π_{i} :

$$
\begin{equation*}
E\left[d_{i}^{2}(x) \mid X i \pi_{j}\right]=\frac{v}{v-p-1}\left[\left(\frac{n_{j}+1}{n_{i}}\right] p+2 \sum_{2 \leq i}^{T}, \frac{\lambda_{l}}{l}\right) \tag{3.3.24}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{Var}\left[d_{i}^{2}(x)\left[x+n_{i}\right]=\right. & \frac{2 v^{2}}{(v-p-1)^{2}(v-p-3)}\left(\left[\frac{n_{j}+1}{n_{i}}\right)^{2}(v-1) p+4\left(\frac{n_{i}+1}{n_{i}}\right)(v-1) \sum_{i=1}^{r} \lambda_{2}\right. \\
& \left.+4\left\{\sum_{2=1}^{r} \lambda_{i}\right\}^{2}+4(v-p-1) \sum_{i=1}^{r} \lambda_{l}^{2}\right\} \tag{3.3.25}
\end{align*}
$$

Remark 3.3.2 As in the case of $d_{i j}^{2}$ we note that for large v and n_{i} the mean and variance of $d_{f}^{2}(X)$ tend to the corresponding expressions for $\delta_{i}^{2}(X)$ given in Section 3.2 , both when X, π_{i} and wien $X \& \pi_{i}$. In viels of this, the rempriks concerning the magnitides of $\sum_{\ell=1}^{r} \lambda_{2}$ and $\sum_{l=1}^{r} \lambda_{l}^{2}$ as related to the reliability of classification when the parameters are known, made in Sections 3.1 and 3,2 , also pertain to the situation when the classification rules are basad on estifiated paraneters, discussed in this section.

Remark 3.3.3 The constants a_{s}^{*} in the distributions of $d_{j, j}^{2}$ and $d_{i}^{2}(X) \mid X\left\{\pi_{1}\right.$ are the same as the constants a_{s} in Section 3.2 , with the paraneter a repleced by $\left[\frac{n_{4}}{n_{i}+n_{5}}\right)_{j} \quad\left(n_{j}=1\right.$ in the case of $\left.d_{j}^{2}(X)\right)$. Tharefore the subroutine CONST7, used to conpute the a may elso be used for the $a_{5}^{*}, S 0$, as done in Sections 3.1 and 3.2 , the density and distribution functions of $d_{j}^{2}(X)$ may be computed using a subroutine that computes sequances of density and distribution function valuas for the

51.

$f(p+2 s, v-p+1)$ distribution for valuas of s. increasing from zero in steps of one, as dove for the chi-squared distributior by the subroutine CHISER.
52.

Appendix 3.1

Derivation of the Mean and Variance of $d_{i j}^{2}$

From (3.3.8) we have that, if

$$
z=\left(\frac{n_{1} n_{j}}{n_{i}+n_{j}}\right) v^{-1} d \frac{d}{i j}
$$

and

$$
\alpha^{2}=\left\{\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right) \delta_{i j}^{2}
$$

then, conditional on α^{2}, the distribution of z is a mixture of unnor ped f-distributions with $p+2 S$ and $v-p+1$ degrees of freedom, where S has a Poisson distribution with parameter $\frac{1}{8} a^{2}$. Given $S=s$, therefore, z has the following conditional mean and variance (See, for example, Johnson and Kotz (1970b)):

$$
\begin{equation*}
E\left[z[s]=\frac{p+2 s}{v-p-1}=\frac{p}{v-p-1}+\left(\frac{2}{v-p-1}\right) s\right. \tag{A3.1.1}
\end{equation*}
$$

$\%$
and

$$
\begin{equation*}
\operatorname{Var}[z \mid s]=\frac{2(p+2 s)(v-2 z-1)}{(v-p-1)^{2}(v-p-3)}=\frac{2}{(v-p-1)^{2}(v-p-3)}\left(p(v-1)+2(v+p-1) s+4 s^{2}\right) \tag{A3.1.2}
\end{equation*}
$$

Using (3.2.14): (3.2.15) and the relationship butareen α^{2} and $\delta_{i j}^{2}$ given above, we immediately get:
53.

$$
\begin{equation*}
E[s] \neq\left\{\frac{n_{j} n_{j}}{n_{i}+n_{j}}\right\} \sum_{\ell=1}^{r} \lambda_{l} \tag{3,1,3}
\end{equation*}
$$

and

$$
\operatorname{Var}[s]=\left(\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right)_{l=1}^{r} \lambda_{l}+2\left(\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right)^{2} \sum_{l=1}^{r} \lambda_{l}^{2}
$$

(8)

Ne now apply results (3.2.10) and (3.2.11) to (A 3.1.1) and (A 3.1.2) to obtain the unconditional inean and variance of z.

$$
\begin{aligned}
& E[z]=E_{s}[E[z \mid s]]=\frac{p}{\nu-p^{-1}}+\left(\frac{2}{\nu-p-1}\right) E[s] \\
& \left.\left(\frac{1}{v_{i}-1}\right)\left(p+2\left(\frac{n_{1} n_{j}}{n_{1} n_{j}}\right) \sum_{2=1}^{r} \lambda_{2}\right) \quad(A 3.1 / 5)\right\} \\
& \left.\operatorname{Var}[z]=\mathrm{E}_{s}[\operatorname{Var}[z \mid s]]+\operatorname{Var}_{s}[E[z] s]\right] \\
& =\frac{2}{(v-p-1)^{2}(v-p-3)}(p(v-1)+2(v+p-]) E[s]+4 E\left[s^{2}\right\}^{v} \\
& +\left(\frac{2}{v^{-p}-T}\right)^{2} \operatorname{Var}[s]
\end{aligned}
$$

Using $\left(A\right.$ 3.1.3) and (A 3.1.4) and the fact that $E\left[s^{2}\right]=\operatorname{Var}\left[s^{2}\right]+(E[s])^{2}$ ve get, after a 1 ittle simplification,

$$
\begin{align*}
\operatorname{Var}[z] & =\frac{2}{(v-p-1)^{2}(v-p-3)}\left\{p(v-1)+4\left(\frac{n_{j} n_{j}}{n_{i}+n_{j}}\right)(v-1) \sum_{2=1}^{r} \lambda_{2}\right. \\
& \left.+4\left(\frac{n_{i}}{n_{i}+n_{j}}\right]^{2}\left(\sum_{\ell=1}^{r} \lambda_{l}\right)^{2}+4\left(\frac{n_{i} n_{j}}{n_{i}+n_{j}}\right)^{2}(v-p-1) \sum_{2=1}^{r} \lambda_{l}^{2}\right\} \tag{A3.1.6}
\end{align*}
$$

Finally, transforming back to. $\mathrm{d}_{\mathrm{i} j \mathrm{j}}$ we get:

$$
\begin{equation*}
E\left[d_{i j}^{j_{j}}\right]=\left(\frac{n_{i}+n_{j}}{n_{i} n_{j}}\right) \cup E[z]=\left(\frac{v}{v-p-T}\right)\left(\left(\frac{n_{i}+n_{j}}{n_{i} n_{j}}\right) p+2 \sum_{l=1}^{r} \lambda_{l}\right\} \tag{A3.1.7}
\end{equation*}
$$

and

$$
\begin{aligned}
\operatorname{var}\left[d_{i j}^{2}\right]= & \left(\frac{n_{j}+n_{j}}{n_{1} n_{j}}\right]^{2} v^{2} \operatorname{var}[z] \\
= & \frac{2 v^{2}}{(v-p-1)^{2}(v-p-j)}\left\{\left(\frac{n_{j}+n_{j}}{n_{j} n_{j}}\right)^{2} p(v-1)+4\left(\frac{n_{j}+n_{j}}{n_{i} n_{j}}\right)(v-1) \sum_{k=1}^{r} \lambda_{l}\right. \\
& \left.+4\left(\sum_{l=1}^{r} \lambda_{l}\right\}^{2}+4(v-p-1) \sum_{l=1}^{r} \lambda_{l}\right\} \quad(A 3.1,8)
\end{aligned}
$$

Appendix 3.2 Fortran Subroutines used in computing the Density and Distribution Functions of $\delta_{1, j}^{2}$ and $\delta_{1}^{2}(X)$

SUSROLTINE CONSTS(NORD , BETA ,EIGS, CVEC, NSTOP, NY ERMS, ERROR)

SUARQUTINE TG COMPLTE THE CONSTANTS C (S) FGF THE DISTRIBUTIDN OF DELTA, NOKD = NO, QF EIGENVALUES. AETA = PAFANETEA BETA TN FRRMULA (3. $1+9)$. EIGS = THE VECTOR OF EIGENVALUES. CVEC = THE VECTOR OF CONSTANTS. NSTOP = NAX. ND. CF CONSTANTS THAT WILL BE CONPUTED. NTEAMS G ACTUAL ND. CONSTANTS GOMPLTED. ERRCR = NINI WUM VALUE OF THE SMALLEST CONSTANT.

IHPL ICIT REAL *8 ($A-H, 0-Z)$
REAL*S ETGS(NORD) , CVITC(NSTOP) , H(1MOO) , P(TAER(30), AVEC(30)
DO $1, \mathrm{t}=1$, NOAD
AVEC(I) =GETA AEIGS(I)
PROD = 14
DO 2 I $\begin{gathered}\text { B } \\ \text {, NORD }\end{gathered}$
PROD A PROD * AVEC(I)
PDNGR(1) $=1$.
\& CVEC(13 = DSORT(PROD)
SUn : CVEC(1)
NQ 3 J $=2$, NSTOP
NTERMS J =
$5 U^{4}=0$.
Og $4,5=1+$ NORD
POQER(I) ZPJWER(I) * (1. - AVEGII))
SUM = SUM \& POW保 (1)
H(UTOP) $=$ SLM
5091 = C .
DOS $\mathrm{I}=1 . \mathrm{JTOP}$
5 SU41 a SUR1 \& H(J-I) \& CVEC(1)
CVEC(J) =SCM1/(2,*JTDP)
$544_{2}=3$ Us $_{2}$ + CVEC(J)
1F(OAES(C,VEC(J)) , LT. FRRCR) GOTO 6
3 CONTINUE
(A1 FRITE 6,101$)$ NSTOP \& ERRCR, NTEAMS. BETA, ETGS

2: EGGNVALLE \& (TR +10012.513
vRITE (6,100) SUM2
100 FORMAT: SUM OF CONSTANTS *T30.012.5)
 RETUQN

END

55.

SUAROLTINE CONSTII MORO , EETA,FACT.CVEC.OVEC.NT ERMS.NSTOP,NMAX, ERROR 1, ERROR1)

```
SUPRQUTINE TO COMPUTE THE CQNSTANTS A(S) FOR THE OISTRIEUTION DF DELTA(X).
USING FORNULA (3.2.6), OR FOR THE DISTRIDUTION DFF EOR D(X) USING FORMLLA
(3.3.12). PARAME TERS ARE:
NOND = NO. QF EIGENVALUES. BETA = PARAMETER BITTA IN TAE FORMULAE.
FACT = 1. =OR (3. 2.5) AND = N{I)*N[J)/(N(T)+N(J)) FOR (3.3.12). EVEC n
```



```
IN EVEC. NSTIOP N MAX NO. OF CONSTANTS THAT UILL EE COMPUTED.
NMAX = ACTUAL NO, CF CONSTANTS CONPUTED, NRNROA a CUTOFF VALUE MOR
CALCULATING CONSTANTS. ERRORI # NINIMNM VALUE QF SNALLEST CONSTANT.
```

 1MPL TCIT REAL \(\# 8\), \(7 \mathrm{~A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\))
 REAL *8 CVEC (NTERMS) , DVEC(NSTL A) , CCEFFT (1002)
 INTEGER N(1000)
 EET \# 9ETA *FACT
 BP 1 TNV \(=1 .\langle(1 .+B E T)\)
 BINP \(11 \times 1 . /(1 .+1, / \mathrm{BET})\)
 ANO2 a NORD 12
 TERM \(=\) BPIINV* HANDE
 SUM \(=0\).
 CO \(1, j=1\), NTERNS
 COEFFT(J) EYEC(\(\ddagger\) \& TERV
 SUM \(=\) SUM + COEFFT(\(J)\)
 TEQN a TERM BPIIMV
 DVEC (1) \(\ddagger\) ELB \(\%\) FACT
 SUM2 \(=\) OVECK1)
 N(1) = NTERMS
 START \({ }^{3 n}\) E INPII
 OO 2 I \(=2\),NSTOP
 N以AX 1
 A \(\frac{1}{I}=1\)
 1 TOP \(=1\) - 1

N(I) =
A J $=$
PROD
PROD = COEFFT(3) * START
QO $4 \mathrm{~K}=1.1$ TOP
PROD $=P_{R O O}$ * (ANDR $\left.+A J+K-2.\right) / K$
SU4 $=$ SUM + PRQD

CONTINUE
DVEC(I) SLM *FACT
SUNZ = SUMZ + DVEC(t)
TF (DVEC(I) ALT, ERRORI) GC TG 5
START = START \# BINPII
WRITE(6,101) NHAX, (DVEC(T) , $1=1, N M A X)$

1 T3 , $15 / 7$ CONSTANTS'ノIT2.10012.5i)
WRtTE(5,100) ERRDM, ERAOR1. SUNZ

$1 T 3$?, Di2. 5/: SUN DF CONSTANTS: T30.DI2.5)
WRITE(6.102) (N(I), I 51 , NNAX)
102 FORNAT (TONQ. DF TERNS IN EACH CONSTANT / (TTZ.10!12))
RETURN
END
57.

58.

Chaper 4 Evaluasing the Performance of Classical Discriminant Analysis under the Randow Effects Model - Probabilities of Correct and Misclassification

In this chapter we apply the results of Chapter 3 to evaluate the probabilities of correct- and misclassification under the random effects model when the classical rules of discriminant analysis are used.
i.e. We are interested in the expected performance of these rules when applied to future classification probiens where the k populations $\pi_{i}, i=1, \ldots, k$, will have arisen from the random effects model. Using the classification rule based on the parameters of these k populations, whether known at the time or estimated from a training sample, we will classify on observation of unknown origin into one of them. How well are wé 'itisely to perform? or wore specifically: What are the expected probabilities of correct- or wisclassification?

This chapter attenpts to answer these quistions.
As in Chapter 2 we will first consider the situation where the paranetars in the distributions of the k populaticns are known and the classification rules are expressed in teres of them. See Section 2.1. Thereafter we will discuss the zore comm situation where the parameters are unknown and the parameters in the abovementioned classification rules are replaced by their sample astimates, resulting in the "plug-in" rules discussed in Section 2.2.

In each of the above two situations separate consideration will be given to the case where $k=2$, since the results in this case are more tractable than those for general k. Moreover, as is clear from Chapter 2. far more work has been done on this case, and consequently wach nore is known about it.
59.

It is traditional in most of the literature to tals of the probabilities of misclassification in the case where $k=2$ but of the probabilities of correct classification when $k>2$. We aill follow this tradition here.

As in Chapter 3, the results will all be expressed in teras of the eigenvalues $\left(\lambda_{i}, i=1, \ldots, k\right)$ of $T \Sigma^{-1}$, either directly or in terns of quantities derived from thes. In Chapter 5 we will address the question of estimating the λ_{i} when they are unknown.

4.1^{*} Known Paraneters

In this situation the Bayes classificazion rule, when the prior probabitities of each of the k populations are all equal, may be expressed either in tertss of the Mahalanobis distance:
i.e. assign the new observition x to that population π_{i} for which
where

$$
\begin{align*}
& \delta_{i}^{2}(x)=\min _{j-1 / \ldots, k} \delta_{j}^{2}(x) \tag{4.1.1}\\
& \delta_{j}^{2}(x)=\left(x-\mu_{j}\right) \cdot \Sigma^{-1}\left(x-u_{j}\right)
\end{align*}
$$

or in tares of the linear discriminant function:
i.e. assign x to π_{j} if

$$
\begin{equation*}
u_{i j j}(x)>0 \quad \forall j=1, \ldots, k_{i} \quad j \neq 1 \tag{4.1.2}
\end{equation*}
$$

where $\quad t_{i j}(x)=\left(x-\left(\mu_{i}+\mu_{j}\right)\right)^{\prime} \Sigma^{-1}\left(-\mu_{j}\right)$.

See Section 2.1.

85.

The distribution of $\delta_{1}^{2}(x)$, under the assumption that x either belongs to, or does not beiong to π_{i} was discussed in Section 3.2, giving a general insight into the expected probabilities of correctand misclassification when using (4.1.7) or (4.1.2), as well as their relationship to the eigenvalues $\left\{\lambda_{1}, i=1, \ldots, r\right\}$ of $T \Sigma^{-1}$. Expressions for these probabilities will now be derived for the specific case where there are two populations, He will consider only the situetion shere the prior probabilities q_{i} are all equal.

4.141 The case $\mathrm{k}=2$ Populations

When the prior probabilities $q_{i}, i \approx 7,2$ are equal, we have from (2.1.11) the following simple expression for the conditional probsbility of misclassification, given δ^{2} :

$$
\begin{equation*}
P\left(\delta^{2}\right)=P\left[\text { aisclassification } \mid \delta^{2}\right]=\phi\left(-\frac{1}{2} \delta\right) \tag{4.1,3}
\end{equation*}
$$

where,

$$
\delta^{2}=\delta_{12}^{k}=\left(\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)
$$

and $\theta(\cdot)$ is the Standard Normal Distribution Function.

The unconditional probability of misclassification is therefore:

$$
\begin{equation*}
P=E\left[P\left(\delta^{2}\right)\right]=E\left[\Phi\left(-\frac{1}{2} \delta\right)\right] \tag{4.1.4}
\end{equation*}
$$

where the expectation is taken over thr' istribution of δ^{2}.
Now, from Section 3.1 wo know trou onder the random effects model 8^{2} is distributed $0.52 \sum_{i=1}^{r} \lambda_{1} v_{i}$ where $\lambda_{1} \& \lambda_{2} z \ldots \geqslant \lambda_{r} \leqslant 0$ are the nonzero efgenvalues of Tz^{-1} and the y_{i} are independint X_{1}^{2} random variables.

61.

An approximation to (4.1.4) may be obtained by approxinating © $\left(-\frac{6}{2}\right)$ by the first three terms of its Tayior expansion about $E\left[\sigma^{2}\right]$ afd then taking expectations. For any twice- differentiable function $f(x)$ of a randon variable this approxination takes the form:

$$
\begin{equation*}
E[f(X)] \div 4 f(E[X]),+\frac{f^{*}(E[X])}{2!} \operatorname{Var}[X] \tag{4.1.5}
\end{equation*}
$$

where $f^{\prime \prime}(\cdot)$ denotes the second derivative of $f(\cdot)$.
So the approxiretion becomes:

Now, from section 3.1 we have that

$$
E\left[b^{2}\right]=2 \sum_{i=1}^{r} \lambda_{i}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[\sigma^{2}\right]=8 \sum_{i=1} \lambda_{1}^{2} \tag{4.1.7}
\end{equation*}
$$

Also,

$$
\begin{align*}
\phi^{n}(. i) & =\frac{d}{d z}\left(-\frac{1}{2} 2^{-\frac{1}{\phi}} \phi\left(-\frac{1}{2} \sqrt{z}\right)\right) \\
& =\frac{d}{d z}\left(-\frac{1}{2} z^{-\frac{1}{3}} \sqrt{2 \pi} e^{-z / 8}\right) \\
& =\frac{1}{8 \sqrt{2 \pi}} e^{-z / 8} z^{-3 / 2}(1+7) \tag{4.1.8}
\end{align*}
$$

62.

Substituting (4.1.8) and (4.1.7) into (4.1.6) yields the following approximate expression for the probability of misclassification:

$$
\begin{align*}
P & =\Phi\left(-\sqrt{2} \sum_{i=1}^{r} \lambda_{i}\right)+\frac{1}{2} \frac{1}{8 \sqrt{2 \pi}} e^{-2 \sum_{i=1}^{r} \lambda_{i} / 8}\left(2 \sum_{i=1}^{r} \lambda_{i}\right)^{-3 / 2}\left(1+\frac{2 \sum_{i=1}^{r} \lambda_{i}}{4}\right) 8 \sum_{i=1}^{r} \lambda_{i}^{2} \\
& =\phi\left(-\sqrt{i} \sum_{i=1}^{r} \lambda_{i}\right)+\frac{\varepsilon}{i} \phi\left(\sqrt{2} \sum_{i=1}^{r} \lambda_{i}\right) \frac{\left(1+\frac{1}{i} \sum_{i=1}^{r} \lambda_{i}\right) \sum_{i=1}^{r} \lambda_{i}^{2}}{\left(2 \sum_{i=1}^{r} \lambda_{i}\right)^{3 / 2}} \tag{4.1.9}
\end{align*}
$$

Where $\phi(\cdot)$ is the standard nomal dansity function.
An exact dixpression for the prebability of misclassification may
 we need the density function of $z=8^{2}$ wich, from (3.7.17) may be expressed as:

$$
\begin{equation*}
f_{\delta^{2}}(z)=\frac{1}{\beta} \sum_{j=0}^{\infty} c_{j} g_{r+2 j}\left(\frac{z}{\beta}\right) \tag{4.1.70}
\end{equation*}
$$

where B is an arbitrary positive constant, $g_{\mu+2 j}(\cdot)$ is the $\chi^{2}{ }_{r+2 j}$ density function and the c_{3} are given by (3.1,9) and (3.1,12). Thus

$$
\begin{align*}
& P=\int_{0}^{\infty} \varphi\left(-\frac{1}{2} \sqrt{z}\right) \frac{1}{\beta} \sum_{j=0}^{\infty} c_{j} g_{r+2 j}\left(\frac{z}{\beta}\right) d z \\
= & \frac{1}{\beta} \sum_{j=0}^{\infty} c_{j} \int_{0}^{\infty} \varphi\left(-\frac{1}{2} \sqrt{z}\right) g_{r+2 j}\left(\frac{z}{\beta}\right) d z \tag{4.1.11}
\end{align*}
$$

Where the exchange of the sumation and integration operations is justified by the uniform convergence of $(4.1 .10)$. Note that

$$
\begin{align*}
\Phi\left(-\frac{1}{2} \sqrt{2}\right) & \left.=\operatorname{PrX} \leq-\frac{\delta}{2}\right] \quad \text { where } X \sim N(0,1) \\
& =\frac{1}{2} P\left[X^{2} \geq \frac{2}{4}\right] \\
& =\frac{1}{2}\left(1-G_{1}\left(\frac{z}{4}\right)\right) \tag{4.1.12}
\end{align*}
$$

63.

where $G_{r}(\cdot)$ denotes the distribution function of the x_{r}^{2} distribution. Substituting this into (4.1.11) ytelds

$$
\begin{equation*}
\mathrm{P}=\frac{1}{1}-\frac{1}{2 \beta} \sum_{j=0}^{\infty} c_{j} \int_{0}^{\infty} G_{1}^{j}\left(\frac{z}{4}\right) g_{r * 2 j} j\left(\frac{z}{p}\right) d z \tag{4.1.13}
\end{equation*}
$$

where we hole assumed that (4.1.10) is a mixture distribution, so that $\sum_{j=0}^{\infty} c_{j}=1$ (See Retrark 3.1.3). Danoting the integral in (4.1.13) by I_{j} and naking the transformation $y=\frac{z}{\text { a }}$ gives:

$$
I_{j}=B \int_{0}^{m} G_{1}\left(\frac{\beta}{4} y\right) g_{r+2 j}(y) d y .
$$

Integrating by parts and simplifying vields:

$$
I_{j}=B\left(1-\frac{S}{4} \int_{0}^{\infty} g_{1}\left(\frac{\beta}{4} y\right) G_{r+2 j}(y) d y\right) .
$$

Sjbstituting I_{j} back into (4.1.12) yields:

$$
\begin{equation*}
p=\frac{\beta}{8} \sum_{j=0}^{\infty} c_{j} \int_{0}^{\infty} g_{7}\left(\frac{3}{4} y\right) G_{r+2 j}(y) d y . \tag{4.1.14}
\end{equation*}
$$

The integral in (4.1.14) may be evaluated by using the following expres- , sions for $G_{\mathrm{r} \psi 2 j}(y)$, obtained by diract integration (5ee, for exanple, Johnson and Kotry (1970a) page 173)

Considering first the case where f is even, using (4.1.14), (4.1.15) and the formula:

$$
g_{1}\left(\frac{\beta}{4} y\right)=\frac{1}{\sqrt{2 \pi}}\left(\frac{8}{4} y\right)^{-\frac{1}{2}} e^{-8 y / 8},
$$

we get

$$
\begin{align*}
P & =\frac{1}{2}-\frac{1}{2} \sqrt{\frac{B}{\pi}} \sum_{j=0}^{\infty} c_{j} \sum_{i=0}^{\frac{1}{r+j-1}} \frac{1}{i T} \int_{0}^{\infty}\left(\frac{y}{2}\right)^{i-\frac{1}{2}} e^{-\frac{1}{2} y(1+\beta / 4)} d y \\
& =\frac{1}{2}(\}-\frac{1}{2} \sqrt{\frac{\beta}{n}} \sum_{j=0}^{\infty} c_{j} \sum_{i=0}^{\frac{2}{2}+j-1} \frac{\Gamma(i+j)}{\Gamma(i+1\}}\left(1+\frac{6}{4}\right)^{-\left(i+\frac{1}{2}\right)} \quad \text { (4.1.76) } \tag{4.1.76}
\end{align*}
$$

Consider now the case where r is odd. Using the same approacil as above, ve get,

$$
\begin{equation*}
P=\frac{\sqrt{6}}{2 \sqrt{2 \pi}} \int_{0}^{\infty} \$(\sqrt{y}) y^{-\frac{1}{2}} e^{-\frac{\theta_{j}^{y}}{d y}} d y=\frac{j}{2}\left(1+\frac{1}{2} \sqrt{\frac{0}{\pi}} \sum_{j=0}^{\infty} c_{j}^{j(r-1)+j-1} \frac{\Gamma(i+i)}{\left.\Gamma\left(i+\frac{3}{2}\right)(1+\beta / 4)^{j+1}\right)} .\right. \tag{4.i.17}
\end{equation*}
$$

Denoting the first tere in (4.1.17) by 1 , we get after making the transforsation $x=\sqrt{y}$:

$$
\begin{equation*}
I=2 \int_{0}^{\infty} \Delta(x) \sqrt{2 \pi} \sqrt{2} \sqrt{4 / \beta} e^{-\frac{1}{2\left(\frac{x^{2}}{4 / \beta}\right)}} d x . \tag{4.1.18}
\end{equation*}
$$

The above integral is a particular case of Hajo's integrals (see, for exatiple Kendạll and Stuart Voluese 1 (1969) pages 326-7). F. Downton (1973) gives the following closely related result:

65.

Given

$$
\begin{aligned}
& X \sim N\left(\mu, \sigma^{2}\right) \\
& Y \sim N(0,1) \quad \text { independently, }
\end{aligned}
$$

then:

$$
\begin{equation*}
P[Y \leq X]=\int_{-\infty}^{\infty} \hat{(t)} \frac{1}{\sqrt{2 \pi \sigma}} e^{(t-\mu)^{2} / 2 \sigma^{2}} d t \tag{4.1.19}
\end{equation*}
$$

By analogy with (4.1,19) (4.1.18)can be expressed as:

$$
I=2 P[Y \leqslant X \cap X \geq 0\}
$$

f
where

$$
\begin{aligned}
& X \sim N(0,4 / 3) \quad \\
& Y \sim N(0,7) \quad \text { independently }
\end{aligned}
$$

or,

$$
\begin{equation*}
I=2 P[X-Y \approx 0 \cap X \geq 0] \tag{4.1.20}
\end{equation*}
$$

To evaluate the joint probability in (4.1.20), we need the joint distribution of $X-Y$ and X. Now, by independence, the joint probability density function of X and Y is:

$$
f_{X_{2},}(x, y)=\frac{1}{2 \pi / 4 / B} e^{-\frac{1}{6}\left\langle y^{2}+B \frac{x^{2}}{4}\right)}
$$

Waking the transfomation:

$$
\begin{aligned}
& T=X-Y \\
& U=X
\end{aligned}
$$

66.

IT noting that the Jacobian of the transformation is unity, we get the Tensity of T and U as:

$$
\begin{aligned}
f_{T, u}(t, u) & =\frac{1}{2 \pi \sqrt{4 / \beta}} e^{-\frac{1}{2}\left(u^{2}-2 t u+t^{2}\left\langle\beta u^{2} / 4\right)\right.} \\
& =\frac{1}{2 \pi \sqrt{4 / \beta}} e^{-\frac{1}{2}\left(u^{2}(1+\beta / 4)-2 t u+t^{2}\right)} .
\end{aligned}
$$

So T and U have bivariate normal distribution with zero mean vector, variances σ_{T}^{2} and σ_{u}^{z} and correlation coefficient ρ, where the latter three parameters may be obtained from the following identities:

$$
\begin{aligned}
& \sigma_{T}^{2} \sigma_{u}^{2}\left(1-\rho^{2}\right)=\frac{4}{\beta} \\
& \sigma_{U}^{2}\left(1-\rho^{2}\right)=\left(1+\frac{\beta}{4}\right)^{-1} \\
& \sigma_{T}^{2}\left(1-\rho^{2}\right)=1 .
\end{aligned}
$$

This yields:
and

$$
\begin{align*}
& \sigma_{T}^{2}=1+\frac{4}{B} \\
& \sigma_{U}^{2}=\frac{4}{B} \\
& \rho=\left(1+\frac{\beta}{4}\right)^{-\frac{3}{2}} . \tag{4.1.21}
\end{align*}
$$

Now, applying the result given in Anderson (1958) page 43, problem 43, viz: if

$$
P[X \geq 0 \cap Y: 0]=\alpha
$$

and

$$
\left(\frac{x}{x}\right) \sim N\left(\left(\int_{0}^{0}\right),\left(\begin{array}{ll}
a_{x}^{2} & \rho \sigma_{x}^{\sigma} y \\
\sigma_{y}^{2}
\end{array}\right)\right.
$$

then

$$
\rho=\cos (1-2 \alpha) \pi
$$

67.

or

$$
a=\frac{b}{b}\left(1-\frac{1}{\pi} \cos ^{-1} p\right) \text {, }
$$

we get, from $(4,1,20)$ and $(4,1,21)$ that:

$$
\begin{equation*}
I=2 P[T \geq 0 n U \geq 0]=1-\frac{1}{7} \cos ^{-1}\left(\left(1+\frac{\beta}{4}\right)^{-\frac{1}{2}}\right) \tag{4.1.22}
\end{equation*}
$$

Substituting (4.1.22) back into (4.1.17) and simplifying, yields the following expression for the probability of eisclassification when r is add:

$$
\begin{equation*}
P=\frac{i}{2}\left(1-\frac{2}{\pi} \cos ^{-1}\left\{\left(1+\frac{\beta}{4}\right)^{-\frac{1}{2}}\right\rangle-\frac{i}{2} \sqrt{\frac{E}{\pi}} \cdot \sum_{j=0}^{A} c_{j} c_{j=0}^{\frac{1}{2}(r-1)+j-1} \frac{Y(i+1)}{F(i+1 . j)}\left(T+\frac{\beta}{4}\right)^{-(i+1)}\right\} \tag{4,7.23}
\end{equation*}
$$

4.1.2 Evaluating the Probabilities of Misclassification for $k=2$

 populations:In order to evalifate formulae $(4.1 .16)$ and $(4.1,23)$ for the probability of misclassification, the FORIRRY" "utite PROBS, given in Appendix 4.3, was uritten. This was used to probability of eisclassification for the case $r=5$ for the same th... ats of eigenvalues $\left\{\lambda_{i}\right\}$ that were used in Chapter 3, as well as for the corresponding three sets when the trace-is halved. The results are given below in Table 4.1.1, together with those obtained from the approximate formula (4.1.9),
68.

Table 4.T.T

Case

$\left\{\lambda_{i}\right\}$
Exact Proba-
Dरifty of Mis-
Classification
(a)
$17.0,1.0,1.0,7.0,1.0$
15.0
.0392
.0334
(b)
$3.0,3.0,3,0,3.0,3.0$
15.0
.0204
.0140
(c)
$5.0,4.0,3.0,2.0,1.0$
15.0
.0233
.0154
(d)
$5.5,0.5,0.5,0.5,0.5$
7.5
.0827
. 1044
(e)
(f)
$1.5,1,5,1,5,1,5,1.5$
7.5
.0553
. 0543
$2.5,2,0,1.5,1.0,0.5$
7.5
.0596
.6606

From Tablef 4.1.1 the relationship between the probability of misclassification and beth the trace and relative sizes of the eigenvalues of $T \Sigma^{-1}$, that was predicted ir thapter 3, is clearly evident. However, the approximate formia $(4.1 .9)$, which is far easier to compute than the exact formulae and therefore useful for quick assessments of the probability of misclassification, is not very accurate.

4.1.3 The case $k>2$ populations

From classification rule (4.1.1) the probability of correct classification, given $x \in \pi_{i}$, becomes:
$j \neq 1$

Now, from Section 3,2 we have that, given $x \in \pi_{i}$:

$$
\stackrel{\sigma}{1}_{2}^{(x)} \sim x_{p}^{2}
$$

and

$$
\begin{equation*}
\delta_{j}^{2}(x) \sim x_{p}^{2}\left(\delta_{i j}^{2}\right) \quad \text { conditionally on } \delta_{i j} \tag{4.1.25}
\end{equation*}
$$

69.

Unconditionslly $\delta_{j}^{2}(x)$ has the density given in (3.2.7):

$$
\begin{equation*}
f_{\delta}^{\delta}(x)\left(\delta_{j}^{2}(x) \mid x<\pi_{f}\right)=\sum_{s=0}^{\infty} a_{s} g_{p+2 s}\left(\delta \delta_{j}^{2}(x)\right) \tag{4,1,26}
\end{equation*}
$$

where $g_{p+2 s}(*)$ lenotes the $X_{p+2 s}^{2}$ density function and the coefficients a_{s} are given by $(3,2,6)$. Moreover, the $\delta_{j}^{2}(x)$ are clearly not independent.

So, in order to evaluate (4.1.24) we need the joint distribution of the minimum of $k-1$ correlated, identically distributed random variables $\delta_{j}^{2}(x)$ whose marginal densities are given by $\{4,1,26)$ and the chi-squared randon variable $\delta_{f}^{2}(x)$ which is also correlated with the $\delta_{i}^{2}(x)$.
"It is clear, therefore, that this approach to evaluating thie probabil值y of correct classification is not a promising one, and will not be pursund further here.

Another approach would be to use expression (2.1.15) for the probability of correct classification given $x e \pi_{i}$, conditional on the values of $\left\{\delta_{i j 2}=\left(\mu_{i} \mu_{j}\right)^{\prime} \Sigma^{-1}\left(\mu_{4}-\mu_{2}\right), 5,2=1, \ldots, k ; 5,2 * 1\right\}$ and then to obtain the unconditions? probability by integrating it over the joint distribution of the ${ }^{\circ}{ }_{i j \ell^{*}}$

Since there is no analytic expression for (2.1.15), it would have to be evaluated numerically or by table look-up over a multidirensional grid of points defined by the $\delta_{i, j l}$ and than integrated numerically over their joint distribution.

In addition to the complexity of the abovementioned operation, an expression for the joint distribution of the $\delta_{i j 2}$ would have to be found. As in the previous approach, the marginel distributions of the ofije are known. Viz: the $\delta_{i j}^{2}=\delta_{i, j j}$ have the distribution derived in Theorem 3.1.1
70.
and the $\delta_{i j \lambda}, j \neq 2 \mathrm{can}$, in a manner very similar to Theorem 3.1., be shown to be distributed as $\sum_{s=1}^{r} \lambda_{s}\left(v_{s}-x_{s}\right)$, where $\left\{\lambda_{s}\right\}=E\left\{g s\left\{T^{-1}\right)\right.$ and the v_{s} and w_{s} are independent χ_{1}^{2} random variables. It can aiso be shown that the correlation coefficient between $\delta_{i j}^{2}$ and $\delta_{i \ell}^{2}, j \neq 2$ is $\frac{1}{2}$. However, the joint distribution of the $\delta_{i, j e}$ is unknown, so this approach willalso not be pursued any further.

This leaves only the lower bounds (2.1.16) and (2.1.17) on the probability of correct classification. However, these expressions give lower bounds on the ginimum probability of correct classification. Stronger bounds than these may be obtained from Bonferronf's first inequality by noting that $\{4.1 .24$) can be written:

$$
\begin{aligned}
& \text { P[correct classification } \left.\mid x \in \pi_{i}\right]=P\left[{\left.\underset{\substack{j=1 \\
j \neq i}}{k} \delta_{i}^{2}(x)<\delta_{j}^{2}(x) \mid x \in \pi_{i}\right]}^{\qquad 1-\sum_{\substack{j=1 \\
j \neq 1}}^{k} P\left[\delta_{j}^{2}(x)>\delta_{j}^{2}(x) \mid x \in \pi_{i}\right]}\right.
\end{aligned}
$$

Now $P\left[\delta_{i}^{2}(x)>\delta_{j}^{2}(x) \mid x \in \pi_{i}\right]$ is just the probability of misclassification with two populations π_{i} and π_{j}, and is therefore equal to $\Phi\left(-\frac{1}{2} 5_{i j}^{2}\right)$. So

$$
\begin{equation*}
\text { P(correct classification } \left.\mid x \in n_{i}\right) \geq 1-\sum_{\substack{j \neq 1 \\ j * i}}^{k} p\left(-\frac{1}{2} \delta_{i j}\right) \text {. } \tag{4,1.27}
\end{equation*}
$$

Under the randon effects model $\delta_{i j}^{2}$ is a random variable, so (4.1.27) becomes:

$$
\begin{align*}
& \text { P[correct classification|x c } \left.r_{i}\right] \geq 1-\sum_{\substack{j=1 \\
j \neq i}}^{k} E_{i j}^{z}\left[\Phi\left(-\frac{1}{2} \delta_{i j}\right)\right] \\
& =1-(k-1) E_{\delta_{i j}}\left[\varphi\left(-\frac{1}{2} \delta_{i j}\right)\right] \tag{4,1,28}
\end{align*}
$$

since the $\delta_{i j j}^{2}$ are identically distributed.

71.

Note that (4.1.28) does not depend on the particular population π_{i} from which x comes, so it is also the unconditional probability of correct classification. Finally, using results $(4,1,16)$ and $(4.1,23)$ of the preyfous sub-section in (4.1.28), ve get
for r even:

P[correct classification $] \geqslant 1-\frac{k-1}{2}\left\{1-\frac{1}{\frac{3}{\pi}} \sum_{j=0}^{\infty} c_{j}{ }_{i=0}^{i+j-1} \frac{\Gamma\left(i+\frac{1}{2}\right)}{\Gamma(i+1)}\left(1+\frac{6}{4}\right)^{-\left(i+\frac{1}{2}\right)}\right.$ \}
(4.1.29)
for rodd:

Picorrect classification 2 e$\}-\frac{k-1}{2}\left\{1-\frac{2}{\pi} \cos ^{-1}\left(\left(1+\frac{\beta}{4}\right)^{-\frac{1}{2}}\right)\right.$

$$
\begin{equation*}
=\frac{1}{1} \sqrt{\frac{8}{n}} \sum_{j=0}^{\infty} c_{j} \sum_{i=0}^{\left.\frac{3(r-1)+j-1}{} \frac{\Gamma(i+1)}{\Gamma(i+1.5)}\left(1+\frac{\beta}{4}\right)^{-(\{+1)}\right\} .} \tag{4,1,30}
\end{equation*}
$$

An upger bound on the probability of correct classification may also be obtained by using the fact thrit,

$a *\left(-\frac{1}{2} \delta_{j}\right)$
where $\delta_{i}^{2}=\min _{V j \neq i} \delta_{1 j}^{2}$.
So,

$$
\begin{equation*}
{ }_{,} P\left[\text { correct classification } \mid x \in \pi_{i}\right] \leq 1-\phi\left(-\frac{1}{2} \delta_{i}\right) . \tag{4.1.31}
\end{equation*}
$$

Under the random effects wodel, this becones:
$\mathrm{P}\left[\right.$ correct classification $\left.\mid \mathrm{X} \in \pi_{i}\right] \leq 1-\mathrm{E}_{\mathrm{b}_{2}}\left[\phi\left(-\frac{1}{2} \sigma_{i}\right)\right]$.

To evaluate the expectation in (4.1.32) the distribution of $\delta_{i}^{2}=\min _{Y, j \times i} \delta_{i j}^{2}$ is required. Unfortunately, although the $\delta_{i j}^{2}$ have identical marginal distributions given by Theores 3.1.1, and the correlation cot. "- ient between $\delta_{j j}^{2}$ and $\delta_{j e}^{2}$ is known, their joint distribution is unknown, : so the distribution of δ_{i}^{2} cannot be found.

Honeve: ${ }^{-1}$ if we assume that y_{i} is fixed, then it is possible to obtain the distribution of δ_{i}^{2} and hence to evaluate the upper bound $\langle 4.1 .32$) on the probability of correct classification.

In what follows, we will therefore first obtain the distribution of δ_{i}^{2}, conditional on μ_{i}. Unfortunately it is not possible to obtain the unconditional distribution from $\mathfrak{i t}$. This distribution will then be used to evaluate (4.1.32). Finally we shall show that a very similar expression for the upper bound is obtained if instead we ignore the intercorrelations betinion the $\delta_{i f}^{2}$ and proceed as if they were indepandent. Under these circunstances it is not necessary to assume that μ_{i} is fixed.

The distribution of $\delta_{\mathrm{i}}^{\frac{2}{2}}=\min _{\forall j=1} \delta_{\mathrm{ij}}^{2}$, conditional on μ_{i}
We first consider the distribution of

$$
a_{i j}^{2}=\left(u_{j}-u_{i}\right)^{\prime} \Sigma^{-1}\left(u_{j}-u_{i}\right)
$$

conditional on u_{f}, under the random effects model.
Under this model, the μ_{j} are independentiy and identicslly distributed $N_{p}(5, T)$ randon variables. Therefore, conditionally on H_{i},

$$
\begin{equation*}
\mu_{j}-\mu_{i} \sim N_{p}\left(\xi-\mu_{1}, T\right) \text { independently, } j=1, \ldots, k ; j \neq 1 . \tag{4.1.33}
\end{equation*}
$$

73.

Theorem 4.1.1, given below, allows us to find the conditional distribution of $\delta_{i f}^{2}$.

Theorem 4.1.1

Let $d^{2}=X^{\prime} \Sigma^{-1} X$, where $X \sim N_{p}(\mu, T)$. Than d^{2} is distributed as $\sum_{\text {f=1 }}^{r} \lambda_{i} v_{i}$ where the λ_{i} are the $r(s p)$ nonzero eigenvalues of $T \Sigma^{-1}$ and the $y_{i} \sim x_{j}^{2}\left(\omega_{i}^{2}\right)$, independently. The square root w_{i} of the noncentrality parameter of V_{i} is the $i{ }^{\text {th }}$ element of $P^{\prime} n$ where P is the ($r a r$) orthogonal matrix whose $1^{\text {th }}$ coluwn is tha eigenvector of $\mathrm{T}_{1} \Sigma^{-1} \mathrm{~T}_{1}$ corresponding to $\lambda_{f}, T=T_{1} T$ and T_{1} is a $p \times r$ matrix of rank $r=r(T)$, and n is the solution to $T_{1} \eta=\mu$.

The proof of this theorew, which is essentially a generalization of Theoren 3.1.1, is given in Appendix 4.1.

Applying Theoren 4.1 .1 to (4.7.33) fwasdiately yields the distribution of $\delta_{i j j}^{2}$, conditional on μ_{i}, in the following form:

$$
\begin{equation*}
\delta_{i j}^{2} \sim \sum_{s=1}^{r} \lambda_{s} v_{s}, \quad \text { independentiy, } j=1, \ldots, k ; j \neq 1 . \tag{4.1.34}
\end{equation*}
$$

where,
$\left\{\lambda_{s}\right\}=\operatorname{aigs}\left\{T \Sigma^{-1}\right\}$
$v_{s} \sim x_{1}^{2}\left(\omega_{5}^{2}\right)$ independently, $s=1, \ldots, r$,
$\left(\omega_{1}, \omega_{2}, \ldots, \omega_{r}\right)^{\prime}=p^{\prime} n_{n}$,
P is the ($r x r$) orthogonal matrix defined in Theoren 4.7.1,
n is the solution to $T_{1} n=\xi-\mu_{i}$
and T_{1} is the ($p x r$) matrix defined in Theorem 4.1.1.
Clearly, if T is of full rank, i.e. $r=p$, then $n=T_{1}^{-1}\left(\xi-\mu_{q}\right)$.

The mean and variance of v_{s} are, respectively (See, for example Johnson and Kotz (1970b) page 134):

$$
\begin{aligned}
E\left[v_{s}\right] & =1+w_{s}^{2} \\
\operatorname{Var}\left[v_{g}\right] & =2\left(1+2 w_{s}^{2}\right)
\end{aligned}
$$

and since the $e_{x_{*}} f$ independent, we obtain the following expressions for the conditiors! rean and variance of $\delta_{i j}^{2}$:

$$
\begin{align*}
E\left[\delta_{i j}^{2} \mid \mu_{i}\right] & =\sum_{s^{21}}^{r} \lambda_{s}\left(1+\omega_{s}^{2}\right) \tag{4.1.35}\\
\operatorname{Var}\left[\delta_{i j}^{2}\left[\mu_{f}\right]\right. & =2 \sum_{s=1}^{r} \lambda_{s}^{2}\left(1+2 \omega_{s}^{2}\right) . \tag{4.1.36}
\end{align*}
$$

As in the case of the sum of weighted icentral chi-squared random varizptes, the distribution of the sum of weighted noncentral chi-squared randos variables may also be expanded as an infinite series of central chi-squared distributions (See, for exanple, Ruben (1962), Press (1966). Kotz, Johnson and Boyd (1967b), Johnson and Kotz (1970b)). This ;ields the following expression for the distribution- and density functions, respectively, of $\delta_{i j}^{2}$, conditional on μ_{i}. Letting $z=\delta_{i j}^{2}$;

$$
F_{B_{i j}^{z}} \left\lvert\, H_{f}(z)=\sum_{j=0}^{\infty} c_{j}^{\prime} G_{r+2 j}\left(\frac{z}{b}\right)\right.
$$

and

$$
\begin{equation*}
f_{8_{i j}^{z}} \left\lvert\, \|_{i}(z)=\frac{1}{\beta} \sum_{j=0}^{\infty} c_{j} g_{r+2 j}\left(\frac{z}{\rho}\right)\right. \tag{4.1.37}
\end{equation*}
$$

where β is an arbitrary positive constant, $3_{r+2 j}(\cdot)$ and $9_{r+2 j}(\cdot)$ are the distribution- and density functions, respectively, of the $x_{r+2 j}^{2}$ distribution and the constants c_{j}^{\prime} are given by:
74.

The mean and variance of v_{s} are, respectively (See, for example Johnson and Kotz (1970b) page 134):

$$
\begin{aligned}
\mathrm{E}\left[v_{\mathrm{S}}\right] & =1+\omega_{\mathrm{s}}^{2} \\
\operatorname{Var}\left[v_{\mathrm{s}}\right] & =2\left(1+2 j_{\mathrm{s}}^{2}\right)
\end{aligned}
$$

and since the v_{s} are independent, we obtain the following expressions for the conditional mean and variance of $\delta_{1 / 5}^{2}$:

$$
\begin{align*}
E\left[\delta_{i j}^{2} \mid \mu_{j}\right] & =\sum_{s=1}^{r} \lambda_{s}\left(1+\omega_{s}^{2}\right) \tag{4.1.35}\\
\operatorname{Var}\left[\delta_{i j}^{2} \mid \mu_{\xi}\right] & =2 \sum_{s=1}^{r} \lambda_{s}^{2}\left(1+2 \omega_{s}^{2}\right\} \tag{4,1,36}
\end{align*}
$$

As in the case of the sum of weighted central chi-squared random variables, the distribution of the sum of weighted noncentral chi-squared randos variables nay also ts expanifed as an infinite series of central chi-squarad distributions (See, for 纹anp'2, Ruben (1962), Press (1966), Kotz, Johnson and Boyd (1967b), Johnson and Kotz (1970b)). This yields the following expression for the distribution- and density functions, respectively, of $\bar{b}_{i j}^{2}$, conditional on y_{f}, Letting $z=\hat{\delta}_{i f}^{2}$;

$$
F_{\delta_{i j}^{2} j \mu_{i}}(z)=\sum_{j=1}^{\infty} c_{j}^{t} G_{r+2 j}\left(\frac{z}{\beta}\right)
$$

and

$$
f_{j \frac{1}{2} j} \left\lvert\, \mu_{i}(z)=\frac{1}{B} \sum_{j=0}^{\infty} c_{j}^{\prime} g_{r+2 j}\left(\frac{z}{\beta}\right)\right.
$$

where B is an arbitrary positive constant, $G_{r+2 j}(\cdot)$ and $g_{\mu+2 j}(\cdot)$ are the distribution- and density functions, respectively, of the $x_{r+2 j}^{2}$ distribution and the constants c_{j}^{\prime} are given by:
75.

$$
\begin{aligned}
c_{0}^{\prime} & =e^{-\frac{1}{S=1}} \sum_{s=1}^{r} \omega_{s}^{2} \underset{y}{r}\left(B / \lambda_{s}\right)^{\frac{1}{2}} \\
c_{j}^{\prime} & =\frac{1}{2} \sum_{i=0}^{j-1} h_{j-i}^{\prime} c_{i}^{\prime} \quad j=1,2, \ldots
\end{aligned}
$$

where

$$
h_{j}^{t}=\sum_{s=1}^{r}\left(1-\beta / \lambda_{s}\right)^{j}+j B \sum_{s=1}^{r}\left(\omega_{s}^{2} / \lambda_{s}\right)\left(1-\beta / \lambda_{s}\right)^{j-1}
$$

Ruben (1962) shows that for $0<\beta \leq a_{r}$ (4.1.32) is a mixture distribution (it may or may not be for other values of B) and that it converges miformly it any bounded z-interval of $z>0$ for any B, and converges uniformly for all $z>0$ if β is chosen so that $\max \left|1-\frac{B}{\lambda_{j}}\right|<1$.

Remembering that, conditionally on μ_{i}, the $\delta_{i j}^{2}, j=1 \ldots \ldots k ; j \cup i_{i}$ are independently distributed, all with distribution given by (4.1.3T) we immediately get the distribution, and density functions of $\delta_{i}^{2}=\min _{\neq j, j} \varepsilon_{i j}^{\%}$ in " the following form (See, for example Gibbons (1971)), $\stackrel{?}{?}$

$$
\left\{\begin{array}{c}
F_{\delta_{i}^{2} h_{1}}(z)=1-\left(1-F_{\delta \delta_{j j}^{z} \mid \mu_{i}}(z)\right)^{k-1} \\
f_{\delta_{i}{ }^{2} \mu_{\mu_{4}}}(z)=(k-1)\left(1-F_{\delta_{j j}^{2} \mid \mu_{i}}(z)\right)^{k-2} f_{\delta_{i j}^{2}} \mid \mu_{i}(z) \tag{4.1.28}
\end{array}\right.
$$

Where $F_{\delta_{i j}^{2}} \mid \mu_{i}(z)$ and $f_{\delta_{i j}^{2}} \mid u_{i}(z)$ are given in (4.7.37).
Using (4.1.38), the upper bound (4.1.32) on the probability off correct classification under the random effects model, given $x \in \pi_{i}$, can of evalusated conditionally on μ_{i}. Using the notation

$$
\left.p_{\mu_{i}}=P[\text { correct classification }] x \in \pi_{i}, u_{i}\right]
$$

we therefore have

$$
\begin{aligned}
P_{u_{i}} & \left.<1-\int_{0}^{\infty} \Delta\left(-\frac{2}{2} \sqrt{z}\right) f_{\delta_{1}^{2}} \right\rvert\, u_{i}(z) d z \\
& =\frac{z}{z}\left(\left.1+\int_{0}^{\infty} G_{1}\left(\frac{z}{4}\right) f_{\delta_{1}^{2}} \right\rvert\, u_{i}\right.
\end{aligned}
$$

using result $(4.1 .12)$, where $G_{1}(\cdot)$ is the x_{1}^{2} distribution function. Integrating by parts yields,

$$
p_{H_{j}} \leq \frac{1}{8}\left(2-\left.\frac{1}{4} \int_{0}^{\infty} g_{1}\left(\frac{z}{4}\right) F_{\delta \frac{1}{2}}\right|_{H_{i}}(z) d z\right.
$$

\circ
where $g_{1}(\cdot)$ is the x_{1}^{2} density function

$$
=\frac{1}{2}\left\{1+\frac{1}{k} \int_{0}^{\infty} 9_{l}\left(\frac{z}{4}\right)\left(1-\sum_{j=0}^{\infty} c_{j}^{j} G_{r+2 j}\left(\frac{z}{\beta}\right)\right)^{k-1} d z\right\}
$$

frown (3.1.37) and (3.1.38)

$$
=\frac{3}{k}\left\{1+\frac{g}{4} \int_{0}^{\infty} g_{1}\left(\frac{8}{4} y\right)\left(1-\sum_{j m 0}^{\infty} c_{j}^{5} G_{N+2 j}(y)\right\}^{k-1} d y\right)
$$

making the transformation $y=\frac{2}{6}$,
Now, using expressions $\langle 4.1 .15\rangle$ for $G_{r+2 j}(y)$ and considering the case where r is even, we get
$P_{H_{1}} \leq \frac{j}{2}\left(1+\frac{\beta}{4} \int_{0}^{\infty} \frac{\left(\frac{\beta}{q^{2}}\right)^{-\frac{1}{2}}}{\sqrt{2 \pi}} e^{-\beta y / 8}\left[\sum_{j=0}^{\infty} c_{j}^{1} \sum_{i=0}^{\frac{1}{2}+j-1}\left(\frac{y}{2}\right)^{i} / 4!\right]^{k-1} e^{-(k-1) y / 2} d y\right\}$
where we have assumed that (4.1.37) is a mixture distribution so that $\sum_{j=0}^{\infty} c_{j}^{\prime}=1$. From the identity:

$$
\begin{equation*}
\left(\sum_{j=0}^{\infty} c_{j}^{i} \sum_{i=0}^{\frac{i}{2}+j ; \gamma}\left(\frac{y}{2}\right)^{i} / 1!\right)^{k-1} \equiv \sum_{j=0}^{\infty} a_{j} y^{j} \tag{4.1.39}
\end{equation*}
$$

where the a_{j} are obtained by equating coefficients of y^{j} on the leftand right-hand sides (See Appendix 4.2 for their values) we obtain:

$$
P_{\mu_{i}} \leq \frac{1}{2}\left[1+\frac{1}{\sqrt{2} ;} \sqrt{\frac{F}{4}} \sum_{j=0}^{\infty} a_{j} \int_{0}^{\infty} y^{j-\frac{1}{2}} e^{-y(k-1+\beta / 4) / 2} d y\right.
$$

where the interchange of sumation and integration operations is justiATed by the uniforin convergence of (4.1.37) and hence of (4.1.39), Evaluating the above integral as a gamma function finally yiolds after some simplification,

$$
\begin{equation*}
P_{\mu_{i}} \leqslant \frac{1}{s}\left(1+\sqrt{\frac{B / 4}{k+B / 4-1}} \sum_{j=0}^{\infty} a_{j}\left(\frac{2}{k+B / 4-T}\right)^{j}\left(\frac{1}{k}\right)^{[j]}\right\} \tag{4.1.40}
\end{equation*}
$$

where $(a)^{[j]}=a(a+1) \ldots(a+j-1)$,
Unfortunately, the case whers r is odd is so complicatad that it is , not considered here.

Remark 4.1,1 The dramback to expression (4.1.40) is that it rafers to the conditional probability of correct classification and requires μ_{i} to be given before it can be used.

An approach that glves an unconditicial but apprnximate upper bound is to ignore the intercorrelations betirean the $\delta_{i j}^{2}, j=1, \ldots, k ; j \neq f$ and to proceed as if they ware independent. Therefore, instead of using the conditional distribution (4.1.37) in expression (4.1.38) for the
78.
distribution of $\delta_{i}^{2}=\underset{\sim j \times i}{\min } \delta_{i j}^{2}$, we use the unconditional distribution (4.1.1) for $\delta_{i, j}^{2}$ that was derived in Chapter 3. Noting that (4.1.10) and (4.1.37) differ only in respect of their constants c_{j} and c_{j}^{\prime}, respectively, it is clear that the arguments go through exactly as for the conditional case with c_{j}^{f} replaced by c_{j}. So expression (4.1.40) can also be used as an approxirate upper bound on the unconditional probability of correct classification if c_{j}^{1} is replaced by c_{j} in definition (4,1,39) of the a_{j}.

Another link-up between the upper boum, on the conditional probability of correct classificition and the approximate upper bound on the unconditional probability is achieved if μ_{i} is fixed at the value $\mu_{i}=5$ in the former. For then it is clear from (4.1.34) that, conditionally on $\mu_{i}=\xi$

$$
\delta_{i j}^{2} \sim \sum_{s=1}^{r} \lambda_{s} v_{s}
$$

where now the v_{s} are central X_{1}^{2} random variables. Comyaring this with the unconditional distribution of $\delta_{i j}^{z}$ derived in Theorem 3.1.1:

$$
\delta_{i, j}^{2} \sim 2 \sum_{s=1}^{r} \lambda_{s} v_{s}
$$

where the v_{s} are also contral X_{1}^{2} random variables, we see that for a given set of eigenvalues $\left\{\lambda_{\mathrm{s}}\right\}$, the values of the upper bound (4.1.40) for the probability of correct classification sonditional on $\mu_{i}=\xi$, will be equal the that of the corresponding approximate bound on the unconditional probability for the case when the eigenvalues are all half as large,

This is intuitively reasonable, as one would expect poorer classification from populations situated near the mean of their distribution.
79.

4.1.4 Evaluating the bounds on the probabilities of corract classification for $k>2$ populations

Expressions (4.1.29) and (4.1.30) for the lower bound on the probability of correct classification have been derived directly from the twopopulation case, and they are also coaputed by the subroutine PROBS given in Appendix 4.3. Table 4.1.2 gives the values of the lower bound for the same three sets of eigenvalues $\left\{\lambda_{i}\right\}$, all with a trace of 15 , that were used in earlier examples, and for $k=5$ populations. Values for $k=5$, $r=4$ and a similar three sets of $\left\{\lambda_{1}\right\}$, all with trace 10 , are also given, for comparison with the upper bounds discussed below.

Exprassion (4.1.40) for the upper bound on the conditional probability of correct classification is not evaluated as easily because of the increasing complexity of the formulae for the constants a_{j} appearing in it for values of j greater than $\frac{r}{2}$. See Appendix 4.2.

However, for the specific case where the eigenvalues $\left\{\lambda_{s}\right\}$ of $T \Sigma^{-1}$ are all equal, say $\lambda_{s}=\lambda, s=1, \ldots, r$, and μ_{f} is fixed at the value $\mu_{f}=()$ it is clear from Remark 4.1.1 above and from definition (3.1.9) for the c_{j} that if $\beta=\lambda$ then $c_{o}^{\prime}=1$ and $c_{j}^{\prime}=0, \psi_{j}>0$, and that if $\beta=2 \lambda$ then $c_{0}=1$ and $c_{j}=0, Y J>0$. (This is also an frmediate consequence of the fact that when the λ_{s} are all equal then $\delta_{i 3}^{2}$ is proportional to a x_{r}^{2} randryaríable. See (3.1.13)).

Under these circumstances (4.1.39) becones:

$$
\begin{equation*}
\left(\sum_{i=0}^{\sum r-1}\left(\frac{y}{2}\right)^{i} / 1!\right)^{k-1} \# \sum_{j=0}^{\infty} a_{j} y^{j} \tag{4.1.41}
\end{equation*}
$$

so that the sequence of nonzero a_{j} terminates after a finite number of terms and they are readily computed, especially for 10 values of r.
80.

For example, for the case $\mathrm{r}=4$ and $k=5$ populations, (recall that formulae (4.1.39) and (4.1.40) are valid only for r even), using efther (4.1.41) or the formulae derived in Appendix 4.2, we get the following values for the a_{j} :

$$
a_{0}=1, a_{1}=2, a_{2}=\frac{3}{2}, a_{3}=\frac{1}{2}, a_{4}=\frac{1}{16}
$$

and $a_{j}=0, \forall j>4$.
Using these values for the a_{j}, the upper bound (4.1.40) on the conditional probability of correct classification with p_{j} a ξ, as well as the approximate upper bound on the unconditional probabillity (see Remark 4.1.2) were computed for the case where $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=2.5$. For a given value of the trace of TI^{-1}, the case where the λ_{i} are all equal gives the best classification, so these upper bounds are also valid for the other cases with $r=4$ given in Table 4.1.2.

Tabie 4.1.2

Bounds on the probabilities of correct classification for $k=5$ populations

Case

(a)	$11,1,1,1,1$.8433
(b)	$3,3,3,3,3$.9183
(c)	$5,4,3,2,1$.9068
(d)	$7,1,1,1$.7517
(c)	$2,5,2.5,2.5,2.5$.8220
(f)	$4,3,2,1$.8063

Upper bound on conditional prob. evaluated
at $\lambda_{i}=\xi$

Approxiprate Upper bound

As retarted at the and of the previous sub-section, classification tends to be poorer when the new observation cones frow a population whose mean is situated at the centre of its distribution, than when it is situ-
ated elsewhere. This is reflected by the low value of the upper bound on the conditional probability evaluated at $\mu_{i}=\xi$ given in Table 4.1.2, Which is in fact lower than the corresponding lower bound in two out of the three cases (d) to (f). Thus it would appear that the upper bound on the conditional probability is of Iimited use in practice, and that the approximate upper bound, obtained by assuming that the $\delta_{i j}$, $j=1, \ldots, k ; j \neq i$, are independent, is far more useful.

4.2 Unknown Paranatars

In this section we consider the probabilities of correct- and misclassification when the sampla-based classification rule, with equal prior probabilities for each of the k populations, is used. viz: Assfgn new observation x to that population π_{i} for which,

$$
\begin{equation*}
d_{1}^{2}(x)=\min _{j=1, \ldots, k} d_{j}^{2}(x) \tag{4.2.1}
\end{equation*}
$$

where

$$
d_{j}^{2}(x)=\left(x-x_{j}\right)^{\prime} s^{-1}\left(x-x_{j}\right)
$$

x_{j}. is the mean of the training sample of size n_{j} from population π_{j}, and S is the pooled sample covariance matrix based on v degrees of freedom, or equivalentiy, assign x to π_{i} if

$$
\begin{equation*}
V_{i j}(x)>0 \quad \forall j=1, \ldots, k ; \quad j \neq 1 \tag{4.2.2}
\end{equation*}
$$

there

$$
V_{i j}(x)=\left(x-\left(x_{4} . x_{j,},\right)^{\prime} s^{-1}\left(x_{1},-x_{j}\right)\right.
$$

62.

As descrived in Section 2.2, two types of misclassification probability may be defined when the sample-based classification rule is used. (Although we refer to the misciassification probability, the remarks hold equally well for the probability of correct classification). They are the conditional probabllity of misclassification, P_{j}^{c} given a particular training sample and that $\mathrm{x} \in \mathrm{y}_{1}$, and the expected probability of misclassification P_{f} given $x \in \pi_{i}$, when the classification rule is based on training samples of size $n_{3}, f=1, \ldots, k$.

Both these probabilities may be expressed in terms of the population means μ_{i} (or functions of them) which, under the random effects model, are random variabies. Under this model, therefore, we are interested in the expectations of p_{i}^{C} and p_{i}^{e} over the distribution of the μ_{j}.

Interpreted in a Bayesian sense, taking the expectation of p_{1}^{c} over the distribution of the μ_{j} gives the posterior probability of misclassification, given the training sample. As shall be seen in the case of $k=2$ populations this leads to results that are not very useful fron a practical point of vies, so the great majority of this section will be devoted to obtaining expressions for the expected probabilities of correctand misclassification under the random effects model when the classification rules $(4.2 .1)$ and $(4,2,2)$ are based on training samples of size n_{j}, $j=1, \ldots, k$.

4.2.1 The case $k=2$ populations

The conditional probability of misclassification, using the classification rules $(4.2 .1)$ or $(4.2 .2)$ based on training saaples yielding x_{1}, x_{2}. and S, is given in Section 2.1, equation (2.1.23). Thus,
83.

$$
\begin{align*}
& P_{i}^{C}\left(\mu_{i}\right)=P\left[m i s c l a s s i f i c a t i o n \mid x_{1}, x_{2}, s, \mu_{i} ; x \in \pi_{i}\right] \\
& =\left\{\frac{(-1)^{1}\left(u_{1}-\frac{1}{2}\left(x_{1} .^{+x_{2 .}}\right)\right)^{\prime} s^{-1}\left(x_{1} .-x_{2}\right)}{\sqrt{\left(x_{1},{ }^{-x_{2}}\right)^{\prime} s^{-1}} \mathrm{ss} s^{-1}\left(x_{1} .-x_{2 .}\right)}\right) \\
& \left.=\sigma(f-1)^{i} \quad\left(\mu_{i}-a\right)^{\prime} b / c\right) \tag{4,2,3}
\end{align*}
$$

where,

$$
\begin{aligned}
a & =\frac{1}{2}\left(x_{1}+x_{2}\right) \\
b & =s^{-1}\left(x_{1},-x_{2}\right) \\
\text { and } \quad c & =\sqrt{b^{+}} 6 .
\end{aligned}
$$

Under the random effects sodel $\mu_{i} \sim N(\xi, T)$, independently, so considering the case $X \in \pi_{1}$ and taking expectations over the distribution of μ_{l} yields:

$$
\left.\left.P_{1}^{C}=P[\text { misc }] \text { assification }\right] x_{1}, x_{2_{*}}, S ; x_{\in} \pi_{1}\right]=E_{1 H_{1}}\left[Q\left(-\frac{\left(\mu_{1}-a\right)^{\prime} b}{c}\right)\right] .
$$

Letting $y=\frac{\left(\mu_{f}-x\right)^{\prime} b}{c}$, we have that, under the random effects mode?, 6

$$
y \sim N\left(\frac{\langle S-a)^{\prime} b}{c}, \frac{b^{\prime} T b}{c^{2}}\right)
$$

so,

$$
p_{1}^{c}=\int_{-\infty}^{\infty} \varphi(-y) \frac{1}{\sqrt{27 \sigma}} e^{-\frac{1}{8}(y-n)^{2} / \sigma^{2}} d y
$$

84.

where,

$$
\eta=(\xi-a)^{\prime} b / c
$$

and

$$
\sigma^{2}=b^{1} T b / c^{2}
$$

SO_{2}

$$
P_{1}^{C}=\int_{-\infty}^{\infty} \Phi(y) \frac{1}{\sqrt{2 n u}} e^{-\frac{1}{2}(y+n)^{2} / \sigma^{2}} d y
$$

This integral may be evaluated using the result in Downton (1973) referred to in expression (4.1.19) in Section 4.1. This innediately yields:

$$
\begin{align*}
p_{1}^{c} & =\Phi\left(1-\frac{\eta}{\sqrt{1+\sigma^{2}}}\right) \\
& =\Phi\left(-\frac{\left(\xi-\frac{1}{d}\left(x_{1}+x_{2}\right)\right)^{\prime} S^{-1}\left(x_{1}-x_{2}\right)}{\sqrt{\left(x_{1}-x_{2}\right)^{\prime} s^{-1}(z+T) s^{-1}\left(x_{1 .}-x_{2 .}\right)}}\right) \tag{4.2.4}
\end{align*}
$$

Similarly,

$$
\begin{align*}
P_{2}^{c} & =P\left[\text { misclassification } \mid x_{1}, x_{2}, s ; x \in \pi_{2}\right] \\
& =\left\{\frac{\left(\xi-\frac{1}{2}\left(x_{1},+x_{2},\right)\right)^{\prime} s^{-1}\left(x_{1},-x_{2}\right)}{\left.\sqrt{\left(x_{1},-x_{2}\right)^{\prime} s^{-1}(x+T) s^{-1}\left(x_{1},-x_{2}\right)}\right)}\right) \tag{4.2.5}
\end{align*}
$$

Remark 4.2.1 Although results (4.2.4) and (4.2.5) are elegont matheontically, they are not very useful frow a practical point of vien. This is highlighted by the fact that since the prior probabilities q_{1} and q_{2} of π_{1} and r_{2}, respectivaly, have been assuned equal, the average posterior probability of misclassifigation becomes, using (4.2.4) and (4.2.5):

$$
\begin{equation*}
P\left[\text { misc }{ }^{\text {assification } \mid x_{1}, x_{2}, s}, S^{y}\right]=\frac{3}{2}\left(P_{1}^{C}+P_{2}^{C}\right)=\frac{3}{2} \tag{4,2.6}
\end{equation*}
$$

85.

independently of the values of x_{1}, x_{2}, and S .
The reason for this ancmaly is that once x_{1}, and x_{2}, are given, the populations π_{1} and π_{2}, and hence μ_{1} and μ_{2} are no ionger randonly chosen but are fixed for the present problem. Therefore it is not meaningful to take the expectation of the conditional probability of aisclassification, given the training sample, tover the distribution of μ_{i}

From Rentark 4.2.1 above it is clear that there is no further need for considering the conditional probability of misclassification under the random effects model.

The most useful result on the expected probability of misclassification for the two- population problet is that of 0kamoto (1963), given in expression (2.1.26) of Section 2.1 for the case of equai-sized training samples $n_{1}=n_{2}=n$ from π_{1} and π_{2} :

$$
\begin{align*}
P_{1}^{e}\left(\delta^{2}\right) & =P\left[m i s c l a s s i f i c a t i o n \mid n, v, \delta^{2} ; x \in \pi_{i}\right] \\
& =\varphi\left(-\frac{\delta}{2}\right)+\frac{1}{v} \phi\left(\frac{\delta_{2}^{z}}{\delta}\right)\left(\frac{p^{-1}}{\delta}+\frac{p \delta}{4}\right)+0\left(n^{-2}\right) \tag{4.2.7}
\end{align*}
$$

where,

$$
\delta^{2}=\delta_{12}^{2}=\left\{\mu_{1}-\mu_{2}\right)^{4} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)
$$

v is the degrees of freedom of 5 and $\phi(\cdot)$ is the standard nomel density function.

The expected probability of misciassification under the ransion effects model may therefore be obtained by taking the expectation of (4.2.7) over the distribution of 8^{2}. Since there is no difference in (4.2.7) for $x \in \pi_{1}$ or $x \in \Sigma_{2}$ (this is not the case if $n_{1} \neq n_{2}$) the subscript i will be dropped froml $p_{f}^{e}\left(6^{2}\right)$. So,

잉.

$$
\begin{align*}
P^{e} & =P[m i s c l a s s i f i c a s i o n i n, v]=E_{f^{2}}\left[P^{e}\left(\delta^{2}\right)\right] \\
& =E_{\delta^{2}}\left[\phi\left(-\frac{\delta}{2}\right)+\frac{1}{v} \phi\left(\frac{\delta}{2}\right)\left(\frac{p-1}{\delta}+\frac{p s}{4} i\right]+0\left(n^{-2}\right)\right. \tag{4.2.8}
\end{align*}
$$

As in the case where the parameters are known, we may approximate (4.2.8) using the approximation $(4,7,5)$. The first tern in $(4,2.8)$ is just the probability of misclassification when the parameters are known, and its approx, imation is given in $\langle 4.1 .9\}$, so we need look only at the second term. As before, we need the second derivative of this term with respect to 8^{2}, Sore straightforward calculations yield, letting $z=\delta^{2}$;

$$
\begin{align*}
\frac{d^{2}}{d z^{2}}\left(\frac{1}{v}\right. & \left.\phi\left(\frac{\sqrt{z}}{2}\right)\left(\frac{p-1}{\sqrt{2}}+\frac{p \sqrt{z}}{4}\right)\right\} \\
& =\frac{2-\frac{5}{2}}{4 v} \phi\left(\frac{\sqrt{z}}{2}\right)\left\{3(p-1)+\frac{p-2}{4} z+\left(\frac{p+1}{6}\right) z^{2}+\frac{p}{64} z^{3}\right) . \tag{4.2.9}
\end{align*}
$$

Applying $(4.1 .5),(4.1 .7),(4.1 .9)$ and $(4.2 .9)$ to $(4.2 .8)$, we get:

$$
\begin{aligned}
& p^{e} \otimes \phi\left(-\sqrt[1]{\sum_{i=1}^{r} \lambda_{i} / 2}\right)+\frac{1}{26}\left(\sqrt{\sum_{i=1}^{r} \lambda_{i} / 2}\right) \frac{\left(1+\sum_{i=1}^{r} \lambda_{i} / 2\right) \sum_{i=1} \lambda_{i}^{z}}{\left(2 \sum_{i=1}^{r} \lambda_{i}\right)^{3 / 2}} \\
& * \frac{1}{v} \phi\left[\sqrt{\sum_{i=1}^{p} \lambda_{i} / 2}\right]\left\{\frac{p^{-1}}{\sqrt{\sum_{i=1}^{r} \lambda_{i}}}+\frac{p}{4} \sqrt{2 \sum_{i=1}^{r} \lambda_{i}}\right\} \\
& +\frac{\left(2 \sum_{i=1}^{r} \lambda_{i}\right)^{-5 / 2}}{\delta_{v}} \phi\left[\sqrt{\sum_{i=1}^{r} \lambda_{i} / 2}\right]\left(3(p-1)+\left(\frac{p-2}{4}\right) 2 \sum_{i=1}^{r} \lambda_{i}-\left(\frac{p+1}{6}\right)\left(2 \sum_{i=1}^{r} \lambda_{i}\right)^{2}\right. \\
& \left.+\frac{\mathrm{D}}{\mathrm{E}} \mathrm{C}_{4}\left(2 \sum_{\{=1}^{r} \lambda_{i}\right)^{3}\right\} 8 \sum_{\{=1}^{\mathrm{r}} \lambda_{i}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { i.e. } p^{e} \phi \phi\left(-\sqrt{\frac{1}{2}} \sum_{i=1}^{r} \lambda_{1}\right) .+\frac{1}{v} \phi \sqrt{\left.\frac{1}{2} \sum_{i=1}^{r} \lambda_{i}\right)}\left\{\left(\sum_{i=1}^{r} \lambda_{i}\right)^{-\frac{1}{2}}\left(p-1+\frac{p}{2} \sum_{i=1}^{r} \lambda_{i}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.\left.+\frac{p}{8}\left(\sum_{i=1}^{r} \lambda_{i}\right)^{3}\right)\right\} . \tag{4.2.10}
\end{align*}
$$

A more accurate expression for p^{e} may be obtained by evaluating (4.2.8) exactiy, using expressin (4.1.10) for the density of 6^{2}.

Letting $z=8^{2}$ as before, this becomes:

$$
\begin{equation*}
\left.p^{e}=\int_{0}^{\infty}\left(\phi\left(-\frac{\sqrt{z}}{2}\right)+\frac{1}{v} \phi\left(\frac{\sqrt{z}}{2}\right) r(p-1) z^{-\frac{1}{2}}+\frac{\rho_{2}}{4} z^{\frac{1}{2}}\right)\right)_{B}^{\frac{1}{B}} \sum_{j=0}^{\infty} c_{j} g_{p+2 j}\left(\frac{z}{\beta}\right) d z+0\left(n^{-2}\right) . \tag{4.2.11}
\end{equation*}
$$

The first term in the above iniagral is just the probability of misclassification in the case where the parametors ars known, and is given in (4.1.16) and (4.1.23) for r even and odd, respectively. The second ters may be evaluated, after interchanging the sumation and integration operations, in terms of ganwa functions. After some simplification, shis yields, for r even:

$$
\begin{equation*}
\left.\times\left(\frac{2(p-1)}{\beta}+\frac{p(1 p+j-3)}{(1+j 74)}\right)\right\}+0\left\{n^{-2}\right) . \tag{4.2.12}
\end{equation*}
$$

88.

for r odd:

$$
P^{e}=\frac{1}{2}\left\{1-\frac{2}{\pi} \cos ^{-1}\left(\frac{1}{71+\frac{1}{4} 4}\right)-\frac{1}{2} \sqrt{\frac{B}{\pi}} \sum_{j=0}^{\infty} c_{j}\left[_{i=0}^{\frac{1}{2}(r-1)+j-1} \frac{\Gamma(j+1)}{\Gamma(j+1), 5\}}\left(1+\frac{B}{4}\right)^{-(i+1)}\right.\right.
$$

$$
\left.\left.=\frac{r\left(\frac{1}{2} r+j-\frac{1}{2}\right)}{V r\left(\frac{3}{2} r+j\right)}\left(1+\frac{\beta}{4}\right)^{-\left(\frac{1}{2} r+j-\frac{1}{2}\right)}\left(\frac{2(p-1)}{\beta}+\frac{p\left(\frac{1}{2}+j-\frac{1}{2}\right)}{(1+B / 4)}\right)\right]\right)+0\left(n^{-2}\right)
$$

4.2.2 Evaluating the Probabilities of Misclassification for $k=2$ populations

FORTRAN subroutine PROB1, given in Appendix 4.3, evaluates formulae (4.2.12) and (4.2.13) for the probebility of misclassification when the parameters are unknow. Table 4.2 .1 gives the probabilities of misclassification for the case $r=5$ for the same three sets of eigenvalues $\left.t \lambda_{1}\right\}$, all with a trace of 15 , that were used in the earlier exariples, and two values of v, together with the corresponding approximate probabilities obtained from formula (4,2.10).

Table 4.2.1

case	$\left\{\lambda_{1}\right\}$	\underline{v}	Probabilifty of Misclassification correct to $0\left(\mathrm{n}^{-2}\right)$	Approximiate Pro- Mability of
(aisclassification				

Comparing the probabilities of misclassification for the cases $v=20$ and $v=40$ with each other and with the corresponding probabilities in Table 4.1.1, which represent the case where $v \rightarrow \infty$, clearly indicates the
89.
effoct that sample size has on them. Noreover, as in the case where the parameters are known, the approxination to the probability provided by formula (4.2.10) is only correct to about two decimal places.

4.2.3 The case $k>2$ populations

Using classification rule (4.2.1), the probability of corrjet classification, given $x<x_{i}$ becomes:
$P\left[\right.$ correct classification $\left.\left.\mid x \in \pi_{i}\right]=P\left[d_{i}^{2}(x) \leqslant \min _{j=1, \ldots, k}^{j \neq i}\right\} d_{j}^{2}(x) \mid x \in \pi_{i}\right]$

Non, given that $x<\pi_{i}$, the marginal distribution of $d_{j}^{2}(x)$ is proportional to the central $F(p, v-p+1)$ distribution, and is given by expression (3.3.19). On the other hand, the marginal distribution of $d_{j}^{2}(x), j * i$, is, conditionally on $\delta_{i j}^{2}$, proportional to the noncentral $F(p, v-p+1)$ distribution with noncentrality paraneter proportional to $\delta_{i j}^{2}$. See (3,3.6). Its unconditional distribution is given by (3.3.20) and (3.3.21). Wowever, the joint distribution of the $d_{j}^{2}(x), j=1, \ldots, k$, is unknown, so that expression (4.2.14) cannot be evaluater.

Using classification rule $\langle 4.2: 21$, the probability of correct classification, given $\times \in \pi_{i}$, is:
$P\left[\right.$ correct classification $\left.\mid x<\psi_{i}\right]=P\left[V_{i j}(x)>0, \forall j \neq 1, \ldots, k ; j \neq i \mid x \in \pi_{i}\right]$.

As in the above case the marginal distribution of $V_{i j}(x)$, conditional on $\delta_{i j}^{2}$, is known (Okamoto, 1963) and the unconditional distribution can, in principle, be obtained by integrating over the distribution of $\delta_{1 \mathrm{j}}^{2}$. However, the joint distribution of the $V_{i, j}(x)$ is again unknown, so that expression (4.2.15) can also not be evaluated.
90.

As in the case where the parameters are known, we therefore consider bounds on the probability of correct classification. As before, Cacoullos ${ }^{1}$ lower bound (2.1.32) refers to the minimum probability of correct classification and we can improve on them by using Bonferroni's first inequality. Using the analogous argument as that leading up to expression (4.1.28) in the case where the parameters are know, and using Okamoto's (1963) expression (4.2.7) for the probability of aisclassification for two populations together with the assumption that the training samples from each of the k populations are all the same size n, yields the following lower bound on the probability of correct classification under the randan effects model:
$P[$ correct classification $] \geq 1-(k-1) E_{\delta_{i j}^{2}}\left[\phi\left(-\frac{1}{2} \delta_{i j}\right)+\frac{1}{v} \phi\left(\frac{1}{2} \delta_{i j}\right)\right.$

$$
\begin{equation*}
\times\left(\frac{\mathrm{p}-1}{\delta_{i j}}+\frac{\mathrm{po}_{i j}}{4^{-j}}\right)+\mathrm{o}\left(n^{-2}\right) \tag{4.2.16}
\end{equation*}
$$

Finally, substituting expressions (4.2.12) and (4.2.13) for the expectation in (4.2.16), yields,
for r even:
$P\left[\right.$ correct classification] $\geq 1-\frac{k-1}{2}\left(1-\frac{1}{2} \sqrt{\frac{\beta}{T}} \sum_{j=0}^{\infty} c_{j}\left[\sum_{i=0}^{\frac{r}{2}+j-1} \frac{r\left(i+\frac{1}{r}\right)}{\Gamma(i+f)}\left(i+\frac{\beta}{4}\right)-\left(i+\frac{1}{2}\right)\right.\right.$.
for r odd;
P[correct classification $] \geq 1-\frac{k-1}{2}\left\{1-\frac{2}{\pi} \cos ^{-3}\left(\frac{1}{(1+\beta / 4}\right)-\frac{1}{2} \sqrt{\frac{B}{\pi}} \sum_{j=0}^{\infty} c_{j}\right.$

$$
\begin{equation*}
+0\left(n^{-2}\right) \tag{4.2,18}
\end{equation*}
$$

97.

We can also obtain an upper tound on the probability of correct classification in a manner similar to that used when the parameters are known. Using Okanoto's (1963) exprecsion (3.2.7) and assuming training (3 samples of equal size $n, y l e l a s$ the expression egologous to (4.1.32):

Ptcorrect classification|x $\in \mathbb{v}_{i} \pm \leq 1-E_{\delta_{i}^{2}}\left[\$\left(-\frac{1}{i} \delta_{i}\right)\right.$

$$
+\frac{1}{v} \phi\left(\frac{s_{8}}{4}\right)\left\{\frac{p-1}{\delta_{1}}+\frac{p s_{i}^{2}}{4} y_{1}+0\left(n^{-2}\right)\right.
$$

s where

$$
\delta_{i}^{2}=\min _{\forall j \neq j} 6_{i, j}^{2} .
$$

The first terp inside the expectation was evaluated in the case where the parateters are knom, conditionally on y_{i}. The second tern is, using the distribution $(4.7,38)$ of δ_{j}^{2}, conditionally on μ_{j} :
$\left.I=\int_{0}^{2 \pi} \frac{\lambda}{v} \varphi\left(\frac{1}{2} \sqrt{z}\right)\left(\frac{p-1}{\sqrt{z}}+\frac{p \sqrt{z}}{4}\right) f_{g_{i}^{2}} \right\rvert\, \mu_{i}(z) d y$

$$
\begin{aligned}
& =\frac{(k+1)}{\sqrt{\text { 2rivj }}} \int_{0}^{\infty} e^{-z / 8}\left(\frac{p-7}{\sqrt{2}}+\frac{p \sqrt{z}}{4}\right)\left(1-\sum_{j=0}^{\infty} c_{j}^{\prime} G_{r+2 j}\left(\frac{z}{6}\right)\right)^{(k-2)} \sum_{j=0}^{\infty} c_{j}^{\prime} g_{r+2 j}\left(\frac{z}{6}\right) d z
\end{aligned}
$$

for the case when r is even, where the a_{s}^{\prime} are defined in (4.7.39) with ($k-1$) replaced by ($k-2$) and the c_{j}^{\prime} are defined in (4.1.37). Interchanging the order of integration and evaluating the resulting integral yields: \%

$$
\begin{align*}
& \left.\frac{p \cdot \sqrt{B}}{4}\left(\frac{2}{k+\beta / 4-1}\right)^{\frac{2}{2 r+s}+j+\frac{1}{2}} \Gamma\left(\frac{j}{k} r+s+j+\frac{1}{2}\right)\right) . \tag{4.2.20}
\end{align*}
$$

Substytuting (4.2,20) and (4.1,40) into (4.2.19) and simplifying, gives the following upper bound on the conditional probability of correct classification, given u_{f}, when r is even:
$P\left[\right.$ correct classification|x e $\left.\left.z_{i} ; \mu_{i}\right] \leqslant \frac{i}{2(1}+\sqrt{\frac{\beta / 4}{k+B / 4-T}} \sum_{j=0}^{\infty} a_{j}\left(\frac{2}{k+2 / 4-T}\right)^{j}\left(\frac{1}{2}\right)^{[j]}\right\}$

where,
the a_{j} are defined in (4.1.39) and evaluated in Appendix $\times 4.2$, the a_{s}^{1} are similariy defined, but with ($k-1$) replaced by ($k-\frac{2}{}$) and the c_{j}^{\prime} are defined in (4.1.37):

Remark 4.2.2 As in the case whare the paramaters are known, an approxiwate upper bound on the unconditional probability of correct classification with k populations may be obtained by ignoring the intercorrelations between the $\delta_{i j}^{2}, j=1, \ldots, k ; j \neq i$, and proceeding os if thoy were independent. Arguing in exactly the same way as in Remark 4.1.2, we conclude, that (4.2.21) is also an approxitate upper bound on the unconditional probability if the c_{j}^{j} are replaced by c_{j} (defined in (3.1.9)) in this expression and in the definition (4.1.39) of the a_{j} and a_{s}. Furthamore, for a
given set of eigenvalues $\left\{\lambda_{1}\right\}$ the upper bound on the conditional probability of correct classification evaluated at $\mu_{i}^{\prime}=\xi$ is exactiy equal to the approximate bound un the unconditional probability for the case where the eigenvalues are all halved.

4.2.4 Evaluating the bounds on the probabilities of correct

classification for $k>2$ populations

Expressions (4.2.17) and (4.2.18) for the lower bound on the probabilíty of correct classification are also computed by subroutine PKOB7 given in Appendix 4.3. Table 4.2.2 gives the values of this bound for the same six sets of eigenvalues that were used in Table 4.1.2.for the case when the parameters are known, and for $k=5$ populations. The degrees of freedom ν were taken to be 20.

Upper bound $(4,2,21)$ on the conditional probability of correct classin fication, given $\mu_{i}=\xi$ was computed for the specfel case where the efgenralues are equal, as was the corresponding approximate bound on the un τ : conditional probability. Ses Sub-Section 4.1.4 for the details and for the values of the a_{j} when $r=4$. The corresponding values for the a_{s}^{1} are:

$$
a_{0}^{1}=1, a_{1}^{1}=\frac{3}{2}, a_{2}^{1}=\frac{3}{4}, a_{3}^{1}=\frac{1}{8} \text { and } a_{s}^{4}=0, V_{s}>3 .
$$

For the same reason given is Sub-Section 4.7.4, tho upper bounds coaputed for the case of equal eigenvalues are also valid for other sets of eigenvalues with the same trace.

Table 4.2.2

Bounds on the probabilities of correct classification for

 $k=5$ populations and degrees of freedon $v=20$| | $\underline{\left\{\lambda_{1}\right\}}$ | Lower bound | Upper bound on conditional prob. eveluated at μ_{i} 臽, | | | Approximate upper bound |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (a) | $11,1,1,1,1$ | . 7719 | | - | | - |
| (b) | 3,3,3,3,3 | . 8739 | 5 | - | | - |
| (c) | $5,4,3,2,1$ | . 8582 | | - | | - |
| (d) | 7,1,7,1 | . 6713 | | . 7416 | \cdots | . 8325 |
| (e) | $2.5,2.5,2.5,2.5$ | . 7579 | | . 7416 | | . 8325 |
| (f) | 4,3,2,1 | . 7386 | | . 7416 | | . 5325 |

As in the case where the paraneters ara known, the upper bound on the conditional probability of correct classification, evaluated at $\mu_{f}=E$, tends to be unrealistically low, and is in fact iover than the lower bound in one case. For practical purposes, the approximute upper bound on the unconditional probability is therefore generally more useful.

Appendix 4.1

Proof of Theorem 4.1.1

Since I is a nonnegative definite symmetric matrix of rank r, we may as in Theorem $3,1,1$ let $T=T_{1} T_{1}$, where T_{1} is a $p \times r$ matrix of rank r. Making the transforsation

$$
x=T_{1} 2
$$

we immediately have that

$$
Z \sim N_{p}(n, I)
$$

where n is the solution to $T_{1} n=\mu$.
Therefore $d^{2}=X^{\prime} \Sigma^{-1} X=Z^{1} T_{1}^{1} \Sigma^{-1} T_{1} Z=Z^{\prime}-V Z$, where $V=T_{1}^{\prime} \Sigma^{-1} T_{1}$ is an ($r \times r$) positive definfte symetric matrix. Now V can be expressed In the canomical form:

$$
V=P A P^{\prime}
$$

where $\Delta=\operatorname{diag}\left\{\lambda_{i}\right\}$ and $\left\{\lambda_{i}\right\}=\operatorname{eigs}\left\{T \mid \Sigma^{-1} T_{1}\right\}=\operatorname{eigs}\left\{T \Sigma^{-1}\right\}$ and P is the orthogonal matrix whose $f^{\text {th }}$ colum is the efgenvector of V corresponding to λ_{f}.

Therefore d^{2} becones:

$$
d^{2}=Z^{\prime} P A P^{\prime} Z=Y^{\prime} \Delta Y=\sum_{i=1}^{r} \lambda_{i} y_{i}^{z}
$$

where $y=\left(\begin{array}{l}y_{1} \\ 1 \\ y_{r}\end{array}\right)=p^{\prime} z^{\prime} \sim N_{r}\left(P^{\prime} n, x\right)$
So $y_{1}^{2} \sim x_{1}^{2}\left(\omega_{1}^{2}\right)$, independently, where ψ_{i} is the $i^{\text {th }}$ element of $p^{\prime} n$.

96.

Appendix 4.2

Evaluating the coefficients a_{j} in idepitity (4,1.39):

$$
\left(\sum_{j=0}^{\infty} c_{j}^{\prime} \sum_{i n 0}^{\frac{1}{2} r j-1}\left(\frac{y}{2}\right)^{i} / i!\right)^{k-1} \equiv \sum_{j=0}^{\infty} a_{j} y^{j}
$$

Theorem A 4.2.1

$$
a_{j}=\frac{(k-1)^{j}}{2^{j} j!} \text { for } j=0,1, \ldots \frac{1}{d} r-1
$$

Proof The left hand side of (4.1.39) may be written:

$$
\begin{align*}
& \left(\sum_{j=0}^{\infty} c_{j}^{\prime} \sum_{i=0}^{\frac{1}{2} r+j-1}\left(\frac{y}{2}\right)^{1} / 1!\right)^{k-1}=\left\{c_{0}^{\prime}\left(14 \frac{y}{2 \times 7 T}+\cdots \div \frac{y^{\frac{1}{2} r-1}}{2^{\frac{d}{r-1}}\left(\frac{1}{2} r-1\right)!}\right)\right. \\
& +c_{1}^{t}\left(1+\frac{y}{\left.2 x T r^{\prime}+\ldots+\frac{y^{\frac{3 r}{2}}}{2^{\frac{1}{r} r}\left(\frac{1}{2} r\right)!}\right)+\ldots+c_{j}^{1}\left(1+\frac{y}{2 x)!}+\ldots+\frac{y^{\frac{1}{2} r+j-1}}{2^{\frac{1}{2} r}+j-1}\left(\frac{1}{2 r+j-1)!}\right)\right.}\right. \\
& \because\left\{1+\frac{y}{2 x\}!}+\ldots+\frac{y^{\frac{3}{2} r-l}}{2^{\frac{3}{2 r-1}}\left(\frac{1}{2} r-1\right)}+\left(1-c_{0}^{1}\right) \frac{y^{\frac{1}{2} r}}{2^{\frac{1}{2} r}\left(\frac{1}{2} r\right)!}+\ldots\right)^{k} \\
& \left.+\left(1 \cdot \sum_{j=0}^{j-1} c_{1}^{\prime}\right) \frac{y^{d r+j-1}}{2^{\frac{1}{2} r+j-1}\left(\frac{1}{4} r+j-1\right)!}+\ldots\right\}^{k-1}
\end{align*}
$$

where we have assumed that $(4,1,37)$ is a mixture distribution, so that $\sum_{j=0}^{\infty} o_{j}^{1}=1$

$$
=\left(\sum_{s=0}^{\infty} b_{s} y^{s}\right)^{k-1}
$$

where $b_{s}=\frac{1}{2^{s} s!}$ for $s=0,1, \ldots \frac{1}{d} r-1$
$=\left(1-\sum_{\{=0}^{j-1} c_{i}^{1}\right) / 2^{s} s!$ for $s=\frac{1}{2} r+j-1_{i} \quad j=1,2, \ldots$.

Using the multinomial theorem to evaluate ($A 4.2,2$) and substituting this into identity ($4,1,39$) imaedjately yields:

$$
\begin{equation*}
a_{j}=\Sigma \frac{(k-1)!}{k_{0}!k_{1}!\cdots k_{j}}, b_{1}^{k_{1}} b_{2}^{k_{2}} \ldots b_{j}^{k_{j}} \tag{A4.2.3}
\end{equation*}
$$

where the suwation is taken ovar all partitions $2_{0}, k_{1} ; \ldots k_{y}$ of $x-1$ for which:

$$
\begin{equation*}
\sum_{i=1}^{j} i s_{i}=j \tag{A,4.2,4}
\end{equation*}
$$

Subsituting the values of b_{s} given in (A 4.2.1) into ($A 4.2 .3$) and using (A 4.2.4) gives, for $j<i r-1$:

The first fem coefficients are, from (A 4.2.5):

$$
\begin{aligned}
a_{0} & =1 \\
a_{1} & =\frac{1}{2}\left\{\frac{(k-1)!}{(k-2)!}!\left(\frac{1}{T}\right)\right\}=\frac{k-1}{2 \times 2} \\
a_{2} & =\frac{1}{2^{2}}\left\{\frac{(k-1)!}{(k-2)!T!} \frac{1}{2!}+\frac{(k-1)!}{(k-3)!} 2!\left(\frac{1}{T}\right)^{2}\right\} \\
& =\frac{k-1}{2^{2}}\left\{\frac{1}{2!}+\frac{k-2}{2!}\right\}=\frac{(k-1)^{2}}{2^{2} \times 2!}
\end{aligned}
$$

and so on.
The rest of the proof follows by indurtion. Assuste that the result is true for all $j \leqslant i$ and all k_{4} where $i<\frac{1}{d} r_{-1}$.

98.

i.e. $\quad a_{j}^{(k-1)}=\frac{(k-1)^{j}}{2^{j} j!}$ for $j=0,1, \ldots, i$

Where the superscript in $a_{j}^{(k-1)}$ indicates its dependence on $k-\xi^{\prime}$, Now,

$$
\left(\sum_{s=0}^{\infty} b_{s} y_{s}\right)^{k-1} \equiv\left(\sum_{s=0}^{\infty} b_{s} y^{s}\right)\left(\sum_{s=0}^{\infty} b_{s} y^{s}\right)^{k-2}
$$

$$
\begin{equation*}
\text { i.e. } \sum_{j=0}^{\infty} a_{j}^{(k-1)} y^{j}=\left\langle\sum_{s=0}^{\infty} b_{s} y^{5}\right\rangle\left(\sum_{j=0}^{\infty} a_{j}^{(k-2)} y^{j}\right\rangle \tag{A4.2.7}
\end{equation*}
$$

Equating coefficients of y^{i+1} on both sides of (A 4.2.7) yields:

$$
\begin{aligned}
(1) & =b_{0} a_{i+1}^{(k-2)}+b_{1} a_{i}^{(k-2)}+b_{2} a_{i-1}^{(k-2)}+\ldots+b_{i+1} a_{0}^{(k-2)} \\
& =a_{i+1}^{(k-2)}+\frac{1}{2 \times 1!} \frac{(k-1)^{i}}{2^{i}+!}+\frac{1}{2^{2} \times 2!} \frac{(k-1)^{i-1}}{2^{i-1}(i-1)!}+\ldots+\frac{1}{2^{i+1}(i+1)!}
\end{aligned}
$$

by assumption (A 4.2.6).
Therefore,

$$
\begin{align*}
a_{i+1}^{(k-1\rangle}-a_{j+1}^{(k-2\rangle} & =\frac{1}{2^{i+1}(i+1)!} \sum_{j=0}^{1}\left\langle i_{j}^{i+1}\right)(k-2\}^{j} \\
& =\frac{1}{2^{i+1} \frac{1}{(i+1)!}\left((k-2+1)^{i+1}-(k-2)^{i+1}\right)} \\
& =\frac{(k-1)^{i+1}}{2^{1+1}(i+i)!}-\frac{(k-2)^{i+1}}{2^{i+1}(i+1)!} \tag{A4,2,8}
\end{align*}
$$

and since ($A 4.2 .8$) holds identically for all k it immediately follows that:

$$
a_{i+1}^{(k-1)}=\frac{(k-1)^{4+1}}{2^{1+1}(1+1)!} \quad \text { for all } k
$$

99.

Finally, as the theorem has already been shown to be true for all $\leq \leq 3$, it is trua for all $\$ \leqslant \frac{1}{8} r-1$ by induction.

Remark A 4.2.1 The coefficients a_{j} for $j \geqslant 1$ are most. readily caleur lated from (A 4.2.1) with the heip of Theoren A 4.2,\% Unfortumately no general result is available for them. Writing (A 4.2.1) as:

$$
\left(\sum_{j=0}^{\infty} c_{j}^{\prime 2} \sum_{i=0}^{\frac{2 r}{+j-1}} \frac{y^{i}}{2^{j} 1!}\right)^{k-1}=\left(\sum_{j=0}^{\infty} \frac{y^{j}}{2^{j} 1!}-\sum_{j=\frac{j}{2} r}^{\infty}\left(\sum_{i=0}^{j-\frac{1}{2} r} c_{j}^{\prime}\right) \frac{y^{j}}{2^{j} 1!}\right)^{k-1}
$$

8

and using the following obvious generalization of Theorem A 4.2.1:

$$
\begin{equation*}
\left(\sum_{j=0}^{\infty} \frac{y^{j}}{2^{j}}\right)^{k-1}=\sum_{j=0}^{\infty} \frac{(k-1)^{j}}{2^{j} j!} y^{j} \tag{A4.2.11}
\end{equation*}
$$

100.

$$
\begin{align*}
= & \frac{(k-1)}{2^{\frac{1}{2} r+2}\left(\frac{1}{2} r+2\right)!}\left\{(k-1)^{\frac{1}{2} r+1}-\right. \\
& -c_{0}^{1}\left(1+(k-2)\left(\frac{1}{2} r+2\right)\left(1+\frac{1}{2}(k-2)\left(\frac{1}{2} r+1\right)\right)\right\} \tag{A4.2.IT}\\
& \left.-(k-2)(3 r+2))-c_{2}^{\prime}\right\} \quad(A 4.2)
\end{align*}
$$

and so on.

Result $\{A 4.2 .13$) only holds for $\mathrm{d} r>1$ and $\langle A 4.2 .14\rangle$ only for $\mathrm{gr}>2$.

For $\mathrm{i} r=2$, i.e. $r=4$ (A 4.2.14) becanes, instead:

$$
\begin{gather*}
a_{4}=\frac{k-1}{2^{+} \times 4!^{\prime}}\left((k-1)^{2}-c_{0}^{\prime}\left(1+4(k-2)\left(1+\frac{3}{2}(k-2)\right)-c_{0}^{\prime} 3(k-2)\right)\right. \\
\left.-c_{1}^{\prime}(1+4(k-2))-c_{2}^{\prime}\right\} \tag{A4.2:15}
\end{gather*}
$$

and for $r=1$, i.e. $r * 2,(A 4: 2,13)$ and ($A 4.2 .14$) become, respectively:

$$
\begin{align*}
& a_{2}=\frac{k-1}{2^{2} \times 2!}\left\{k-1-c_{0}^{\prime}\left(1+\langle k-2)\left(2-c_{0}^{1}\right)\right)-c_{1}^{\prime}\right\} \quad\langle A 4.2 .16\rangle \\
& a_{3}=\frac{k-1}{2^{2} \times 3!}\left\{\left(\kappa^{\prime}-1\right)^{\prime}-c_{0}^{\prime}\left(1+3(k-2)\left(k-1-c_{0}(k-2)-c_{1}+c_{0}^{j}\left(\frac{k}{3}-1\right\}\right)\right.\right. \\
& \left.-c_{j}^{\prime}(1+3(k-2)\rangle-c_{2}^{1}\right\} \tag{A4.2.17}
\end{align*}
$$

Appendix 4．3 FORTRAN Subroutines for computing probasilities or correct－ and misclassification
 1PRORK）
 THE PARAMETERS ARE：

CVEC＝THE VEGTOR OF CONETANTS CIJ），NTERN3＝LENGTH OF VECTOR CVEC． EFAGR \＆HAXIMUM VALUE OF THE LAST TERM IN THE INFINITE SUM IN THE FOFMULI NPERMI＝NG．CF TERNS IN SUNMATIQN ACTUALLY CCMPUTFO，
PRCEz a prodactiITY OF NISCLASSIFICAYICA 4 ITH TWO GROUPS． NGFS＝NO OF GRDUPS，PROEK＝LOAER GCUNO ON THZ PRCEAEILITY OF CDRREC1 CLASSIFICAYIDN PITH NNGS：GRCUPS．

```
INPLICIT REAL#G (A-H,O-Z)
    #FAL*8 CVEC(tITERNS)
    oRTIN = 1./(11,4,25*(0fTTA)
    pI = 3.141592553589793
    SCTPI a DSQRT(FI)
    CF = NOF
    IP(NOD{NORD , 2) .GT. 0) GOTO 10
    ITOP = NORC/R
    TERN = DSGQT4BETIN) * SOTRI
    SUM # TERM
    IF(ITOP =LF+ 1) GQ TD 2
    CC 1 I = 2,ITOP
    TEGM = TERM* (AI-1.5)*BETTN/(AI-1+)
1 - SLU = SiJM + TERM
    CENTTNUU
    EUN1 # CVECF11 * SUM
    ATERH1 = 1
    IF(NYERNS *LE, 1) GO TC 4
    OC 3 3 F 2,NTERSM
```



```
    SOMN=SUM + TERM
    TERMI % CVEC(J) * SUSI
    IF(TERM: LT. ERPOR) GO TO 4
    l
```



```
    GC TO NO
10 IT世P # (NGKO~i)/2
    TEZM = 2.*BETIN/SOTPI
    EUM = TERMM
    IF(ITGP -LE O) SU4 = 0,
    IPCITON,LE: I) GO TJ 12
    cC
```



```
    SLM = 5U# & T-FN
    CCNTINUE
    SLM1 CVEC(1) E(tM
```



```
    1F NTERNG &LG. 1) 40 TO 14
    CC I3 J = 2,NTERNS
    A, ITOp+ % = 1:
    IERM क TERN* (AJJ-1;)*EETIN/LAJ->&S)
    ELM = $U4 + TEAM
    IEMML = CVEC(J) * SUM
        IF(IERM1,LT' ENROR) GCTC 14
        13 STEHM1 = SLM1 क SUNI & TERMI
(4. PFOAZ = :5 - DAFCOS(DSGRT(BETIN))/FL - LSQRT(AETA)/(4**SQTQI)*SUN2
```



```
        CCNTINUE
        |F{TE(6,101) ERF口R, NTERN1, PRCEZ, NGpE, pRCIK
        FORMATR 'OPRUBAGILITY GF MISCLASSIFICATICN. KNLGN GAFANETERSIa'
```



```
    3 CCHREET CLASSIFICATION WITH',IM,3 GROUFS*,T75,E12.6)
        FETURN
            CNO
```

102.

 1 EFOBE，NGPS，PROBKI

PRCGRAN TO CCMPUTE PROQAEILITIES OF NISCLASSIFICATION。 UNKNCWN PARANETES THE PARAMETEAS ARE：
AOGC \＆NO．OF EIGENVACUES．NORDI $=$ THE DIMENSION OF THE PTOELEM．
NOF $=$ DEGREES QF FREEOUN OF COVARIANGE MATAIX．EETA P PARANETER EETA， CVEC TE THE VECTOR，OF CONSTANTS C（J）．NTERNS s LENGTH CF VECTOR CVEC． EFFOR M MAXINUN VALUE OF THE LAST TEFM IN THE INFINITF SUM IN THE RORMLLAB NTERAT＝NO．QF TERHS IN SUMMATION ACTUALLY COMPUTED．
FRCEZ \approx PKOQABIL ITY OF MISCLASSIFICATION UITH TWO GROUOS．
NGPS F NO．GF GROUPS．PAQBK I LCWEF GCUND ON THE PRCBASZLITY OF CORAECT CLASSIFICATIUN VITH＊NGPS GRGUPS．

1NPLICIT REAL＊B（A \quad H． $\mathrm{O}-\mathrm{Z})$
AEAL \＆CVEC（NTERMS）

PI＊3． 14159265358979 J
SCTPI＝DSQRT（PI）
CF \approx NDF
1F（MOD（NORD．2）＋G7．0）GQ TO 10
ITOF $=$ NORD
TER4＝DSQRT（BETIN）\＆SQTPI
SLM＝TERM
IP（TTOP LE 1$)$ GO TD 2
CO $11=2, I T O P$
TEAM＝TERM＊（AI－1．5）＊日
SUN＝SUM＋TERM
CCNTINUE

1 （AI～5）EBEYYN）
内TEかMI $=1$
IFINTERNS ．LE， 1 ）GO TO 4
CD $3 \quad 3=2, N T$ TRMS
TERM $=$ TERM＊$(A J-1, S) * B E T I N /(A J-1 \cdot)$
SUM is SUM + TERM

i（AJ～O5）＊BETiN）
IF（TERM1 ©LTO ERROR）GC TO 4
NTERM1 $=3$
SUM1 $=$ SUML＋TERNI

FROEK＝1．$=$（NGP坞－1 +1 ＊PRCE 2
COTO 20
1 TQP $=(N O R D=1) / 2$ है

SUM＝TEERM
IF（ITOP ，LE，
IF ITGP SUN m 0 \＆
$\mathrm{CDO}_{1}^{11} \mathrm{I}^{2}=2, \mathrm{ITOP}$
TERM＝TERM＊（AI－1．）＊BETIN／CAI＝－E）
SUM＝SUM＋TERM
CCNFINUE

1 AT＊RET IN）
NTERMI $=1$
IF（NTERNS LE，1）Gク TO 14
CO $13,2=2 . N T K A M S$

SUM $=$ SUN + TFRM

1AJWETEN：
IF（TERM2 \rightarrow LT．ERADR）GOTO 14
MTERNI \＃J
13 SUM1＊SUM1＋TERH2
PAOGZ $=+5-$ DARCOS（DSQRT（DETIN））／P1－CSQRT（AETA）／（4．＊SATPT）\＆SUMI

CCNTTNUE

102
1，OMAT OPROQAOILITY OF NISCLASSIFICATIOKz

3．TWO－GRQUP PRQBABILITY＊．T30：D12．6／i LONEA BOUNE UN PATHABTLITY 日F
CORRECT CLASSIFICATION NITH＊，I 3．＊GROUPS＇，T7S．012．6）
FETURN
END

Chaper 5 Hypothesis Testing on and Estimation of the Eigenvalues

 of $T \Sigma^{-1}$
5.1 Introduction

The results derived in chapter 3 and is are of $\lambda_{1} \geq \lambda_{2} z_{\ldots} \geq \lambda_{r}>0$, the r nonzero eigenvalues of $T \Sigma^{-1}$, either explicitly as in the expressions of the means and variances, or inplicitly through the constants c_{j} appearing in all the density and distribution functions as well as in the probabilities of correct- and misclassification.

It is clear, therefore, that in any practical implenentation of these results, sample-based estimates of these quantities will be raquired.

Since we are only concerned with the nonzero eigenvalues of Tz^{-1}, the logical first step is to test the hypotheses that some of the scaller eigenvalues are in fact zero. (They cannot be negative).

In this chapter, therefore, we will consider the two questions of hypothesis testing on and estimation of these eigenvalues.

Section 5.2 will be devoted to the first of these two questions. None of the results given in this section ara new, so only the formulae for the various tests will be given, together with a discussion on their applicability to our problem.

In the remaining sections of this chapter the less understood question of estimation of the elgativalues will be considered. Various estinators wil1 be proposed, and in Saction 5,5 they will be cozpared by neans of a simulation experiment.

As in Section 3.3 , we will assume that we bave a training sample of rondem observations from each of k populations. Furthermore, because of the irherent problens associated with estimation in rondom effects models when the samples are unbalanced (see, for example Johnson and Leone
104.

Vol II (1964) page 13) it will be assumed that the sample sizes from each of the k populations are the same.

Therefore, our sample will consist of p-dimensional random vactors,

$$
\begin{equation*}
x_{i j} ; \quad j=1, \ldots, n ; \quad 1=1, \ldots, k \tag{5.1.1}
\end{equation*}
$$

where, under our random effects model,

$$
\begin{array}{ll}
x_{i j} \sim N_{p}\left(\mu_{i}, \Sigma\right) & , \quad \text { independently } \\
\mu_{i} \sim x_{p}(\xi, T) & \text {, independently. }
\end{array}
$$

Lat

$$
x_{i}=\frac{1}{n} \sum_{j=1}^{n} x_{i j} \quad i=1, \ldots, k
$$

and

$$
x_{.,}=\frac{1}{k} \sum_{i=1}^{k} x_{i .}=\frac{1}{N_{i=1}} \sum_{j=1}^{k} x_{i j}^{n}
$$

where

$$
\mathrm{N}=\mathrm{kn}
$$

From the data we can construct the following wavova table:

Table 5,1,1

Defining,

$$
\begin{equation*}
\varepsilon_{1}=\Sigma+n t \tag{5.1.2}
\end{equation*}
$$

we have, under the randon effects model:

$$
\begin{align*}
& A_{1} \sim H_{p}\left(v_{1}, \Sigma_{1}\right) \\
& A_{2} \sim W_{p}\left(v_{2}, z\right), \quad \text { independently } \tag{5,3}
\end{align*}
$$

where $H_{p}(v, \Sigma)$ denotes the p-dimensional Wishart distribution with v degrees of freedon and parameter matrix L .

5. 2 Hypothesis tinsting on the λ_{i}

In this section we discuss the problem of testing whether some, or all of the eiganvalues $\left\{\lambda_{1}\right.$) of $\pi \pi^{-1}$ are equal to zero.

Logs \quad 'ef first hypothesis to test is $H_{0}: T=0$, for if it were trei $\quad J, \forall_{i}$ which would fmply that the k populations w identical and monc it would be fruitless to continue with the discrimh. analysis.

From (5.1.2) this null hypothesis becomes.

$$
\begin{align*}
& : H_{0}: \Sigma_{1}=\Sigma \\
& \text { with alternatlyc, } \\
& H_{1}: \Sigma_{1}>\Sigma \tag{5,2.1}
\end{align*}
$$

Clearly H_{3} would fimply thet $r(\mathrm{~T})>0$.
The usual Manova tests using the statistics A_{1} and A_{2} defined in Table 5.1.1 are based ony the fixed effects model. Ses for example, de Wan? (1976). Under the null hypothesis, honaver, the distributions of these two statistics are not: affected if instead the randoa effects model per-
tains, so the abovementioned tests are also appropriate for our situation. On the other hand, under the alternative hypothesis, A_{1} has the noncentral Wishart distribution $K_{p}\left(V_{1}, \Sigma_{j}, \Omega\right)$ with noncentraifty parameter a when the fixed effects model pertains, as opposed to the dissribution givan in (5.1.3) for the randon effects nodel. So the power functions of these tests will be different and will have different interpratations under the two models.

All the invariant tests of hypotheses (5.2.1) are based on

$$
\begin{equation*}
\left\{g_{1} \approx g_{2} \approx \ldots \ldots \geqslant g_{p}\right\}=a i g s\left\{A_{1} A_{2}^{-1}\right\} \tag{5.2.2}
\end{equation*}
$$

Two frequently applied test statistics are:
(i) The 14kelihood ratio statistic (Wilk's critarion)

$$
\begin{equation*}
T_{1}=\log \left(\left|A_{2}\right| /\left|A_{1}+A_{2}\right|\right)=\sum_{i=1}^{p} \log \left(T+g_{i}\right) \tag{5.2.3}
\end{equation*}
$$

(ii) Hotelling's T_{0}^{2} statistic:

$$
\begin{equation*}
T_{2}=v_{2} T_{0}^{2}=\operatorname{tr} A_{1} A_{2}^{-1}=\sum_{i=1}^{p} g_{i} \tag{5.2.4}
\end{equation*}
$$

Remark 5.2.1 Two further test statistics dee to Roy and Pillai respectively, also appear frequently in the Ifterature, but they won't be considared neve. The reason for mentioning Hotel'Ing's Tô statistic is that it. is considered again in Sutb-Section 5.4.2 ware its distribution under the random effects model is discussed.

Anderson (1958), using rasults from Box (1949), shous that the asymptotic null distribution of T_{1} can be written:
107.

$$
\begin{align*}
& P\left[m_{1} T_{1} \leq z\right]=G_{p v_{1}}(z)+\frac{\gamma_{2}}{m_{1}^{2}}\left(G_{p v_{1}+4}(z)-G_{p v_{1}}(z)\right) \\
& +\frac{1}{n_{1}^{4}}\left\{\gamma_{4}\left(G_{p v_{1}+8}(z)-G_{p v_{1}}(z)\right)-\gamma_{2}^{2}\left(G_{p v_{1}+4}(z)-G_{p v_{1}}(z)\right)\right\}+o\left(N^{-6}\right) \tag{5.2.5}
\end{align*}
$$

where,

$$
\begin{aligned}
& n_{1}=v_{2}+\frac{1}{2}\left(v_{1}-p-1\right) \\
& v_{2}=p v_{1}\left(p^{2}+v_{1}^{2}-5\right) / 48 \\
& \gamma_{4}=\frac{1}{2} \gamma_{2}^{2}+\frac{p v_{1}}{9200}\left(3\left(p^{4}+v_{j}^{4}\right)+10 p^{2} v_{1}^{2}+50\left(p^{2}+v_{1}^{2}\right)+159\right)
\end{aligned}
$$

änd $G_{v}\langle\cdot\rangle$ is the X_{v}^{2} distribution function. As a rough rvle, Anderson (1958) suggests that accuracy to three decimal places may be achieved using the first term only in the above expression if $p^{2}+v_{1}^{2} \leq m_{1} / 3$.

The asymptotic null distribution of T_{2} is given by Fujikoshi (T977) in the following form:

$$
\begin{array}{r}
P\left[m_{2} T_{2} \leq z\right]=G_{p v_{1}}(z) \div \frac{p v_{1}\left(p+v_{1}+1\right)}{q_{n i_{2}}}\left(G_{p v_{1}}(z)\right. \\
 \tag{5,2,6}\\
\left.\quad-2 G_{p v_{1}+2}(z)+Q_{p v_{1}+4}(z)\right)+D\left(\min _{2}^{-2}\right)
\end{array}
$$

where

$$
m_{2}=v_{2}-p-1
$$

If H_{0} is rejected, the next test of interest is whether any subset of the λ_{1} could all be zero. If true, then the distribution of 8^{2}, the Mahabanobis distance between any two populations, under the randon effects

108,
model could be expressed in terms of the remaining non-zero λ_{1} 's only. See Theorem 3,1.1. The null hypothesis of this test is,

$$
H_{01}: \lambda_{r+1}=\lambda_{r+2}=\ldots \ldots=\lambda_{p}=0
$$

where $0<r<p$.
Fujikoshi (1977) discusses tests for dinensionality of the noncentralify parateter a under the fixed effects MAWVVA aodel. That these tests are appropriate for testing H_{01} can be seen by the following argument. .

Conditionally on $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ we have a fixed effects model, in which case A_{1} has the noncentral Wishart distribution $H_{p}\left(v_{1}, \Sigma, a\right)$ with noncentrality paraneter,

$$
\begin{equation*}
\Omega=\frac{1}{2} n \Sigma^{-1} \sum_{i=1}^{k}\left(\mu_{i}-\mu\right)\left(\mu_{i-} \mu\right)^{\prime} \tag{5.2.7}
\end{equation*}
$$

where $\mu .=\frac{1}{\mathbb{k}} \sum_{i=i}^{k} \mu_{5}$. Now, under the random effects mode1,

$$
\begin{equation*}
\mu_{i} \sim H_{p}(\xi, T) \text { independentiy, } \psi_{i} \tag{5,2,8}
\end{equation*}
$$

so that,

$$
\begin{equation*}
\sum_{i=1}^{k}\left(\mu_{1}-\mu\right)\left(u_{1}-\mu_{1}\right)^{\prime} \sim N_{p}\left(v_{1}, T\right) . \tag{5,2.9}
\end{equation*}
$$

Cleariy, from (5.2.7), $r(\Omega)=r\left(\sum_{i=1}^{k}\left(\mu_{i}, \mu_{,}\right)\left(\mu_{j}-\mu_{i}\right)^{\prime}\right)$, and as long as $k>r(T)$, then froin $(5.2 .9)$, with probabi11ty $1, r\left(\sum_{i=1}^{k}\left(\mu_{i}-\mu_{*}\right)\left(\mu_{i}-\mu\right)^{\prime}\right)=r(T)$. So, for $k>r(T)$,

$$
\begin{equation*}
r(\Omega) a r(T)=r\left(T \Sigma^{-1}\right) \tag{5.2.10}
\end{equation*}
$$

and therefore any test for dimensionality of a will also be a test of $r\left(T \Sigma^{-1}\right)$. Fihally, since $r\left(T \Sigma^{-1}\right)$ is equal to thie number of non-zero λ_{i}, testing H_{01} is equivalent to testing the hypothesis $r(\Omega)=r$ against the alternative $r(a)>r$.

The two test statistics, corresponding to T_{1} and T_{2}, for testing H_{01} are:

$$
\begin{equation*}
T_{11}=\sum_{i=r+1}^{p} \log \left(1+g_{i}\right) \tag{5.2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{21}=\sum_{i=r+1}^{p} g_{i}, \tag{5.2.12}
\end{equation*}
$$

Fujikoshi (1977) gives the following results on the asyaptotic null distributions of ${ }^{1} \mathrm{C}$ and T_{21}.

$$
\begin{equation*}
P\left[m_{11}{ }^{\top} 11 \leqslant z^{z}\right]=G_{f}(z)+O\left(m_{11}^{-2}\right) \tag{5.2.13}
\end{equation*}
$$

where,

$$
\begin{align*}
& f=(p-r)\left(v_{1}-r\right) \\
& \text { and } m_{11}=v_{2}+\frac{1}{d}\left(v_{1}-p-1\right)+\sum_{i=1}^{r} \lambda_{i}^{-1} \text {. } \\
& P\left[\Pi_{21} T_{21} \leq z\right]=G_{f}(z)+\frac{f\left(p+v_{1}-2 r+1\right)}{4 G_{21}}\left(G_{f}(z)-2 G_{f+2}(z)\right. \\
& \left.+\theta_{\tilde{i}+4}(z)\right\}+0\left(\mathrm{n}_{21}^{-1}\right) \tag{5.2.14}\\
& \text { where } \|_{21} \text { a } v_{2}-p-1+r+\sum_{i=1}^{r} \lambda_{i}^{-1} .
\end{align*}
$$

110.

To apply these tests we clearly need to know $\lambda_{f}^{-1}, i=1, \ldots, r$ appcaring in π_{11} and n_{21}. A simple expedient is to replace λ_{1}^{-1} by $\hat{\lambda}_{j}^{-1}$ vhere $\hat{\lambda}_{i}$ is one of the estimators of λ_{i} discussed in the renainder of this chepter.
5.3. Eltimation of $\left\{\lambda_{1}\right\}=\operatorname{Efgs}\left(T \Sigma^{-1}\right\}$

From Table 5.1.1, expressions (5.1.2) and $(5.1,3)$ and the usual theory associated rith the Multivariate Normal distribution it is clear that $S_{1}=v^{-1} A_{1}$ and $S_{2}=v_{2}^{-7} A_{2}$ are maximun likelihood point estimators (corrected for bias) of $\Sigma=\Sigma+n i$ and Σ, respectively.

Thus we have the follosing maximum likelibood estimators for Σ and τ :

$$
\hat{z}=S_{2}
$$

and

$$
\begin{equation*}
\hat{T}=\frac{1}{n}\left(S_{2}-S_{2}\right) \tag{5,3.1}
\end{equation*}
$$

since the transformation is one-to-one. (See, for example, Anderson (1958) page 48).

Woreover, as Iong as the λ_{1} are distinct, the eigenvalues of $\hat{\mathrm{T}}^{-1}$ will be the maximum likelihood estinators of the corresponding eigenvalues of τ^{-1} (See, for example, Anderson (1956) pages 279-80), There; fore, noting that:

$$
\begin{align*}
\hat{\tau} \hat{\Sigma}^{-1} & =\frac{1}{n}\left(S_{1}-S_{2}\right) s_{2}^{-3} \\
& =\frac{1}{n}\left(S_{1} s_{2}^{-1}-1\right) \tag{5.3.2}
\end{align*}
$$

where I is the identity matrix, we have the following maximum TikeThood estatators of the λ_{1}, as long as they are distinct:

$$
\begin{equation*}
\hat{\lambda}_{i}=\frac{1}{n}\left(\ell_{i}-1\right) \tag{5.3.3}
\end{equation*}
$$

where $\ell_{1} \geq \&_{2} \geq \ldots \geq \ell_{p}$ are the eigenvalues of $S_{1} S_{2}^{-1}$.

Remark 5.3.1 Note that $\left(l_{i}\right\}=\operatorname{Eigs}\left\{S_{1} S_{2}^{-1}\right\}=\operatorname{eigs}\left\{\frac{V_{2}}{v_{1}} A_{1} A_{2}^{-1}\right\}=\left\{\frac{v_{2}}{v_{1}} g_{i}\right\}$. Girshick (1939) proves that the-eigenvalues of a sasple covariance matrix from a Normal sample are asymptotically independent, unbiased and normally distributed estimators of the corresponding population eigenvalue. as long as they are distinct. Using the mitivariate analogue of the argunent used to prove that the F-distribution tends to the chi-square distribution as the denominator degrees of freedom get large (see for example Wi3ks (1962) page 191) it can be shom that the above asymptotic result also holds for the eigenvalues of $\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}$ as both numerator and denominator degrees of freedom get large.

However, as will becone clear from the results of the 'sisulation experiment described in saction 5.5 , very large sample sizes are necessary before these results cin tee abstwed to hold to any reasonable degree of accuracy.

For moderate values of v_{1} and v_{2} the situation is not so simple. Khatri (1967) obtains the joint density function of the eigenvalues $g_{1}>g_{2}>\ldots>g_{p}>0$ of $A_{1} A_{2}^{\mu 1}$ which can be expressed in the following form:

$$
\begin{align*}
& \times{ }_{1} F_{0}\left(\frac{1}{2}\left(v_{1}+v_{2}\right) ; \gamma 1-T^{-1}, G(I+\gamma G)^{-1}\right) \tag{5.3.4}
\end{align*}
$$

where,
$\gamma_{1} \geq Y_{2} \geq, \ldots \geq Y_{p}>0$ are the eigen Alues of $\Sigma_{1} \Sigma^{-1}$
γ is an arbitrary non-negative real number

$Y=\operatorname{diag}\left\{\left(\gamma_{1}\right)\right.$
$G \# \operatorname{diag}\left\{g_{i}\right\}$
${ }_{7} P_{0}(v ; A, B)$ denotes a generalized hypergeometric function with matrix arguments. (See, for exaaple, Johnson and Kotz (1972) equation (3.1.2)) and c is a constant.

Remark 5.3 .2 Since $r_{1}=\varepsilon+n T$ Le save the following relationship be-f tween the γ_{i} and the λ_{i} :

$$
\left.\left\{\gamma_{1}\right\}=\operatorname{eigh}\left((\Sigma+n T) \Sigma^{-1}\right\}=\operatorname{cigs}\left\{I+n T \Sigma^{-1}\right\}=\{ \}+n \lambda_{j}\right\}
$$

Therefore, estimators of the γ_{j} would also produce estimators of the corresponding λ_{i},

As it stands, formula (5.3.4) is not very useful for otataining estimators of the γ_{1} (and hence of the λ_{i}), but Chang (1970) shous that when $v_{1}+v_{2}$ is large and the γ_{4} are distinct then the following expression for the 1 infting joint density of the 9 may be derived from (5.3.4):
$f_{g_{1}, \ldots, g_{p}}\left(g_{\eta}, \ldots, g_{p}\right)=c \prod_{i<j}^{p}\left(\frac{g_{i}-g_{j}}{\gamma_{j}^{-1}-\gamma_{i}^{-1}}\right)^{\frac{1}{p}} \prod_{i=1}^{p} \frac{g_{i}^{2}\left(v_{i}-p-1\right)}{\gamma_{i}^{\frac{1}{v}}{ }_{1}\left(1+g_{i} \gamma_{i}^{-1}\right)^{\frac{1}{2}\left(v_{i}+v_{2}-p+1\right)}}$
where $\gamma_{1}>r_{2}>\ldots>\therefore$ are the eigenvalues of $\Sigma_{1} \Sigma^{-1}$,
113.

$$
c=\left(\frac{2 \pi}{v_{1}+v_{2}}\right)^{p(p-7) / 4} \frac{r_{p}\left(\frac{1}{}\left(v_{1}+\dot{v}_{2}\right)\right)}{r_{p}\left(\frac{\varepsilon}{2} v_{1}\right) r_{p}\left(\frac{\delta}{2} v_{2}\right)}
$$

and $\mathrm{F}_{\mathrm{p}}\left(\frac{1}{2} v\right)=\mathrm{I}^{\mathrm{p}}(\mathrm{p}-1) / 4 \underset{j=1}{\mathrm{p}} \mathrm{P}\left(\frac{1}{2}(v-j+1)\right)$ is the multivariate gamm function, As a check on formula $(5.3 .5)$ we svaluate it for the case $p=$ is
so that g_{1} / γ_{1} has an (unnerned) f-distribution. Se Chang's limiting distribution (5.3.5) is exact in the one-dinensional case, with expected value,

$$
E\left[\frac{g_{1}}{\gamma_{1}}\right]=\frac{v_{1}}{v_{2}-2}
$$

Thus $i_{1}=\frac{v_{2}}{v_{1}} g_{1}$ has expected value $\left(\frac{v_{2}}{v_{2}-2}\right) \gamma_{1}$ from which the following unbidsed estimator of γ_{γ} results:

$$
\begin{equation*}
\hat{r}_{1}=\left\{\frac{v_{2}-2}{v_{2}}\right\} \varepsilon_{1} \tag{5,3,7}
\end{equation*}
$$

For higher-dimensions, however, the calculation of expected values from $(5,3,5)$ becones intractab)e analytically.

Remark 5.3.3 In a very recent paper, Khatri and Srivastava (1978) give the following asymptotic expansion for the joint density function for $g_{1}>g_{2}>\tilde{H}^{\prime}>g_{\bar{p}}>0$. when the γ_{1} are distinct:

$$
\begin{align*}
f_{g_{1}, \ldots, g_{p}}^{+}\left(g_{1}, \ldots, g_{p}\right)= & f_{g_{1}, \ldots, g_{p}}\left(g_{1}, \ldots, g_{p}\right)\left(1 i_{2}\left(v_{1}+v_{2}\right)\right. \\
i & \left.\sum_{i<} c_{i j}^{-1}+\frac{p(p-1)\langle 4 p+1)}{12}\right) \tag{5.3.8}\\
& +0\left(\left(v_{1}+v_{2}\right)^{-2}\right\}
\end{align*}
$$

where,
${ }^{f} g_{1}, \ldots, g_{p}\left(g_{1}, \ldots, g_{p}\right)$ is Chang's expression (5.3.5)
$c_{i j}=\left(\gamma_{j}^{-1}-\gamma_{i}^{-1}\right)\left(g_{i}-g_{j}\right)\left(1+g_{j} \gamma_{i}^{-1}\right)^{-1}\left(1+g_{j} \gamma_{j}^{-1}\right)^{-1}$
and $\sum_{i<j}$ denotes the double sum $\sum_{i=1 j=14 \gamma^{\circ}}^{P} \sum_{i}^{P}$
For the situation where only the first $q \gamma_{j}$ are distinct and the last ($p-q$) are equal they give a sindlar, but more conplicated expression for the joint density of the g_{i}.

Unfortunately the abovenentioned paper appeared in print after the research in this chapter had been completed, so that expression (5.3.8) was not used to obtain maximuin likelihood estinators of the $\mathrm{Y}_{4}+$ However, since $v_{1}+v_{2}=k n-1$ and k wust be greater than $r(T)$ (which usually equals p) to ensure that $r(\hat{T})=r(T)$, where \hat{T} is given in 5.3.1, $v_{1}+v_{2}$ will tend to be large in most practical applications. Thus the correction factor in $(5,3.8)$ will be small in practice.

Neverthelebs, it would be a relatively straightfonward but lengthy natter to obtain unrestricted and restricted maximum marginal 1ikelihood estimators of the γ_{i} froa (5.3.8) corresponding to those abtafned frow (5.3.5) described in the remainder of this section and in the nes It would then be interesting to cospare these two additional estimators of the γ_{i} with those proposed below, by repeating the simulation experinents described in Sertion 5.5.

5.3.1 Maximum Marginai Likelihood Estimators of $\left\{\gamma_{4}\right\}=\operatorname{Eigs}\left[\Sigma_{1} \Sigma^{-1}\right\}$

Jases (1966), considering the eigenvalues of a simple Hishart matrix, argues that although the sarple eigenvalues and eigenvectors are fointly maxirum likelihood estimators of their population counterparts,
the sample eigenvaluns do not maximise the likelihood function of their marginal distribution. He then goos on to solve the raxinuat likelihood equations obtained from the limiting marginal distribution of the sample eigenvalues to give estimators ($\mathrm{to} 0\left(v^{-2}\right)$) of the population eigenvalues. It is interesting to note that Lawley (1956) obtains the identical estimators using a quite different approach. He now apply the same approach as James (1966) to Chang's formula (5.3.5) for the liaiting density of $\left\{g_{j}\right)=\operatorname{eigs}\left(A_{1} A_{2}^{-1}\right\}$:

Starting with the $\log 1 i k e l$ ihood of the ψ_{q},

$$
\begin{align*}
& L=1 .(\gamma \mid g)=\log c+\frac{1}{c}\left(v_{1}-p-1\right) \sum_{i=1}^{p} \log g_{i}-\frac{j v}{i} \sum_{i=1}^{p} \log \gamma_{i} \\
& -j\left(v_{1}+v_{2}-p+\gamma\right) \sum_{i=1}^{p} \log \left(1+\frac{g_{i}}{\gamma_{i}}\right)+\sum \sum \sum_{i<j} \log \left\langle g_{i}-g_{j}\right\rangle \\
& -\sum \sum_{i<j} \log \left(\gamma_{j}^{-1}-\gamma_{i}^{-1}\right) \tag{5.3.9}
\end{align*}
$$

differentiating with respect to γ_{i} and simplifying yields:

$$
\begin{equation*}
\frac{\partial L}{\partial Y_{i}}=\frac{1}{2 \gamma_{i}}\left(-v_{1}+\left(v_{1}+v_{2}-p+1\right) \frac{g_{j}}{\gamma_{i}+g_{i}}+\sum_{j \neq i} \frac{\gamma_{j}}{\gamma_{j}-Y_{i}}\right) \quad i=1, \ldots, p \tag{5,3,10}
\end{equation*}
$$

where $\sum_{j \neq i}$ denotes the'singie sua from j a) to p excluding the tera where $\mathrm{j}=\mathrm{i}$.

Nauating this to zero gives:

$$
\begin{equation*}
\left(v_{1}+v_{2}-p+1\right) \frac{g_{j}}{\gamma_{i}+g_{i}}+\sum_{j \neq i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{i}}=v_{1} \quad i=1, \ldots, p . \tag{5,3.11}
\end{equation*}
$$

Before attempting to solve equations $(5,3,11)$ for the γ_{i}, let us first check whether they do, in fact, give a maxime for the log likelihood (5,3.9). Taking second derivatives of L :

$$
\left.\begin{array}{rl}
\frac{a^{2} L}{\Gamma_{i}^{2}} & =\frac{1}{2 \gamma_{i}}\left(-\left(v_{1}+v_{2}-p+1\right) \frac{g_{i}}{\left(\gamma_{i}+g_{i}\right)^{2}}+\sum_{j \neq i} \frac{\gamma_{j}}{\left(\gamma_{j}-\gamma_{i}\right)^{2}}\right) \\
& -\frac{1}{2 \gamma_{i}^{2}}\left(-v_{1}+\left(v_{1}+v_{2}-p+1\right) \frac{g_{i}}{\gamma_{i}+g_{i}}+\sum_{j w i} \frac{\gamma_{j}}{\left(\gamma_{j}-\gamma_{i}\right.}\right)
\end{array}\right)
$$

at the stationary point giver by (5.3.11). Clearly $\frac{\partial^{2} L}{\partial \gamma_{i}^{2}}<0$ for $v_{1}+v_{2}$
sufficiently large. (sufficiently Yarge.

Similarly,

$$
\begin{equation*}
\frac{\partial^{2} L}{\partial \gamma_{j} \partial \gamma_{j}}=-\frac{1}{2\left(\gamma_{j}-\gamma_{j}\right)^{2}}<0 . \tag{5.3.13}
\end{equation*}
$$

Using the criterion (see, for example Brand (1960) page 188)

$$
\begin{equation*}
H_{i, j}=\frac{\partial^{2} L}{\partial \gamma_{i}^{2}} \frac{\partial^{2} L}{\partial \gamma_{j}^{2}}-\left(\frac{\partial^{2} L}{\partial \gamma_{i} \partial \gamma_{j}}\right)^{2} \tag{5,3.14}
\end{equation*}
$$

we see that, for $v_{1}+v_{2}$ sufficiently large $H_{i, j}>0, \forall i, j$, at the stationary point, faplying that (5.3.11) givea a maximut.

Going back to equations (5.3.11) it is obviously no straightforward matter to solve these in terms of the $\gamma_{i}, f=1, \ldots p$. However, solving thew in terms of the g_{i} (which gives the modal value of their distribution) yields:

$$
\begin{equation*}
g_{i}=\gamma_{i}\left(\frac{v_{1}-\sum_{j \times i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{i}}}{v_{2}-p+1+\sum_{j \neq i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{i}}}\right) \quad i=1, \ldots, p \tag{5.3.15}
\end{equation*}
$$

At this stage, it is convenient to return to the

$$
\left\{\varepsilon_{1}\right\}=\operatorname{eigs}\left\{S_{1} s_{2}^{-1}\right\}=\operatorname{eigs}\left\{\frac{V_{2}}{v_{1}} A_{1} A_{2}^{-1}\right\}=\left\{\frac{V_{2}}{V_{1}} g_{1}\right\} .
$$

The modal values of the S_{q} are, from (5.3.15):

$$
\begin{equation*}
s_{i}=\gamma_{i}\left(\frac{1-\frac{1}{v_{1}} \sum_{j \neq i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{i}}}{1-\frac{p-}{v_{2}} \cdot \frac{1}{\gamma_{2}} \sum_{j w i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{j}}}\right) \quad i=1, \ldots, p . \tag{5.3.16}
\end{equation*}
$$

As a first check of the correctness of formuiz (5.3 .16), note that, modal $\varepsilon_{i}+\gamma_{i}$ as v_{1} and v_{2} get large.

Further checks on (5.3.16) can be rade by noting thot, as $v_{2}+\infty$ the k_{i} bacome the eigenvalues of the single (normed) Wishart Matrix $s_{1} \Sigma^{-1}$, where $v_{1} S_{1} \Sigma^{-1} \sim W\left(\Sigma_{1} z^{-1}, v_{1}\right)$. Formula $(5.3 .16)$ then reduces to:

$$
\begin{equation*}
\iota_{i}=\gamma_{1}\left(1-\frac{1}{\gamma_{1}} \sum_{j \neq 1} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{1}}\right) \tag{5.3.17}
\end{equation*}
$$

which is equivalent to Jawes' (1966) equation (8.1) for the limiting maxirum marginal Tikelihood estimators of the population eigenvalues of a Wishart matrix (he uses the notation $a_{i}=\gamma_{i}^{-1}$). Formula (5.3.17) is also equf̂volent (to $O\left(v_{1}^{-2}\right)$) to Lawley's (1956) expression for $E\left[y_{1}^{\prime}\right.$ \%btained by using a perturbation argusent.

5.3.2 Approximate solution of the Maxirum Likel ihood Equations

- To obtain the maximum likelinood estinators of the γ_{j} from (5.3.11), note that from (5.3.16) we heve:

$$
\begin{equation*}
\gamma_{i}=\varepsilon_{q}\left\{\frac{\left.1-\frac{p-1}{v_{2}}+\frac{1}{v_{2}} \frac{\sum_{j 1} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{i}}}{1-\frac{1}{\gamma_{1}} \sum_{j \times i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{i}}}\right)}{(1)}\right. \tag{5,3.18}
\end{equation*}
$$

and, for v_{2} large this becones:

$$
\begin{align*}
\gamma_{j} & \approx \ell_{i}\left(1-\frac{1}{v_{1}} \sum_{j \times i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{i}}\right)^{-1} \\
& =\ell_{i}\left(1+\frac{1}{\nu_{1}} \sum_{j u i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{j}}+0\left(v_{i}^{-2}\right)\right) \\
& =\ell_{i}+0\left(v_{1}^{-1}\right) . \tag{5.3.19}
\end{align*}
$$

"plugging (5.3.19) into the right hand side of equation (5.3.18) yields the following approximate forsula for the asymptotic raximull marginal likelihood estimotors for the γ_{i} :

$$
\begin{equation*}
\hat{\gamma}_{i}=s_{i}\left[\frac{1-\frac{p-1}{v_{2}}+\frac{1}{v_{2}} \sum_{j \times i} \frac{l_{j}}{l_{j}-l_{i}}}{1-\frac{1}{v_{1}} \sum_{j \neq 1} \frac{l_{j}}{l_{j} l_{i}}}\right)+0\left(v_{1}^{-2}\right) \tag{5.3.20}
\end{equation*}
$$

It may also be noted in passing that the method of successive approxivations (see, for example McCracken and Dorn (1964)) for solving (5.3.18), considered as the system of equations,
yields $(5,3,20)$ in its first step if the initial vaives $\gamma_{i}=h_{i}$ are used.

As a check on fortula $(5.3 .20)$, note again that, as $v_{2}+\infty$ we get

$$
\begin{align*}
{\hat{\lambda_{i}}}_{i} & =\varepsilon_{i}\left(1-\frac{1}{v_{1}} \sum_{j \neq i} \frac{\varepsilon_{j}}{\varepsilon_{j}-l_{i}}\right)^{-1}+0\left(v_{1}^{-2}\right) \\
& =\varepsilon_{i}\left(1+\frac{1}{v_{1}} \sum_{j \neq i} \frac{l_{j}}{l_{j}-L_{1}}\right)+0\left(v_{1}^{-2}\right) \tag{5.3.21}
\end{align*}
$$

which is the same as formula (8.2) of James (1966) for the maximum mar ginal 1ikelihood estimstor, as well as Lawley's (1956) formula for the estimator with bias of order v_{1}^{-2}, of the $i^{\text {th }}$ population eigenvalue of a single Wishart matrix.

5.3.3 Kumerical Solution of tha Naximum Likelihood Equations

Since there is no exact analytic solution to the maximum likelihood equations (5.3 .11), we now consider their nuserical solution.

Fros expression (5.3.9) it is evident that the limiting log likelihood function of $\left\{\gamma_{i} ; i=1, \ldots, p\right\}$ tends to infinity whenaver any two of the γ_{f} 's are equal. However, since Chang's formula (5.3.5) is valid only for distinct population eigenvalues, these singularities in the log Tikelihood occur at inadmissible values of the γ_{j}. Nevertheless these "inadmissible singularitics" could cause considerable difficulties when trying to solve the maximut likelihoo equations (5.3.11) nunerically.

To get around this problem, we con is . the following reparaneterisation of the problem:
Let

$$
\frac{1}{\gamma_{1}}=e^{\delta_{1}}+c_{1}
$$

and
120.

$$
\begin{equation*}
\frac{1}{\gamma_{i}}-\frac{1}{\gamma_{i-1}}=e^{\delta_{i}}+\varepsilon_{i} \quad 1=2, \ldots, p \tag{5.3.22}
\end{equation*}
$$

where the $\varepsilon_{i}, \frac{1}{}=1, \ldots, p$ are preassigned small positive quantities, The reasons for choosing this reparanaterisation is as follows:
(a) it ensures that $\gamma_{1}>\gamma_{2}>+\ldots>\gamma_{p}>0$,
(b) the new parameters $\left\{\delta_{i} ; 1=1, \ldots,, \mathrm{p}\right\}$ are unconstrained in value, and
(c) the γ_{i} appear only in the forms $\frac{1}{\gamma_{i}}$ and $\frac{1}{\gamma_{j}}-\frac{1}{\gamma_{i}}, j>1$, in the density function (5.3.5) of the g_{j} (considered as a likelihood functron) and both these forms can be expressed simply in terms of the new parameters.
Viz:

$$
\frac{1}{y_{i}}=\sum_{k=1}^{1}\left(e^{\delta}+\varepsilon_{k}\right)
$$

and

$$
\frac{1}{\gamma_{j}}-\frac{1}{Y_{i}}=\sum_{k=\{+1}^{1}\left(e^{\left.\delta k_{i}+\varepsilon_{k}\right) \quad i, j=1, \ldots, p ; \quad j>4 .}\right.
$$

A drawback to this reparamaterization is that it en\% ${ }^{\prime} 1 \mathrm{l}$ reassigning values for the c_{1}. In practice this presents no difficulty fa practical rule is to let c_{i} be some small fraction of $\frac{1}{\gamma_{i}} \boldsymbol{l}=\frac{1}{\hat{\gamma}_{i}^{0}}$ for $i=2, \ldots, p$ and \therefore of $\frac{1}{\gamma_{1}^{0}}$ for $1=1$, weer $\hat{\gamma}_{i}^{0}$ are initial estimators of the γ_{1}.

In terms of the new parameters the \log likelihood becomes:
121.

$$
\begin{align*}
& L=L\left(\underset{\sim}{\delta} / 9, g_{\sim}\right)=\log c+\frac{1}{2}\left(v_{1}-p-1\right) \sum_{j=1}^{p} \log g_{i} . \\
& +\frac{1}{2} v_{1} \sum_{j=1}^{p} \log \left(\sum_{k=1}^{j} e^{\delta k_{k}}+\varepsilon_{k}\right)-\frac{1}{1}\left(v_{i} \sim v_{2}-p+1\right) \sum_{j=1}^{p} \log \left(1+g_{j}\left(\sum_{k=1}^{j} e^{\left.\left.\delta k^{\prime}+\varepsilon_{k}\right)\right)}\right.\right. \\
& +\frac{1}{p-1} \sum_{i=1}^{p} \sum_{j=i+1}^{p} \operatorname{Tog}\left(g_{1}-g_{j}\right)-\frac{1}{i} \sum_{i=1}^{p-1} \sum_{j=1+1}^{p} i \operatorname{iog}\left(\sum_{j=j+1}^{j} e^{\delta k}+\varepsilon_{k}\right) \\
& =f(g)+\frac{1}{2} v_{1} \sum_{j=1}^{p} \log \left(\sum_{k=1}^{j} e^{\varepsilon_{k}} k_{+c_{k}}\right)-\frac{1}{2}\left(v_{1}+v_{2}-p+1\right) \sum_{j=1}^{p} \log \left(1+g_{j}\left(\sum_{k=1}^{j} e^{6} e^{6}+\varepsilon_{k}\right)\right) \\
& -\sum_{j=1}^{p-1} \sum_{j=i+1}^{p} \log \left(\sum_{k j+1}^{j} e^{\delta_{k}}+k_{k}\right) \tag{5.3.24}
\end{align*}
$$

where $f(g)$ is a function of the g_{i} only. Differentiating L with respect to the 8 's and simplifying yields the new maximum 1ikelihood equations:

$$
\begin{aligned}
\frac{\partial L}{\partial \delta_{\ell}}= & =\frac{e_{2}}{\delta e^{2}}\left(v_{1} \sum_{j=2}^{p}\left(\sum_{k=1}^{j} e^{\delta} k^{\delta}+\varepsilon_{k}\right)^{-1}-\left(v_{1}+v_{2}-p+1\right) \sum_{j=2}^{p} g_{j}\left(1+g_{j}\left(\sum_{k=1}^{j} e^{6} k_{+\varepsilon_{k}}\right)\right)^{-1}\right. \\
& \left.\quad-\sum_{i=1}^{2-1} \sum_{j=2 k=\{+1}^{p}\left(e^{j} k^{6}+e_{k}\right)^{-1}\right)=0 \quad 2=2, \ldots, p
\end{aligned}
$$

and

$$
\begin{gather*}
\left.\frac{\partial L}{\partial \delta_{1}}=\frac{d}{k} e^{6}\right\}\left(v_{1} \sum_{j=1}^{p}\left(\sum_{k=1}^{j} e^{\delta}{ }^{6}+\varepsilon_{k}\right)^{-1}-\left(v_{1}+v_{2}-p+1\right) \sum_{j=1}^{p} g_{j}\left(1+g_{j}\left(\sum_{k=1}^{j} e^{\delta}{ }^{\delta}+\varepsilon_{k}\right)\right)^{-1}\right\} \\
=0 .
\end{gather*}
$$

122.

A standard nutberical technique for solving the maximum 1ikelihood equations for the maximum likelihood estimator ${ }_{\sim}^{\hat{\delta}}=\left(\hat{\mathcal{E}}_{\boldsymbol{Y}}, \ldots, \hat{\delta}_{p}\right)^{\prime}$ is the Newton－Paphsen iterative procedure．Defining the（ $p \times 1$ ）vector of first derivatives $O_{5}(L(\delta))$ ，whose $i^{\text {th }}$ element is $\frac{\partial L}{\partial \delta 2}$ and the（ $p \times p$ ） Hessian matrix $0_{\hat{d}}^{2}(L \sim(\delta))$ ，whose $(2, m)^{\text {th }}$ element is $\frac{\partial^{2} L}{\partial \delta_{\ell}^{2} \partial \delta_{m}}$ ，the Uevion－ Raphson itelatipe mathod can be uritten（See，for example，Silvey（1975） or Cox and HinkTis（1974）），

Given an inftifal approximation $\hat{\psi}^{(0)}$ to δ ，successive approximations $\hat{\delta}^{(1)}, \hat{\delta}^{(2)}, \ldots$ are obtained irom（5．3．26）which hopefully converge to $\hat{\delta}$ ． As an initial approximation we may list $\hat{\sim}^{\left(\epsilon_{1}^{\prime}\right)}=\ell=\left(l_{1}, \ldots, l_{p}\right)^{\prime}$ and ther obtain $\underset{\underset{\sim}{\hat{o}}}{ }(0)$ from（3，3．22）．
viz：

Another，possibly better，initial approxivation may be obtained by using the approxinate maximum Iikelihood foraula $(5.3 .20)$ for $\hat{\gamma}^{(0)}$ ，

Differentiating $(5,3.25)$ with respect to σ_{m} yialds the elenents of the Hessian matrix：

$$
\begin{align*}
& +\left(v_{1}+v_{2}-p+1\right) \sum_{j=10 w}^{p} g_{j}^{2}\left(1+g_{j}\left(\sum_{k=1}^{j} e^{6} k_{+c_{k}}\right)\right)^{-2}+\sum_{i=1}^{\text {Top }} \sum_{j=1}^{p}\left(\sum_{k=j+1}^{j} e^{\left.\delta k_{i}+\varepsilon_{k}\right)^{-2} j}\right. \\
& \ell, m=2, \ldots, p ; \quad 2 \times \text { 童。 } \tag{5,3,28}
\end{align*}
$$

where $\operatorname{Top}=\min (\ell, m)-1$, Low $=\max (2, m)$. For $\&=1$ or $\mathrm{m}=1$ the last tain in (5,3.28) is dropped.
$8-x$

$$
\begin{equation*}
\frac{\partial^{2} L}{\partial \sigma_{l}^{2}}=\left.\frac{\partial^{2} L}{\partial \delta_{\ell} \partial \delta_{m}}\right|_{m n \ell}+\frac{\partial L}{\partial \delta_{l}} \quad \ell=2, \ldots, p \tag{5.3.29}
\end{equation*}
$$

For $2=1$, drop the last term in $\left.\frac{\partial^{\hat{L}} \mathrm{~L}}{\partial \delta^{\delta \delta} \mathrm{m}}\right|_{\text {mal }}$ in (5.3.29).
Finally, as the transformation from of to γ is one-to-one the maxinum likelihood estimator $\underset{\sim}{\hat{\gamma}}$ of $\underset{\sim}{\gamma}$ may be obtained from $\hat{\sim}$ by merely transforming back via (5,3,22).

5.3.4 Large Sample Distribution of the Maximum Marginal Likelihood Estimators $\left\{\hat{\gamma}_{j}\right.$ \}

It is well known (see, for exampie Silivey (1975), or Cox and Hinkley (1974)) that under certain regularity conditions that are usualiy satisfied In practice (and are satisfied here) the maximuse likelihood estimators $\underset{\sim}{\gamma}=\left(\hat{\gamma}_{1}, \ldots, \hat{\gamma}_{p}\right)^{\prime}$ are asymptotically efficient and approximately normally distributed with mean vector $\underset{\sim}{\gamma} m\left(\gamma_{1}, \ldots, \gamma_{p}\right)^{\prime}$ and covariance matrix $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{-1}$, where $\mathrm{B}_{\underset{\sim}{\gamma}}$ is Fisher's Information matrix given by:

$$
\begin{equation*}
\left.\underset{\sim}{Y}{ }_{\sim}^{Y}=\left(b_{i j}\right)=-\underset{\sim}{g} \underset{\sim}{\mid}\left[D_{\underset{\sim}{z}}^{\underset{\sim}{\gamma}}(\underset{\sim}{\gamma} \mid g)\right)\right] \tag{5:3.30}
\end{equation*}
$$

$L^{*} \underset{\sim}{L}(\underset{\sim}{\gamma} \mid g)$ is the $\log 1$ ikelihood of $\underset{\sim}{\gamma}$ given in $(5.3 .9)$ and ${\underset{\gamma}{\gamma}}_{2}^{\gamma}(\mathrm{L}(\underset{\sim}{\gamma} \mid g))$ is the Hessian matrix whuse $(i, j)^{\text {th }}$ element is $\frac{\partial^{2} L}{\sigma \gamma, \partial y}$, The expectation in

124.

Differentiating $\frac{\partial L}{\partial \gamma_{i}}$ given in $(5.3 .10)$ with respect to γ_{j} yields:

$$
\begin{equation*}
\frac{\partial^{2} L}{\partial \gamma_{j} \partial \gamma_{j}}=-\frac{1}{2\left(\gamma_{j}-\gamma_{f}\right)^{2}} \quad, \quad \psi j=i \tag{5,3,31}
\end{equation*}
$$

and with respect to γ_{i} :

$$
\begin{align*}
& \frac{\partial^{2} L}{\partial \gamma_{i}^{2}}=\frac{1}{2 \gamma_{i}}\left(-\left(v_{1}+v_{2}-p+1\right) \frac{g_{j}}{\left(\gamma_{i}+g_{i}\right)^{2}}+\sum_{j \times i} \frac{\gamma_{j}}{\left(\gamma_{j}-\gamma_{i}\right)^{2}}\right. \\
& \quad-\frac{1}{2 r_{i}^{2}}\left[-v_{j}+\left(v_{j} j_{2}-p+1\right) \frac{g_{i}}{\gamma_{i}+g_{i}}+\sum_{j \times i} \frac{\gamma_{j}}{\gamma_{j}-\gamma_{j}}\right) \\
& =\frac{1}{2 \gamma_{j}^{2}}\left(v_{1}-p+1+\left(v_{1}+v_{2}-p+1\right)\left(\left(\frac{\gamma_{i}}{\gamma_{i}+g_{i}}\right)^{2}-1\right)+\gamma_{i}^{2} \sum_{j \times i} \frac{1}{\left(\gamma_{j}-\gamma_{i}\right)^{2}}\right\} \tag{5.3,32}
\end{align*}
$$

The off-diagonal elements of $D_{\underset{y}{2}(L)}$ given in $(5,3.31)$ do not depend on $\underset{\sim}{g}$, se we have imnediately, from ($5,3.30$)

$$
\begin{equation*}
b_{i j}=\frac{1}{2\left(\gamma_{j}-\gamma_{i}\right)^{2}}, \quad i \neq j \tag{5.3.33}
\end{equation*}
$$

The diagonal elements $b_{1 j}$ are given by:

$$
\begin{align*}
b_{i j}=- & \frac{1}{2 \gamma_{i}^{2}}\left(v_{1}-p+1+\left(v_{1}+v_{2}-p+1\right)\left(E_{g}^{g}\left[\left(\frac{\gamma_{i}}{\gamma_{i}+g_{i}}\right)^{2} J-1\right)\right.\right. \\
& \left.+\gamma_{i}^{2} \sum_{j \neq 1} \frac{1}{\left(\gamma_{j}-\gamma_{i}\right)^{2}}\right) . \tag{5.3.34}
\end{align*}
$$

Now

$$
\begin{equation*}
E_{g}\left[\left(\frac{\gamma_{i}}{\gamma_{i}+g_{i}}\right)^{2}\right]=E_{g}\left[\left(1+\frac{g_{i}}{\gamma_{i}}\right)^{-2}\right] . \tag{5.3.35}
\end{equation*}
$$

As noted earlier, the evaluation of the expected values of the g_{1} using Chang's asymptotic expression (5.3.6) for their joint density is intractable analytically for $\mathrm{p}>1$, and so, a fortiori, is that of $\left(7+\frac{9_{1}}{\gamma_{i}}\right)-2$.
125.
... we make the transformation:

$$
u_{i}=\frac{g_{i}}{\gamma_{i}}, i=1, \ldots, p
$$

in $(5.3,5)$, we get the limiting joint density of the u_{i} as:

$$
\begin{equation*}
f_{u}\left(u_{1}, \ldots, u_{p}\right)=K \prod_{i<j}^{p}\left(\frac{\gamma_{i}^{u_{1}}-\gamma_{j} u_{j}}{\gamma_{j}^{-1}-\gamma_{i}^{-1}}\right)^{\frac{1}{p}} \prod_{i=1}^{p} \frac{u_{i}{ }^{\frac{1}{2}\left(v_{1}-p+1\right)-1}}{\left(1+u_{i}\right)} \tag{5.3.36}
\end{equation*}
$$

. Anderson (1965) has shown that if ${\underset{p}{p}}^{2} ; 7=1, \ldots, p$ are the sigenvalues of a single (normed) Wishart matrix, and $\gamma_{f}, i=1, \ldots, p$ are their corresponding population values, then the "Innkage factor"

$$
\operatorname{II}_{1<j}\left(\frac{\ell_{i}-\ell_{j}}{\gamma_{j}^{-1}-\gamma_{j}}\right)^{\frac{1}{2}}
$$

tends to 1 with probability i as the sarple size $n+\infty+$
How, in our case, the "linkage factor" is:

$$
\underset{i<j}{\pi}\left(\frac{\gamma_{j} u_{j}-\gamma_{j} u_{j}}{\gamma_{j}^{-1}-\gamma_{j}^{-1}}\right)^{\frac{1}{2}}=\left(\frac{\nu_{1}}{v_{2}}\right)^{\frac{p(p-1)}{4}} \underset{i<j}{\frac{1}{4}}\left(\frac{\Lambda_{j}-\ell_{j}}{\gamma_{j}^{-1}-\gamma_{j}^{-1}}\right)^{\frac{1}{2}}
$$

 $v_{2}+\infty$, the ℓ_{1} becose eigenvalues of a single (nomed) Wisiudrt matrix, and so by Anderson's result our "linkage factor" tends to 1 with probability 1 as v_{1} and $v_{2} * m_{1}$

Using the above result in $(5.3 .36)$ it is clear that, for large v_{1} and v_{2}, the u_{i} are approximately independently distributied as (unnormed) f-randon variables on $\left(v_{7}-p+1\right)$ and v_{2} degrees of freedoin. Hence, transforming to beta randon variables:
126.

$$
x_{i}=\frac{u_{i}}{1+u_{i}} \quad i=7, \ldots, p
$$

we have.

$$
\begin{aligned}
E\left[\left[1+\frac{g_{i}}{\gamma_{f}}\right)^{-2}\right] & \approx E\left[\left(1+u_{i}\right)^{-2}\right]=E\left[\left(1-x_{i}\right)^{2}\right] \\
& =1-2 E\left[x_{i}\right]+E\left[x_{i}^{2}\right]
\end{aligned}
$$

Where, for large v_{1} and v_{2}, x_{i} has, approximately, a bata distribution with parameters $n_{1} * \frac{1}{2}\left(v_{1} \sim p+1\right)$ and $n_{2}=\frac{2 v_{2}}{}$. So

$$
\begin{align*}
& E\left[\left(1+\frac{g_{1}}{\gamma_{1}}\right)^{-2} 1 \div 1-2\left\{\frac{n_{1}}{n_{1}+n_{2}}\right)+\frac{n_{1}\left(n_{1}+1\right)}{\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}+1\right)}\right. \\
&=1-\frac{n_{1}\left(n_{1}+2 n_{2}+1\right)}{\left(n_{1}+\frac{n_{2}}{2}\right)\left(n_{1}+n_{2}+1\right)} \\
& \approx 1-\frac{\left(v_{1}-p+1\right)\left\langle v_{1}+2 v_{2}+p+3\right\}}{\left(v_{1}+\gamma_{2}-[+1\}\right.} \tag{5.3.37}
\end{align*}
$$

Substituting this result back into (5,k... And $\langle 5.3 .34$) gives:

$$
b_{i i} \div \frac{1}{2 Y_{1}^{2}}\left[\frac{\left\langle v_{1}-p+1\right\rangle\left(v_{1}+2 v_{2}-p i 3\right)}{\left(v_{1}+v_{2}-p+3\right)}-v_{1}+p-1-\gamma_{i}^{2} \sum_{j=1} \frac{1}{\left(\gamma_{j}-\gamma_{1}\right)^{2}}\right)
$$

Finally, substituting $(5,3.38)$ and $(5.3 .33)$ into $(5.3 .30)$ gives the approxiwate large sampla distribution of the maximum marginal likelihood estimator $\hat{\gamma}$ of γ.
$\underset{\sim}{\gamma}$ of $\underset{\sim}{\gamma}$

Example 5:3.1 To test how good this approxination is, the approximate means, standard deviations and correlation coefficients of the $\hat{\gamma}_{i}$ were calculated fron the above formulae for the case $p=3$, using the two sets of eigenvalues and three of the saiple sizes, each represented by a pair of values for v_{1} and v_{2}, that were used in the simulation experiments described in Section 5.5. In the first set the eigenvalues are equally spaced whereas in the second the spacing between γ_{1} and γ_{2} is much larger than that between γ_{2} and γ_{3}. The three saiple sizes $r a-$ prosent, roughly, "mediun sized", "large" and "very large" samples, respectively. The results are given in Table 5.3 .1 below, together with the corresponding vaiues obtained from the simulation experiments. (Because of the frequent failure, espocially in the smaller sample sizes, of the maximum likelihood estimator described in Sub-section 5.3.3 to produce meaningful results, the results from the simulations on the approximate naximum likelihood estimators given in expression (5.3.20) are used, ${ }^{Y}$ Adnittedly ($5.3,20$) sonetimes also produces meaningless resuits, but its alternative, the "hybria" estimator described in Section 5.5 that always gives meaningful results, is not a maximm likelihood estimator. See Section 5.5 for a full discussion of these points.)
128.

Table 5.3.1

Approximate Heans, Standard Deviations and Correlation Coeffi-
cients of the Maximun Like' 'hood Estimetors of the $\left\{y_{i}\right\}$ for

$\mathrm{p}=3$ dime ions

Notation: (i) Denotes the values obtained from the formulae
(ii) Denotes the values obtained from the simulation experi ments.
A. Degrees of Freedons $v_{1}=15, v_{2}=64$

Weans		Standard Deviations		Pair.(i, j)	Correlation Coefficiants		
(1)	(1i)	(i)	(11)		(i)	(1ii)	
6	6.70	-	2.94	(1,2)	-	-.082	
4	4.12	*	2.44	$(1,3)$	-	-. 098	
2	1.85	-	0.86	$(2,3)$	-	-. 049	
16	16.71	8.31	8.13	(1,2)	-. $061{ }^{1}$	$-.122$	
4	4.30	2.31	2.21	$(1,3)$	-.003	-. 135	
2	1.87	0.95	0.83	$(2,3)$	-. 255	. 006	

B. Degrees of Freedos $v_{1}=30, v_{2}=124$

Means Standard Deviations Pair. Correlation Coefficients

$\frac{(i)}{6}$	$\frac{(i i)}{6.09}$	$\frac{(i)}{2.86}$	$\frac{(i i)}{1.71}$	$\frac{(i, j)}{(1,2)}$	-.484	$\frac{(i i)}{-.067}$
4	4.31	1.69	2.13	$(1,3)$.005	.001
2	1.90	0.62	0.68	$(2,3)$.107	-.051
16	15.56	5.13	4.63	$(1,2)$	-.023	.045
4	4.33	1.32	1.36	$(1,3)$	-.006	.009
2	1.94	0.61	0.81	$(2,3)$	-.100	-.168

129.

C. Degrees of Freedom $v_{1}=60, v_{2}=244$

Mean		Standard Deviations		Paír(i, j)	Corrilation Coefficients	
(1)	(ii)	(i)	(1i)		(i)	(1i)
5	6.10	- 1.45	1.42	(1,2)	-. 162	*. 154
4	4.33	\% 0.92	1.05	(1,3)	-. 011	-. 077
2	2.00	0.42	0.45	$(2,3)$. 045	. 013
16	16.26	3.43	3.63	(1,2)	-. 010	. 018
4	4.26	0.87	0.89	$(1,3)$	-. 003	-. 0.06 B
2	2.01	0.42	0.46	$(2,3)$	-. 046	-. 061

The missing values in part A of Table 5.3.1 indicate that formulae (5.3.30), $(5.3 .33)$ and $(5.3 .38)$ broke down in that they produced negative variances. (This also occurred in both cases when the formulae were applied to the "ssall" sample size with $v_{1}=6$ and $v_{2}=28_{+}$)

Looking at meang and standard deviations alone, the agreement betueen the approxinate and sinulation results in the case where the spicings between the γ_{j} increase with their values is excellent, even for the "mediun sized" samples. In the case where the spacings are equal, the agreement betreen the standard deviations is not quite so good for the "large" samples but is again excellent for the "very large" samples.

Looking at the correlation coefficients, the picture is not so rosy, a)though there is reasonable agreesent for the "very large ${ }^{*}$ samples. This, however, could as much be a result of the occasional broakdown in the simulation experiments of the approximate fornula $(5,3,20)$ for the maxious 11 kelihood estimators, as of the poor performance of the approximate formula for their covariance matrix. It is well known that even a small fraction of outliers where the onderings of the variables are pernuted, can have a drastic effect on the satiple correlation coefficient. This fact is avidonced by the very large differences betaeen the correlation
130.
coefficient in Table 5.3.1 and the corresponding coefficients in Table 5.5 .5 where only "well-behaved" estimates have been included in the sample.

In sumary, the formolae for the approxinate nean vector and covariance matrix of the maximin marginal likelihood estimators $\left[\hat{\gamma}_{\mathrm{i}}\right.$] derived in this sub-section would appear to be fairly good for large sanples (as defined here and in Section 5.5) and gets better (and becomes applicable to smaller samples) as the differences between adjacent: eigenvalues increase.

5.4 Additional Information on $\left\{\gamma_{i}\right\}=E\left\{g s\left\{\Sigma \mathcal{I}^{\left.L^{-1}\right\}}\right.\right.$

The naximum likelihood estimutors of the $\gamma_{i}, i=1, \ldots, p$ obtained in Section 5.3 are based on Chang's expression $(5,3.5)$ for the limiting density of $\left\{g_{i}\right\}=\operatorname{Eigs}\left\{\mathrm{A}_{1} \mathrm{~A}_{2}^{-1}\right\}$, where,

$$
\begin{aligned}
& A_{1} \sim W_{p}\left(v_{1}, \Sigma_{1}\right) \\
& A_{2} \sim W_{p}\left(v_{2}, \Sigma\right) \quad \text { independently. }
\end{aligned}
$$

In this section sone exact results on the expected values of functions of the g_{i} are derived, Those will then be used to obtain moment estimators for the means and variances of the four quantities: $\delta_{i j}^{2}$, $\delta_{i}^{2}(x), d_{i j}^{2}$ and $d_{i}^{2}(x)$ whose distributions under the randonl effects model are discussed in Chapter 3, as well as for the approximate probabilities of misclassificaltion dertived in Chapter 4. In addition, sone of thase exact results will be used to improve the estifators of the γ_{i} obtained (in Section 5.3.

Specifically, in Sub-section 5.4.1, well-knoun results on the mozents of the generalised variance from a maltivariate normal distribution will. be used to obtain an exact moment estimator of $\underset{i=1}{\mathrm{I}} \gamma_{i}$. \ln Sub-sections
131.
5.4.2 and 5.4.3 new results on the distribution of $\operatorname{Tr}\left(\hat{p}^{1} A_{2}^{-1}\right)$ lead to exact expressions for the mean and variance of $\sum_{i=1}^{p} g_{i}$ in terms of $\sum_{i=1}^{p} \gamma_{i}$ and $\sum_{i=1}^{p} \gamma_{i}^{2}$. These results are used in Sub-saction 5.4 .4 to obtain moment estimators for the means and variances of the four quantities and for the approximate probabiliti. A misclassification mentioned above. Finally, the combination of i: various fleces of information to obtain irproved estiame tor's of the γ_{1}, efither exactly or by means of the technique of resticted saximus 1 ikelihood estieation, is discussed in Sub-sectfors 5.4.5 and 5.4.6.

5.4.1 Koments of the Generalised Variance

The $h^{\text {th }}$ monent of $|A|$, where $A \sim N_{p}\{v, \Sigma)$, for h an integer greater than $-\hat{R}(v-p+1)$: is given by:

$$
\begin{equation*}
\mu_{h}^{\prime}(|A|)=|\Sigma|^{h_{2} h_{p}} \frac{T_{p}\left(\frac{i v}{2} v+h\right)}{T_{p}^{\prime}\left(\frac{2}{2} v\right)^{-}} \tag{5.4.1}
\end{equation*}
$$

where $\mathrm{F}_{\mathrm{p}}\left(\frac{1}{2}\right)$ is the mutivariate gama function defined in (5.3.5) (See, for example Johnson and Kotz (1972)). Therefore, since A_{7} and A_{2} are independent Wishart matrices,

$$
\begin{aligned}
& \mu_{h}^{\prime}\left(\left|A_{1} A_{2}^{-1}\right|\right\rangle=u_{h}^{\prime}\left(\left\langle A_{1}\right|\right) \mu_{h}^{\prime}\left(\left|A_{2}\right|^{-1}\right\rangle=u_{h}^{\prime}\left(\left|A_{1}\right|\right) \mu_{-h}^{\prime}\left(\left|A_{2}\right|\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { for } \frac{b}{}\left(v_{2}-p+1\right)>h>-\frac{1}{2}\left(v_{1}-p+1\right) \\
& =\left|\Sigma_{1} \Sigma^{-1}\right|^{h} \frac{r_{p}\left(\frac{\left.j v_{1}+h\right) r_{p}\left(k v_{2}-h\right)}{r_{p}\left(\delta v_{1}\right) r_{p}\left(\partial v_{2}\right)} .\right.}{} . \tag{5.4.2}
\end{align*}
$$

132.

 the case $h=1$, we obtain:

$$
E\left[\prod_{i=1}^{p} g_{i}\right]=\prod_{i=1}^{p} \gamma_{i} \frac{r_{p}\left(\frac{2}{2} v_{1}+1\right) r_{p}\left(2 v_{2}-1\right)}{r_{p}\left(2 v_{1}\right) r_{p}\left(\frac{2 v_{2}}{}\right)}
$$

and, using the definition of $\Gamma_{p}\left(\frac{1}{2} v\right)$ given in $(5,3.5)$ this reduces to:

$$
\begin{equation*}
E\left[\prod_{i=1}^{p} g_{i}\right]=\frac{p}{i=1} \gamma_{i}\left(\frac{v_{1}^{-i+1}}{v_{2}-i \tau T}\right) . \tag{5.4.3}
\end{equation*}
$$

From (5.4.3) we immediately obtain the following moment estimator of $\underset{i=1}{p} \mathrm{H}_{\mathrm{i}}$:

$$
\begin{equation*}
\prod_{i=1}^{\mathbb{M}} \gamma_{i}={\underset{i=1}{p} g_{i}\left(\frac{v_{2}-i-1}{\left(v_{1}-i+1\right.}\right)}^{n} \tag{5.4i4}
\end{equation*}
$$

In terms of the $\left\{l_{1}\right\}=E i g s\left\{S_{1} S_{2}^{-1}\right\}$ this becomes:

$$
\begin{align*}
\prod_{i=1}^{n} \gamma_{i} & =\prod_{i=1}^{p}\left(\frac{v_{1}}{v_{2}} k_{1}\right)\left(\frac{v_{2}-i-1}{v_{i}-i+1}\right) \\
& =\left(\frac{v_{1}}{v_{2}}\right)^{p} \sum_{i=1}^{p} \varepsilon_{i}\left(\frac{v_{2}^{-i-1}}{v_{1}-i+1}\right) \tag{5,4,5}
\end{align*}
$$

In a similar manner, exact moment estimators of $\prod_{\alpha-1}^{p} \gamma_{i}^{h}$ may be obtained from $\{5.4,2)$, for $h=2,3, \ldots, \frac{1}{2}\left(v_{2}-p+1\right\rangle-1$.

In Subsection 5.4 .5 the exact moment estimator (5.4.4) of $\prod_{i=1}^{p} Y_{i}$ will be used as a constraint on the values of the estimators of the γ_{i}, in order to obtain what will hopefully be improved estimators, through the method of restricted maximum likelihood estimation. A second constraint on the $\hat{\gamma}_{4}$, based on the expectation of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ derived in the \rangle
next taro sub-sections, will also be used in the restricted maximum likelihood estimation of the γ_{i} in Sub-section $5,4.5$.

5.4.2 On the. Distribution of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$

In this sub-section the distribution of $\operatorname{Tr}\left(\hat{A}_{1} A_{2}^{-1}\right)=\int_{i=1}^{p} g_{i}$ is investigated, and an expression for it as a sum of weighted, correlated f-random variables ir Yived. This will be used in Sub-section 5,4.3 to derive the expectation and variance of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ wich will, in turn, be used to obtain estimators for the means and variances of the four quantities $\delta_{i j}^{2}, \sigma_{i}^{2}(x), d_{i j j}^{2}$ and $d_{i}^{2}(x)$ whose distributions are discussed in Chaper 3, as well as for the approximate prohabilities of misclassification derived in Chapter 4. As mentioned earlier, the expectation of $\operatorname{Tr}\left(A_{1} \mathrm{~A}_{2}^{-1}\right)$ will aiso be used in Sub-section 5.4 .5 as a constraint in the restricted maximun Iikelihood estimation of the γ_{i},

To recap,

$$
\begin{aligned}
& A_{1} \sim H_{p}\left(v_{1}, \Sigma_{1}\right\}, \\
A_{2} & \sim W_{p}\left\{v_{2}, \Sigma\right) \text { independently, } \\
\quad\left(g_{j}\right\} & =\operatorname{Eigs}\left\{A_{1} A_{2}^{-1}\right\} \\
\text { and } \quad\left\{y_{j}\right\} & =\operatorname{Eigs}\left\{v_{1} Z^{-1}\right\} .
\end{aligned}
$$

Remark 5.4.1 Ciearly (see expression (5.2.4)) $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ is a multiple of Hotelling's T_{0}^{2} statistic. For the central ($\Sigma_{1}=\Sigma$) and noncentral cases $\left\langle A_{1} \sim W_{p}\left(v_{1}, Y, 2\right)\right)$ a consiverable amount of work has been done on the distribution of Ti, See, for example, Johnson and Kotz (1972) and Fujikoshi (1977). However, we have not been able to find any publications on the distribution of T_{0}^{2} under the situation of interest here, where A_{1}
and A_{2} both have central Wishart distributions but with different parameter matrices Σ_{1} and Σ.

Now, (see, for exariple Bellman (1970)) it is possible to reduce Σ_{1} ond Σ to diagonal form simultaneously,
i.e. There exists a nonsingular inatrix Y such that,
and

$$
\begin{aligned}
& V E V^{\prime}=I \\
& V_{1} V^{\prime}=\Delta=\operatorname{diag}\left(y_{1}\right) .
\end{aligned}
$$

Therefore, waking the transformation,
and

$$
\begin{aligned}
& A_{1}^{*}=V A_{1} V^{\prime} \\
& A_{2}^{*}=V A_{2} V^{\prime}
\end{aligned}
$$

we immediately have that,

and \quad| A_{1}^{*} | $\sim M_{p}\left(v_{1}, \Delta\right)$ |
| ---: | :--- |
| A_{2}^{*} | $\sim U_{p}\left(v_{2}, I\right) \quad$ independently. |

Furthermore,

$$
\begin{aligned}
\operatorname{Tr}\left(A_{1}^{*} A_{2}^{*-1}\right) & =\operatorname{Tr}\left(V A_{1} V^{\prime}\left(V A_{2} V^{\prime}\right)^{-1}\right) \\
& =\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)
\end{aligned}
$$

so it is clear that $\operatorname{Tr}\left(A_{1} A_{2}^{-3}\right)$ is invariant under this transformation. Me will therefore assume in the rest of this section that.
135.

Remark 5.4.2 For the case where some of the γ_{i} are zero, we reduce the dimension p appropriately.

It is well known (see, for example, Anderson (1958), Theorem '3.3.2) that A_{1} can be written as

$$
\theta
$$

$$
\begin{equation*}
A_{1}=\sum_{i=1}^{v_{1}} Y_{i} Y_{i} \tag{5.4.7}
\end{equation*}
$$

where

$$
y_{i} \sim n_{p}(0, \Delta) \quad \text { independently, } i=\omega_{i}, \ldots, v_{1}
$$

So,

$$
\begin{align*}
\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right) & =\operatorname{Tr}\left(\sum_{i=1}^{v_{1}} V_{i} Y_{i} A_{2}^{-1}\right) \\
& =\sum_{i=1}^{v_{1}} \operatorname{Tr}\left(Y_{i} A_{2}^{-1} Y_{i}\right) \\
& =\sum_{i=1}^{v_{1}} Y_{i} A_{2}^{-1} \cdot Y_{i} \\
& =\frac{1}{v_{2}} \sum_{i=1}^{V_{1}} D_{i}^{2} \tag{5.4.8}
\end{align*}
$$

where
and

$$
\begin{aligned}
& v_{i}^{2}=Y_{i}^{\prime} S_{2}^{-1} Y_{i} \\
& S_{2}=\frac{1}{v_{2}} A_{2} .
\end{aligned}
$$

136.

Clearly D_{i}^{2} can be considered as a sample-based Mahabanobis distance betreen Y_{f} and the origin with the diffarence that S_{2} is a sample covariance matrix corresponding to a population covariance matrix that is different from that in the distribution of γ_{\uparrow}.

We how consider the distribution of $\frac{1}{V_{2}} D_{i}^{2}=Y_{i} A_{2}^{-1} Y_{i}$. our argument follows the sane lines as those used by A.H. Bowker in deriving the distribution of Hotelling's T^{2} statistic, See, for exanple Anderson (1958) or Giri (1977).

Define a ($p \times p$) random orthogonal matrix Q_{i} whose first row is $Y_{i}\left(Y_{i} Y_{i}\right)^{-\frac{1}{2}}$ and whose remaining $p-1$ rows are defined arbitrarily, and let
and

$$
\begin{aligned}
& z_{i}=Q_{i} \gamma_{i}^{0} \\
& B_{i}=Q_{i} A_{2} Q_{i} .
\end{aligned}
$$

The first element $z_{i 1}$ of Z_{i} is, from the definition of the first row of Q_{i},

$$
z_{d 1}=Y_{i}\left(Y_{i} \gamma_{f}\right)^{-\frac{1}{d} Y_{i}} n\left(Y_{i} Y_{i}\right)^{\frac{1}{2}}
$$

whereas the other elenonts of z_{i} are all identically zero, by the orthogonality of Q_{i}. Therefore

$$
Y_{i}^{1} A_{2}^{-1} Y_{i}=z_{i}^{1} B_{i}^{-1} z_{i}=z_{i 1}^{2} b_{i}^{11}
$$

where b_{1}^{11} is the $(1,1)^{\text {th }}$ elegent of B_{1}^{-1}. Now

$$
b_{i}^{11}=\left(b_{i 11}-b_{i(1)} s_{i 22}^{-1} b_{i(1)}\right)^{-1}=b_{i 11,2}^{-1}
$$

137.

where

$$
B_{i}=\left(\begin{array}{ll}
b_{i 11} & b_{i(1)}^{\prime} \\
b_{i(1)} & b_{i 22}
\end{array}\right)
$$

so we get

$$
\begin{equation*}
Y_{i}^{\prime} A_{2}^{-1} Y_{i}=Y_{i}^{\prime} Y_{i} / b_{i 11.2} \tag{5.4.9}
\end{equation*}
$$

To obtain the distribution of $\mathrm{b}_{111.2 \text {, note that, conditionally on }}$ Q. B_{1} has a $W_{D}\left(V_{2}, I\right)$ distribution. Therefore, conditionally on G, $b_{111.2}$ as a $K_{1}\left(\nu_{2}-7,1,1\right)$ distribution (see, for example Giri (1977) Theoren 6.4.1)
1.e.

$$
b_{i 11.2} \sim x_{v_{2}-p+1}^{2}
$$

and since this distribution does not depend on Q_{i}, it is also the unconditional distribution of $b_{111.2}$. Therefore, using the notation $u_{i}=b_{i 11,2}$ we have that,

$$
\begin{equation*}
Y_{i} A_{2}^{-1} Y_{i}=Y_{i} Y_{i} / u_{i} \tag{5.4.10}
\end{equation*}
$$

where $u_{i} \sim x_{v_{2}-p+1}^{2}$ independently of Y_{i},
To find the distribution of $Y_{i} Y_{i}$, make the transformation

$$
\begin{array}{ll}
\therefore & \quad \begin{array}{l}
x_{i}=\left(x_{i}, \ldots, x_{i p}\right)^{\prime}=\Delta^{-\frac{1}{2}} \gamma_{i} \\
\text { Where }
\end{array} \\
\left.\Delta^{-\frac{1}{8}}=\text { diag\{ } \gamma_{i}^{-\frac{1}{2}}\right\} .
\end{array}
$$

138.

Therefore, from (5.4.7), $X_{q} \sim N_{p}(0,1)$, independently, so that,

$$
\begin{equation*}
Y_{i} Y_{i}=X_{j} \Delta X_{i}=\sum_{j=1}^{p} Y_{j} x_{i j}^{2}=\sum_{j=1}^{p} Y_{j} v_{i j} \tag{5,4,11}
\end{equation*}
$$

where $\cdot \mathrm{V}_{\mathrm{ij}} \sim \mathrm{X}_{1}^{2}$, independently $\mathrm{Yi}_{1, \mathrm{~J}}$. Substituting (5.4.11) into (5.4.10) we get

$$
\begin{equation*}
Y_{i} A_{2}^{-1} Y_{i}=\frac{1}{v_{2}} D_{i}^{2}=\sum_{j=1}^{p} Y_{j} \frac{v_{i j}}{u_{i}} \tag{5.4.12}
\end{equation*}
$$

and substituting (5.4.12) into (5.4.8) in turn, yieids

$$
\begin{equation*}
\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)=\sum_{i=1}^{v_{1}} \sum_{j=1}^{p} \gamma_{j} \frac{v_{i j}}{u_{i}} \tag{5.4.13}
\end{equation*}
$$

where

$$
v_{i j} \sim x_{1}^{2} \quad \text { independentiy, } i=1, \ldots, v_{1} ; j=1, \ldots, p
$$

and $u_{i} \sim \chi_{v_{2}-p+1}^{2}$ independentiy of the $v_{1 j}$. However, the u_{1} are not mutually independent for different i. (For $p=1$ it is aasy to show that the u_{i} are all identical.)

Expression (5.4.13) can also be written as:

$$
\begin{equation*}
\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)=\sum_{j=1}^{p} t_{S} \sum_{i=1}^{v_{1}} f_{i j} \tag{5.4.14}
\end{equation*}
$$

where the $f_{i j}$ have an unnormed $f\left(1, v_{2}-p+1\right)$ distribution, independently: for different j but not for different i,

For the case where the (nonzero) eigenvalues γ_{f} are all equal, say $\gamma_{j}=\gamma \forall_{j}$, expression (5.4.13) reduces to:

$$
\begin{equation*}
\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)=\gamma \sum_{i=1}^{v_{1}} f_{i} \tag{5,4.15}
\end{equation*}
$$

where the f_{i} are dependent $f\left(p, v_{2}-p+1\right)$ random variables.
Equation: (5.4.15) leads naturally to the scaled F-approximations to the distribution of Hotelling's T_{0}^{2} statistic in the central case ($\gamma=1$), proposed by Pillai and Samson (1959), Hughes and Saw (1972) and Nckeon (1974). For the case where the γ_{j} are unequal (i.e. ${ }^{\varepsilon}{ }_{7}$ is not proportional to E) a scaled chinsquared approximation (Box, 1954) to $\sum_{j=1} \gamma_{j} v_{i j}$ in (5,4,13) leads to an approximate expression for the distribution of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ in the form (5.4.15). So a scaled F-approxieation such as any of those proposed by the abovementioned authors should again be appropriate here.

5.4.3 The Nean and Variance of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$

We now use the distribution of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ obtained in the previous sub-section to find its mean and variance.

Expression (5.4.14) frmediately leads to the expected value ;

$$
\begin{align*}
\left.\operatorname{E[Tr}\left(A_{1} A_{2}^{-1}\right)\right] & =\sum_{j=1}^{p} \gamma_{j} \sum_{j=1}^{M_{1}} E\left[f_{i j}{ }^{j}\right. \\
& =\sum_{j=1}^{p} \gamma_{j} \sum_{i=1}^{V_{1}} \frac{1}{V_{2}-p^{-1}} \\
& =\left(\frac{V_{1}}{V_{2}-p^{-1}}\right) \sum_{j=1}^{p} \gamma_{j} . \tag{5.4.16}
\end{align*}
$$

140.

Remark 5.4.3 The rasult (5.4.16) can be confirmed by the following direct derivation of the expectation:

$$
E\left[\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)\right]=\operatorname{Tr}\left(E\left[A_{1}\right] E\left[A_{2}^{-1}\right]\right)
$$

(This step is justified hy the independence of A_{1} and A_{2} and because the trace operation consists only of multiplications and additions of their elements)

$$
=\operatorname{Tr}\left(v_{1} \Sigma_{1}\left(v_{2}-p-1\right)^{-1} \Sigma^{-1}\right)
$$

from the properties of the Wishart and Inverse Wishart distributions (See, for example, Johntson and Kotz, 1972).

$$
\begin{aligned}
& =\left(\frac{v_{1}}{v_{2}-p-1}\right) \operatorname{Tr}\left(\Sigma_{1} z^{-1}\right) \\
& =\left(\frac{v_{1}}{v_{2}-p-1}\right) \sum_{j=1}^{p} \gamma_{j} .
\end{aligned}
$$

The variance of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ does not follow in such a straightformard mianner, but is nost readily obtained from expression (5.4.8):

$$
\operatorname{Tr}\left(n_{1} A_{2}^{-1}\right)=\frac{1}{v_{2}} \sum_{i=1}^{v_{1}} D_{i}^{2}
$$

where $D_{i}^{2}=Y_{i}^{\prime} S_{2}^{-1} Y_{i}$. Therafore,

$$
\begin{equation*}
\operatorname{Var}\left[\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)\right]=\frac{1}{v_{2}^{2}}\left(\sum_{i=1}^{V_{1}} \operatorname{Var}\left[D_{i}^{2}\right]+2 \sum_{i<j} \operatorname{Cov}\left[D_{i}^{2}, D_{j}^{2}\right]\right) \tag{5.4.17}
\end{equation*}
$$

Using (5.4.12) we obtain

$$
E\left[D_{i}^{z}\right]=v_{2} \sum_{j=1}^{p} \gamma_{j} E\left[v_{i j}\right] E\left[u_{j}^{-1}\right]
$$

Where

$$
\text { o } \quad v_{i j} \sim x_{1}^{2} \quad \text { independentiy } v j=1, \ldots, p
$$

and

$$
=u_{1} \sim x_{v_{2}-p+1}^{2} \quad \text { independentiy. }
$$

So,

$$
\begin{equation*}
E\left[v_{j}^{2}\right]=v_{2} \sum_{j=1}^{p} \gamma_{j}\left(v_{2}-p-1\right)^{-1}=\left(\frac{v_{2}}{v_{2}-p-1}\right) \sum_{j=1}^{p} \gamma_{j} \tag{5.4.78}
\end{equation*}
$$

using the fact that the $r^{\text {th }}$ noment of the X_{v}^{2} distribution is

$$
u_{r}^{\prime}=\frac{r\left(\frac{2 v+r)}{r\left(\frac{1}{2} v\right)} 2^{r} \quad \forall_{r}>-\frac{p}{2} v . ~ . ~ . ~\right.}{\text {. }}
$$

Sintarly,

$$
\begin{aligned}
E\left[\left(D_{j}^{2}\right)^{2}\right] & =v_{2}^{2} E\left[u_{1}^{-2}\right]\left(\sum_{j=1}^{p} r_{j}^{2} E\left[v_{i j}^{2}\right]+2 \sum_{j<2}^{p} \gamma_{j} \gamma_{\ell} E\left[v_{i j}\right] E\left[v_{i \ell}\right]\right) \\
& =v_{2}^{2}\left(\left(v_{2}-p-1\right)\left(v_{2}-p-3\right)\right)^{-1}\left(\sum_{j=1}^{p} \gamma_{j}^{2} 3+2 \sum_{j<k} \gamma_{j} \gamma_{k}\right)
\end{aligned}
$$

50

$$
\operatorname{Var}\left[D_{\hat{1}}^{2}\right]=E\left[\left(D_{i}^{2}\right)^{2}\right]=\left(E\left[D_{i}^{2}\right]\right)^{2}
$$

$$
\begin{align*}
& \left.=\frac{\cdots v_{2}^{2}}{\left(v_{2}-p-1\right)\left(v_{2}-p-3\right)^{(3}} \sum_{j=1}^{p} \gamma_{j}^{2}+2 \sum_{j<l} \gamma_{j} \gamma_{2}\right)-\frac{v_{2}^{2}}{\left(v_{2}-p-1\right)^{2}}\left(\sum_{j=1}^{p} \gamma_{j}\right)^{2} \\
& =\frac{2 v_{2}^{2}}{\left(v_{2}-p-1\right)^{2}\left(v_{2}-p-3\right)^{2}}\left[\left(\sum_{j=1}^{p} \gamma_{j}\right)^{2}+\left(v_{2}-p-1\right) \sum_{j=1}^{p} \gamma_{j}^{2}\right) . \tag{5.4.19}
\end{align*}
$$

To obtain coviD $\left.\mathrm{D}_{i}^{2}, \mathrm{O}_{\mathrm{j}}^{2}\right]$ note that, frow (5.4.8)

$$
D_{i}^{z}=Y_{i} s_{2}^{-1} Y_{i}
$$

where,

$$
\begin{aligned}
& \gamma_{i} \sim N_{p}(0, \Delta) \quad \text { independently, } v i=1, \ldots, p \\
& v_{2} S_{2} \sim N_{p}\left(v_{2}, 1\right)
\end{aligned}
$$

and $\Delta=\operatorname{diag}\left\{\gamma_{1}\right\}$.
Using Theorem 3.1.1, with slight modification, it immediately follows that, conditionally on S_{2},

$$
\begin{equation*}
D_{i}^{2}=\sum_{\ell=1}^{p} a_{\ell} v_{\ell j} \triangle \quad v_{1, j} \tag{5.4.20}
\end{equation*}
$$

where

$$
\left\{\alpha_{\ell}\right\}=E \operatorname{Egs}\left\{a S_{2}^{-1}\right\}
$$

and

$$
v_{\ell i} \sim x_{i}^{2} \quad \text { independently, } v_{2}=1, \ldots, p .
$$

143.

Furthermore,

$$
\begin{align*}
\operatorname{Cov}\left[D_{i}^{2} D_{j}^{2}\right] & =E\left[D_{i}^{2} D_{j}^{2}\right]-E\left[D_{i}^{2}\right] E\left[D_{j}^{2}\right] \\
& =E_{S_{2}}\left[E\left[D_{i}^{2} D_{j}^{2} \mid S_{2}\right]\right]-E_{S_{2}}\left[E\left[D_{i}^{2} \mid S_{2}\right]\right] E_{S_{2}}\left[E\left[D_{j}^{2} \mid S_{2}\right]\right] \tag{5.4,21}
\end{align*}
$$

where $\mathrm{E}_{\mathrm{S}_{2}}[\cdot]$ denotes the expection over the distribution of S_{2}. The conditional expectations in (5.4.21) follow imnediately from (5.4.20):

$$
\left.E\left[D_{i}^{2}\right] S_{2}\right]=\sum_{i=1}^{p} a_{i}{ }^{0} E\left[v_{\ell i}\right]=\sum_{\ell=1}^{p} a_{\ell}=\operatorname{Tr}\left(\Delta S_{2}{ }^{3}\right)
$$

and

$$
E\left[D_{i}^{2} D_{j}^{2} \mid S_{2}\right]=E\left[\sum_{2=1}^{p} a_{l} v_{\ell j}\right] E\left[\sum_{2=1}^{p} \alpha_{2} v_{l j}\right]
$$

by the independence of the $v_{\mathbf{k i}}$

$$
=\left(\sum_{\&=1}^{p} a_{g}\right)^{2}=\left(\operatorname{Tr}\left(\Delta s_{2}^{-1}\right)\right)^{2}
$$

so,

$$
\begin{align*}
\left.\operatorname{CovtD} \mathrm{D}_{1}^{2} \mathrm{D}_{j}^{2}\right] & =\mathrm{E}_{\mathrm{S}_{2}}\left[\left(\operatorname{Tr}\left(\Delta \mathrm{~S}_{2}^{-1}\right)\right)^{2}\right]-\left(\mathrm{E}_{\mathrm{S}_{2}}\left[\operatorname{Tr}\left(\Delta \mathrm{~S}_{2}^{-1}\right)\right]\right)^{2} \\
& =\operatorname{Var}_{\mathrm{S}_{2}}\left[\operatorname{Tr}\left(\Delta \mathrm{~S}_{2}^{-1}\right)\right] \tag{5.4,22}
\end{align*}
$$

where $\operatorname{Var}_{\mathrm{S}_{2}}[\cdot]$ denotes the variance over the distribution of S_{2}. Now

$$
\operatorname{Tr}\left(\Delta S_{2}^{-1}\right)=\operatorname{Tr}\left(\Delta^{\frac{1}{2}} S_{2}^{-1} \Delta^{\frac{1}{2}}\right)=v_{2} \operatorname{Tr}\left(\Delta^{-\frac{1}{2}} h_{2} \Delta^{-\frac{1}{d}}\right)^{-1}
$$

where

144.

$$
\Delta^{-\frac{1}{2}}={\operatorname{diag}\left\{\gamma_{i}^{-\frac{1}{2}}\right\}}^{2}
$$

and

$$
A_{2}=v_{2} S_{2} \sim W_{p}\left(N_{2}, I\right)
$$

Therefore,

$$
\begin{aligned}
\Delta^{-\frac{1}{2}} A_{2} \Delta^{-\frac{1}{2}} & \sim W_{p}\left(V_{2}, \Delta^{\left.-\frac{1}{1} I \Delta^{-\frac{1}{2}}\right)}\right. \\
& \sim H_{p}\left(V_{2}, \Delta^{-1}\right)
\end{aligned}
$$

so that $\left(\Lambda^{-\frac{1}{2}} \mathrm{~A}_{2} \Delta^{-\frac{1}{2}}\right)^{-1}$ follous the inverted Wishart distribution $W_{p}^{-i}\left(v_{2}+p+7, \Delta\right)$ (See, for exarple Press, 1972). So,

$$
\begin{equation*}
\operatorname{Tr}\left(\Delta S_{2}^{-1}\right)=v_{2} \operatorname{Tr}(W) \tag{5.4,23}
\end{equation*}
$$

where

$$
W=\left(w_{i j}\right) \sim w_{p}^{-1}\left(v_{2}+p+1, \Delta\right) .
$$

Furthermore,

$$
\operatorname{Var}[\operatorname{Tr}(W)]=\operatorname{Var}\left[\sum_{i=1}^{p} w_{i j}{ }^{2} n \sum_{i=1}^{p} \operatorname{var}\left[w_{i j}\right]+2 \sum_{i<j} \operatorname{cov}\left[w_{i j}, w_{j j}\right]\right.
$$

These variances and covariances are given in Press (1972) on page 112, so substituting them into the above and remenbering that $t=d i a g\left(y_{i}\right\}$ we get, after some simplification,

$$
\operatorname{Var}[\operatorname{Tr}[W)]=\sum_{i=1}^{p} \frac{2 r_{i}^{2}}{\left(v_{2}-p-1\right)^{2}\left(v_{2}-p-3\right)}
$$

$$
\begin{equation*}
+2 \sum_{i<j} \frac{2 \gamma_{j} \gamma_{j}}{\left(v_{2}-p\right)\left(v_{2}-p-1\right)^{2}\left(v_{2}-p-3\right)} . \tag{5.4.24}
\end{equation*}
$$

145.

Substituting (5,4.24) and (5,4.23) into (5.4.22) yields,

$$
\begin{equation*}
\operatorname{Cov}\left[D_{i}^{2}, D_{j}^{2}\right]=\frac{2 v_{2}^{2}}{\left(v_{2}-p\right)\left(v_{2}-p-1\right)^{2}\left(v_{2}-p-3\right)}\left\{\left(v_{2}-p\right) \sum_{k=1}^{p} \gamma_{k}^{2}+2 \sum_{k<2} \gamma_{k} \gamma_{2}\right\} \tag{5.4.25}
\end{equation*}
$$

Finally, substituting (5.4.25) and (5.4.19) into (5.4.17) yields, after some simplification:

$$
\begin{align*}
\operatorname{Var}\left[\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)\right]= & \frac{1^{\left(v_{1}+v_{2}-p-1\right)}}{\left(v_{2}-p\right)\left(v_{2}-p-1\right)^{2}\left(v_{2}-p-3\right)}\left\{\left(\sum_{j=1}^{p} \gamma_{j}\right)^{2}+\left\langle v_{2}^{-p-1)} \sum_{j=1}^{p} r_{j}^{2}\right\}\right. \\
= & \left.\frac{2 v_{1}\left(v_{1}+v_{2}-p-1\right)}{\left(v_{2}-p\right)\left(v_{2}-p-1\right)^{2}\left(v_{2}-p-3\right)} \operatorname{trr}\left(\Sigma_{1} \varepsilon^{-1}\right)\right)^{2} \\
& \left.+\left(v_{2}-p-1\right) \operatorname{Tr}\left(\varepsilon_{1} \Sigma^{-1}\right)^{2}\right\} . \tag{5,4.26}
\end{align*}
$$

As a test for the correctness of formulae $(5,4.16)$ and (5.4.26) Enr the mean and variance, respectively, of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ we consider the case where Σ_{1} is Σ, i,e. $\gamma_{i}=1,1=1, \ldots, p$. The formlas then reduce to:

$$
\left.\operatorname{ErTr}\left(A_{1} A_{2}^{-1}\right)\right]=\frac{v_{1} p}{v_{2}-\rho-\gamma}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left[\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)\right]=\frac{2 p v_{1}\left\{v_{2}-1\right)\left(v_{1}+v_{2}-p-1\right)}{\left(v_{2}-p\right)\left(v_{2}-p-1\right)^{2}\left(v_{2}-p-3\right)} \tag{5.4.27}
\end{equation*}
$$

Which agree with those given by Pillai and Samson (i939) as wela as by Hughes and Saw (1972), (The fortulae given by McKeon (1974) both appear to require the factor $v_{2}\left(v_{2}-p-1\right)^{-1}$.)
146.

Using similar techniques to those used above it is clear that with increasing amounts of algebra the higher moments of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ way be obtained.

Formulae (5.4.16) and (5.4.26) will now be used to obtaic mement estimators of $\sum_{i=1}^{p} \lambda_{i}$ and $\sum_{i=1}^{p} \lambda_{i}^{2}$ where $\left\{\lambda_{i}\right)^{\prime \prime}=\operatorname{Eigs}\left[T \Sigma^{-1}\right\}$, which may in turn be used to estimate the means and variances of the four distance variables whose distributions were discussed in Chapter 3, as weil as the approximate probabilities of misclassification derived in Chapter 4. 5.4.4 Homent Estimators for $\sum_{i=1}^{p} \lambda_{i}$ and $\sum_{i=1}^{p} \lambda_{i}^{2}$

The formutae for the means and variances of the four distance variables $\delta_{i, j}^{2}, \delta_{i}^{2}(x), d_{i j}^{j}$ and $d_{i}^{2}(x)$ derived in Chapter 3, as well as those for the approximate probabilities (4.1.9) and $(4.2,10)$ of misclassification derived in Chapter 4, are all expressed in terns of the two quantities:

$$
\sum_{i=j}^{p} \lambda_{i}=\operatorname{Tr}\left(T \Sigma^{-1}\right)
$$

and

$$
\sum_{i=1}^{p} \lambda^{2}=\operatorname{Tr}\left(T \Sigma^{-1}\right)^{2} .
$$

In this sub-section, mowent estimators for these two quantities aill be ebtained in terws of the expectation and variance of $\operatorname{Tr}\left(\mathrm{S}_{1} \mathrm{~s}_{2}^{-1}\right)$. $\frac{v_{2}}{v_{1}} \operatorname{Tr}\left(A_{1} A_{2}\right)$ darived in the previous sub-section. These nay then be substituted into the abovementioned c , valae to obtain estinators for the maans ahd variances of the four distance variables and for the approximete probabilities of misclassification.

Substituting the expression given in Remark 5.3.2 for the velationship between the $\left\{\lambda_{i}\right\}$ and the $\left\{\gamma_{i}\right\}$:

$$
\gamma_{i}=1+n_{i}
$$

into expressions. (5.4.16) and (5.4.26) for the wean and variance of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$, transforming to $\operatorname{Tr}\left(S_{1} S_{2}^{-1}\right)$ and simplifying, yields:

$$
\begin{equation*}
E\left[\operatorname{Tr} S_{1} S_{2}^{-1}\right]=\frac{v_{2}}{v_{2}^{-2}-1}\left(p+n \sum_{i=1}^{p} \lambda_{1}\right) \tag{5.4.28}
\end{equation*}
$$

and

$$
\begin{align*}
\operatorname{Var}\left[\operatorname{Tr}\left(s_{1} s_{2}^{-1}\right)\right] & =c\left(n^{2}\left(v_{2}-p-1\right) \sum_{i=1}^{p} \lambda_{i}^{2}+n^{2}\left(\sum_{i=1}^{p} \lambda_{1}\right)^{2}\right. \\
& \left.+2 n\left(v_{2}-1\right) \sum_{i=1}^{p} \lambda_{i}+p\left(v_{2}-1\right)\right) \tag{5.4.29}
\end{align*}
$$

where

$$
c=\frac{2 v_{2}^{2}\left(v_{1}+v_{2}-p-1\right)}{v_{1}\left(v_{2}-p\right)\left(v_{2}-p-1\right)^{2}\left(v_{2}-p-3\right)} .
$$

So it follows furrediately that the moment estimators for $\sum_{i=1}^{p} x_{i}$ and λ_{1}^{i} are respectively,

$$
\begin{equation*}
\sum_{i=1}^{p} \lambda_{1}=\frac{\left(v_{2}-p-1\right)}{v_{2}^{n}} \hat{\varepsilon}\left[T r\left(s_{1} s_{2}^{-1}\right)\right]-\frac{p}{n} \tag{5.4.30}
\end{equation*}
$$

and

148.

where $\hat{E}\left[\operatorname{Tr}\left(S_{1} S_{2}^{-1}\right)\right]$ and $\hat{\operatorname{Var}}\left[\operatorname{Tr}\left(S_{1} S_{2}^{-1}\right)\right]$ are sazple-based estimators for the mean and variance of $\operatorname{Tr}\left(\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}\right)$.

NON, the obvious estimator for $\operatorname{E}\left[\operatorname{Tr}\left(\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}\right)\right]$ from the training sample is

$$
\begin{equation*}
\hat{E}\left[\operatorname{Tr}\left(\mathrm{~S}_{1} \mathrm{~s}_{2}^{-1}\right)\right]=\operatorname{Tr}\left(\mathrm{S}_{1} \mathrm{~s}_{2}^{-1}\right) \tag{5.4.32}
\end{equation*}
$$

but there is no corresponding simple estimator for $\operatorname{Var}\left[T r\left(\mathrm{~S}_{1} \mathrm{~S}_{2}^{-1}\right)\right]$. However, the Jackknife technique, originally proposed by Quenouille (1956) provides an attractive, if computationally lengthy, method for obtaining an estimator for the latter.

The Jackknife Technique Good descriptions of the technique are given by Gray and Schucany, (1972) Miller (1974) and Bissel and Ferguson (1975), so a brief sumary here will suffice.

Given an unknown paranater θ for which a (possibly) biased estimator $\hat{\theta}$ is avallable from a random sample, suppose that the expected value of $\hat{\theta}$ may be written,

$$
\begin{equation*}
E[\hat{\theta}]=\theta+O\left(n^{-3}\right) \tag{5.4.33}
\end{equation*}
$$

where n is the sample size. The Jackknife technique for reducing this bias to $O\left(n^{-2}\right)$ and at the same time producing an estimate of the variance of $\hat{\theta}$ proceeds as follows. Divide the sample into r subgroups each of size if ($r=n$ and $h=1$ in most applications). Removing sach subgroup from
the sample in turn, and re-estimating ofrom the remainder of the sample in each case, produces r "partial estinates" $\hat{0}_{-j}, j=1, \ldots, r$, each based on a sample of size $h(r-1)$. Now combine these partial estimates with the whole-sample estimate to form r "pseudo-values" $\hat{\theta}_{* g}$ "

$$
\begin{equation*}
\hat{\theta}_{* j}=r \hat{\theta}-\left(r-1 \hat{\theta}_{-j} \quad j * 1, \ldots, r\right. \tag{5.4.34}
\end{equation*}
$$

The Jackknife estimator of θ is the average of the $\hat{\theta}_{* j}$:

$$
\begin{equation*}
\hat{\theta}_{*}=\frac{1}{r} \cdot \sum_{j=1}^{r} \hat{\theta}_{* j}=r \hat{\theta}-(r-1) \hat{\theta}_{-i} \tag{5,4,35}
\end{equation*}
$$

where

$$
\hat{\theta}_{-,}=\frac{1}{r} \sum_{j=1}^{r} \hat{\theta}_{-j}
$$

and it can easily be shown that $\hat{\theta}_{*}$ has a (possible) bias of order n^{-2}

$$
\text { i.e. } \quad E\left[\hat{\theta}_{\star}\right]=0+O\left(n^{-2}\right)
$$

Quenouille (1956) shous that, to order n^{-1}, the variance of $\hat{\mathrm{e}}_{*}$ is the satme as that of $\hat{\theta}$ for a mide class of estimators, and Tukey (1958) proposed the following estimator for $\left.\operatorname{Var} \hat{i}_{\hat{\theta}}\right]$ or $\operatorname{Var}\left[\hat{\theta}_{*}\right]$:

$$
\begin{align*}
S_{T}^{2} & =\frac{1}{r(r-1)} \sum_{j \neq 1}^{r}\left(\hat{\theta}_{* j}-\hat{0}_{*}\right)^{2} \\
& =\frac{r-1}{r} \sum_{j=1}^{r}\left\langle\hat{\theta}_{-j}-\hat{\theta}_{-,}\right)^{2}: \tag{5,4.36}
\end{align*}
$$

Tukey (1958) also suggested that a confidence interval for θ may be obtainad by assuwing that $t_{r}=\left(\hat{\theta}_{*}-\theta\right) / S_{T}$ has, approximstely, a t-distribution on $\mathrm{r}-1$ degrees of freedom.
150.

Going back to formula (5.4.16) we have:

$$
\begin{align*}
\varepsilon\left[\operatorname{Tr}\left(s_{1} s_{2}^{-1}\right)\right] & =\frac{v_{2}}{v_{1}} \operatorname{EE}\left(T r\left(A_{1} A_{2}^{-1}\right)\right] \\
& =\frac{v_{2}}{v_{2}-p-1} \operatorname{Tr}\left(\Sigma_{1} z^{-1}\right) \\
& =\left(1-\frac{p+1}{v_{2}}\right)^{-1} \operatorname{Tr}\left(\varepsilon_{1} \Sigma^{-1}\right) \\
& =\operatorname{Tr}\left(\Sigma_{1} \Sigma^{-1}\right)+0\left(v_{2}^{-1}\right) \tag{5.4.37}
\end{align*}
$$

which is clearly of the form (5.4.33), so it would appear that the Jackknife technique can provide an estimatior for $\left.\operatorname{Var[Tr}\left(\mathrm{S}_{1} \mathrm{~S}_{2}^{-7}\right)\right]$ via (5.4.36). Jackknife Estimation of $\operatorname{Vart} T r\left(\mathrm{~S}_{1} \mathrm{~s}_{2}^{-1}\right)$. As mentioned earlier, a drawback to the Jackknife technique is the fact that the amount of computation required can becone very lengthy, especially when the training sample is large and $\mathrm{h}=1$, as is usually recomsenued. However, the computation can be reduced considerably in the case of $\operatorname{Tr}\left(\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}\right)$ with $h=1$ by using the following theoren.

Theorem 5.4.1

Let A_{1} and A_{2} be the ($p \times p$) "betreen groups" and "within groups" sum of squares matrices based on k groups and n observations per group, as defined in the MAROVA table 5.1.1. Let $T_{-(i, j)}$ denote the value of a statistic T cosputed from the raliova sample with obsorvation $x_{i j}$ respoved from the $i^{\text {th }}$ group. Then, using the notation of Section 5.1,

$$
\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)_{-(i, 5)}=\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)+\operatorname{Tr}\left(A_{1} A_{2}^{-1} \mathrm{E}\right)+\operatorname{Tr}\left(\mathrm{GA}_{2}^{-1}\right)
$$

where,

$$
\begin{aligned}
& E=n(n-1) e e^{\prime} A_{2}^{-1} /\left(1-n(n-1) e A_{2}^{-1} e^{\prime}\right), \\
& F=I+E, \\
& \because \\
& G=(N-n) f f^{\prime}+(n-1)(e-f)(e-f)^{\prime}-N f g^{\prime}-g((n-1) e+f)^{\prime}
\end{aligned}
$$

and $e=\frac{x_{i j^{-x}}}{n-1}, f=\frac{x_{i j^{-x}} . .}{n-1}, g=x_{i .}-x_{. .}$. The proof is given in Appendix 5.1.

From Theoren 5.4.7 only a single matrix inversion, that of A_{2}, is requirad for the computation of all N partial estimates $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)_{-(j, j)}$, Yisj, and since the other formulae are all of a simple nature the total computation time on a modern computer is very small, even for large values of N and moderate values of p.

Note that, since $s_{1}=v_{1}^{-\eta_{1}} A_{1}$ and $S_{2}=v_{2}^{-\eta_{2}} A_{2}$

$$
\begin{equation*}
\operatorname{Tr}\left(S_{1} S_{2}^{-1}\right)_{-(i, j)}=\frac{v_{2}-1}{v_{1}} \operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)_{-(i, j)} \tag{5.4,38}
\end{equation*}
$$

Therefore, using $h=1$ and $r=N$ in (3.4.36) we obtain the following estimator for $\operatorname{Var}\left[T r\left(S_{1} S_{2}^{-1}\right)\right]$ from the jackknife method

$$
\begin{equation*}
\hat{\operatorname{Var}}\left[\operatorname{Tr}\left(\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}\right)\right]=\frac{N-1}{N} \sum_{i=1}^{k} \sum_{j=1}^{n}\left(\operatorname{Tr}\left(\mathrm{~S}_{1} \mathrm{~S}_{2}^{-7}\right)_{-(1, \mathrm{~S})}-\operatorname{Tr}\left(\mathrm{S}_{1} S_{2}^{-1}\right)_{-(\cdot, \cdot)}\right)^{2} . \tag{5,4,39}
\end{equation*}
$$

Substituting $(5,4,39)$ and $(5.4 .32)$ into (5.4.70) and (5.4.31) yields moment estividors for $\sum_{i=1} \lambda_{i}$ and $\sum_{i=1} \lambda_{i}^{2}$, respectively, wich can in turn be substituted into the relevant formulae to obtain estimators for the means and variances of $\dot{\delta}_{i j}^{2}, f_{j}^{2}(x), d_{j j}$ and $d_{i}^{2}(x)$ as well as for the approximate probabilities of misclassification under the rendon effects model.
152.
5.4.5 Restrictea Maximuan Likelihood Estimators of the $\left\{Y_{i}\right\}$

In this sub-section we. Investigate the use of the exact results on the momants of $\left|A_{1} A_{2}^{-1}\right|$ and $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ obtained in sections 5.4.1 and 5.4 .3 respectively, to íprove our maximum likelihood estimators of the $\left\{\gamma_{i}\right\}=$ Eigs $\left\{\Sigma_{i} \Sigma^{-1}\right\}$ based on Chang's (1970) expression for the limiting density of the $\left\{g_{i}\right\}=E$ igs $\left\{A_{1} A_{2}^{-1}\right\}$.

But firstly we investgate the special cases $p=1$ and $p=2$.
' $p=$ 1. In this case Chang's (1970) formuTa, $\left|A_{1} A_{2}^{-1}\right|$ and $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ al? lead to the same result, viz:

$$
\left(\frac{g_{1}}{r_{1}}\right) \sim f\left(v_{1}, v_{2}\right)
$$

where $f\left(v_{1}, v_{2}\right)$ denotes the unnormed f-distribution on v_{1} and v_{2} degrees of freedom (See $(5.3 .6)$ and $(5.4 .13)$). Therefore, using any one of expressions (5.3 .7), $(5.4 .4)$ or $(5.4 .16)$, we obtain tie following unbiased monent estimator of γ_{7} :

$$
\begin{equation*}
\hat{r}_{1}^{*}=\frac{v_{2}-2}{v_{1}} g_{1}=\frac{v_{2}-2}{v_{2}} v_{1} \tag{5.4.40}
\end{equation*}
$$

where $\left\{\ell_{1}\right\}=\operatorname{Eigs}\left\{S_{1} S_{2}^{-l}\right\}$ or $\ell_{1}=S_{1} / S_{2}$ in thic case.
The maxiruan likelihood estimator is given by:

$$
\begin{equation*}
\hat{Y}_{1}=\frac{v_{2}}{v_{1}} g_{1}=l_{1} \tag{5.4.41}
\end{equation*}
$$

which ciearily has a slight bias.
 and $\int_{\{=1}^{p} \gamma_{i}$ obtained from the exact first moments of $\left|A_{1} A_{2}^{-1}\right|$ and $\operatorname{Tr}\left(A_{1} A_{2}^{-}\right)$, respactively, for γ_{1} and γ_{2}. From (5.4.5) we have:

153.

$$
\begin{equation*}
\widehat{M}_{i=1}^{n} \gamma_{i}=\left(\frac{v_{1}}{i v_{2}}\right)_{i=1}^{p} \prod_{i=1}^{N_{1}}\left(\frac{v_{1}-i-1}{v_{1}-i+1}\right) 2_{i}=a \text {, say } \tag{5.4.42}
\end{equation*}
$$

and from (5.4.30) and $(5.4,32)$, renembering that $\sum_{i=1}^{p} \gamma_{i}=p+n \sum_{i=1}^{p} \lambda_{i}$, we have

$$
\begin{equation*}
\sum_{i=1}^{p} \gamma_{4}=\frac{v_{2}-p-1}{v_{2}} \sum_{i=1}^{p} l_{i}=b \text {, say. } \tag{5.4.43}
\end{equation*}
$$

Letting the estinators $\hat{\gamma}_{1}$ and $\hat{\gamma}_{2}$ satisfy the relationships:

$$
\hat{\gamma}_{1} \hat{\gamma}_{2}=\widehat{\gamma_{1} \gamma_{2}}
$$

and

$$
\begin{equation*}
\hat{\gamma}_{1}+\hat{\gamma}_{2}=\widehat{\gamma_{1}+\gamma_{2}} \tag{5.4.44}
\end{equation*}
$$

(5.4.42) and $(5.4 .43)$ lead to the following solutions:

$$
\hat{r}_{1}^{*}=\frac{1}{\frac{1}{2}\left(b+\sqrt{b^{2}-4 a}\right)}
$$

and

$$
\begin{equation*}
\hat{\gamma}_{2}^{*}=\frac{1}{2}\left(b-\sqrt{b^{2}-4 a}\right) . \tag{5.4,45}
\end{equation*}
$$

For $\mathrm{p} \geq 2$, wo use the technique of Restricted Maximum Likelihood Estination (see, for example, Silvey, 1976) to incoponate the information from the exact moments of $\left|A_{1} A_{2}^{-1}\right|$ and $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ as constraints into the maximum 1ikelihood equations obtained from Chang's (1970) formula (5.3.5) for the limiting joint density function of the g_{i}.

154.

Using the sane raparameterisation as before to get around the problem of the "inadoissibie singularities" in the likelihood function (see (5.3.22)) and reformating the constraint (5.4.42)

for algehraic convenience by taking logarithus on both sides, we obtain the following constrained maxitization problem (see (5.3.24), $(5.4 .42)$ and (5.4.43)).

Naximise:

$$
\begin{aligned}
L=f^{*}(g) & =\frac{1}{2}\left(v_{1}+v_{2}-p+1\right) \sum_{j=1}^{p} \log \left(1+g_{j}\left(\sum_{k=1}^{j} e^{\delta} k+\varepsilon_{k}\right)\right) \\
& =\frac{\sum_{i=1}^{p-1} \sum_{j=1}^{p} \sum_{j=1}^{p} \log \left(\sum_{k=1+1}^{j} e^{\delta_{k}}+c_{k}\right)}{l}
\end{aligned}
$$

subject to:

$$
\begin{equation*}
-\sum_{j=1}^{p} \log \left(\sum_{k=1}^{j} e^{\delta k_{+}}+\varepsilon_{k}\right)=\log a \tag{1}
\end{equation*}
$$

and
(ii)

$$
\begin{equation*}
\sum_{j=1}^{p}\left(\sum_{k=1}^{j} e^{\delta_{k}}+e_{k}\right)^{-1}=b \tag{5.4.46}
\end{equation*}
$$

where $f^{*}(9)$ is a function of the g_{j} only. ${ }_{j}$ (Note that, because of the first constraint, tho term: $\frac{d v}{1} \sum_{j o 1}^{p} \log \left(\sum_{k=1}^{j} e^{6} k+\varepsilon_{k}\right)$ in the objective function of (5.4.46) is a constant and has therefore been incorporated into $f^{*}(g)$).
155.

Resark 5.4.4 A1though the estinated value of $\sum_{i=1}^{p} \gamma_{i}^{2}$, obtained from the variance of $\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)$ could also have been brought in as a constraint, it was felt that it would be unrealistic to do so, particularly in view of the indiract mathod in which it is obtained.

The constrained naxinfzation problen (5.4.46) is a nonlinear programming problen and is therefore zost readily solved using one of the standard algorithms (see, for example :halsh, 1975) for the restricted maximum likelihood estimator $\hat{\sim}_{\hat{\sim}}^{*}$. Finally, by transforming back via (5.3.22) we obtain the restricted maximum likelihood estimator $\hat{\gamma}_{\sim}^{*}$ of $\underset{\sim}{\gamma}$.

5.4.6 Large Sample Distribution of the Restricted Naxinum Likeiihood
 Estinators of the γ_{i}

Silvey (1975) shows that for large sample sizes the restricted maximum likelihood estimator ${\underset{\sim}{\gamma}}_{\underset{\sim}{*}}$ is approximately normally distributed with mean vector y and covariance matrix Σ, where Σ is obtained by the following matrix equality:

$$
\left(\begin{array}{cc}
B_{\gamma}^{\gamma} & H \tag{5,4,47}\\
\sim & \\
H^{\prime} & 0
\end{array}\right)^{-1}=\left(\begin{array}{ll}
\dot{z} & Q \\
Q^{\prime} & R
\end{array}\right)
$$

whare $B_{\mathcal{L}}$ is Fisher's Information Matrix given by (5.3.30), (5.3.33) and $(5,3,38)$ and H is the ($p \times 2$) matrix of partial derivatives:
156.

$$
\begin{align*}
H & =\left\{\begin{array}{cc}
\frac{\partial}{\partial j}\left(\sum_{j=1}^{p} \log \gamma_{j}-\log a\right) & \frac{\partial}{\partial \gamma}\left(\sum_{j=1}^{p} \gamma_{j}-b\right) \\
\vdots \\
\vdots \\
\frac{\partial}{\partial \gamma_{p}}\left(\sum_{j=1}^{p} \log \gamma_{j}-\log a\right) & \frac{\partial}{\partial \gamma_{p}}\left(\sum_{j=1}^{p} \gamma_{j}-b\right)
\end{array}\right\} \\
= & \left(\begin{array}{ll}
\gamma_{1}^{-1} & 1 \\
\vdots & \vdots \\
\gamma_{p}^{-1} & 1
\end{array}\right) . \tag{5.4.48}
\end{align*}
$$

It follows from $(5 ; 4.47)$ that the elements of $\underset{\sim}{\gamma}$ will tend to have staller approximate variances than those of the "unrastricted" maximum likelihood estimators $\underset{\sim}{\hat{\gamma}}$, discussed in Section 5.3 , for, as shown by silvey (1975), Appendix A:

$$
\begin{equation*}
Z={\underset{\gamma}{\gamma}}_{B_{\gamma}^{-}}^{f}-{\underset{\gamma}{\gamma}}_{-\gamma}^{H}\left(H^{\prime}{\underset{\gamma}{\gamma}}_{-1}^{\gamma} H\right)^{-1} H^{\prime}{\underset{\sim}{\gamma}}_{\gamma}^{-1} . \tag{5.4.49}
\end{equation*}
$$

The result now follows, since B_{Y}^{-1}, is the approximate covariance matrix of $\underset{\sim}{\hat{y}}$ and $\mathrm{H}\left(\mathrm{H}^{\prime}{\underset{\sim}{\gamma}}_{\underset{\sim}{-1}}^{\mathrm{H}} \mathrm{H}^{-1} \mathrm{H}^{4}\right.$ is a positive senrldefinite matrin.

However, the above result could be rather fisleading in our situation, since formiae $(5,4,47)$ bnd $(5,4,48)$ are based on the assumption that the two constraints

$$
\sum_{j a l}^{p} \log \gamma_{j}=a
$$

and

$$
\sum_{j=j}^{p} \gamma_{j}=b
$$

157.

are deterministic, whereas, in fact, they are stochastic since a and b are random variables. Thus result $(5.4 .49)$ wili tend to give too optimistic a picture of the large sample behaviour of the restricted maximum estimator ${ }_{\gamma}^{\gamma / *}$, *

This point is illustrated in Table 5.4 .1 below, which gives the approximate large sapple standard deviations for the elements of $\hat{\gamma}$ and $\hat{\gamma}^{*}$ as well as the corresponding standard deviations obtained from the simulation experiments on ${\underset{\sim}{y}}^{*}$ described in the iext section, for two of the sets of parameter values used earlier in Example 5,3,1.

Table 5.4.1
Standard Deviations

Degrees of Freedom	True ${ }_{\sim}^{\text {Y }}$	${ }^{1}$	$\xrightarrow{\text { Approx for } \hat{\gamma}}$	Approx for ${ }_{\sim}^{\underset{\sim}{\gamma}}$	From simulated $\underset{\sim}{\underset{\sim}{\gamma}}$
$v_{1}=60$	6		1.45	0.59	1.06
$v_{2}=244$	4		0.92	0.79	0.59
	2		0.42	0.20	0.33
$v_{1}=30$	16		5.13	0.58	4.33
$v_{2}=124$	4		1.32	1.01	1.21
- $\cdot \cdots$	2		0.61	0.43	0.51

As is evident from Table 5.4 .1 there is a marked raduction in the approximate standard deviations when moving frosit the unrestricted to the restricted maximun likelihood estimator for Y, the reduction being by far the greatesi for the estimator of the largest eigenvalue γ_{1}. However, it is also clear that most of this reduction is not realised in practice.

Nevertheless, the sfrulation experiments described in the next section do suggest that with regard to both bias and standard deviation the restricted maximu likelihood estinator $\underset{\sim}{\gamma}$ is a slight oprovenient over its unrestricted counterpart $\underset{\sim}{\underset{\sim}{\gamma}}$,

5.5 Simulation Experiments on the Various Estinators of
 $\left(\gamma_{j}\right)=\operatorname{Eigs}\left(\varepsilon_{1} \Sigma^{-1}\right)$

In this section we describe some simulation experiments that were carried out to evaluate the performances of the various estimators of $\left\{\gamma_{i}\right\}=$ Eigs $\left\{\sum_{1} \Sigma^{-1}\right\}$ that have been proposed in the earlier sections. if addition, because of the problens associated with sove of these estimators under various circuastances, another, "hybrid" estinator, definad below, was also considered. Specifically, the following five estimators of $\gamma_{q},\{=1, \ldots, p$ were considered:
(1) The mae if likelihood estinator $\hat{\gamma}_{j}^{(1)}=L_{i}$ where $\left(L_{i}\right)=E i g s\left(S_{1} S_{2}^{-1}\right\}$.
(2) The approxivate maxinum narginal likelithood estimator $\hat{\gamma}_{i}^{(2)}$, given by (5.3.20) obtained as an approximate solution to the maximu marginal 1, hood equations (5.3.17) derived from Chang's 1 imiting distribution of the g_{q}.
(3) The "hybrid" estisator $\hat{\gamma}^{(3)}$, defined below.
(4) The "unrestricted" maximum marginal likelihood estifator $\hat{\gamma}_{i}^{(4)}$ obtained by solving equations (5.3.11) numerically, as described in Section 5,3,3.
(5) The "restricted" maximam marginal likelihood e.timator $\hat{\gamma}_{j}^{(5)}$ obtained by solving the constrdined ilaximization probles (5,4,46).
in a sense that shall be made cloar later, and excluding for the mowent the "hybrid" estimator $\hat{\gamma}^{(3)}$, the "gos'ness" of the estinators increase in the above order, $\underset{\sim}{i}(1)$ being worst and $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(5)}$ best. However, the reliability of those estimators, defined as their abfitty to produca meaningfuit results over a wide range of parameter values, increases in the reverse order. In fect, $\hat{\gamma}^{(5)}$ and $\hat{\gamma}^{(4)}$ generally only produce weaningfut rosuits when the sample sizes are large and the eigenvalues vell separated, whereas $\hat{\gamma}^{(1)}$ is conpletely reliable.
159.
$\hat{\sim}^{(2)}$ can produce meaningless results in the following ways:
(i) the $\hat{\gamma}_{j}^{(2)}$ may not be monotonically decreasing with i,
or (ii) some of the $\hat{r}_{\underset{c}{(2)}}$ may be negative,
or (iii) both (i) and (ii) may occur.
However, in many cases when failure of any one of the above three kinds occurs, the first few $\hat{\gamma}_{i}^{(2)}$ are well-behaved and the failure only affects the estimates of the lower-valued parameters.

For this reason, and because:
(i) the greatest improvement occurs between estimators $\hat{\gamma}(1)$ and ${\underset{\sim}{\gamma}}^{(2)}$, the incremental improvement between $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(4)}$ and ${\underset{\sim}{r}}^{(5)}$ being relatively much smaller,
(ii) $\hat{\gamma}^{(2)}$ fails less frequently than $\hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$,
and (iii) $\hat{\gamma}^{(2)}$ is far simpler to evaluate than $\hat{\gamma}^{(4)}$ or $\hat{\gamma}^{(5)}$, thin "hybrid" \tilde{n}^{n} estimator $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(3)}$ has been defined as that combination of $\underset{\sim}{\underset{\gamma}{\gamma}}{ }^{(1)}$ and ${\underset{\sim}{\gamma}}^{(2)}$ th $\bar{\xi}$ makes maximal use of $\tilde{\sim}^{(2)}$, yet never produces meaningless results. Thus ${\underset{\gamma}{r}}^{(3)}$ is defined to be equal to ${\underset{\sim}{\gamma}}^{(2)}$ whenever the latter does not fail; otherwise it uses as much of the "meaningful" part of $\hat{\gamma}^{(2)}$ as possible and uses $\hat{\gamma}^{(1)}$ for the rest. This leads to the following formal definition of $\hat{\gamma}^{(3)}$:
Let s te one of the integers $\{0,1, \ldots, p\}$ such that, $s \rightarrow p$ if $\hat{\gamma}^{(2)}$ does not fail; otherwise s is the Tersest integer for which both
(i) failure of $\hat{\gamma}_{i}^{(2)}$ occurs for the first time when $i>s$ and (ii) $\hat{r}_{s}^{(2)}>\hat{\gamma}_{s+1}^{(1)}$.
Thee $\hat{\gamma}^{(3)}=\left(\hat{\gamma}_{i}^{(3)}, \ldots, \hat{\gamma}_{p}^{(3)}\right)^{\prime}$ is defined as:

$$
\begin{align*}
& \hat{\gamma}_{i}^{(3)}=\hat{\gamma}_{i}^{(2)}, i=1, \ldots, s \quad \text { (unless } s=0 \text {) } \\
& \left.\hat{\gamma}_{i}^{(3)}=\hat{\gamma}_{i}^{(1)}, i=s+1, \ldots, p \quad \text { (unless } s=p\right) . \tag{5,5.1}
\end{align*}
$$

160.

5.5.1 The Experimental Setup

The experiments, performed on the Council for Sciontific and Industrial Research's CDC Cyber 174 computer, consisted in:
(a) selecting the parametars p, v_{1}, v_{2} and γ_{1}
(b) generating two randon matrices A_{1} and A_{2} from Hishart distributions with the selected values of the paramiters,
(c) computing the eigenvalues $\left\{g_{j}\right\}=\operatorname{aigs}\left(A_{i} A_{2}^{-1}\right)$.
(d) computing the fivi astimators $\underset{\sim}{\underset{\gamma}{\gamma}}(1)$ to $\underset{\sim}{\underset{\gamma}{\gamma}}(5)$ and
(e) repeating steps (b) to (d) a hundred times and computing sumary statistics, separately for each selection of paraneter values.

All the computer prograns were written in FORTRAK IV making use of the University of the Witwatersrand's multivariate 'statistical Ifbrary developed largely by Prof. D.M. Hakkins, as well as of the IrISL (1975) and the WAG (1975) program libraries.
(a) Selecting the Parameters

As is often the case in simulation experiments, the computer prograns vere developed and tasted using a particular set of parameter values, and many of the conclusions could be obtained fron just this one set of values. It also became ar, arent during the development stage that soms of the estimators broke down for particuiar garameter values and this, to a large extant, guided the choice of paraneter values fin particular the degrees of freedum v_{1} and v_{2}) used in the experiments.
(i) The dimension p Four values, 2 (see comnent below), 3 ("smell"), 5 ("Inedium") and 10("large") were used. For values greater than 10 the computing time associated with estinators $\hat{\gamma}^{(4)}$ and ${\underset{\sim}{\gamma}}^{(5)}$ becare too large to allow enough simatation runs to be porformed for meaningful conclusions to he driwn from them. The value $p=2$ was included to test the estivator $(5,4,45)$.
161.
(ii) The degrees of freedom v_{1} and v_{2} Here again, four sets of values were chosen, corresponding to "small", "medium", "large" and "very large" sized samples. Clearly, the "largeness" of the samples depends very much on the dimension p, so "small" samples were cons? cered to have $v_{1}=2 p$ "medium" samples $v_{1}=5 p$ and "large" samples $v_{1}=10 \mathrm{p}$. The "very large ${ }^{\prime \prime}$ category ($v_{1}=20 p$) was included because of the tendency for the estimators $\hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ to fail for the smaller sample sizes. This was particularly 50 for the larger values of p and the "equal separations" choice of eigenvalues (see (iii) below), v_{2} has, by definition, to be greater than v_{1} and since the results were not very sensitive to variatins in v_{2}, almost al! the simulation runs reported here were done assussing that there were $n=5$ observations per group, so that $v_{2}=4\left(v_{1}+1\right)$. A fen runs ware iso performed with $n=10$ observations per group.
(ifi) The Eigenvalues $\left\{\gamma_{i}\right\}$ Since $\Sigma_{1}=\Sigma+n T$, and T is a nonnegative definite matrix, the γ_{f} cannot be less than 1 . This is easily seen by noting that the γ_{i} all satisfy the relationship:

$$
\left|\Sigma \Sigma^{\Sigma} \Sigma^{-1}-I \gamma_{j}\right|=0
$$

and since

$$
\Sigma_{1} \Sigma^{-1}=(\Sigma+n T) \Sigma^{-1}=I+n T \Sigma^{-1}
$$

We have that

$$
\left|\Sigma_{\eta^{2}} \Sigma^{-1}-I \gamma_{1}\right|=\operatorname{lnT} \Sigma^{-1}-I\left(r_{i}-1\right) \mid=0
$$

4 Therefor, since $n \pi^{-1}$ is a nonnegative definite matrix

$$
\gamma_{1}-1: 0, \text { i.e. } y_{i} \geq 1
$$

Furthermore, we may assume that all the $\gamma_{i}>1$, since $\gamma_{i}=1$ corresponds to $\lambda_{1}=0$, and in the practical situation we would have tested for this (see Section 5.2) and if accepted we would have no further use f p for that eigenvalue.
162.

Finally, bearing in mind the fact that the γ_{j} should all be different from each other for Chang's expression (5.3.5) for the limiting joint density of the g_{i} to be valid, the following two sets of γ_{i} were selected for the simulation experiments:

Equal separations	20	18	. 16	14.	12.	10	8	6	4	2
Increasing separations	1024	512	256	128	64	32	16	8	4	
For $p<10$ the lower p values were used.										
Generating, the Randon Wishart Matrices										

As discussed in Section 5.4.2, there exists a nonsigular matrix V that sinultaneous ly diagonalizes Σ to the identity mus cix and Σ_{1} to a diayonal matrix Δ whose diagonal elegents are the eigenvalues of $\Sigma_{q} 2^{-1}$. As the sigenvalues of $A_{1} A_{2}^{-1}$, where $A_{1} \sim H_{p}\left(v_{1}, \Sigma_{1}\right)$ and $A_{2} \sim W_{p}\left(v_{2}, x\right)$ independently, are invariant under this transformation, we may assume that, for the purpose of the simulation,
and

$$
A_{1} \sim W_{p}\left(v_{1}, \Delta\right)
$$

$$
\begin{aligned}
\text { ¿ } A_{2} & \sim V_{p}\left(v_{2}, I\right) \quad \text { independently } \\
\Delta & =\operatorname{diag}\left(\gamma_{i}\right\} .
\end{aligned}
$$

where

Given values for p, v_{1}, v_{2} and $\left\{\gamma_{i}\right\}$, two random matricas froe the $u_{p}\left(v_{1}, I\right)$ and $w_{p}\left(v_{2}, I\right)$ distributions, rospectively, were jenerated as described below and then A_{1} was obtained by equating its (i, j) th element to $\sqrt{\gamma_{1} \gamma_{j}}$ times the $(i, j)^{\text {th }}$ eloment of the first ramiom matrix, $y i, j$, and A_{2} was obtained by equating it to the second randoe matrix.

The most afficient procedure for generating a random $W_{D}(\nu, I)$ matrix is that of Odel? and Feiveson (1966), a good description of which is given by Johnson and Hegenann (1974). To apply their procedure,

163.

$p(p-1) / 2$ independent standard norma randon variables $\left\{x_{i j}, i<j=1\right.$, $2, \ldots$, p) must be generated, $3 s$ well as a sequence of independent chisquare randon variables $\left\{v_{j}, j=1, \ldots, p\right\}$ where for each $j, v_{j} \dot{\alpha} x_{v-j+1}^{2}$. The randon $W_{p}(v, I)$ matrix $W=\left(w_{i j}\right)$ is then constructed as follows:

$$
\begin{array}{ll}
w_{11}=v_{1} \\
w_{j j}=v_{j}+\sum_{i=1}^{j-1} x_{i j}^{2} & j=2, \ldots, p \\
w_{1 j}=x_{1 j} \sqrt{v_{1}} & j=2, \ldots, p \tag{5.5.2}\\
w_{i j}=x_{i j} \sqrt{v_{i}}+\sum_{k=1}^{i=1} x_{k i} x_{k j} & i, j=2, \ldots, p ; i<j
\end{array}
$$

Subroutine RANDN, from the Kitwatersrand library, an exceptionally fast routine that generates randon samples from the standard nomal distribution by transforming a uniform $(0,1)$ randon variable by interpolation in a table of the normal inverse probability transformation (with exact evaluation in the tails), was used to generate the $x_{i j}$.

The v_{j} were generated by first generating k uniform $(0,1)$ random variables u_{i}, where k is the integer part of $\frac{1}{d}(v-j+1)$, and Tetting

$$
v_{f}= \begin{cases}-2 \log _{e} \prod_{i=1}^{k} u_{i} & \text { for } v-j+1 \text { even } \tag{5.5.3}\\ -2 \log _{e}{\underset{i=1}{n} \cdot u_{i}+x^{2}}^{k} \quad \text { for } v-j+1 \text { odd }\end{cases}
$$

where x is a random variable from the standard nomal distribution. The u_{i} were generated by the CDC built-in mixed congruential ganarator RANF,

Subruutine WSHRT was written to generate randow Hishart matrices as described above.
(c) Computing the Eigenvalues $\left\{g_{1}\right\}$ of $A_{1} A_{2}^{-1}$

Subroutine CANON (Fatti and Hawkins (1976)) was used to find the eigenvalues $\left\{g_{1}\right\}$ of $A_{1} A_{2}^{-1}$.. This subroutine solves the eigen problen:

$$
\begin{equation*}
(B-\lambda A) Z=0 \tag{5.5.4}
\end{equation*}
$$

Where A is a $p x p$ symmetric, positive definite matrix (gonarally an error covariance matrix) and B is a pxp symetric matrix (generally an hypothests covariance matrix) by first obtaining the Cholesky inverse square root $A^{-\frac{1}{2}}$, where $A^{-\frac{1}{2}}$ its a real, nonsingular lower triangular aatrix such that

$$
A^{-\frac{1}{2}} A\left(A^{-\frac{1}{2}}\right)^{4}=1
$$

$A^{-\frac{1}{2}}$ is camputed efficiently in the following manrar. Note thgt If $X=\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{\prime}$ is a randon vector with observed covariank prix. A, then, for $i=2$ to p, the residual, y_{f}, on its predictor based on tha Teast-squares regression line of x_{1} on $x_{1}, x_{2}, \ldots, x_{i-1}$ is uncorretated with $x_{1}, x_{2}, \ldots \times x_{i-1}$. So, if we standordize y_{i} to have unit variance by dividing it by the square root of the residual mean square of x_{1} on $x_{1}, x_{2}, \ldots ; x_{1-1}$ for $i=2$ to p, and let $y_{1}=x_{j} / \sqrt{\text { var }\left(x_{1}\right)}$, then $y=\left(y_{1}, y_{2}, \ldots+y_{p}\right)^{\prime}$ has com variance natrix 1 , the p-dimensional identity matrix.

Clearly Y is obtained from X by the transformation:

$$
Y=C X,
$$

Where C is a lower triangular matrix whose elements wioy be conputed from A by performing successive pivotal sweaps on A Using the diagonal elements of A as pivots, as described in Beale, Kenda11, and Mann (1967).
165.

Finally, we note that the coyariance matrix of Y is

```
CAC' = I,
```

so $C=A^{-\frac{1}{2}}$.
The eigen problem

$$
\begin{equation*}
\left(A^{-\frac{1}{B}}\left(A^{-\frac{1}{2}}\right)^{\prime}-\lambda I\right) W=0 \tag{5.5.5}
\end{equation*}
$$

then is woived using the two subroutines TDIAG and LRVI (Sparks and Todd, 1973) and finaliy the matrix Z of eigenvectors of the original systen (5.5.4) is Cltained by transforming the U matrix:

$$
z=\left(A^{-\frac{1}{2}}\right)^{4}
$$

(d) or Vefive Estimators
 in a straightfonmard manner from their definitions,

$$
\begin{aligned}
& { }_{\gamma}^{n}(1)=t_{i}=\frac{v_{2}}{v_{1}} g_{i} \quad 1=1, \ldots, p
\end{aligned}
$$

$$
\begin{aligned}
& i=11 \ldots, 9
\end{aligned}
$$

and then ${\underset{\sim}{\gamma}}^{(3)}$ was computed from ${\underset{\sim}{\gamma}}^{(2)}$ and ${\underset{\sim}{\gamma}}^{(1)}$ according to definition (5.5.1).
${\underset{\sim}{\gamma}}^{(4)}$ Was cotputed by the Newton-Raphson iterative procedure as described in Section 5,3.3.

Subroutine GRAD was uritten to compute the vector of first derivatiyes of the log likelihood function (in terms of the new paraneters 5) as given in equation ($(5.3 .25)$ and subroutine HESS was writtan to compute the Hessian matrix whose elements are given in equations (5,3.28) and $\{5.3 .29$). Finally, the Newton-Raphson iterative procedure was carried out by subroutine UNREST, using as convergence criteria both the value of the vector of first derivatives at the previous itaration and the change in value of the log likeTihood function (computed by subroutine FUNCT) over the previous two iterations.

To compute the restricted maximum marginal likelihood estimator $\hat{\gamma}^{(5)}$ the RAG (1975) 11brary subroutine EDAHAF was used to solve the nonlinear programming problen $(5,4,46)$. This subroutine uses a penalty function technique (Lootsas, 1972) tosolve constrained minimization problems. A full description of this subroutine is given in volume 1 of the MAG manual (1975). Subroutines FUNCT, GRAD and HESS were used to compute the values of the function and its first- and second derivatives, respectively, at the various trial solutions, as required by EOUNAF.

(e) Repeating and Computing Summary Statistics

One hundred sfinulation runs were performed for each combinition of parametor values given in (a). Because of the large anount of computation required for each evaluation of $\hat{\sim}^{(f)}$, the even larger anount requirod for $\underset{\sim}{\underset{\sim}{(5)}}$ and the fact that in wany of the sirulation runs both failed to produce faraningful results, the following procedure was adopted for each selection of paraneter values:
167.
(1) First perforn 100 simulation runs, computing only ${\underset{\sim}{\gamma}}^{(1)},{\underset{\sim}{\gamma}}^{(2)}$ and ${\underset{\sim}{\gamma}}^{(3)}$, and compute summary statistics on them. Secause of the efficiency of subroutine WSHRT and CANON and the small amount of computation required to obtain these three astimators, the time required for this step was fairly small.
(ii) Repeat the 100 simulation runs, this time computing $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$, $\hat{\gamma}^{(3)}$ and $\hat{\gamma}^{(4)}$ on each run. If $\hat{\gamma}^{(4)}$ failed on any run, then none of the estimators from that run were inciuded in the sumary statistics. If $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(4)}$ produced meaningful results, then $\underset{\sim}{\underset{\sim}{(5)}}$ was computed and if that too produced meaningful results all five estimators were included in the sulyary statistics, Othervise none of them were included.

In this way a considerable anount of computing time was saved, since $\hat{\gamma}^{(5)}$, which requires by far the greatest amount of computer time, was onily computed in those situations where it was likely to produce meaningful results. $\hat{\gamma}^{(5)}$ very rarely produces meaningful results when $\hat{\gamma}^{(4)}$ does net, whereas the reverse occurs more frequently.)

The reasion for performing steps (i) and (11) above separately is twofoid. Firstly, step (i) gives a larger number of runs on which to evaluate the first three estimators. (For some sets of paraneter values, especially for the larger values of $p, \hat{\gamma}^{(4)}$ or $\hat{\gamma}^{(5)}$ never produced meaningful results.) Secondly, $\hat{\gamma}^{(4)}$ and ${\underset{\sim}{\gamma}}^{(5)}$ are far nore likely to produce meaningful results when the $\left\{\Omega_{1}\right\}=E \operatorname{Cigs}\left\{S_{1} S_{2}^{-1}\right\}$ are spaced widely apart than when they are closer together, with the result that the estinators in step (11) have a built-in bias towards larger spacing betw os the eigenvalues. Therefore the results from step (1i) are onTy useful for evaluating the relative performances of the five estimators.
168.

The summary statistics for each of the estimators were computed and printed using the Witwatersrand Library's COWS (Hawkins, 1974) and PRINT subroutines, producing mean vectors, standard deviations, covariance and correlation matrices over the various sets of situlation runs.

5.5.2 Results

Sumbry statistics in the form of mean vectors and vectors of standard daviations for each of the five estimators are given in Tables 5.5 .1 iv 5.5.4, separately for each selection of parameter values. From considerations of space and because the same conclusions seen to hold in all cases, correlation matrices are only given for the case of $p=3 \mathrm{di}-$ mensions and four conbinations of the other paraneter values in Table 5.5.5.

As mentioned earlier, two sets of simulation runs were performed for each selection of paramater values, only the first three estimstors being computed in the first set which always consisted of a hundred runs, and all five being computed in the second set, but only on those occasioris when $\underset{\sim}{\underset{\sim}{(4)}}$ and $\underset{\sim}{\underset{\sim}{r}}{ }^{(5)}$ both produced teaningful results. The only exception occurred in the case $p=10$ when, because of converge ice problems in the nonlinear pregratuming package E041MF, $\hat{\gamma}^{(5)}$ was most7y not computed at all. Because $\hat{\gamma}^{(2)}$ never fails then sither $\hat{\gamma}^{(4)}$ or ${\underset{\sim}{\gamma}}^{\hat{\gamma}}$ produce meaningful results, $\underset{\sim}{\gamma}{ }^{(2)}$ and $\underset{\sim}{\gamma}{ }^{(3)}$ were fdentical (see definition $(5,5,1)$) for all of the situlation runs in the second set. Therefore sumnary statistics for $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(3)}$ are not included in Tables 5.5.1 to 5.5 .5 for those sfmulation runs.

Failure of $\underset{\sim}{\gamma}{\underset{\sim}{(4)}}^{(4)}$ or ${\underset{\sim}{\gamma}}^{(5)}$ to produce meaningful results can be detected when any of the δ_{i} assumes a large negative value. This is itm modiately clear frof the definition of the δ_{i} given in expression (5.3.22) since it implies thist $\hat{\gamma}_{i-1}$ and $\hat{\gamma}_{j}$ effectively differ only by the arbi-
169.
trary constant ε_{1}^{-1} or, for $\left\{=1\right.$, that $\hat{\gamma}_{1}$ is effectively equal to ε_{1}^{-1}. As earlier experimentation had shown that the values of $\hat{\sim}^{(4)}$ and $\hat{\sim}^{(5)}$ are unaffefted by the choice of values of the ε_{i} over a fairly wide range (for the actual simulation runs the ε_{i} were chosen to be ten per cent of $\left(1 / \hat{\gamma}_{j}^{(3)}-1 / \hat{Y}_{j-1}^{(3)}\right)$, or for $\left\{=1\right.$, of $1 / \hat{\gamma}_{j}^{(3)} ; \underset{\sim}{\gamma}{ }^{(3)}$ was also used as initial value in the maximization algorithas) a large negative value of δ_{i} implies that the maximisation algoritha has found a "false" maxisuan near one of the "inadmissible sit, -iarities" in Chang's formala ($5,3,5$).

Since, as is clear from Tables 5.5.1 to 5.5.4, faitures of $\hat{\gamma}_{\sim}^{(4)}$ and ${\underset{\sim}{\gamma}}^{(5)}$ occur far more frequently for swaller values of v_{1} and v_{2} and
 circumstances the 14kelihood surface (5.3.24) may of ther:
(1) have no maxima within the adnissible region, or
(ii) have extrenely flat mexima within the admissible region, or
(1ii) have very localised maxima which may be missed by the maximization algoritids.
In orter to try and establish which of the above three possibilities pertain, the subroutine FUNCT was used to evaluate the 1 ikelihood function (5.3.24) over a two-dimensional grid for the case $\mathrm{p}=2$ dimensions. A number of cases were tried, resulting in the following conclusions: For swall enough values of v_{1} and v_{2} and sufficiently closely spaced g_{f}, case (1) pertains, but as the degrees of freedom and/or the spacings increase a single maximum (for the case $p=2$, at least) develops. Case (141) never holds.

In the remainuer of this sub-section some coments are made on the rosulits of the simulations as may be gleared from Troles 5.5.1 to 5.5 .5 , under the headingi of bias, standard deviation and correlation. Bias:

In general, the top few efgenvalues are ovor-estimated and the
bottor few under-estimated, although this bias is different for the different estimators. This effect decreases as the degrees of freedom v_{1} and v_{2} increase, but it is more efficient to incraase then by increasing the number (k) of groups than by increvsing the namber (n) of observations per group, where $v_{1}=k-1, v_{2}=k(n-1)$.
More specifically:
(1) $\hat{\gamma}^{(1)}$ has the greatest bias, both in the upper and lover few eigenvalues. Roughly speaking, the proportional bias in the top and bottoni efgenvalues are the sime.
${\underset{\sim}{\gamma}}^{\prime}(2)$ has markedly less bias than $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(1)}$, both in the upper and lower eigenvalues. For low dagrees of frecdon and equal separations of the γ_{j}, there are sone anomalous results in th iniddle values, reflecting the relatively frequent occurrence of meaningless results anongst these values.
$\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(3)}$ has slightly greater bias than $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(2)}$ in the upper and lower eigenvalues, but there are no anamalfes on the middle values. The difference between ${\underset{\sim}{\gamma}}^{(3)}$ and ${\underset{\sim}{\gamma}}^{(2)}$ virtually disappears for higher degrees of freedom and increasing separations of the eigenvalues. As tenticned earlier, in the cases where either ${\underset{\sim}{\gamma}}^{(4)}$ or $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(5)}$ produce meaningfuly rasults, $\hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ are idantical. $\hat{\gamma}_{4}$ has slightly less bias than $\underset{\sim}{\sim}{\underset{\sim}{r}}^{(2)}$ (or $\tilde{\sim}^{\sim}{\underset{\sim}{r}}^{(3)}$) in both the upper and lower aigenvalues. (When it produces meamingful resuits). The Kerton-Raphson procadure (with checks to pravent the $\hat{\delta}_{i}$ froal getting two large or top small) nearly alyays converges, but is unlikely to produce meaningfu? restlts for equal separations of the eigenvalues and low degrees of freedort; unless the dimensios. is 5 mall ($p \mathrm{n} 2$ or 3). For $\mathrm{p}=10$ meaningful results were only produced for increasing separations of the eigenvalues'.
(5) The elements of $\hat{\gamma^{(5)}}$ are all smaller than the corresponding elements of $\hat{\gamma}^{(4)^{n \prime}}$, the proportional differences being approximately constant. As a result, $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(5)}$ has the lowest bias of all in its top elemant but tends to have a slightly worse bias than ${\underset{\sim}{\gamma}}^{(4)}$ and $\underset{\sim}{\underset{\gamma}{\gamma}}{ }^{(2)}$ (or $\underset{\sim}{\gamma} \hat{\gamma}^{(3)}$) in tts botion one. For $p=10$ the nonlinear programoing package E04HAF had convergence problens, wifh the result that valuez of $\hat{\gamma}^{(5)}$ could be cosputed in one case
 same conclusions as abovk hold. In this case neaningiess results are characterised by inaginary solytions to (5.4.4.5), and as before, the frequency of their occurrence decreases as the degrees of freedom increase or when the separation between γ_{1} and γ_{2} increases (relative to γ_{2}).

Standard Deviation

(1) Whereas $\tilde{\sim}^{(1)}$ hes the greatest blas, its standard deviations, apart from that of its top element, are generally the smallest. Usitig Girshick's (1939) result (see, for example Press, 1972), and the comments following Romark 5.3.1, that the $\hat{\gamma}(1)=\ell_{i}$ are asymptotifcally independent, umbiased, norially distributed estimators of the corresponding γ_{i}, with standard deviations $\operatorname{SO}\left(\hat{\gamma}_{j}^{(1)}\right)=\sqrt{2} /\left(V_{1}-1 / \gamma_{i}\right.$ as a refarence, it is clear that for very large v_{1} and v_{2} this standard deviation is approximately correct. Othervise, the standard deviations of the top (few) $\hat{\gamma_{j}}(1)$ tend to be larger than $\sqrt{2} /\left(v_{1}-1\right) Y_{i}$ and those of the bottom (few) smaller. This tendency is more marked in the smaller sample sizos and when the γ_{i} have increasing separations,
(2) The standard deviation the top element of ${\underset{\sim}{\gamma}}^{(2)}$ is usually approximately the same as that of the corresponding element of © (1) but those of the other elements are always larger. For small sample sizes some of the ifiddle elements can lave extremely large standard deviations, reflecting the freglency uf occurrence of meaningless results amongst them.
(3) The standard deviation of $\hat{\gamma}_{1}^{(3)}$ is sonetimes slightly less than that of ${\underset{\sim}{\gamma}}_{1}^{(1)}$ whereas those of the other elements of ${\underset{\sim}{\gamma}}^{(3)}$ are always slightly larger than those of their counterparts in $\hat{\gamma}^{(1)}$ The standard deviations of $\hat{\gamma}^{(4)}$ are sifightly, but consistently larger than those of their counterparts in ${\underset{\sim}{\gamma}}^{\gamma}{ }^{(2)}$ (or $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(3)}$) but that of $\hat{\gamma}_{1}^{(4)}$ may still sometimes be smaller than that of $\hat{\gamma}_{j}(1)$. Yee sandard deviations of $\hat{\gamma}^{(5)}$ are aiways smaller than the

 deviation of all the estimators oi γ_{1}. This confinus that σ_{h} reduction in standard deviations (especially of the estitat' ' uf the top eigenvalue) suggested in Sub-section 5.4 .6 by expression (5.4.49) and Table 5.4 .1 for the case where the constraints are deterministic, is at least partially realised in our situation, where the constraints are stochastic. "For the case $p=2, \hat{r}_{1}^{(5)}$ always has the smallest standard deviation, and that of $\hat{\gamma}_{2}^{(5)}$ is alvays larger than that of $\hat{Y}_{2}^{(1)}$ but smaller than those of the rest.

Correlation

The correlation coefficients in Table 5.5 .5 were computed only from those simulation runs in which $\hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ produced meaningful results, and therefore, because of the byijt-in bias towards larger spacings between the eigenvalues resulting from this, these correlations have to be
treated with some caution. Nevertheless certain trends are clearly evident:
(i) For ary estimator $\hat{\gamma}^{(k)}$, the correlation coefficient between $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(k)}$ and $\hat{y}_{j}^{(k)}, j \approx i$, can be quite large, especially for adjacent pairs, but it tends to decrease as the degrees of freedon are increased. Incr, ising the separation between γ_{j} and γ_{j} tends, however, to eliminate this correlation completely.
(ii) The correlation coefficients are appreciably smaller for $\hat{\gamma}^{(2)}$ (or $\hat{\sim}^{(3)}$) than for ${\underset{\sim}{\gamma}}^{(1)}$ and slightly smaller again for $\underset{\sim}{\underset{\gamma}{\gamma}}{ }^{(4)}$, alt though there is generally littie difference between those of $\hat{\gamma}^{(4)}$ and $\hat{r}^{(5)}$.

5.5.3 Conclusians

Going back to the exprassion for the distribution of $\delta_{i f}^{2}$ given in Theorem 3.1.1

$$
\delta_{i j}^{2} \sim 2 \sum_{s=1}^{r} \lambda_{s} v_{s}
$$

where

$$
\begin{aligned}
& y_{s} \sim x_{1}^{2}, \quad \text { independently, } s=3, \ldots, r \\
& \lambda_{s}=\frac{1}{n}\left(\gamma_{s}-1\right) \quad s=1, \ldots, r \\
& \left.Y_{r}>\gamma_{r-1}>\ldots\right\rangle \gamma_{1}>1
\end{aligned}
$$

and

$$
r=r(T)
$$

it is clear that γ_{7}, being the largest, will have the greatest influence on the distribution, and γ_{r} the smallest.
174.

Fron this point of view therefore, $\hat{\gamma}^{(5)}$ is the best estimator, since $\hat{\gamma}_{j}^{(5)}$ has the lowest bias and often has the lowert standard deviation amongst the five estimators. The drawback to this estimator is that, apart from the case $p=2$, it requires a nonlinear progratming algorithm for its evaluation and frequently produces meaningless results. Horeover, for large values of p it may be difficult to obtain convergence of the nonlinear program (although other algorithits may give better performance than E04MAF).

Next in line is $\hat{\gamma}^{(4)}$, its only advantages over ${\underset{\gamma}{\gamma}}^{(5)}$ being that it occasionally produces meaningful results when the latter does not, and that (for dimansions up to 10 , at least) it does not have convergence problems.
$\hat{\gamma}^{(3)}$ is perhaps the most practical of all the estimators, being staple to compute and, by definition, never producing meaningless results. In terms of bias, it is a considerabie improveipent over $\hat{\gamma}(1)$ and not much worse than $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(4)}$ or $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(5)}$. A regards spread, its standard deviations are not much larger than those of $\hat{\gamma}^{(1)}$ (the standard deviation for ${\underset{\sim}{\gamma}}_{j}^{(3)}$ can in fact, be smaller than that of $\hat{\gamma}_{\gamma}^{(1)}$) whereas they are always 51 ightly smaller than those of $\hat{\gamma}^{(4)}$ and are often even smeller than those of $\hat{\gamma}^{(5)}$.

As $\underset{\sim}{\gamma}{ }^{(3)}$ retains all of the good po.nts of $\underset{\sim}{\gamma}{ }^{(2)}$ and fircumvents the problem of its unreliability, tbere is no reason for preferring the latter. Because of its large bias $\hat{\gamma}^{(1)}$ should not be used.

If the programs are available and computer time no object, the following practical procedure for estimating $\boldsymbol{\chi}$ is reconmended:
(1) Compute $\left\{\ell_{i}\right\}=E$ igs $\left\{5_{1} \mathrm{~S}_{2}^{-1}\right)$ and hence $\hat{\gamma}^{(2)}$ from fommia (5.3.20).
175.
(2) If $\hat{\gamma}^{(2)}$ does not give meaningful results use ${\underset{\sim}{r}}^{(3)}$ as defined by (5.5.1) as estimator of γ.
(3) If $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(2)}$ does give meaningful results, compute ${\underset{\sim}{\gamma}}^{(5)}$ and use this as estimator if it gives meaningful results. If it does not, compute $\hat{\gamma}^{(4)}$ and if that also does not give meaningful results, go back to ${\underset{\sim}{r}}^{(2)}$.

Renark 5.5.1 It is intaresting that, even when the likelihood function apparently has mo maximum outside the "inadmissible" regions, the approximate solution to the maximum marginal likel ihoos equations, ${\underset{\sim}{r}}^{(2)}$, is a better estimator than ${\underset{\sim}{r}}^{(T)}$, and if it does not produce meaningful results then $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(3)}$ is still usually better than $\underset{\sim}{\underset{\gamma}{\gamma}}{ }^{(1)}$.

Renark 5.5.2 It is ciear from the results of the simulations that for reliabie astiontion the number of populations, k, needs to be large, prelerably at least ten times the number of dimensions, p. If there is a choice, it is generally better to increase k than it is to increase n, the number of cbservations per group (so long as n is at least equal to 2).
176.

Appendix 5.1 Proof of Theorem 5.1
We will consider the more general case with (possibly) different sample sizes from each of the k groups. i.e. our training sample is: $\left\{x_{i j} ; j=1, \ldots, n_{i} ; i=1, \ldots, k\right\}$. Then, analogously to Table 5,1,\} , ~ we define:

$$
A_{1}=\sum_{i=1}^{k} n_{i}\left(x_{i},-x_{i,}\right)\left(x_{i,}-x_{\ldots}\right)
$$

and $A_{2}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-x_{i j}\right)\left(x_{i j}-x_{i},\right)^{\prime}$
where

$$
\begin{aligned}
& x_{i .}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}} x_{i j} \\
& x_{n}=\frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} x_{i j}=\frac{1}{N} \sum_{i=1}^{k} n_{i} x_{i} .
\end{aligned}
$$

and

$$
n=\sum_{i=1}^{k} n_{i}
$$

Therefore,

$$
\begin{aligned}
x_{i,-(i, j)} & =\frac{n_{i} x_{i}-x_{11}}{n_{i}-1} \\
& =x_{i .}-\frac{x_{i j}-x_{i}}{n_{i}-1} \\
& =x_{i,}-e
\end{aligned}
$$

177.

Similarly,

$$
\begin{aligned}
\stackrel{x}{\cdots,-(1, j)} & =\frac{N x-x_{13}}{N-1} \\
& =x_{\ldots}-\frac{x_{1, j}-x}{N-1} \\
& =x_{\ldots}-1
\end{aligned}
$$

Applying the above two results, we obtain,

$$
\begin{aligned}
& A_{1-(1,5)}=\sum_{k=1}^{k} n_{\ell}\left(x_{\ell},-{ }^{-x} \ldots(\{, 5))\left(x_{k},-{ }^{-x} \ldots(i, j)\right)^{\prime}\right. \\
& +\left(n_{i}-1\right)\left(x_{i,-(i, j)}-x_{, .-(i, j)}\right)\left(x_{i,-(i, j)}-x_{\ldots-(i, j)}\right)^{\prime} \\
& =\sum_{l=1} n_{l}\left(x_{2},-x,+f\right)\left(x_{l},-x .+1\right)^{\prime} \\
& +\left(n_{i}-1\right)\left(x_{1},-x_{n}+f-e\right)\left(x_{1},-x_{1}+f-e\right)^{t}
\end{aligned}
$$

$$
\begin{aligned}
& -\left(x_{1},-x, .\right)\left(x_{1},-x_{1}\right)^{\prime}+\left(n_{i}-1\right)(f-e)\left(x_{i},-x,\right)^{\prime} \\
& +\left\langle n_{i}-1\right)\left(x_{i} . .^{-x}, .\right)(f-e)^{\prime}+\left(n_{i}-1\right)(f-B)(f-e)^{\prime} \\
& =A_{1}-n_{1} f\left(x_{i}-x_{+}\right)^{\prime}-n_{i}\left(x_{i},-x_{.}\right) f^{\prime}+\left(N-n_{i}\right) f f^{\prime} \\
& =\left(N-n_{1}\right) f\left(x_{1},-x_{1}\right)^{\prime}+\left(r_{1}-1\right)\left(x_{i},-x_{,}\right)^{(f-e)^{\prime}+\left(n_{1}-1\right)(f-e)(f-e)^{\prime}}
\end{aligned}
$$

178.

since

$$
\left(n_{i}-1\right)(f-e)-\left(x_{i}-x . .\right)=-\left(N-n_{i}^{\prime}\right) f
$$

and

$$
\begin{aligned}
& \quad \sum_{2=1}^{k} n_{2}\left(x_{2}-e_{. .}\right)=0 \\
& =A_{1}-n f g^{\prime}-g\left(f+\left(n_{i}-1\right) e\right)^{\prime}+\left(N-n_{i}\right) f f^{\prime}+\left(n_{i}-1\right)(f-e)(f-e)^{\prime} \\
& =A_{1}+G .
\end{aligned}
$$

Furthernore

$$
\begin{aligned}
& \text { a) } A_{2-(i, j)}=\sum_{2=1}^{k} \sum_{j=1}^{n_{l}}\left(x_{\ell j}-x_{l .}\right)\left(x_{l j}-x_{\ell .}\right)^{\prime} \\
& +\sum_{r \times j}^{n_{i}}\left(x_{i r}-x_{i, *(i, j)}\right)\left(x_{i r}-x_{i,-(i, j)}\right)^{\prime} \\
& =\sum_{l=1}^{k} \sum_{j=1}^{n_{l}}\left(x_{l j}-x_{l}\right)\left(x_{l j}-x_{l .}\right) \prime \\
& 4 \sum_{r=1}^{n_{i}}\left(x_{i r}-x_{i} .+e\right)\left(x_{i r}-x_{i}+e\right)^{\prime} \\
& =A_{2}-\left(x_{i j}-x_{i},\right)\left(x_{i j}-x_{i},\right)^{\prime}-e\left(x_{i j}-x_{1} .\right)^{\prime}-\left(x_{i j}-x_{1} .\right) e^{\prime} \\
& +\left\langle n_{i}-1\right\rangle \text { ee }^{t}
\end{aligned}
$$

since

$$
\begin{aligned}
& \quad \sum_{r=1}^{n_{i}}\left(x_{i r}-x_{1}\right)=0 \\
& =A_{2}-\left(n_{i}-1\right)^{2} e e^{\prime}-\left(n_{i}-1\right) \text { ee } \quad-\left(n_{j}-1\right) \text { ee }{ }^{\prime}+\left(n_{i}-1\right) \text { ee }{ }^{\prime} \\
& =A_{2}-n_{i}\left(n_{i}-1\right) \text { ee }
\end{aligned}
$$

which agrees with Lashenbruch's (1967) result.
Mow, applying the Binomial inverse theorem (Press, 1972):

$$
(A+U B V)^{-1}=A^{-1}-A^{-1} U B\left(8+B V A^{-1} U B\right)^{-1} B V A^{-1}
$$

which reduces to the folloring, for u and v colusen vectors and $B=I$;

$$
\left(A+u v^{\prime}\right)^{-1}=A^{-1}+A^{-1} u v^{\prime} A^{-1} /\left(1+v^{\prime} A^{-1} u\right)
$$

to the above expression for $\mathrm{A}_{2-(i, j)}^{-1}$, we get:

$$
\begin{aligned}
A_{2-(i, j)}^{-1}= & \left(A_{2}-n_{i}\left(n_{i}-1\right) e e^{\prime}\right)^{-1} \\
= & A_{2}^{-1}+n_{i}\left(n_{i}-1\right) A_{2}^{-1} e e^{\prime} A_{2}^{-1} /\left(1-n_{i}\left(n_{i}-1\right) e^{\prime} A_{2}^{-1} e\right) \\
& \cdot A_{2}^{-1}+A_{2}^{-1} \mathrm{E} .
\end{aligned}
$$

So

$$
\left.A_{1-(1,5)} A_{2-(1}^{-1} i\right)=A_{1} A_{2}^{-1}+A_{1} A_{2}^{-1} \varepsilon+B A_{2}^{-1}(I r \mathbb{E})
$$

Whence

$$
\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)_{-(i, 3)}=\operatorname{Tr}\left(A_{1} A_{2}^{-1}\right)+\operatorname{Tr}\left(A_{1} A_{2}^{-1} E\right)+\operatorname{Tr}\left(G A_{2}^{-1} F\right) .
$$

Remark When $n_{i}=n_{,} \forall_{i}$, we just remove the subscripts from all the n_{i} 's appearing in the above formulae.

Table 6.5.1

- Means and Standard Deviations of the five estimators of the $\left\{\gamma_{\mathrm{f}}\right\}=\operatorname{Eigs}\left(\Sigma_{1} \Sigma^{-1}\right)$ from the simulation experiments for the case $p=2$
A. Degrees of Freedom $v_{1}=10, v_{2}=44$.
A.1. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 simulations

A.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n simulations

		Neans				Standard Deviations			
\underline{n}	True γ	J	$\underline{2}$	4	5	1	?	4	5
53	4	8.53	7.90	7.73	6.97	4.80	4.52	4.53	4.04
3	2	0.65	0.91	0.96	0.83	0.44	0.62	0.66	D.5\%
66	8	14.44	13.44	13.23	11.91	8.38	7.94	7.97	7.11
	2	0.89	1.24	1.30	1.12	0.57	0.81	0.88	0.74

B. Degrees of Freedon $v_{1}=10, v_{2}=44$
B.1. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 stimiations

	Neans			Standard Deviations		
True y	1	$\underline{2}$	3	1	$\underline{2}$	3
4	5.24	4.83	4.85	2.24	2.21	2.19
2	1.46	1.86	1.73	0.82	1.28	1.00
8	9.65	9.13	9.18	4.63	4.60	4.55
2	1.67	2.06	1.92	1.05	1.57	1.20

182.

B.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n simulations
Means
Standard Deviations

c. Degrees of Freedom $v_{1}=20, v_{2}=84$
C.1. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$, and $\hat{\gamma}^{(3)}$ from all 100 simulations

C.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n simulations

Means \quad Standard Deviations

183.
D. Degrees of Freedom $v_{1}=40, v_{2}=164$
D.1. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from ald 100 simulations.

True Y	Means			Standard Deviations		
	1	2	3	-1	- 2	3
4	4.15	4.00	4.00	0.96	0.98	0.98
2	1.88	2.01	2.00	0.53	0.60	0.59
8	8.06	7.92	7.92	2.02	2.01	2.01
2	1.95	2.03	2.03	0.56	0.60	0.60

0.2. Estimators $\hat{\gamma}(1), \hat{\gamma}^{(2)}, \hat{\gamma}^{(5)}$ and $\cdot \hat{\gamma}^{(5)}$ from n simulations.

Neans
Standard Deviations
$\begin{array}{lccccccccc}\frac{\mathrm{n}}{81} & \frac{1}{\text { True }} \mathrm{y} & \frac{1}{4} & \frac{2}{2} & 4 & 5 & 1 & 2 & 4 & 5 \\ & 2 & 7.38 & 4.20 & 4.17 & 4.14 & 0.93 & 0.93 & 0.94 & 0.92 \\ & 1.87 & 7.89 & 1.86 & 0.47 & 0.51 & 0.53 & 0.51\end{array}$

100

8	8.06	7.92	7.91	7.82	2.02	2.01	2.02	1.99
2	1.95	2.03	2.03	2.01	0.57	0.60	0.60	0.59

184.

Table 5.5.2

Neans and Standard Deviations of the five estimators of the $\left\{\gamma_{i}\right\}=E i g s\left(\Sigma_{1} \Sigma^{-\}}\right\}$from the simulation experfments for $p=3$
dinensions
A. Degrees of Freedom $v_{1}=6, v_{2}=28$
A.1. Estimators $\underset{\sim}{\gamma} \hat{\gamma}^{(1)}, \underset{\sim}{\gamma}{\underset{\gamma}{(2)}}^{(2)} \underset{\sim}{\gamma}{\underset{\sim}{\gamma}}^{(3)}$ from all 100 simulations. Neans Standard Deviations

True γ	$\underline{1}$	$\underline{2}$	$\underline{3}$	1	$\underline{2}$	$\underline{3}$
	9.61	7.78	8.09	4.99	4.62	4.49
4	3.19	4.68	3.59	1.67	5.76	1.97
2	0.78	2.04	1.07	0.57	3.80	0.76
16						
4	20.63	17.94	18.15	13.14	12.33	12.11
2	3.87	4.63	4.47	1.95	3.29	2.44
2	0.85	1.31	1.29	0.63	7.72	0.94

A.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{\langle 2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ fron n simulations.

t	True y	Means				Standard Deviations			
		1	2	$4{ }^{*}$	5	1	3	4	$\stackrel{5}{-}$
9	6	18.06	16.01	15.60	14.50	2.91	2.55	2.49	2.31
	4	3.07	3.62	3.66	3.36	0.91	1.11	1.17	1.07
	2	0,40	0.63	0.65	0.59	0.13	0.21	0,23	0.20
34	16	28.33	25,36	24.81	23.09	13.45	12.38	12.60	11.45
	4	3.81	4.45	4.51	4.13	1.56	1.86	1,94	1.74
	2	0.53	0.84	0.89	0.79	0.33	0.55	0.63	0.53

185.

B. Degrees, $\quad-v_{1}=15, v_{2}=64$
B.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 simulations.

	Means			Standard Deviations		
True γ	1	2	3	1	$\underline{2}$	3
6	7.68	6.70	6.83	2.98	2.94	2.89
4	3.53	4.12	3.71	1.29	2.44	1.51
2	1.37	1.85	1.62	0.53	0.86	0.70
16	17.89	16.71	16.74	8.28	8.13	8.09
4	4.04	4.30	4.21	1.58	2.21	1.84
2	1.44	1.87	1.76	0.56	0.83	0.75

B.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n simulations.

"ふ"	$\frac{n}{11}$	True. Y	Neans				Standard Deviations			
			1	2	4	5	1	2	4	5
		6	9.47	8.70	8.51	8.32	2.53	2.39	2.39	2.29
	-7. 6	4	3.28	3.50	3.52	- 3.39	0.89	1.01	1.09	1.05
		2	0.93	1.15	1.19	1.13	0.32	0.41	0.44	0.41
	47	16	19.07	17.89	17.74	17.24	7.74	7.45	7.48	7.22
		4	4.50	4.74	4.72	4.56	1.41	1.53	1.56	1.50
		2	1.22	1.48	1.53	1.46	0.52	0.66	0.69	0.65
	c.	Degrees of Freedom $v_{1}=30, v_{2}=124$								
C.1,		Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 simulations. Neans Standard Deviatı								
		True x		1	$\underline{2}$	3		1	2	3
		6		6.75	6.09	6.20		1.65	1.71	1.63
		4		3.84	4.31	3.99		1.01	2.13	1.12
		2		1.64	1.90	1.82		0.52	0.68	0.62
		16		16.15	15.56	15.56		4.68	4.63	0,63
		4		4.28	4.33	4.34		1.22	1.36	?.34
		2		1.67	1.94	1.87		0.53		0.62

186.

C,2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ froe n simulations

D. Degraes of Freedon $v_{1}=60, v_{2}=244$
D.1. * Escinators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 simutations.

	Means ${ }^{\prime}$			Standard Deviations		
Truey	1	2	3	1	$\underline{2}$	3
6	6.52	6.10	6.19	1.31	1.42	1.33
4	4.07	4.32	4.18	0.76	1.05	0.83
2	1.86	2.00	1.96	0.39	0.45	0.40
16	16.56	16.26	16.26	3.65	3.63	3.63
4	4.25	4.26	4.26	${ }^{7} 4$	0.89	0.88
2	1.88	2.01	1.99		0.46	0.43

0.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n is marations.

Means

Standerd Deviations
$\stackrel{5}{1.06}$ $\begin{array}{llll}\underset{1.07}{2} & \underset{1.06}{2} & \underset{1.07}{ } & 1.06\end{array}$
$\begin{array}{llll}0.55 & 0.58 & 0.60 & 0.59\end{array}$
$\begin{array}{llll}0.30 & 0.33 & 0.33 & 0.33\end{array}$

91

16	16.75	16.44	16.43	16.30	3.61	3.59	3.59	3.66
4	4.34	4.37	4.36	4.32	0.81	0.84	0.85	0.84
2	1.82	1.93	1.94	1.92	0.36	0.39	0.40	0.40

187.

Table 5.5.3
Neans and Standard Deviations of the fiye estimators of
the $\left\{\gamma_{i}\right\}=\operatorname{Eigs}\left\{\delta_{1} \Sigma^{-1}\right\}$ from the simulation experiments for
$\mathrm{p}=5$ dimensions.
A. Degrees of Freedon $v_{1}=10, v_{2}=44$

A:1; Estimators $\hat{y}^{(1)}, \hat{y}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 simulations.
Neans Standard Deviations

True γ		$\underline{2}$	$\underline{3}$		$\underline{2}$	$\underline{3}$
10	17.86	13.11	14.83	9.38	8.72	3.10
8	8.73	7.91	8.52	3.13	15.65	3.32
6	4.27	13.58	4.60	1.71	69.15	2.12
4	1.98	8.09	2.29	0.81	49.28	1.12
2	0.72	1.79	0.90	0.42	3.50	0.64

32	42.94	33.84	36.40	25.86	24.33	22.70
16	16.15	11.00	16.06	7.22	53.48	7.69
8	6.36	8.76	6.93	3.27	17.91	4610
4	2.51	1.86	2.90	1.07	26.59	1.47
2	0.83	1.81	0.99	0.51°	4.77	0.64

A.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n simutations.

Fallure of either $\hat{\gamma}^{(4)}$ or $\hat{\gamma}^{(5)}$ in all simulations.
188.
B. Degrees of Freedom $v_{7}=25, v_{2}=104$
B.1. Estimators $\hat{\gamma}^{(7)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 simulations.

True I	Means			Standard Devfations		
	1	2	3	1	$\underline{2}$	3
10	13.97	7.35	12.21	3,00	3,27	2.77
8	9.07	11.50	8.91	1.92	21.52	2.13
6	5.46	6.15	5.64	1.22	2.08	1.46
4	3.18	4.38	3.44	0.80	2.81	0.98
2	1.43	2.02	1.62	0.43	1.15	0.59
32	37.34	33.19	33.60	9.89	9.93	9.64
16	17.81	18.22	17.76	5.01	7.20	5.62
8	7,96	8.85	8.47	2,32	6.46	2.87
4	3.59	4.32	4.02	1.00	1.62	1.16
2	1.48	1.96	1.78	0.46	0.72	0.60

B.2. Estinators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \ddot{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ frow n siaulations. For $\left\{\gamma_{i}\right\}=\{10,8,6,4,2\}$ efther $\hat{\gamma}^{(4)}$ or $\hat{\gamma}^{(5)}$ faited in all simulations.

Heans
Standard Deviotions

6

16	16.97	16.76	16.63	16.28	3.07	3.26	3.40	3.32
8	7.59	8.14	8.11	7.93	1.18	1.30	1.28	1.25
4	3.17	3.70	3.77	3.67	1.01	1.27	1.40	1.35
2	1.06	1.34	1.36	1.32	0.41	0.54	0.56	0.54

C. Degrees of Freedon $v_{7}=50, v_{2}=204$
C.1. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 simulations.

	Means					Standard Deviations		
True Y	1	2	3	1	2	3		
70	12.38	10.88	11.38	2.66	2.94	2.59		
8	8.28	8.44	8.11	1.50	2.97	1.63		
6	5.66	6.26	5.78	0.98	4.83	1.08		
4	3.61	4.21	3.81	0.68	1.24	0.77		
2	1.75	2.09	1.87	0.35	0.82	0.41		
32	35.19	33.21	33.24	9.25	9.29	9.23		
16	16.44	16.39	16.42	3.41	3.85	3.74		
8	7.99	8.34	8.25	1.73	2.25	2.04		
4	3.94	4.30	4.22	0.86	1.18	1.01		
2	1.78	2.04	2.00	0.36	0.50	0.43		

C.2. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n simulations.

For $\left\{\gamma_{i}\right\}=\{30,8,5,4,2\}$ either $\hat{\gamma}_{(1)}^{(4)}$ or $\hat{\gamma}^{(5)}$ failed in all simulations.

190.
D. Degrees of Freedon $\nu_{1}=100, v_{2}=404$
D.1. Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ from all 100 simulations.

	Means					Standard Deviations		
True γ	$\underline{1}$	$\underline{2}$	$\underline{3}$	$\underline{1}$	$\underline{2}$	$\underline{3}$		
10	11.26	10.43	10.64	1.63	1.81	1.64		
8	8.04	3.00	7.93	0.95	1.44	1.05		
6	5.88	6.19	6.01	0.78	1.12	0.86		
4	3.74	4.02	3.88	0.65	0.86	0.69		
2	1.90	2.05	2.00	0.27	0.30	0.30		
32	33.64	32.56	32.71	5.83	6.21	5.82		
16	15.92	16.54	15.84	2.40	7.81	2.56		
8	8.29	8.50	8.46	1.34	1.55	1.45		
4	3.85	3.98	3.98	0.68	0.75	0.75		
2	1.92	2.05	2.04	0.27	0.30	0.30		

D.2. Estinators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n simulations.

Neans Standard Deviations
n \quad True $\gamma \quad 1 \quad 2 \quad 4 \quad 5 \quad 1 \quad 2 \quad 4 \quad 5$

True 9	1	2	4	5	1	$\underline{2}$	4	5
10	12.65	12.07	12.01	11.98	1.41	1.42	1.44	1.43
8	7.9\%	7.84	7.87	7.78	0.55	0.55	0.55	0.55
6	3.37	5.50	5.52	5.49	0.37	0.39	0.40	0.40
4	3.25	3.40	3.40	3.37	0.41	0.47	0.50	0.49
2	1,86	2.00	2.0% :	2.00	0.26	0.30	0.31	0.30
32	33.87	32.92	32.87	32.73	5.32	5.34	5.36	5.33
16	15.97	15.91	15.90	15.82	1.95	2.06	2.08	2.07
8	8.14	8.28	8.28	8.24	1.28	1.38	1.41	1.40
4	3.97	14.05	4.05	4.03	0.69	0.76	0.78	0.77
2	1.90	2.02	2.03	2.02	0.26	0.29	0.30	0.29

191.

E. Degraes of Freedom $v_{1}=50, v_{2}=459$

Estimators of $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$, from n simulations.

		Means				Standard Deviations			
$\frac{n}{}$	True γ	1	2	4	5	1	$\underline{2}$	4	5
	32	36.65	35,27	35.10	34.99	7.15	7.18	7.25	7.21
	16	16.70	i 79	16.80	16.72	3,10	3.37	3.50	3.49
53	8	7.91	"	8.23	8.18	1.35	1.50	1.56	1.55
	4	3.89	4.19	4.21	4.18	0.62	0.71	0.73	0.72
	2	1.72	1.94	1.95	1.94	0.39	0.46	0.47	0.46

Table 5.5.4

Means and Standard DevIations of the five estimators of the

$\left\{\gamma_{j}\right\}=E$ gs $\left\{\Sigma_{1} \varepsilon^{-1}\right\}$ frow the simulation experiments for $p=10$
dimensions
A. Degrees of Freedom $v_{1}=20, v_{2}=84$
A.1. Estimators $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(1)}, \underset{\sim}{\underset{\sim}{\gamma}}{ }^{(2)}$ and $\underset{\sim}{\underset{\sim}{r}}{ }^{(3)}$ from all 100 simulations.

A.2. Estimators $\underset{\sim}{\gamma}{ }^{(1)}, \underset{\sim}{\gamma}{ }^{(2)},{\underset{\sim}{\gamma}}^{(4)}$ and ${\underset{\sim}{\gamma}}^{(5)}$ from n simulations.

Failure of both ${\underset{\sim}{\gamma}}^{(4)}$ or $\underset{\sim}{\underset{\sim}{\gamma}}(5)$ in all simulations.
193.
B. Dagrees of Freadom $v_{1}=50, v_{2}=204$
B.1. Estinators $\underset{\sim}{\gamma}{ }^{(1)}, \underset{\sim}{\gamma} \hat{\gamma}^{(2)}$ and $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(3)}$ from all 100 sinulations.

	Neans			Standard Deviations		
True γ	1	2	3	1	2	3
20	29.90	23.84	26.37	4.77	5.31	4.57
18	22.10	19.89	21.00	3.00	4.97	3.37
16	16.88	15.40	16.65	2.00	3.77	2.17
14	13.62	18.42	13,61	1.89	29.14	1.97
12	10.59	10.in	10.60	1.35	8.75	1.35
10	8.25	9.72	C. 27	1.18	7.75	1.18
8	6.19	8.04	6.21	0.87	3.53	0.89
6	4.45	6.27	4.45	0.75	3.27	0.75
4	2.90	3.81	2.90	0.59	1.81	0.59
2	1.57	2.19	1.58	0.38	0.71	0.38
1024	1139.	1044.	1048.	261.6	257.7	255.8
512	547.0	534.0	534.1	124.0	144.1	133.1
256	256.7	260.1	257.1	52.45	65.23	57,01
128	- 122.9	127.5	126.5	25.14	31.28	28.68
64	59.25	63.70	62,21	12.90	18.48	14.96
32	28.83	31.92	30.56	6.15	8.65	6.78
16	14.30	16.24	15,58	3.20	4.47	3.97
8	6.95	8.18	7.73	1.34	2.01	1.71
4	3.30	4.02	3.73	0.78	1.27	0.5°
2	1.64	2.16	1.96	0.39	0.61	0.59

194.

B. 2 Estimators ${\underset{\sim}{\gamma}}^{(1)},{\underset{\sim}{\gamma}}^{(2)},{\underset{\sim}{\gamma}}^{(4)}$ and ${\underset{\sim}{\gamma}}^{(5)}$ from n simulations. For $\left\{\gamma_{i}\right\}=\{20,18,16,14,12,10,8,6,4,2\}, \underset{\sim}{\underset{\sim}{\gamma}}{ }^{(4)}$ and $\underset{\sim}{\gamma}{\underset{\sim}{r}}^{(5)}$ fafled in all staulations.

C. Degrees of Freedorr $v_{1}=100, v_{2}=404$
C. 1 Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ froa all 100 simulations.

	Neans				Standard Deviations		
True $\underset{\sim}{\sim}$	1	$\underset{\sim}{2}$	$\underline{3}$	$\underline{2}$	$\underline{2}$	$\underline{3}$	
	25.62	22.10	23.10	3.02	3.56	2.93	
18	20.23	18.69	19.17	2.13	3.83	2.50	
16	16.59	16.24	16.27	1.59	3.32	1.87	
14	13.69	14.32	13.69	1.33	3.20	1.56	
12	11.08	11.79	11.13	1.18	2.46	1.26	
10	8.03	9.62	8.88	0.93	2.39	0.93	
8	7.10	8.46	7.15	0.82	2.04	0.83	
6	5.06	5.77	5.12	0.67	1.12	0.72	
4	3.47	4.06	3.51	0.52	0.83	0.54	
2	1.75	2.01	1.77	0.23	0.36	0.29	

1024		1093.	1048.
512	536.0	528.9	1048.
256	254.4	254.4	254.4
128	126.8	128.9	128.9
64	60.97	62.72	62.71
32	30.43	31.81	31.80
16	15.27	16.19	16.19
8	7.28	7.81	7.81
4	3.68	4.05	4.02
2	1.79	2.01	2.00

175.3	175.2	175.2
84.49	90.02	80.32
39.45	42.03	42.02
18.13	19.75	19.75
9.20	10.21	10.22
15.26	5.99	5.99
2.24	2.55	2.55
1.23	1.44	1.44
0.61	0.74	0.71
0.29	0.35	0.34

195.

C. 2 Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n sinulations. For $\left\{\gamma_{i}\right\}=\{20,18,16,14,12,10,8,6,4,2\} \quad \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ failed in all simulations.

D. Degrees of Freedon $v_{1}=200, v_{2}=304$
D. 1 Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}$ and $\hat{\gamma}^{(3)}$ frie all 100 simulations.

Means

Standard/eviations
$1 \quad 2 \quad 3$

2.05	2.57	2.09
1.44	2.06	1.57

$1.44 \quad 2.06 \quad 1.67$
$1.08 \quad 2.96 \quad 1.23$
$\begin{array}{lll}1.00 & 2.93 & 1.11\end{array}$
$\begin{array}{lll}0.87 & 1.64 & 0.96\end{array}$
$\begin{array}{lll}0.77 & 1.96 & 0.86\end{array}$
$\begin{array}{lll}0.70 & 1.19 & 0.74\end{array}$
$0.51 \quad 0.68 \quad 0.57$
$0.44 \quad 0.55 \quad 0.49$
$\begin{array}{lll}0.21 & 0.23 & 0.22\end{array}$
$\begin{array}{lll}124.3 & 124.3 & 124.3\end{array}$
$57.61 \quad 59$ A4 59.44
$29.31 \quad 30.49 \quad 30.49$
$\begin{array}{lll}13.98 & 14.82 & 14.82\end{array}$
$\begin{array}{lll}7.18 & 7.58 & 7.58\end{array}$
$\begin{array}{lll}3.33 & 3.54 & 3.54 \\ 1.65 & 1.76 & 1.76\end{array}$
$\begin{array}{lll}0.79 & 0.85 & 0.85 \\ 0.47 & 0.51 & 0.51\end{array}$
$\begin{array}{lll}0.21 & 0.23 & 0.23\end{array}$
196.

D． 2 Estimators $\hat{\gamma}^{(1)}, \hat{\gamma}^{(2)}, \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ from n simulations． For $\left\{\gamma_{1}\right\}=\{20,18,16,14,12,10,8,6,4,2\} \hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$ failed in all simulations．

			Means		－Standard Deviations				
\underline{n}	True γ	1	2	4	5	1	$\underline{2}$	4	5
5	1024	1121.	1097.	1096.	1094.	143.4	143.2	143.5	143.1
（out	－ 512	567.2	563.3	563.3	561.9	47.88	50.53	50.87	50.74
of 5）	256	267.0	267.3	267.3	265.6	38.55	39.83	39.96	39.85
	128	121.1	121.8	121.8	121.5	11.95	12.45	12.49	12.46
	64	60.18	60.97	60.97	60.82	8.04	8.45	8.49	8.47
	32	31.66	32.37	32.38	32.29	3.92	4.15	4.17	4.16
	16	15.11	15.53	15.53	15.49	1.12	1.20	1.20	1.20
	8	7.30	7.53	7.53	7.51	0.58	0.62	0.63	0.63
	4	4.17	4.38	4.38	4.37	0.47	0.52	0.53	0.52
	2	1.89	2.00	2.00	2.00	0.31	0.33	0.34	0.33

1024	1074.	1052.	105%.	\pm	122.3	122.1	122.5
512	518.8	514.4	514.5	号	56.04	57.60	58.13
256	256.7	256.7	256.7	算	29.27	30.40	30.54
128	125.2	126.1	12E．1	＋	13.09	13.75	13.85
64	62.37	63.26	63.26	只	7.17	7.58	7.62
32	31.27	31.95	31.95	8	3.33	3.55	3.57
16	15.43	15.87	15.37	$\stackrel{\rightharpoonup}{0}$	1.63	1.75	1.75
8	7.70	7.97	7.97	है	0.79	0.86	0.85
4	3.85	4.02	4.02	8	0.48	0.52	0.52
2	1.86	1.97	1.97	等	0.21	0.23	0.23

197.

E. Degrees of Freedom $v_{1}=100, \cdot v_{2}=909$

		Neans				Standard Deviatfons		
\underline{n}	True Y	1	2	4	$\underline{5}$	1	$\underline{2}$	4
83	1024	1106.	1077.	1075.	霏	155.6	155.4	156.2
	512	523.4	521.0	521.0	3	83, 32.	87.34	88.57
	256	249.7	252.3	252.5	筜	37.78	80.53	41.50
-	128	122.5	125.3	125.3	-	16.67	18.05	18.34
	64	50.40	62.60	62.65	$\stackrel{\rightharpoonup}{2}$	9.14	10.10	10.32
	32	30.24	31.73	31.73	\%	4.41	4.92	5.00
	16	15.50	16.53	16.54	\%	2.31	2.63	2.67
	8	7.21	7.75	7.75	9	1.05	1.21	1.22
	4	3.28	4.04	4.04	(\%)	0.54	0.63	0.64
	2	! 1.77	1.99	2.00		0.29	0.33	0.34

198.

TabTe 5.5.5

Correlation matrices for the five estimators of the $\left\{\gamma_{1}\right\}=E \operatorname{Egs}\left\{\Sigma_{1} \Sigma^{-T}\right\}$
from the simulation experifients for $p=3$ dimansions.
C. Degrees of Freedpa $v_{1}=30, v_{2}=124$
C.1. True $\left\{\gamma_{i}\right\}=\{6,4,2\}$

Number of
Simulations

Correlation Coefficients

$\underline{1}$	$\underline{2}$	$\underline{4}$
.802	.758	.714
.322	.265	.241
.410	.328	.270

रinc.2. True $\left\{\gamma_{i}\right\}=\{16,4,2\}$

Number of
Simulations
74

Pair	$\underline{1}$
$(1,2)$.093
$(1,3)$	-.023
$(2,3)$.308

Correlation Coefficients

$\underline{2}$	$\underline{4}$	$\underline{5}$
.043	.021	.025
-0.41	-.046	-.040
.248	.270	.210

D. Degrees of Freedom $v_{1}=60, v_{2}=244$
D.1. True $\left\{\gamma_{j}\right\}=\{6,4,2\}$

Number of
Simulations
44

$\frac{\text { Pair }}{(1,2)}$	$\mathbf{1}$
$(1,3)$.425
$(2,3)$.381

Gorrelation Coefficients

$\frac{2}{2}$	$\underline{4}$
.356	.319
.077	.061
.314	.283

D,2. True $\left\{\gamma_{i}\right)=\{6,4,2\}$

Nurber of
Sinulations
91

Correlation Coefficients

$\frac{2}{2}$	$\frac{4}{2}$	$\underline{5}$
-.057	-.060	-.066
.033	.032	.033
.235	.210	.211

Chapter 6 The Predictive Bayesian and other Approaches

Our chief concem in this chapter is the Predictive Bayesian approach to discriminant analysis under the random etfects model.

As described in Section 2.2 this approach consists in evaluating the posterior probabilities, given the training sample and underlying rodel together with any know parameters, that the new observation x comes from each of the k_{1} pppulations in question, and assigning it to that population for which this probability is the largest. Therefore, in conerasi. to Chapters 3 and 4 where we are conceriad with the expected behaviour of the standard classification rules of classical discristinant analysis under the random effects rodel, this chapter is concerned with the development of new classification formulae applicable to this nodel.

In conformity with the rest of this thesis, we will assume that the prior probabilities q_{i} of the k populations $\pi_{i}, i=1, \ldots, k$ are all equal, so that the posterior probability that x comes from π_{r} is proportional to the predictive density of $x_{\text {, }}$ given the training sample and the assumption that x comes fromi π_{r}. See expression (2.2.4). (It is, however, a trivial matter to adjust the theory for the case where the q_{p} are unequal,)

Therefore, in the noxt two sections we will derive the predictive density of x under the random effacts model given the training sample and the assumption that x comes from π_{r}, using a noninformative prior distribution for the unknown paraneters, firstly for the univariate case (Section 6.1) and then for the multivariate case (Section 6.2), In Section 6.3 the predictive density of x will be investigated under two alternative prior distributions of the unknown parameters, namely,
(i) Box and Tiao's noninformative prior distribution for the random effects model, and (ii) the natural conjugate prior distribution. Finally, in Section 6.4 two other Baysian approaches to diseriminant analysis, the Eapirical Bayes and "Semi-Bayes" approaches, respectively,

200.

Chapter 6 The Predictive Beyesian and other Approaches

Our chief concarn in this chapter is the Predictive Bayesian approach to discriminant analysis under the randow effects model.

As described in Section 2.2 this approach consists in evaluating the posterior probabilities, given the training sample and underiying model together with any know parameters, that the new observation x comes from each of the k_{1} popalations in question, and assigning it to that popula* tion for which this probability is the largest. Therefore, in contrast: to Chapters 3 and 4 where we are concerned wfth the expected behaviour of the standard classification rules of classical discrininant analysis under the random effects model, this chapter is concerned with the development of new classification formulae applicable to this model.

In conformity with the rest of this thesis, we will assume that the prior probabilities g_{i} of the k populations $\pi_{i} ; j=1, \ldots, k$ are all equal, so that the posterior probabilizy that x comes from π_{r} is proportional to the pradictive density of x, given the training sample and the assumption that x comes from $\pi_{r^{*}}$. See expression (2.2.4). (It is, however, a trivial matter to adjust the theory for the case where the q_{r} are unequal.)

Therefore, in the next two sections we will derive the predictive density of x under the randon effects model given the training sample and the assumption that x cones from π_{r}, using a noninformative prior distribution for the unknown parameters, firstly for the univariate case (Section 6.1) and then for the wultivariate case (Section 6.2). In Section 6.3 the predictive density of x will be investigated under two alternative prior distributions of the unknown parameters, 'namely, (i) Box and Tiao's noninformative prior distribution for the random effects model, and (ij) the nitural conjugate prior distribution. Finally, in Section 6.4 two other Baysian approaches tof discriminant enalysis, the Enpirical Bayes and "Semi-Bayes" approaches, respectively,
$t 201$.
will be given brief consideration.

Rerrark 6.1 In thts chafter we have to make a distinction between the k populations used in the training sample and the $k_{1}(s k)$ populations from Which it is known that the new osservation x derives. Clearly these k_{1} populations must be represented in the training sample, but they may well have been sampled at a later stage than the rest of the training sample, possibly only at the time when the particular classification problem in quastion arises.

6.1 The Univariate Case

For dimension $p=1$ the discriminant analysis problem under the randow effects model becomes;

Given a training sample,

$$
T S=\left\{x_{i j}:\left\{=1, \ldots, k ; \quad j=1, \ldots, n_{i}\right\}\right.
$$

where,
and

$$
\begin{array}{lll}
x_{1 j} \sim N\left(u_{i}, \sigma^{2}\right) & \text { independently, } & v_{i, j} \\
u_{i} \sim N\left(\xi, \tau^{2}\right) & \text { independently, } & \psi_{i},
\end{array}
$$

classify a new observation x of unknown origin into one of the k_{1} populations $r_{r}, r=1, \ldots, k_{1}$, where π_{r} is characterised by a $N\left(\mu_{r}, \sigma^{2}\right)$ distribution.

For the Predictive Baysian approach we need to make an assuaption about the prior distribution of tite unknown paraneters σ^{2}, ζ and τ^{2}, and in this section we assume that they have the following general type of noninformative joint prior density:

$$
\begin{equation*}
g\left(\sigma^{2}, \xi,-\tau^{2}\right) d \sigma^{2} d \xi d \tau^{2} \propto \sigma^{-v_{1}} \tau^{-v / 2} d \sigma^{2} d \zeta d \tau^{2} \tag{6.1.1}
\end{equation*}
$$

Remark 5.7.7 For reasons that will become clear later, ife are considering a more general form of prior distribution than the usual diffuse or invariant (Jeffreys 1961) prior distribution which has $v_{1}=v_{2}=2$. The prior density $(6.1 .1)$ is also used in Geisser and Cornfield (1963) and in Geisser (1964).

Given the above assungtions, the predictive density of x, assuaing that $x \in \mathbb{T}_{\mathrm{r}}$, is:

$$
\begin{equation*}
f\left(x \mid T S, v_{1}, v_{2}, \pi_{r}\right)=\int_{c^{2}} \int_{d} f\left(x \mid y_{R}, a^{2}, \pi_{r}\right) P\left(\mu, \sigma^{2} \mid T S\right) d x d \sigma^{2} \tag{6,1,2}
\end{equation*}
$$

where,

$$
\begin{aligned}
& k=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)^{\prime} \\
& \left.f\left(x \mid \underline{\mu}, \sigma^{2}, \pi_{r}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left\{-\frac{x-\mu_{r}}{\sigma}\right)^{2}\right\} \\
& P\left(\mu, \sigma^{2} \mid T S\right) \propto P\left(T S \mid \mu, \sigma^{2}\right) P\left(\mu, \sigma^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(2 \pi)^{\frac{1}{k}} \sigma_{0}^{N}} \exp \left\{-\frac{1}{2 v^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}}\left(x_{i j}-\mu_{i}\right)^{2}\right\} \\
& N=\sum_{i=1}^{k} n_{i} \\
& P\left(j, \sigma^{2}\right)=P\left(\sigma^{2}\right) \int_{\tau} \int_{\xi} P\left(\mu \mid \xi, \tau^{2}\right) P\left(\xi, r^{2}\right) d \xi d \tau^{2} \\
& P\left(u \mid E, r^{2}\right)=\prod_{i=1}^{k} \sqrt{2 \pi} \tau \exp \left(-\frac{1}{2}\left(\frac{\mu_{i}-\xi}{2}\right)^{2}\right\}=\frac{1}{(2 \pi)^{2} \frac{1}{\tau^{k}}} \exp \left\{-\frac{1}{2 \tau^{x}} \sum_{i=1}^{k}\left(\mu_{i}-\xi_{i}\right)^{2}\right\}
\end{aligned}
$$

and

$$
\mathrm{P}\left(\sigma^{2}\right) \mathrm{P}\left(\xi, \tau^{2}\right)=g\left(\sigma^{2}, \xi, \tau^{2}\right) \propto \sigma^{-v_{1}} \tau^{-v_{2}}
$$

Substituting all this into equation (6.1.2) and using the notation:

$$
\begin{align*}
& n_{i}^{*}=n_{i} \quad \forall i x r \\
& n_{r}^{*}=n_{r}+1 \\
& x_{r} n_{r}^{*}=x \tag{6.1,4}
\end{align*}
$$

yields, ignoring all constants of proportionality.

$$
\begin{aligned}
& f\left(x \mid T s, v_{1}, v_{2}, \pi_{r}\right) \propto \int_{\sigma^{2}} \iint_{j=\tau^{2}} \int_{E} a^{-(\mu+1)} \exp \left(-\frac{3}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}^{*}}\left(x_{i j}-\mu_{i}\right)^{2}\right\} \\
& \times \quad \times \tau^{-k} \exp \left\{-\frac{1}{2 \tau^{2}} \sum_{\{=1}^{k}\left(\mu_{i}-\xi\right)^{2}\right\} \sigma^{-v} 1 \tau^{-k} 2 d \xi d \tau^{2} d \underset{\sim}{d} d \sigma^{2} \\
& =\int_{\sigma^{2}} \int_{k} a^{-\left(k+v_{i}+1\right)} \exp \left\{-\frac{1}{2 \sigma^{2}} \cdot \sum_{i=1}^{k} \sum_{j=1}^{n_{i}^{k}}\left(x_{i j}-\mu_{i}\right)^{2}\right\} \\
& \times \int_{\tau^{2}} \int_{\xi} \tau^{-\left\{k+v_{2}\right\rangle} \exp \left\{-\frac{1}{2 \tau^{2}} \sum_{i=1}^{k}\left(\mu_{i}-\xi\right)^{2}\right\} d \xi d \tau^{2} d j d \sigma^{2}
\end{aligned}
$$

Considering the inner pair of integrals:

$$
\begin{aligned}
& \int_{\tau^{2}} \int_{\xi} \tau^{-\left(k+v_{2}\right)} \exp \left\{-\frac{1}{2 \tau^{2}} \sum_{i=1}^{k}\left(\mu_{1}-\epsilon\right)^{2}\right\} d \xi d \tau^{2} \\
& \left.\left.=\int_{\tau^{2}} \tau^{-\left(k+V_{2}\right)} \exp t-\frac{1}{2 \tau^{2}} \sum_{i=1}^{k}\left(\mu_{i}-\mu_{*}\right)^{2}\right)\right\}_{\xi} \exp \left(-\frac{k}{2 \tau^{2}}(\xi-\mu,)^{2}\right\} d \xi d \tau^{2} \\
& \text { (share } \mu=\frac{1}{k} \sum_{i=1}^{-k}, \mu_{i} \text {) } \\
& \propto \int_{\tau^{2}}\left(\tau^{2}\right)^{-\frac{1}{2}\left(k+v_{2}-1\right)} \exp \left\{-\frac{1}{2 \tau^{2}} S_{\mu}^{2}\right) d \tau^{2}
\end{aligned}
$$

204.

where $S_{\mu}^{2}=\sum_{i=1}^{k}\left(\mu_{i}-\mu_{H}\right)^{2}$.

Transforming to:

$$
u=\frac{1}{2} \tau^{-2} S_{\mu}^{2}
$$

so that

$$
d \tau^{2}=-\frac{1}{2} u^{-2} S_{1}^{2} d u
$$

the integral becones (ignoring constants of proportionality):

$$
\begin{aligned}
& \left(S_{\mu}^{2}\right)^{-\frac{1}{2}\left(k+v_{2}-3\right)} \int_{0}^{\infty} v^{-\frac{1}{2}\left(k+v_{2}-3\right)-1} \exp (-u) d u \\
= & \left(S_{\mu}^{2}\right)^{-\frac{3}{2}\left(k+v_{2}-3\right)} r^{\prime}\left(\frac{1}{8}\left(k+v_{2}-3\right)\right)
\end{aligned}
$$

So:

$$
\begin{align*}
&\left(\mathrm{f}\left(\mathrm{x} \mid T S, v_{3}, v_{2}, v_{r}\right) \propto \int_{\sigma^{2}} \int_{k}\left(\sigma^{2}\right)^{-\frac{3}{2}\left(N+v_{1}+1\right)}\left(s_{\mu}^{2}\right)^{-\frac{1}{2}\left(k+v_{2}-3\right)}\right. \\
& \quad \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-\mu_{1}\right)^{2}\right\} d \sigma^{2} d d . \tag{6.1.5}
\end{align*}
$$

Now,

$$
\sum_{i=1}^{k} \sum_{j=1}^{n_{j}^{*}}\left(x_{i j}-\mu_{i}\right)^{2}=\sum_{i=1}^{k} \sum_{j=1}^{n_{j}^{*}}\left(x_{i j}-x_{i}^{*}\right)^{2}+\sum_{i=1}^{k} n_{i}^{*}\left(\mu_{i}-x_{i}^{*}\right)^{2}
$$

where $x_{i,}^{*}=\frac{1}{n_{i}^{*}} \sum_{j=1}^{n_{i}^{*}} x_{i j}$

$$
=\left\{\begin{array}{l}
x_{4}, \quad \frac{e i \neq r}{} \tag{6.1.6}\\
x_{r_{0}}+\frac{x-x_{r_{+}}}{n_{r}+i}, \quad \frac{t}{r}=r
\end{array}\right.
$$

205.

So (6.1 .5) becomes

$$
\begin{align*}
& \times \int_{X}\left(S_{\mu}^{2}\right)^{-\frac{1}{k}\left(k+v_{2}-3\right)}\left(\sigma^{2}\right)^{-\frac{1}{2} k} \exp \left\{-i \frac{1}{2 \sigma^{2}} \sum_{j=1}^{k} n_{j}^{*}\left(\mu_{j}-x_{i}^{*}\right)^{2}\right\} d y d \sigma^{2} \tag{6.1.7}
\end{align*}
$$

Now, apart from a constant of proportionality, the inner integral in (6.1.7) can be thought of as the $-\frac{1}{2}\left(k+v_{2}-3\right)^{\text {th }}$ moment about zero of the unnormed sauple variance: $s_{\mu}^{2}=\sum_{i=1}^{k}\left(\mu_{i}-\mu_{i}\right)^{2}$ where the individual μ_{i} are independently distributed according to the $N\left(x_{i}^{*}, ~, ~ \sigma^{2} / n_{j}\right)$ distribution. In order to be able to evaluate this expected value, we have to make the assumption that the n_{i}^{*} are all equa?, say,

$$
\begin{equation*}
s_{i}=n^{*} \quad 1=1, \ldots, k \tag{6,1.8}
\end{equation*}
$$

under this assimption S_{μ}^{2} has a^{2} / n^{*} times a noncentral $\chi_{k-1}^{2}\left(\lambda^{*}\right)$ distribution, with noncentrality parameter,

$$
\begin{equation*}
\lambda^{*}=\frac{n^{*}}{\sigma^{2}} \sum_{\{=1}^{k}\left(x_{1}^{*},-x_{n}^{*}\right)^{2}=\left(\sigma^{2}\right)^{-1} A_{\}}^{*} \tag{6.1.9}
\end{equation*}
$$

where,

$$
x_{\cdots}^{*}=\frac{j}{k} \sum_{i=1}^{k} x_{i}^{*} .
$$

and

$$
A_{j}^{*}=n^{*} \sum_{i=1}^{k}\left(x_{i}^{*},-x_{* *}^{*}\right)^{2}
$$

Now, although the cumulants of the noncentral chi-squared distribution (and hence the first motents about zero) may be expressed extremely simply, genaral expressions for the moments abaut zero are usually
in terns of infinite suts. (See, for example, Johnson and Kotz, 1970b.) The following expression for the $r^{\text {th }}$ moment about zero of the $\chi_{\nu}^{2}(\lambda)$ distribution, derived in Appendix 6.1, is convenient for the present purpose:

$$
\begin{equation*}
\mu_{r}^{\prime}=2^{r} \exp \left(-\frac{1}{2} \lambda\right) \sum_{j=0}^{\infty} \frac{\left(\frac{1}{2}\right)^{j}}{j,} \frac{r\left(\frac{1}{2} y+r+j^{\prime}\right)}{\Gamma\left(\frac{1}{2} v+j\right)} \quad \text { for } r>-\frac{1}{2} v \tag{6.1.10}
\end{equation*}
$$

The inner integral in(6.1.7) is therefore proportional to:

The infinite series in (6.1.11) is proportional to the conf?uent hypergeometric function $N\left(\frac{1}{1}\left\langle 2-v_{2}\right) ; \frac{1}{8}(k-1\rangle ; \frac{1}{8} \lambda^{*}\right)$ (see, for example, Abranonitz and Stegun, 1965) and therefore it converges for all values of the paraneter $\frac{1}{2} \lambda^{*}$. Substituting (6.1.11) into (6.1.7) and interchanging the order of integration and sumation yields, ignoring the constants of proportionality:

$$
\begin{gathered}
f\left(x \mid T S, v_{1}, v_{2}, \pi_{r}\right)=\sum_{j=0}^{\infty} \frac{\Gamma\left(\frac{1}{2}\left\langle 2-v_{2}\right)+j\right)}{\Gamma\left(\frac{1}{2}(k-1)+j\right)} \frac{\left(\frac{3}{2} A_{j}\right\rangle^{j}}{j!} \int\left(\sigma^{2}\right)^{-\frac{1}{2}\left(N+v_{1}+v_{2}+2 j-2\right)} \\
\quad x \exp \left\{-\frac{A_{3}^{2}}{2 \sigma^{2}}\right) \| \sigma^{2}
\end{gathered}
$$

Where,

$$
\begin{equation*}
A_{3}^{*}=\sum_{i=1}^{k} \sum_{j=1}^{n^{*}}\left(x_{i j}-x_{1 .}^{*}\right)^{2}+A_{j}^{*}=\sum_{i=1}^{k} \sum_{j=1}^{n^{*}}\left(x_{j j}-x_{i}^{*}\right)^{2} \tag{6.1.12}
\end{equation*}
$$

Haking the transformation $y=A_{3} / 2 \sigma^{2}$, the above integral may be evaluated as a gamm function, yielding eventually:
207.

$$
\begin{align*}
& f\left(x \mid T S, v_{1}, v_{2}, \pi_{r}\right) \propto \sum_{j=0}^{\infty} \frac{r\left(\frac{1}{2}\left(2-v_{2}\right)+j\right)}{\Gamma\left(\frac{1}{2}(k-1)+j\right)} r\left(\frac{1}{2}\left(N+v_{1}+v_{2}+2 j-4\right)\right) \\
& \times\left(\frac{1}{2} A_{j}^{*}\right)^{j}\left(\frac{1}{2} A_{3}\right)^{-\frac{1}{2}}\left(N+v_{1}+v_{2}+2 j-4\right) \\
&=\left(A_{3}^{*}\right)-\frac{1}{2}\left(N+v_{1}+v_{2}-4\right) \\
& F \tag{6.1.13}
\end{align*}
$$

where,
$F(\alpha, B i Y ; x)=\sum_{j=0}^{\infty} \frac{\alpha^{[j]} \beta^{[j]}}{\gamma^{[j]}} \frac{x^{j}}{j!}$ is the hypergeowetric function, and $\alpha^{[j]}=a(\alpha+1) \ldots(\alpha+j-1)$.

Since, by definition, $\left|A_{1}^{*} / A_{3}^{*}\right|<1$, the hypergeosetric function in (6.1.13) converges. 【See, for example, Abramowitz and Stegun (1965) or Johnson and Kotz (1959).)

Remsork 6.1.1 Assumption (6,1.8) effectively implies that

$$
\eta_{r}=n^{*}=n \quad \forall r=1, \ldots, k
$$

and that when evaluating the predictive density $(6,1,13)$ assuming that x \& z_{r}, for each $r=1, \ldots, k$ in tulm, one of the observations $x_{r j}$ is choson from $\left\{x_{r j}, j=1, \ldots, n\right\}$ and is raplaced by x in the sample. Under these circurstances, theretore, the errective size of the training Sample beconas $N=1$.

The two teras in $(6,1,13)$ affected by the above are A_{1}^{*} and A_{3}^{*}, and it is shown in Appendix 6.2 that, for x \& π_{r} :

$$
A_{1}^{k}=A_{1}+2\left(x-x_{r j}\right)\left(x_{r .}-x_{. .}\right)+\frac{k-1}{k n}\left(x-x_{r j}\right)^{2}
$$

and

$$
\begin{equation*}
A_{2}^{*}=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i}^{*} .\right)^{2}=A_{2}-\frac{1}{n}\left(x-x_{r j}\right)^{2}+\left(x_{r j}-x_{F}\right)^{2}+\left(x-x_{r .}\right)^{2} \tag{6.1.15}
\end{equation*}
$$

where,

$$
A_{1}=n \sum_{i=1}^{k}\left(x_{i}-x_{n}\right)^{2}
$$

and

$$
A_{2}=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i .}\right)^{2}
$$

are the between groups and within groups sums of squares, respectiveiy, as defined in Table 5.1.1 for the case $p=1$. Finally, hat is obtainhed by suming A_{1}^{*} and A_{2}^{*},
f.e.

$$
\begin{equation*}
A_{1}^{5} V_{1}+A_{2}^{*} \tag{6.1.16}
\end{equation*}
$$

Formulae $(6,1.14)$ and $(6.1 .16)$ will be useful when evaluating the predictive density (6,1.13) successively for all $r=1, \ldots, k$,

Note also triat inder these circumstances N should be replaced by N - 1 in (6.1.13).

Remark 6.1.2 The fact that v_{2} must be less than"2 in (6.1.13) Implies that, for the predictive density to exist, τ^{2} cannot have the usua? diffuse prior distribution with $v_{2}=2$.

It is interesting to coapare this with problems encountered by other authors studying related problens through the Bayesian approach. Lindley
and Saith (1972) and Smith (1973) studying the problefr of estimation under a Bayesian General Linear Model, both start off with their analysis by assuming all variances and covariances known. When passing to the situation where the variances and covariances are unknown and have prior distributions, they come up against intractable mathematical problems in evaluating the posterior distributions and means for the paraseters of interest. To overcone this problem they use instead the mode of the Joint posterior distribution of the parameters of interest and the nuisance paraneters (the variances and covariances) and use these modal values as Bayesian estimates of the paraneters. In practice, the modal values usually have to be obtained by iterative procedures. In their examples they use natural conjugate prior distributions for the vari-: ances and covariances; in Section 6.3 we will investigate this class of prior distributions for our probleas.

Box and Tiao (1973) use a different type of diffuse prior distribution when considering the random effects model, in order to get around their analytical problems. This prior distribution will also be considered in Section 6.3.

It is rather romarkable that it is the prior distribution of the second stage "hyperparaneter" τ^{2} in our random effects model that gives the problen, while that of the corresponding first stage parameter σ^{2} presents no problem at all, at least within the fromemork of the diffuse prior distributions (6,1,1).

Therefore, in (6.1.12) we may assign the value $v_{1}=2$, giving σ^{2} a noninformative prior distribution relative to the likelihood function of the nornal distribution, both in the sense thaf it produces a posterior distribution that is "data translated" as defined by Box and Tiao (1973) and in the sense that probability statements on σ^{2} based on its posterior distribiztion are invariant junder parameter transformations.

For v_{2} we may assign the value $v_{2}=1$ so that τ^{2} has a prior distribution that, wille it is not moninformative, is as close as it may be to one without jeopardising the existence of the predictive density $(6.1 .13)$. Under these parameter values (6.1.13) becomas (remamering that N is replaced by $\mathrm{N}-1$):

$$
\begin{align*}
f\left(x \mid T S, \pi_{r}\right) & \propto\left(A_{3}^{*}\right)^{-\frac{1}{2}(N-2)} \sum_{j=0}^{\infty} \frac{(j)^{[j]}\left(\frac{1}{2}(N-2]^{[j]}\right.}{\left(\frac{1}{j}(k-1)\right)^{[j]}} \frac{\left(A_{1}^{*} / A_{3}^{*}\right)^{j}}{j!} \\
& =\left(A_{3}^{*}\right)^{-\frac{1}{2}(N-2)} F\left(\frac{1}{2}, \frac{1}{2}(N-2) ; \frac{1}{2}(k-1) ; \frac{A_{p}^{*}}{A_{3}^{*}}\right) \tag{6,1,17}
\end{align*}
$$

Remark 6.1.3 An alternative, asymptotic expression for the predictivedensity of x may be obtained by interchanging the order of integration in (6.1.5). This yields,

$$
\begin{aligned}
& f\left(x \mid T S_{*}, v_{1}, v_{2}, \pi_{r}\right) \propto\left(A_{2}^{*}\right)^{-\frac{1}{2}\left(K+v_{1}-1\right)} \int_{\mu}\left(S_{\mu}^{\pi}\right)^{-\frac{1}{2}\left(k+v_{2}-3\right)} \\
& \times\left\{1+\sum_{i=1}^{k}\left(\frac{\mu_{1}-x_{1}^{*}}{\sqrt{A_{2}^{k} / n_{i}^{*}}}\right)^{2}\right)^{-\frac{1}{2}\left(N+v_{1}-1\right)} d_{g} .
\end{aligned}
$$

This integral is proportional to the $-1\left(k+v_{2}-3\right)^{\text {th }}$ moment of the (unnormied) sample variance $S_{\mu}^{2}=\sum_{i=1}^{k}\left(\mu_{i}-\mu\right)^{2}$ where the $\mu_{1}, i=1, \ldots, k$ jointiy have a multivariate t-distribution with common denominator (see, for exasple, Johnson and Kotz (1972)). Assuming that $n_{i}^{*}=n_{2} \psi_{1}$ and that the total sample size N is large enough for' the multivariate t-distribution to be approxivated by that of k independent normel random variables with different means but common variance, the integral may be evaluated approximetely using the $-\frac{1}{2}\left(k+v_{2}-3\right)^{\text {th }}$ moment of the noncentral x_{k-1}^{2} distribution. This yields, aftar some algebra:

$$
\begin{align*}
& f\left(x^{\prime} \pi s, v_{1}, v_{2}, \pi_{r}\right) \dot{\alpha}\left(A_{2}^{*}\right)^{-\frac{1}{2}\left(N+k+v_{1}+v_{2}-4\right)} \exp \left\{-\frac{1}{2} \lambda *\right\} \\
& \times M\left(\frac{1}{2}\left(2-v_{2}\right) ; \frac{1}{2}(k-1) ; \quad \frac{1}{2} \lambda^{*}\right) \text { for } v_{2}<2 \tag{6.1.18}
\end{align*}
$$

whers,

$$
\lambda_{1}^{*}=(N-k) A_{1}^{*} / A_{2}^{*}
$$

and
$M(a ; B ; x)=\sum_{j=0}^{\infty} \frac{\alpha^{[j]}}{\beta^{[j]}} \frac{x^{j}}{j!}$ is the confluent hypergeonetric function.

It is interesting to note that again the porameter v_{2} in the prior density of T^{2} can not take the value 2 sorresponding to the usual noninfomative prior distribution Assigning the values $v_{1}=2$ and $v_{2}=1$ as before, and replacing N by $\mathrm{N}-1$ (see Resark 6.1.1), (6.1.78) becomes

$$
\begin{equation*}
f\left(x \mid T s, \pi_{r}\right) \dot{*}\left(A_{2}^{*}\right)^{-\frac{1}{2}(N+k-2)} \exp \left\{-\frac{1}{k} \lambda *\right\} M\left(\frac{1}{2} ; \frac{1}{2}(k-1)\left\{; \frac{1}{2} \lambda^{*}\right)\right. \tag{6,1,19}
\end{equation*}
$$

Example c. 1.1 To illustrate the use of the above formulae, the follow ing hypothetical example was considered. Given the training samples of size $n=3$ from each of $k \in 5$ populations in Table 6.1.1 and an observation $x=7$ of unknown origin, classify x into one of these 5 populations, assuming that they are generated by the random affects nodel.

Table 6.1.2 gives the quantities A_{7}^{*}, A_{2}^{*} and A_{3}^{*} for each of the five $/$, popufations, as well as the ratios $\left(A_{j}^{*} / A_{3}^{*}\right)$ and (5 脸/ $/ A_{2}^{*}$) required in form mulae (6.3 .17) and $(6.1 .19)$ for the exact and approxinate predictive densities, assuming that γ_{2} al and $\mathrm{v}_{1}=2$. FokTRaN subroutine HYPGFR, given in Appendix 6.5, was written to complete the hypergeonetric and confluent hypergeonetric functions required in
212.
the above formulae. The posterior probabilities for the five populations, computad using both. the exact and approxiaate formulae and assuining equal prigr probabilities, are also given in Table 6.1.2. As recomended in Sub-section $6,3.3$ below, the observation closest to the mean of the training sample fron π_{r} was replaced by x when computing the predictive density given $\mathrm{X} \in \pi_{r}$

Table 6.1.1

The Hypothetical Troining Sample

Populations	1	$\underline{2}$	3	4	$\underline{5}$
	1	3	6	7	9
Observations	2	4	7	8	10
	3	5	8	9	11

Observation x of unknown origin: 7

Table 6.1.2
Computing the Posterior Probabilities

Populations:	1.	2	3	4	5
A_{1}^{*}	87.07	111.60	122.40	119.07	102.00
A_{2}^{*}	26.67	16.00	70.00	10.67	16.00
A_{3}^{*}	113.73	127.60	132.40	129.73	118.00
A_{1}^{*} / A_{3}^{*}	0.7655	0.8746	0.9245	0.9178	0.8644
$\frac{1}{2}(H-k) A_{1}^{*} / A_{2}^{*}$	16.33	34.88	61.20	55,81	31.88
Exact Probs.	0.0065	0.0553	0.4981	0.3766	0.0635
Approximate Probs.	0.0006	0.0199	0.5822	0.3744	0.0228
Fixed Effect Probs.	0.0017	0.0327	0.5580	0.3749	0.0327

The last row of Table 6.1.2 gives the posterior probabilitias for each of the five populations conputed from formia (2.2.6) for the case where the population means μ_{j} are given a niffuse prior distribution roughly speaking, this corresponds to a fixed effects model (See Box and Tiao (1973) pages 379-80 for a discussion of this point). Comparing these probabilities with their counterparts under the random effects wodel, computed from the exact formula (6.1.17), it is clear that in the 7atter case the posterior probabilities are slightly more conservative, in the sense that the highest probability (that of population 3) is somewhat lower, and those of the other populations corrospondingly higher, than their counterparts under the fixed effects model. Intuitively speaking this is reasonable, as one would expect ciassification to be better in the situation where, a priori, the populations tend to be further apart, as is the case with the diffuse priv* relative to the normal prior. (See Cox and Hinkley (1974) page 379 for a related dis" cussion.)

Finally, the probabilities given by the approxinate formia (6.1.19) are clearly too optimistic (in a sense complementary to conservative) giving values that differ even wore from the exact probabilities than ob the corresponding probabilities under the fixed effects model.

6.2 The multivariate case

Analogously to the univariate case discussed in the previous section, our discriminant analysis problen becowes:

Given a training sample from k populations,

$$
T S=\left\{x_{1 j} ; j=1, \ldots, n_{1}, 1=1, \ldots, k\right\}
$$

where,

$$
x_{i, j} \sim M_{p}\left(\mu_{i}, \Sigma\right) \quad \text { independently } \forall i, S
$$

and
214.

$$
\mu_{i} \sim N_{p}(\xi, T) \quad \text { independently } v_{i},
$$

classify a new observation x of unknown origin into one of the k_{1} popur lations:

$$
, \pi_{r}: U_{p}\left(\mu_{r}, \Sigma\right) \quad r=1, \ldots, k_{1}
$$

where

$$
k_{j} \leq k
$$

We assume that the unknown parametars \mathcal{Z}, ξ and T have the diffuse prior distribution with joint density:

$$
\begin{equation*}
g(\Sigma, \xi, T) d \Sigma d \xi d T=|\Sigma|^{-\frac{1}{2} v_{1}}|T|^{-\frac{i}{2} v_{2}} d \Sigma d \xi d T \tag{6,2,1}
\end{equation*}
$$

Remark 6.2.1 As in the infvariate case, and for the same reason, we are considering the more gensral form of diffuse prior distribution, used by Geisser, and Cornfield (1963) and Gejsser(1964), than the usual one for which $v_{1}=v_{2}=p+1$.

Given the above assumptions, the predictive density of X, given the hypothesis $x \in \pi_{r}$, becomes:

$$
\begin{equation*}
f\left(x \mid T S, v_{1}, v_{2}, \pi_{r}\right)=\iint_{\mathcal{L} \Sigma} f\left(x \mid 1 \Sigma, \Sigma, \pi_{r}\right) P(\Sigma, \Sigma \mid T S) d \Sigma d x \tag{6.2.2}
\end{equation*}
$$

where,
It is the $p \times k$ matrix $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)$
$f\left(x \mid \mu, \Sigma, \pi_{r}\right)=(2 \pi)^{-\frac{2}{2} p}|\Sigma|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(x-\mu_{r}\right)^{\prime} \Sigma^{-1}\left(x-\mu_{r}\right)\right\}$
$P(\alpha f, \Sigma \mid T S)=P(T S \mid \mu, \Sigma) P(1 f, \Sigma)$
215.

$$
\begin{aligned}
& P(T S \mid y, \Sigma)=\prod_{i=1}^{k}{\underset{j}{j=1}}_{n_{1}}^{n_{1}}(2 x)^{-\frac{2 p}{2}}|\Sigma|^{-\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(x_{i j}-\mu_{i}\right)^{\prime} \varepsilon^{-i}\left(x_{i j}-\mu_{i}\right)\right\} \\
& =\langle 2 \pi\}^{-\frac{3}{2 N p}}|2|^{-2 N} \exp \left\{-\frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-\mu_{i}\right)^{\prime} \Sigma^{-7}\left(x_{i j}-\mu_{i}\right)\right\} \\
& \text { where } \\
& N=\sum_{j=1}^{k} n_{i}
\end{aligned}
$$

$P(x, \tau)=P(\Sigma) \iint_{\xi} P(x \mid \xi ; T) P(\xi, T) d \xi d T$ $P\left(\alpha|\xi ; T\rangle={\underset{N}{k}}_{k=1}^{k}\langle 2 \pi)^{-i p}|T|^{-\frac{1}{2}} \exp \left(-\frac{\xi}{2}\left(\mu_{i}-\xi\right)^{+} \cdot T^{-1}\left(\mu_{i}-\xi\right)\right\}\right.$ $=(2 \pi)^{-\frac{1}{2} k p}|T|^{-\frac{1}{2} k} \exp \left\{-\frac{1}{2} \sum_{i=1}^{k}\left(\mu_{i}-\xi\right)^{\prime} T^{-1}\left(\mu_{i}-\xi\right)\right\}_{j}$
and

$$
P(\Sigma) P(\xi, T)=g(2, \xi, T) \approx|\Sigma|^{-\frac{1}{2} v} q|T|^{-\frac{1}{8} v_{2}}
$$

Syostituting(6.3.3) into(6.3.2) and using the notation:

$$
\begin{align*}
& n_{i}^{*}=n_{i} \quad y i \neq r \\
& n_{r}^{*}=n_{r}+1 \\
& =x_{r, n} n=x \tag{6.2.4}
\end{align*}
$$

gives:

$$
\begin{align*}
& f\left(x \mid T S, v_{1}, v_{2}, \pi_{r}\right)=\iint_{\Sigma}|\Sigma|^{-\frac{1}{2}\left(N+v_{1}+1\right)} \quad \exp \left\{-\frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{n_{1}^{*}}\left(x_{\left.\left.i j^{*} \mu_{1}\right\rangle^{\prime} \Sigma^{-3}\left(x_{i j}-\mu_{i}\right)\right\}}\right.\right. \\
& \times \iint_{\xi}|T|^{-\frac{1}{2}\left(k+v_{2}\right)} \exp \left\{-\frac{1}{2} \sum_{i=1}^{k}\left(\mu_{i}-\xi\right)^{1} T^{-7}\left(\mu_{i}-\xi\right)\right\} d \xi g d T \text { de d }
\end{align*}
$$

216.

The inner two integrals in $(6,2,5)$ are evaluated using the nultivariate aralogues of the techniques used in the univariate case, the details of which are given in Appendix 6.3, yielding:

$$
\begin{equation*}
\iint_{\xi}\left[\left.T\right|^{-\frac{1}{4}\left(k+v_{2}\right)} \exp \left[-\frac{1}{2} \sum_{i=1}^{k}\left(\mu_{i}-\xi\right)^{\prime} T^{-1}\left(\mu_{i}-\xi\right)\right) d \xi d T<\left|A_{\mu^{1}}\right|^{-\frac{1}{(}\left(k+v_{2}-p-2\right)}\right. \tag{6,2.C}
\end{equation*}
$$

Where $\quad A_{y}=\sum_{i=1}^{k}\left(\mu_{i}-\mu_{i}\right)\left(\mu_{i}-\mu\right)^{\prime}$
and

$$
\mu_{N}=\frac{1}{k} \sum_{i=1}^{k} \mu_{i}
$$

Substituting (6.2.6) into (6.2.5) gives:

$$
\begin{aligned}
&\left.R_{i} ; x \mid T S, v_{1}, v_{2}, \pi_{r}\right) \propto \int\left\{\int_{i}|\Sigma|^{-\frac{1}{2}\left(k+v_{1}+1\right\rangle}\left|A_{2}\right|^{-\frac{1}{8}\left(k+v_{2} * p-2\right)}\right. \\
& \approx \exp \left\{-\frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{n_{i}^{*}}\left(x_{i j}-\mu_{j}\right)^{\prime} \Sigma^{-1}\left(x_{1,}-\mu_{j}\right)\right\} d x d \Sigma
\end{aligned}
$$

Now

$$
\begin{align*}
& \sum_{i=1}^{k} \sum_{j=1}^{n_{j}^{*}}\left(x_{i j}-\mu_{i}\right)^{\prime} \varepsilon^{-1}\left(x_{i j}-\mu_{j}\right)=\sum_{i=1}^{k} \sum_{j=1}^{\sum_{i}^{*}}\left(x_{i j}-x_{i}^{*}\right)^{\prime} \kappa^{-1}\left(x_{i j}-x_{i,}^{*},\right) \\
& +\sum_{i=1}^{k} n_{i}^{*}\left(\mu_{i}-x_{i .}^{*}\right)^{t} \varepsilon^{-7}\left(\mu_{i}-x_{i}^{*}\right) \\
& =\operatorname{tr} \sum_{i}^{-1} A_{2}^{*}+\sum_{i=i}^{k} n_{1}^{*}\left(\mu_{i}+x_{i}^{*}\right)^{\prime} \varepsilon^{-1}\left(\mu_{i}-x_{i,}^{*}\right) \tag{6,2.7}
\end{align*}
$$

where,

$$
A_{2}^{*}=\sum_{i=1}^{k} \sum_{j=1}^{n_{i}^{*}}\left(x_{i j}-x_{i .}^{*}\right)\left(x_{i j}-x_{1 .}^{*}\right)^{\prime}
$$

217.

corresponds to the Within Groups Sum of Squares A_{2} in Table 5.1.1, with x included in the sample from the $r^{\text {th }}$ population, and $x_{i,}^{*}=\frac{1}{n_{i}^{\prime}} \sum_{j=1}^{n+1} x_{i j}^{*}= \begin{cases}x_{i j} . & v i \neq r \\ x_{r .}+\frac{x-x_{r_{+}}}{n_{r}+i}, & i=r\end{cases}$
Therefore,

$$
\begin{align*}
& f\left(x \mid T S, v_{1}, v_{2}, T_{r}\right) \propto \int_{\Sigma}|\Sigma|^{-\frac{1}{2}\left(N+v_{1}-k+1\right\rangle} \exp \left\{-\frac{1}{\Sigma} \operatorname{tr}\left\{\sum^{-1} A_{2}^{*}\right\} \int_{j}\left|A_{y}\right|^{-\frac{1}{2}\left(k+v_{2}-p-2\right)}|\Sigma|^{-\frac{1}{2} k}\right. \\
& \times \exp \left\{-\frac{1}{2} \sum_{i=1}^{k} n_{i}^{k}\left(\mu_{i}-x_{i}^{*} .\right)^{\prime} \Sigma^{-1}\left(\mu_{i}-x_{i}^{*} .\right)\right\} d g d \Sigma \tag{5.2,8}
\end{align*}
$$

Now the inner integral in $(6.2 .8)$ is proportional to the $-\frac{1}{2}\left(k+v_{2}-p-2\right)$ th twont of the generalized variance of a randon sample $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ where the μ_{i} are independently distributed as $N\left(x_{i}, \frac{1}{n_{i}^{*}} \Sigma\right)$,

In order to be able to evaluate ais expected value, we have, as in the univariate case, to make the assumption that the ni are all equal, say,

$$
\begin{equation*}
n_{3}^{*}=n^{*} \quad \forall i \tag{6,2.9}
\end{equation*}
$$

Uriker this assumption, $A_{x}=\sum_{i=1}^{k}\left(\mu_{i}-\mu,\right)\left(u_{i}-\mu\right)^{\prime}$ can be considered to have a p-disensional noncentral Hishart distribution with ($k-1$) degrees of freciom, parameter matrix $\frac{1}{n^{*}} \Sigma$ and noncentralfty matrix:
where $x^{*}, 4=\frac{1}{k} \sum_{i \leqslant 1}^{k} x_{i=1}^{*}$.

$$
\begin{equation*}
\mathbb{X}^{*}=\frac{1}{1} n^{*} \Sigma^{-1} \sum_{i=1}^{k}\left(x_{1}^{*},-x_{\cdots}^{*}\right)\left(x_{1}^{*},-x^{*}\right)^{\prime} \tag{6.2.10}
\end{equation*}
$$

218.

See, for example, Constantine (1963).
So the inner integral in (6.2.8) is proportional) to the $-\frac{1}{8}\left(k+v_{2}-p-2\right)^{\text {th }}$ moment of the generalized variance corresponding to the $N_{p}\left(k-1 ; \frac{1}{n^{\mathbb{N}}} \Sigma, \Omega^{*}\right)$ distribution.

Constantine (1963) studies the moments of the generalized variance corresponding to the $\mathbb{N}_{p}(v ; \Sigma ; \Omega)$ distribution, giving the following as one of the expressions for the $t^{\text {th }}$ moment:

$$
\begin{array}{r}
\mu_{t}^{\prime}=\frac{\Gamma_{p}\left(\frac{1}{2} w+t\right)}{\Gamma_{p}^{\left(\frac{1}{2} v\right)}}|2 \Sigma|^{t} \exp \{-\operatorname{tr} \Omega\}_{1}^{F} p^{\left(\frac{1}{k} v+t ; \frac{1}{2} v ; \Omega\right)} \\
\text { for } t>-\frac{1}{2}(v-p+1) \text { and } v>p-1 \tag{6,2,11}
\end{array}
$$

where $r_{p}\left(\frac{1}{2} v\right)$ is the multivariate gamine function defined in (5.3.5) and,$F_{1}(a ; b ; a)$ is the confluent fynergeometric function with matrix arrunent defined by James (1954). Thus the inner integral in (6.2.8) is equal to (6.0 .11), with t replaced by $-\frac{1}{2}\left(k+v_{2}-p-2\right)$, v by $k-1,2$ by $\frac{1}{n^{*}} \Sigma_{c}$ and Ω by Ω^{*}, Substituting this into (6.2 .8) and simplifying, yields: 0

$$
\begin{align*}
& x \exp \left(-1 \operatorname{tr} \Sigma^{-1} A_{3}^{*}\right\} F_{1}\left(\frac{1}{(}\left(p+1-v_{2}\right) ; 2(k-1) ; \sum \Sigma^{-1} A_{1}\right) d \Sigma \\
& \text { for } v_{2}<2 \text { and } k>p \tag{6,2,12}
\end{align*}
$$

white $A_{1}^{*}=n^{*} \sum_{i=1}^{k}\left(x_{1}^{*},-x_{*+}^{*}\right)\left(x_{1 .}^{k}-x_{. .}\right)^{\prime}$
corresponds to the Between Groups Sum of Squares A_{7} in Table Y.1.1, with x included in the sample frow the $r^{\text {th }}$ population, Fid $A_{3}^{*}=A_{1}^{4}+A_{2}^{*}$ is the corresponding Total Sum of Squares.

219.

In order to evaluate the integral in $(6.2,12)$ note that, by ciafinition,

$$
\begin{equation*}
y_{1} F_{1}\left(v_{1} ; v_{2} ; n\right)=\sum_{j=0}^{\infty} \sum_{x(j)} \frac{v_{1}^{\{x(j))}}{v_{2}^{[x(j)]} \cdot C_{x(j)}(\Omega) / j!} \tag{6.2.13}
\end{equation*}
$$

where,
$x(j)$ is a partition of the integer j of weight p, of the form $\left\{j_{i}, j_{2}, \ldots, j_{p}\right\}$ where $j_{i} \geq 0$ and $\sum_{\{m\}}^{p} j_{i}=j$, ${ }^{C_{X}}(j){ }^{(\Omega)}$ is the zonal nnifnomial in the aigenvalues of Ω corresponding to partition $x(j)$,
${ }_{a}(x(j))=\sum_{i=1}^{p}\left(a-\frac{1}{2}(\{-1))^{\left[j_{i}\right]}\right.$,
$b^{[j]}=b(b+1) \ldots(b+j-1)$
and $\sum_{X}(j)$ denotes the sum over all possibie partitions $\dot{X}(j)$ of j,
Eee, for example, Constantine (1963) or Johnson afd Kotz (1972).

Substitiaing $(6,2,13)$ into $(6,2.12)$ and interchanging the order of sumation and integration (For Justification; see Constantine (1963)) yields:

$$
\begin{align*}
& \times \int_{\Sigma}|\Sigma|^{-\frac{1}{2}\left(H+v_{1}+v_{2}-p-1\right)} \exp \left(-\frac{1}{2} \operatorname{tr} \Sigma^{-1} A_{3}^{*}\right) C_{x(j)}\left(\frac{1}{\Sigma^{-1}} A_{j}\right) d \Sigma \tag{6.2.14}\\
& \text { for } v_{2}<2 \text { and } k>p \text {. }
\end{align*}
$$

The integral in $(6,2.14)$ may now be evaluated using Constantine's (1963) fundarantal integral identity:

$$
\begin{align*}
& \int_{S} \exp (-\operatorname{tr} R S\}|S|^{t-\frac{1}{2}(p+1)} c_{x(j)}(S T) d S \\
& =F_{p}(t, x(j)) E_{x(j)}\left(R^{-1} T\right)|R|^{-t} \tag{6.2+15}\\
& \text { where } \quad F_{p}(t, x(j))=T_{p}(t) t^{[x(j)\}}
\end{align*}
$$

In order to use $(6,2,15)$ to evaluate the integral in $(6,2,24)$ we need to make the transformation:

$$
S=\Sigma^{-1}
$$

With corresponding Jaccbian (See, for exemple Press (1972)):

$$
J(z+s)=|s|^{-(p+1)}
$$

This yields after some simplification, and ignoring all constants of proportionality:

$$
\begin{align*}
& f\left(x \mid \text { TS }, v_{1}, v_{2}, \pi_{r}\right)=\left|A_{3}^{*}\right|^{-2\left(K+v_{1}+v_{2}-2 p-2\right)} \sum_{j-0} \sum_{x(j)} \frac{\left\{\left(\xi\left(\beta+7-v_{2}\right)\right)^{\{x(j\rangle\}}\right.}{\{2(k-1))^{\{x(j)\}}} \\
& x\left(\lambda\left(1+v_{1}+v_{2}-2 p-2\right)\right)^{\{x(j))} C_{\left.\chi(3)^{(A)_{3}^{-1}} A \xi\right) / J!} \\
& \left|A_{3}^{*}\right|^{-\frac{1}{2}\left(N+v_{1}+v_{2}-2 p-2\right\rangle}{ }_{2} F_{1}\left(\frac{z}{2}\left(p+1-v_{2}\right), \frac{1}{2}\left(N+v_{1}+v_{2}-2 p-2\right) ; \frac{1}{2}(k-1) ; A_{3}^{4}{ }^{-T} A_{1}\right) \tag{6,2,16}\\
& \text { for } v_{2}: 2 \text { and } k>p
\end{align*}
$$

where ${ }_{2} F_{1}\left(a_{1}, a_{2} ; b_{2} ;\right.$ a) is the bypergacnetric function with matrix argusent defined by James (1954).

Remark 6,2.1 Constantine (1963) states that the hypergeometric function of matrix argument ${ }_{2} F_{1}\left(a_{1} ; a_{2} ; b_{1} ; \Omega\right)$ converges for $\|\Omega\| \mathcal{1}$, where $R 1$ denotes the maxizum of the absolute values of the eigenvalues of Ω. That $I A_{3}^{*-7} A_{f} I<1$ is easity shown by the following argument:

For $k>p$, 解 is positive definite with probability 1 (See, for example Giri (1977) pages 74-6), so that under this condition $\mathrm{AJ}^{\boldsymbol{- 1}}$ exists. Hence:

$$
\begin{aligned}
A_{3}^{+-1} A \dagger & =\left(A_{\zeta}+A_{2}^{\star}\right)^{-1} A_{\uparrow}^{\star} \\
& =\left(i+A_{\zeta}^{+-1} A_{2}^{*}\right)^{-1}
\end{aligned}
$$

Now, the aigenvalues of $\left(I+A y^{-1} A_{2}^{*}\right)^{-1}$ are the reciprocals of the eigenvalues of $\left(I+A_{1}^{*} A_{2}^{*}\right\}$ and the eigenvelues $\left\{\lambda_{1}\right) \cdot$ of $\left\{I+A_{1}^{*-1} A_{2}^{*}\right\}$ are the roots of the detaminental equation:

$$
\begin{aligned}
\left|I+A_{j}^{-1} A \frac{L}{2}-\lambda I\right| & =0 \\
\text { i.e, } \quad\left|A_{1}^{*-1} A_{2}^{*}-(\lambda-1) I\right| & =0
\end{aligned}
$$

For $k>p$ and $n^{k}>1, A y_{1}^{* 1} A_{2}^{*}$ is positive definite, so that

$$
\begin{array}{lll}
& \left(\lambda_{i}-1\right)>0 & \forall i \\
\text { i.e. } & \lambda_{i}>1 & \forall i
\end{array}
$$

The result now follows, since eigs $\left.\left\{A_{5}^{-1} A\right\}\right)=\left(\frac{1}{\lambda_{1}}\right)$. Helice, expression $(6,2,16)$ for the predictive density of x converges as lang as $k>p, n^{*}>1$.

Retark 6.2.2 To confine that $(6,2,16)$ corresponds to (6.1.13) for the case $\mathrm{p}=1$, nate that in this case:

- \quad| $x(j)=j$ |
| :--- |
| ${ }^{c} x(j)^{(w)}=w^{j}$ |
| $a^{\{x(j)\}}=a^{[j]}$ |

and ${ }_{2} \mathrm{~F}_{1}\left(\mathrm{a}_{1}, a_{2} ; b ; \omega\right)=\sum_{j=0}^{\omega} \frac{a_{1}^{[j]} a_{2}^{[j]}}{b^{[j 2}} \frac{\omega^{j}}{j!}$

So (6.2.16) becomes:

$$
\begin{gathered}
f\left(x \mid T S, v_{1}, v_{2}, r_{r}\right) \propto A_{3}^{-\frac{1}{2}\left(N+v_{1}+v_{2}-4\right)} \sum_{j=0}^{\infty} \frac{\left(z\left(2-v_{2}\right)\right)^{[j]}\left(z\left(N+v_{1}+v_{2}-4 j\right)^{[j]}\right.}{(z(k-1))^{[j]} j!}\left(A_{j}^{*} / A_{3}^{*}\right)^{j} \\
\text { for } v_{2}<2
\end{gathered}
$$

which is exactly expression (6.1.13).

Remark $6.2,3$ As in the univariate case, assumption (6.2.9) effectivaly implies that:

$$
n_{1}=n^{k}=n, \quad i=1, \ldots, k
$$

and that when gyaluating the posterior probability that x beiongs to π_{r}, one of the $x_{r j}$ chosent fron $\left\{x_{r j}, d=1, \ldots, n\right\}$ is replaced by x in the sample. Undor these circumstanks therefore, the effective size of the training sample becomes $\mathrm{N}-1$.

Analogously to results $(6.1,14)$ and $(6.1 .15)$ for the univariate a case we have that:

$$
\begin{equation*}
A_{j}^{*}=A_{1}+\left(x-x_{r j}\right)\left(x_{r,}-x_{\ldots}\right)^{\prime}+\left(x_{r,}, x_{, .}\right)\left(x-x_{r j}\right)^{\prime}+\frac{k-1}{k n}\left(x-x_{r j}\right)\left(x-x_{r j}\right)^{\prime} \tag{6.2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{\frac{u}{2}}=A_{2}-\frac{1}{n}\left(x-x_{r j}\right)\left(x-x_{r j}\right)^{\prime}-\left(x_{r j}-x_{r .}\right)\left(x_{r j}-x_{r}\right)^{\prime}+\left(x-x_{r}\right)\left(x-x_{r}\right)^{\prime} \tag{6.2.18}
\end{equation*}
$$

where,

$$
\left\{\begin{array}{l}
A_{1}=n \sum_{i=1}^{k}\left(x_{i,}, x_{. .}\right)\left(x_{i,}-x_{. .}\right)^{\prime} \\
\text { aind } A_{2}=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i .}\right)\left(x_{i j}-x_{i .}\right)^{\prime}
\end{array}\right.
$$

are the between group and within groups sums of squares, respectively, as defined in Table 5.1.7. Finally, A_{3}^{*} is obtained from:

$$
\begin{equation*}
A_{3}^{*}=A_{j}^{*}+A_{2}^{*} \tag{6.2.19}
\end{equation*}
$$

Formulae $(6,2.17)$ and (6.2 .19) will be useful when evaluating the predictive density $(6.2 .16)$ for all groups $\pi_{r}, r=1, \ldots, k_{1}$. Theif \quad ifs are the exact wultivariate analoguss of those givan in Appendix 6.2° for the case $p=1$ and will therefore be owitted.

If hould also be noted that under these circuastances N should be replaced by $N-1$ in $(6.2 .16)$

Remark 6.2.4 As in the univiritute case, the parameter v_{1} inay assume the value $p+1$, giving a the usual noninfornative prior distribution, whereds v_{2} has to assume a valus less than 2 to ersure that the predictive density is properly defined, If therefore, analogously to the univariate case, we assign the values:
is

$$
\begin{aligned}
& v_{1}=p+1 \\
& v_{2}=1
\end{aligned}
$$

giving Σ a noninformative prior distribution relative to the likelihood function of the multivariate nomal distribution, and T a prior distribution that is only very approximately 30 , then the predictive density becones (remembering that N is replaced by $\mathrm{N}-1$):
$f\left(x\left[T S, \tau_{r}\right)=\left\lvert\, A_{3}\left[^{\left.-\frac{1}{2}(N-p-1)\right)_{2}{ }^{F}} 1\left(\frac{1}{2}, p, \frac{1}{2}(N-p-1) ; \quad \frac{1}{2}(k-7) ; A_{3}^{-1} A_{j}\right)\right.\right.\right.$
for $k>\rho$
Remark 6.2.5 The al ternate, asymptotic expression for $f\left(x \mid T S, v_{1}, v_{2}, \pi_{r}\right)$ corresponding to that in the univariate case is obtained by reversing the ander of integration in $(6,2,8)$. This yields:
 where x_{v}^{*} is the $(p \times k)$ matrix: $\left(x_{j}^{*}, x_{2}^{*}, \ldots, x_{k}^{k}\right)$ and $A=$ dfan $\left.\left\{n_{j}^{*} ; i=\right\}, \ldots, k\right\}$

The secois. \quad in the integrand is proportional to the density fur tion of a $(p \times k)$ matrix T-distribution centored at X^{*} (See, for examb. \qquad $>$ Dickay, 1967) so the integrai is proportional to the $-\frac{1}{2}\left(k+v_{2}-p-2\right)^{\text {th }}$ moment of tite (unnormed) sample covariance matrix

$$
A_{x}=\sum_{i=1}^{k}\left(\mu_{i}-\mu_{i}\right)\left(\mu_{i}-\mu_{i}\right)^{\prime}
$$

Where the $\mu_{i}, i=1, \ldots, k$ jointly have the abovenentioned distribution.
Assuning that $n_{i}^{*}=2 z^{*}, \forall 9$ and that ${ }^{\prime \prime}$ is 1arge enough for the matriy T-distribution to be approximated by the joint distribution of k independent (since Λ is a diagonal 濰rix), p-variate nomal randow variables with differant inean vectors $x_{i}^{*}, 1=1, \ldots, k$ but cormon covariance matrix, the above integral may be avaluated approximetely using
the $-\frac{1}{2}\left(k+v_{2}-p-2\right)^{\text {th }}$ monemt of the generalized variance of the noncentral Wishart distribution $K_{p}\left(k-1 ; \frac{1}{n^{*}} S_{2}^{*} ; \Omega^{*}\right)$
where:

$$
\begin{aligned}
& S_{2}^{*}=\frac{1}{N-k} A_{2}^{*} \quad \text { (assuning } N=k n^{*}=k n \text {) } \\
& \text { and } \quad-S^{*}=\frac{1}{2} S_{2}^{\phi_{2}^{-1}} A_{1}^{*}
\end{aligned}
$$

Theis yields, after sone algebra:

$$
\begin{gather*}
f\left(x \mid T S, v_{1}, v_{2}, \pi_{r}\right) \dot{\alpha}\left|A_{2}^{*}\right|^{-\frac{1}{2}\left(N+k+v_{1}+v_{2}-2 p-2\right)} \exp \left\{-\operatorname{tr} \Omega^{*}\right\} F_{1} F_{1}\left(\dot{z}\left(p-v_{2}+1\right) ; \frac{1}{2}(k-1) ; \Omega^{\star}\right) \\
\quad \text { for } v_{2}<2 \text { and } k>p \tag{6.2.21}
\end{gather*}
$$

Once again, the parameter v_{2} has to assune a value less than 2 so that T cannot have the usual noninformative prior distribution. Assigning the values $\mathrm{v}_{1}=?+1$ and $\mathrm{v}_{2}=1$ as before and replacing N by $\mathrm{X}-1$ (see Remark $6.2 .3),(6.2,27)$ becontes:

$$
\begin{equation*}
f\left(x \mid T S, \pi_{r}\right) \dot{\propto}\left|A_{2}^{*}\right|^{-\frac{1}{2}(N+k-p-1)} \exp \left(-\operatorname{tr} \Omega^{*}\right), F_{1}\left(\lambda p ; \frac{1}{\varepsilon}(k-1) \pm \AA^{*}\right\} \tag{6,2,22}
\end{equation*}
$$

6.2.1 On Evaluating the Predictive Densities in the Multivariate case

The exact and approxinate formulae $(6.2 .20)$ and $(6.2 .22)$ for the predictive ciensity of x given that it comes from π_{r} are expressed in tems of the hyparguonetric function of matrix argument ${ }_{2} F_{1}\left(\frac{1}{2} p, \frac{1}{1}(k-p-1)\right.$; $\left.\frac{1}{2}(k-1) ; A_{3}^{-1} A f\right)$ and the comfulent hypergcometric function of matrix
 these runctions, the suite of FORTRAN programs of van der Nesthuizen and Nagal (1979) for computing the zonal palynomiais in the eigenvafues of a matrix a, corresponding to all the partitions of an integer j, were used. This suite consists of a number of programs that generate tables of all
the partition vectors, symmetric functions, elementary symmetric function weights and Chi-coefficients (James, 1961, 1958) corresponding to all the partitions of the intogers of interest, and then store them on flles in the computer. The zonal polynomals corresponding to these integers are then computed by the last program in the suite, using these tables and the eigenvalues of the matrix in question.

Although the actual computation of the zonal polynomials is quite rapid once the files containing the abovesentioned tables exist, the generation of these tables is very heavy on cosputer time, particularly for large integers, where the number of possible partitions becones very large. As an indication of this, it took about 20 hours on the University of South Africa's Burroughs B6800 computer to generate the tables corresponding to all the partitions of all the integers up to 18.

Unfortunately in all the examples considered, the nusber of terns required for either of the two abovementioned hypergeonetric functions to converge was fer in excess of what could reasonably be conputed without incurring prohfbitive computing costs. An ettempt was made to get an indication of the values, or relative values, of the hypergeonetric functions in the predictive densities corrasponding to different populations by studying the successive sums of the individual tems in the hypergeonetric series for integers $j=1$ to 18 . However, the graphs of neither the vaiues of these successive sums against j nor of the ratios of these sums corresponding to different populations against 5 , providad any insight, Except that the values and relativo values of the hypergeometric functions would be very difforent frow the values and relatit, values of the sums of the first aighteen terms in the corresponding hypergeometric series.

Therefore, the unhappy conclusion is that although the programs of van der Westhuizen and Kage? (1979) are very useful for computing the
the partition vectors, symmetric functions, elementary symetric function weights and Chi-coefficients (Janes, 1961, 1968) corresponding to all the partitions of the integers of interest, and then store them on files in the computer. The zonal polynomials corresponding to these integers are then computed by the last program in the suite, using these tobles and the eigenvalues of the matrix in question.

Although the actual conputation of the zonal polynomials is quite rapid once the files containing the abovenentioned tables exist, the generatinn of these tables is very heavy on conputar time, particularly for large integers, where the number of possible partitions becomes very Targe. As an indication of this, it took about 20 hours on the University of South Africa's Burroughs B6800 coloputer to generate the tables corresponding to all the partitions of all the integers up to 18.

Unfortunately in all the examples considered, the number of tarms required for efther of the two abovementioned hypergeometric functions to converge sas far in excess of what could reasonably be colliputed without incurring prohibitive computing costs. An ettempt was made to get an indication of the values, or reletive velues, of the hypergeonetric functions in the predictive densities corresponding to different nopulations by studying the successive sues of the individual toms in the hypergeomatric series for integers $j=1$ to 78. However, the graphs of neither the values of these successive sums against 3 nor of the ratios of these sums corresponding to different populations against j, provided ary insigit, excupt that the values and relative values of the hypergeometric functions would be very different from the values and relative values of the sums of the first eighteen teras in the corresponding hypergeometric series.

Therefore, the unkappy conclusion is that although the programs of van der Mesthuizen anc Nagel (1979) are very useful for conputing the
values of individual zonal polynomials, they are unfortunately not of much practical use, given the computers presently available, for evaluating the hypergeometric functions of matrix argunent appearing in the predictive densities under the random effects model.

6.3 The Predictive Bayesian Approach using different prior

Distributions

In this section we investigate the use of two different prior distributions in the evaluation of the predictive density of a need observation x of unknown origin, given the training sample TS $=f x_{i j}$, $\left.j=1, \ldots, n_{f} ;\{=\}, \ldots, k\right\}$ and the hypothesis that $x \in \pi_{r}$, one of the k populations in the training sample.

The reasun for doing this is twofold:
Firstly, other authors have considered different prior distributions for the parameters in Bayesian analyses associated with the norwal distribution, and it is interesting to investigate their use in the present context.

Secondly, in the light of the problems encountered with the parameter v_{2} (the exponent of τ^{-1} and $|T|^{-\frac{1}{2}}$) when using the noninformative prior distribution in evaivating the predictive density of x, it is interesting to see whether similar problems occur when different prior assumptions are used.

The following two cases will therefore be investigated in Subsections 6.3.1 and 6.3 .2 , respectively:
(1) using the distribution that gox and. Tiao (1973) use as reference prion when consfidering the randen effects model in the context of one-wey analysit of variance, and
(2) using the natural zonjugate prior distribution for the psrameters σ^{2} (or Σ), ξ and τ^{2} (or T).

Because of the fact that the results for the unfyariate and multivariate situations are, aparc from algebraic complexity, essentially the sane, the above two cases will be investigated only for the univariate situation. In the first case the result obtained will, houever, also be given for the corresponding multivariato situation.

Finally, some general comments about the Predictive Bayesian approach under the randor effect model will be made in 5ub-section 6,3.3.

6.3.1 Box and Ti80's Prior Distribution

Box and Tiao (?973), Chapter 5, make the point that under the randont effects model with equal sanple sizes from each group, the samping theory estimator $\hat{\tau}^{2}$ for the variance τ^{2} of the population means μ_{j}, given by:

$$
\hat{\tau}^{2}=\frac{S_{1}-S_{2}}{n}
$$

where S_{1} and S_{2} are the between groups and within groups \%ean squares, respectively, as defined in Table 5.1.1 for $p=1$ dimension, say be negative.
229.

In order to avoid this possibility within the Bayesian framework, they propose the following noninformative joint prior density for the paremeters $\sigma^{2} ; \xi$ and τ^{2} :

$$
\begin{equation*}
g\left(\sigma^{2}, \xi, \tau^{2}\right) d \sigma^{2} d \xi d \tau^{2} \propto\left(\sigma^{2}\right)^{-1}\left(\sigma^{2}+m \tau^{2}\right)^{-1} d \sigma^{2} d \xi d \tau^{2} \tag{6.3.1}
\end{equation*}
$$

Remark 6.3.1 This prior distribution can be criticised because of the fact that the within-groups sample size n appears in expression (6.3.1) for its density. Thus the prior distribution is in this sense dependent on the actual likelihood function of the sample itself, and not only on the form of the likelihood function, as is usually the case.

As before, we will generalise expression (5.3.1) for the prior density siightly by using the following form:

$$
\begin{equation*}
g\left(\sigma^{2}, \xi, \tau^{2}\right) d \sigma^{2} d \xi d \tau^{2} \propto\left(\sigma^{2}\right)^{-\frac{1}{2} V_{1}}\left(\sigma^{2}+n \tau^{2}\right)^{-\frac{1}{2} V_{2}} d \sigma^{2} d \xi d \tau^{2} . \tag{6.3.2}
\end{equation*}
$$

The form ussd by Box and Tiao is therefore given by (6.3.2) with $v_{1}=v_{2}=2$.

Substituting $(6,2.2)$ into (6.7.2) and (6.1.3) of Section 6.1 and using the same notation as in (6.7.4) gives:

$$
\begin{align*}
& \times \tau^{-k} \exp \left\{-\frac{1}{2 \tau^{2}} \sum_{i=1}^{k}\left(\mu_{i}-\tau\right)^{2}\right\}\left(\sigma^{2}\right)^{-\frac{1}{2} v_{1}}\left(\sigma^{2}+m \tau^{2}\right)^{-\frac{1}{2} v_{2}} d \xi d \tau^{2} d y d d^{2} \tag{6.3.3}
\end{align*}
$$

where, as before, $i t$ has been assumed that $n_{i}^{*}=A, \forall i, s o$ that the $j^{\text {th }}$ observation $x_{r j}$ from π_{r} has betn replaced by $x_{c} x$ has been re-labelled X_{rj} and N has been replaced by $\mathrm{N}-1$.

As shown in appendix 6.4 , this eventually yields:

$$
\begin{equation*}
f\left(x \mid T S, v_{1}, v_{2}, v_{c}\right) \in\left(A_{1}^{*}\right)^{-\frac{1}{2}\left(v_{2}+k-3\right)}\left(A_{2}^{*}\right)^{-\frac{3}{2}\left(N+v_{1}-k-2\right)} E_{z}\left[\frac{A z^{\prime}}{\left[\frac{1}{2}\right.}\left(\frac{3}{2}\left(v_{2}+k-3\right)\right)\right] \tag{6.3.4}
\end{equation*}
$$

\Rightarrow
where,
and

$$
A_{1}^{*}=n \sum_{i=1}^{k}\left(x_{i}^{k} .-x_{n}^{2}\right)^{2}
$$

$$
A_{2}^{*}=\sum_{j=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i}^{*}\right)^{2}
$$

are the between group and within group sumis of squares, respectively, yift x replacing one uf Pic 新 $34 r v a t i o n s ; ~ x_{r y}$, from the $r^{\text {th }}$ group, and x_{1}^{*}, and x^{*}, are the correspenaine adjusted $i^{\text {th }}$ grous mind overall means,

$$
r_{y}(n)=\int_{0}^{y} w^{n-1} e^{--k} d N
$$

is the incomplote gama function, and the expectation is taken over the distribution of z, where z has a gama distribution with paraneter $\frac{1}{8}\left(\$+v y^{-k-2)}\right.$. Therefore, for $v_{1}=v_{2}=2$, the predictive density of x, given the training sample, Box and Tiao's prior distribution and the hypothesis that, $X \in \pi_{r}$, is, from $(6,3,4)$

$$
\begin{equation*}
f\left(x \mid T S, D_{r}\right)=\left(A_{1}^{*}\right)^{-\frac{1}{2}(k-1)}\left(A_{2}^{*}\right)^{-\frac{1}{k}(N-k)} E_{z}\left[\frac{\left.\sqrt{\frac{A_{1}^{*}}{2}\left(\frac{1}{2}(k-1)\right)}\right]}{A_{2}^{*}}\right] \tag{6.3.5}
\end{equation*}
$$

where z has a gamna distribution with parameter $\frac{1}{8}(N-k)$.

231.

To evaluate expression $(6,3.5)$, the easiest approach is to use Pearson's (1922) formula for the incomplete garme function (the formala given by Pearson is for the incomplete gamala function ratio $\mathrm{r}_{\mathrm{y}}(\mathrm{m}) / \mathrm{\Gamma}(\mathrm{e})$):

$$
\begin{equation*}
r_{y}(m)=m^{-1} \exp (-y) \sum_{j=0}^{\infty} y^{m+j} /(1+i d)^{[j]} \tag{6.3.6}
\end{equation*}
$$

Appiying (6.3.6) t.o (6.3 .5) and interchanging the order of integration and sumation (justified by the uniform convergence of (6.3.6) for all y), yields:

$$
\begin{aligned}
& f\left(x \mid T S, \pi_{r}\right) *\left(A_{1}^{*}\right)^{-\frac{1}{2}(k-1)}\left(A_{2}^{*}\right)^{-\frac{1}{2}(N-k)} \sum_{j=0}^{\infty} \frac{\left(A_{1}^{*} / A_{2}^{*}\right)^{\frac{1}{2}(k-1)+j}}{\left(\frac{1}{2}(k+1)\right)^{[j]}} \\
& \times \int_{\mathcal{E}}^{\infty} \exp \left\{-\left(A_{1}^{*} / A_{2}^{*}\right) z\right\} z^{\frac{1}{2}(k-1)+j_{z^{2}}^{\frac{1}{2}}(N-k)-T_{\exp }(-z\} d z}
\end{aligned}
$$

where $A_{3}^{*}=A_{1}^{*}+A_{2}^{*}$.
The integral may be evaluated as a gama function, and after some simplification this eventually yields the following expression for the predictive density:

$$
\begin{align*}
& f\left(x \mid T S, r_{r}\right)=\left(A_{3}^{+}\right)^{-\frac{1}{k}(N-1)} \sum_{j=0}^{\infty} \frac{(\lambda(N-1))^{[j]}}{\left(\frac{1}{2}(k+1)\right)^{[j]}}\left(A_{1}^{*} / A_{3}^{*}\right)^{j} \\
& -\left(A_{3}^{*}\right)^{\left.-\frac{1}{2}(N-1)_{F\left(1, \frac{1}{2}(N-1)\right.} ; \frac{1}{2}(k+1) ; A_{j}^{*} / A_{3}^{*}\right)} \tag{6.3.7}
\end{align*}
$$

where $F(\alpha, B ; Y ; X)$ is the hypergeometric function defined in (6,1,13),

Remark 6.3.2. It is interesting to note the close similarity between expressions (6.3 .7) and (6.1 .17), the former başed on Box and Tiao's noninformative prior distribution (6.3.1) for the random effects model, and the latter on the noninformative prior distribution (6.1.1), with $v_{1} * 2$ and $v_{2}=1$. In order to establish just how similar these two expressions are, (6.3.7) was applied to the data of Example 6.1.1, yielding the following posterior probabilities for each of the five populations, assuming equal prior probabilities:

Population	1	2	3	4	5
Posterfior prob;	.0072	.0565	.4921	.3766	.0676

These probabilities agree, to two decimal places, with those obtained using (6.1.17), confiming that the choice of noninformative prior distribution has littile effect on the predictive densities.

Finally, it is interesting to note that we do not experience any problens with the parameters v_{1} and v_{2} in the Box and Tiao prior distribution, in contrast to the case with the more usual noninfomative prior.

Remark 6.3.3 In the multivariate case, Box and Tiao's prior distribution for the Random Effects model is:

$$
\begin{equation*}
P(\xi, T, \Sigma)=|\Sigma|^{-\frac{1}{b}(p+1)}|x+n T|^{-\frac{1}{2}(p+1)} \tag{6.3.8}
\end{equation*}
$$

and the predictive density of x becomes, in an analogous manner to (6.3.7):

$$
\begin{equation*}
f\left(x \mid T S, \pi_{r}\right) \propto\left|A_{3}\right|^{-\frac{2}{2}(\%)}{ }_{2} F_{1}\left(\frac{1}{n}(p+1), \frac{1}{2}(k-p) ; \frac{1}{2}(k+1) ; A_{3}^{*-1} A_{j}^{*}\right) \tag{6,3.9}
\end{equation*}
$$

where A_{1}^{*} and A_{3}^{*} are defined in Section 6.2 and ${ }_{2} F_{1}\left(a_{1}, a_{2} ; b_{1} ; a\right)$ is the hypergeomstric function of matrix argument defined in $(6,2,16)$.

6.3.2 Natural Conjugate Prior Distributions

The joist natural conjugate prior distribution for the case $p=1$ for the mean and varlance of the nornal distribution is the Normal-inverted X^{2} distribution (see, for example, Press (1972)) with density function:

$$
\begin{equation*}
f\left(\xi, \tau^{2}\right)=\left(\tau^{2}\right)^{-\frac{1}{2}\left(v_{2}+1\right)} \exp \left\{-\frac{1}{2}\left(\left(\frac{\xi-b}{c \tau}\right)^{2}+\frac{d^{2}}{\tau^{2}}\right)\right\} \tag{6.3.10}
\end{equation*}
$$

where v_{2}, b, c and dare constants and $v_{2}>2$. The natural conjugate prior distribution for σ^{2} is the inverted χ^{2} distribution, with density function (see, for example, Box and Tiao (1973)):

$$
\begin{equation*}
g\left(\sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-\frac{1}{2} v_{1}} \exp \left(-\frac{1}{\frac{a^{2}}{\alpha^{2}}}{ }^{2}\right. \tag{6.3.11}
\end{equation*}
$$

where v_{1} and a ara constants and $v_{1}>2$, and it would seen reasonabie to assurse that σ^{2} is independent of $\left(5, \tau^{2}\right)$.

Substituting $(6.3 .10)$ and (6.3.11) into (6.1.2) and (6.1.3) yields the following expression for the predictive density of x, where we have assumed that $n_{i}=n_{,} y_{i}$ and that x has roplaced soma $x_{r j}$ in the training sample fros π_{r} :

$$
\begin{aligned}
& f\left(\gamma \mid T S, a, b, c, d_{2}, v_{1}, v_{2}, \eta_{r}\right)=\int_{\sigma^{2}} \int_{\alpha} \int_{\tau^{2} \xi} \sigma^{-N} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{j=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-\mu_{i}\right)^{2}\right\} \\
& \times \tau^{-k} \exp \left\{-\frac{1}{2 \tau^{2}} \sum_{i=1}^{k}\left(\mu_{i}-\xi\right)^{2}\right\} \sigma^{-v} 1 \exp \left(-\frac{1}{2} \frac{a^{2}}{\sigma^{2}}\right\} \\
& \left.\times \tau^{-\left(v_{2}+1\right)} \exp \left\{-\frac{1}{8}\left(\frac{\xi-b}{C \tau}\right)^{2}+\frac{d^{2}}{\tau^{2}}\right)\right) d \xi d \tau^{2} d y d v^{2}
\end{aligned}
$$

$$
\begin{align*}
= & \int_{\sigma^{2}} \int_{\xi} \sigma^{-\left(N+v_{1}\right)} \exp \left\{-\frac{1}{2 a^{2}}\left(a^{2}+\sum_{i=1}^{k} \sum_{j \neq 1}^{n}\left(x_{1, j}-\mu_{1}\right)^{2}\right)\right\} \\
& \int_{\tau^{2}} \int_{\xi}^{-\left(k+v_{2}+7\right)} \exp \left\{-\frac{1}{2 \tau^{2}}\left(\sum_{i=1}^{k}\left(\mu_{i}-\xi\right)^{2}+\left(\frac{\xi-b}{c}\right)^{2}+d^{2}\right)\right\} d \xi d \tau^{2} d d d \sigma^{2} \tag{6.3.12}
\end{align*}
$$

The inner pair of integrals I_{1} in (6.3.12) are evaluated in a manner analogous to that used to evaluate the corresponding integrals in Section 6.1 , ylelding

$$
\begin{align*}
& I_{1} \propto(g(u))^{-\frac{1}{2}\left(k+v_{2}-2\right)} \tag{5,3.13}\\
& \text { where } g(\mu)=\sum_{\left\{\frac{1}{j}\right\}}^{k}\left(\mu_{j}-\mu\right)^{2}+\frac{k}{l+c^{2} k}(\mu,-b)^{2}+d^{2}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
& f\left(x \mid T S, a, b, c, d, v_{1}, v_{2}\right) \propto \int_{\sigma^{2}}\left(\sigma^{2}\right)^{-\frac{1}{2} v_{1}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(a^{2}+A_{2}^{*}\right)\right\} \\
& \therefore \vdots \int_{k}(g(\mu))^{-\frac{1}{k}\left(k+y_{2}-2\right)} \sigma^{-N} \exp \left\{-\frac{n}{2 \sigma^{2}} \sum_{i=1}^{k}\left(\mu_{i}-x_{i}^{2},\right)^{2}\right\} d y d \sigma^{2}
\end{aligned}
$$

where $\quad A_{2}^{*}=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i}^{*}\right)^{2}$

The inner integral in $(6,3,14)$ can be considered as the expected value of
ín
$(g(y))^{-\frac{1}{2}\left(k+v_{2}-2\right)}$ where the $\mu_{i}, i=1, \ldots, k_{i}$ are independently dis tributed $N\left(x_{i}^{*}, \frac{g^{2}}{n}\right)$ random variables.

A way of evaluating this expected value is to assume that. $c^{2} \& k$, so that

$$
\frac{k}{c^{2} k+1} \geqslant k
$$

and

$$
g(d) * \sum_{i=1}^{k}\left(u_{i}-b\right)^{2}+d^{2}
$$

Remark 6.3.4 The assurption $c^{2} \& k$ implies that, a priori, ξ has a distribution that is narrowly concentrated around the value $\xi=\mathrm{b}$ and that the information from this prior distribution far outweighs the information contained in the training sample,

Under this assurption it is clear that $g(\mu)$ is distributed as:

$$
g(\underline{L}) \sim \frac{\sigma^{2}}{n} x_{k}^{2}\left(\lambda^{*}\right)+d^{2}
$$

where $\chi_{k}^{2}\left(\lambda^{*}\right)$ represents o noncentral chi-squared raviom variable with k degrees of freedow and noncentrality parameter:

$$
\lambda^{*}=\frac{n}{\sigma^{2}} \sum_{i=1}^{k}\left(x_{i}^{*}-b\right)^{2}
$$

So the inner integral in (6.3.14) can be considered to be proportional to the $-\frac{i}{}\left(k+v_{2}-2\right)^{\text {th }}$ moment of $\frac{n}{\sigma^{2}}$ tives a $x_{k}^{2}\left(\lambda^{*}\right)$ distribution that has been shifted an amount $\frac{n d^{2}}{\sigma^{2}}$ to the right. From Appendix 6.1 wo know that thís moment will exist only if

$$
-\frac{k}{k}\left(k+y_{2}-2\right)>-\frac{k}{2}
$$

i.e. only if $v_{2}<2$
236.

However, this condition violates the cond': tion $\mathbf{v}_{2}>2$ that is necessary for the natural conjugate prior to be a proper distribution.

On the surface it would therafore appear that wien the parameters σ^{2}, ξ and τ^{2} follow their natural conjugate prior distributions, then the predictive density of x does not exist. However, this contradicts the fact that since the joint distribution of x, μ, σ^{2}, ξ and τ^{2} is proper, the marginal distribution, and therefore the predictive density, of x must exist. The reasci for this contradiction clearly lies in the approximiating assumption on $\mathrm{g}(\mathrm{g})$ which has apparently been 50 powerful as to have randered improper the predictive distribution of x.

As it does not appear to be possible to evaluate the integral $(6,3.14)$ analytically without this approximating assuription on $g(y)$, we will not pursue the matter any further. It is nevertheless interesting to compare the situation found here with that when $\sigma^{2}, 5$ and τ^{2} follow diffuse prior distributions. Under those circuastances the predictive density of x does not exist when the parameter v_{2} in the prior density of τ^{2} is given the value 2, required for it to be noninformative in the usual sense.

6.3.3 Final Remarks

From the results of the previous two sub-sections we therefore know that:

1) the posterior probabilities of the k_{1} populations from which the observation x could have cone are not materially affected by the fom of noninformative prior distribution used for the parameters σ^{2} (or Σ), ξ and τ^{2} (or T), be it the more usual (Jeffreys, 1961) invariant prior distribution (with modification to the parameter v_{2}) or Box and Tiao's (1973) prior distribution for the random effects model;
2) if the abovementioned parameters follow their natural conjugate prior distributione then the corresponding predictive densities cannot be evaluated.

The formulae for the predictive densities derived in this section and in the previous two are all expressed compactily in teras of hypergeometric functions, which are readily evaluated on a conputer or
even a modern programmable pocket calculator for the case $p=1$. For higher dimansions however, in spite of the existence of the programs of van der Mesthuizen and Nagel (1979) for coaputing zonal polynmials, described in sub-section 6.2 .1 , the computation of the hypergeometric functions of matrix argument, and hence the predictive densities and posterior probabilities, is not yet d practical proposition.

The only amiguity in all the abovamentioned formulae derives fron the fact that x can replace any one of the n observations $x_{r j}, j=1, \ldots, n$ in the training sample from r_{r} when computing the guantities μ_{1}, A_{2}^{*} and A_{3} appearing in them.

A sensible rule for getting around this anbiguity would be to replace that observation $X_{r j_{*}}$ that is closest to the sample mean from the $r^{\text {th }}$ population, as measured by the Kahalanobis distance. i, e. Choose $\mathrm{X}_{\mathrm{r} \mathrm{f}_{*}}$ such that

$$
\theta_{\mathrm{r}}^{2}\left(x_{\mathrm{rj}}\right)=\left(x_{\mathrm{rj}}-x_{\mathrm{r}}\right)^{\prime} s^{-1}\left(x_{\mathrm{rj}}-x_{\mathrm{r}}\right)
$$

is minimised when $j=j_{*}$.
This rule would avoid the possibility of anomalous results due to, for example, an extreme observation from π_{r} being replaced by x.

6.4 Other Bayesian Type Approaches

In this section two further approaches to discriminant analysis, the Empirical Bayes and Semi-Bayes approdshos, are discussed in the context of the randon affects model. In eacin , λ_{-3} the discussion is confined to a brief description of the approach, its application to the present problef, the derivation of preliminary resul and recormendations for further research.

6.4.1 The Empirical Bayes Approach

wod descriptions of the Empirical Bayes, approach to statistical infr whe may be found in many texts (see, for exarole, Maritz (1970), Co齐 and Hinkiey (1974) and van Niekerk (1978) and therefore a brief sketch here will suffice.

Suppose we have an observation x made on a random variable X whose distribution function $F(X \mid \lambda)$ depends on an unknown (vector) paraneter λ. In both the "pure" Bayes and Enpirical Bayes methods the paraneter λ is assused to have a prior distribution, the point of departure between the two baing the way in which this prior distribution is trated. As we have sees, the "pure" Bayes approach assumes that the prior distribution of λ is either completely specified or that any unknown parameters in it thenselves have prior distributions that are cotapletely specified. In contrast, the Enpirical Bayes (EB) approach gives the prior distribution of λ a frequency interpretation whose paraneters may be astimated from previous data by classical techniques. Therofore the E.B. approach uses the mathematical techniques and results of the "pure" Bayes approach, but avoids the problem in this approach of having to specify the prior distribution completely.

For example, it is well known (see, for example, fou).
d) that the Bayes point estimator of λ given x is, using a quasraticic loss function:

$$
\begin{equation*}
\hat{\lambda}(x)=\frac{I \lambda d F}{\sim(x \mid \lambda) d G(\lambda\rangle} \tag{6.4.1}
\end{equation*}
$$

where,
$G(\lambda)$ is the prior distribution function of A sha the integration is performed with respect to $G(\lambda)$.

Tho E.B. estimator of λ is now obtained from ($6,{ }^{\circ}$, by replacing $G(\lambda)$
239.
by $\hat{\mathbf{G}}(\lambda)$, the sample-based estimator of the prior distribution function of λ.
we may apply formula ($6,4,1$) to our random effects model as follows.
Assume that

$$
\begin{equation*}
X \mid \mu \sim N_{p}(\mu, \Sigma\rangle \tag{6,4,2}
\end{equation*}
$$

where, a priori,

$$
\begin{equation*}
\mu \sim N_{p}(\xi, T) \tag{6,4,3}
\end{equation*}
$$

Given an observation x of X, our Bayesian point estimator of the corresponding μ is:

$$
\begin{equation*}
\hat{\mu}(x)=\frac{\int \mu f(x \mid \mu) g(u) d \mu}{\int f(x \mid \mu) g(\mu) d \mu} \tag{6,4,4}
\end{equation*}
$$

where $f(x \mid \mu)$ and $g(\mu)$ are the density functions of the distributions (6.4.2) and (6.4.3) respectively.

This yialds, aftar some algebra (see, for example, Maritz (1970) for the univariate case):

$$
\begin{equation*}
\hat{\mu}(x)=x-\Sigma(\Sigma+r)^{-1}(x-\xi) \tag{6,4,5}
\end{equation*}
$$

The E.B. estimator of u is now obtained by replacing the unknown parameters Σ, ξ and T in $(6,4,5)$ by their sample-based estimators \hat{Z}, \widehat{G} and \hat{T}, respectively.

In practice, particularly in discriminant andysis, we will genemsiy have more than one observation x on which to base our astimator of μ. In the situation considered in this thesis, where we have a training
sample $\left\{x_{i j}, j=1, \ldots, n\right\}$ of size n from each of : populations π_{i}, $\mathcal{i}_{1}=1, \ldots, k$, as described in Section 5.1, then our E.B. estimator of the mean μ_{i} of π_{i} will be based on the sample mean x_{i}. . Remesbering that

$$
x_{i} \left\lvert\, \mu_{i} \sim \sim_{p}\left(\mu_{i}, \frac{1}{n} \Sigma\right)\right.
$$

and using ti:a notation of "able 5.1.1, the E.B, estimator of μ_{i} is, from (6.4 .5):

$$
\begin{align*}
\hat{u}_{i}(E E) & =x_{i,}-\frac{1}{n} \hat{\Sigma}\left(\frac{1}{n} \hat{\varepsilon}+\hat{T}\right)^{-1}\left(x_{i},-\hat{\xi}\right) \\
& =x_{1,}-s_{2} s_{1}^{-1}\left(x_{1,}+x_{,}\right. \tag{6,4.6}
\end{align*}
$$

where S_{1} and S_{2} are the between group and within group mean square matrices, iespectively.
Coming now to our discriminant analysis probles, the Bayesian classification rule that minimises the expected loss from misclassification (assuming equal costs of misclassification) is to classify the observation x of unknown origin into that population π_{i} for which

$$
\begin{equation*}
\left(x-\frac{i}{2}\left(\mu_{i}+\mu_{j}\right)\right)^{r} z^{-1}\left(\mu_{j}-\mu_{j}\right)>\log \frac{q_{j}}{q_{i}} \quad \forall j=1, \ldots, k ; j \in i \tag{6.4.7}
\end{equation*}
$$

where a_{j} is the prior probability that x cones from r_{j}, (See (2.1.3) in Chapter 2).
As mentioned in Sub-section 2.1.1, Anderson's (1951) "plug-in" rule (2.1.19) obtained by replacing the unknown parameters μ_{j}, μ_{j} and Σ in (6.4.7) by their maximum likelfhood estimators $x_{f_{1}}, x_{j}$, and S_{2}, respectively, is an E.B. procedure under the fixed effects model. Under the randon effects nodel the E.B. procedure is to replace μ_{i} and μ_{j} by μ_{i} (EB)
and $\hat{\mu}_{j}$ (EB) respectively, given in (6.4.6), and Σ by s_{2}. This yields the following E.B. classification rule: Ciassify x into that population π_{i} for which

$$
\left(x-\frac{1}{1}\left(1-s_{2} s_{1}^{-1}\right)\left(x_{1 .}+x_{j .}\right)+s_{2} s_{1}^{-1} x_{. .}\right)^{\prime} s_{2}^{-1}\left(1-s_{2} s_{1}^{-1}\right)\left(x_{1 .}-x_{j}\right)>\operatorname{tog} \frac{q_{j}}{q_{1}}
$$

$$
\begin{equation*}
v j \propto 1, \ldots, k ; j \neq 1 \tag{6.4.8}
\end{equation*}
$$

Therefore under the random effects model, the classification rule corresponding to Anderson's (1957) rule foi the fixed effects case is given by $(6,4,8)$.

- The properties and behaviour of slassification rule (6.4.8) have not yet been studied, and this indicates a pronising area for future research.

It is interesting to note that the E.B. estimator (6.4.6) for μ_{i}, which may also be written as:

$$
\begin{equation*}
\hat{\mu}_{1}(E B)=(I-A) x_{1 .}+A\left(x_{. .}\right) \tag{6.4.9}
\end{equation*}
$$

where

$$
A=S_{2} s_{1}^{-1}
$$

is the mutivariate analogue of the Janes - Stein (1961) "shrinkage" estimator (sligitily modified) of μ_{1}. See, for example, Cox and Minkley (1974). It also corresponds to the approximate large sample posterior mean of μ_{i} under the random effects model, given by Box and Tiao (1973) when their prior distribution, discussed in sub-section 6.3.7, is used,

6.4.2 The Semi-Bayes Approach

Geisser (1967) coins the term "Seai-Bayes" to describe the Bayesian analysis of the properties of the classical approach to discriminant analysis based on the Linear Discriminant Function (or the Quadratic Discriminant function in the case of unequal within-group covariance酸trices). Considering the two population problen, he investigates both sjtuations where the parateters are known and the classifict tion rule (given in (2.1.6)) is based on the population discriminant function:

$$
\begin{equation*}
u_{12}(x)=\left(x-\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)\right)^{2} x^{-1}\left(\mu_{1}-\mu_{2}\right) \tag{6,4.10}
\end{equation*}
$$

and where they are unknown, and the classification rule (given in (2.1.19)) is based on the sample discriminant function:

$$
\begin{equation*}
v_{12}(x)=\left(x-\frac{1}{y}\left(x_{1} .+x_{2 .}\right)\right)^{\prime} s^{-1}\left(x_{1},-x_{2}\right) \tag{6.4.11}
\end{equation*}
$$

Given training samples of size n_{1} and n_{2} (denoted collectively by rS) from the two populations π_{1} and π_{2}, respectively, and assiasing a diffuse prior distribution for the parametars μ_{1}, μ_{2} and Σ^{-1}, the joint posterior density of these paramaters becomes:

$$
\begin{align*}
f\left(\mu_{1}\right. & \left.+\mu_{2}, \Sigma^{-1} \mid T S\right) \propto\left|\Sigma^{-1}\right|^{\frac{1}{2}(v-p+1)} \exp \left(-\frac{1}{2} \operatorname{Tr} \Sigma^{-1}[v S\right. \\
& \left.\left.+n_{1}\left(x_{1} .-\mu_{1}\right)\left(x_{1},-\mu_{1}\right)^{\prime}+n_{2}\left(x_{2},-\mu_{2}\right)\left(x_{2},-\mu_{2}\right)^{t}\right]\right\} \tag{6,4,12}
\end{align*}
$$

Where the notation is the sama as that used in earlier sections, Using (6.4.12) as his starting point, Geisser (1967) first investigates the postarior distribution of $\mathrm{U}_{12}(\mathrm{x})$ and hence obtains expressions for the posterior limits on the "true" probabilities of misclassification when classification rule (2.1.6), based on $\mathrm{V}_{12}(x)$, is used. It turns
out that these , ry be obtained directly from the posterior distribution of $0:=\left(\mu_{1}-\mu_{2}\right)^{\prime} \Sigma^{-1}\left(\mu_{1}-\mu_{2}\right)$, for witich the following expression for its density function is derived:

$$
\begin{equation*}
f_{\delta^{2}}(x)=\sum_{j=0}^{\infty} w_{j} g_{p+2 j}(x) \tag{6.4.13}
\end{equation*}
$$

where,
the w_{j} are the individual terms of a negative bfoomial density and $g_{p+2 j}(\cdot)$ is the density function of the $x_{p+2 j}^{2}$ distribution.

Remark 6.4.1 It is interesting to note the similarity between (6.4.13) and expressions (3.1.11) and (3.1.12) for the density function of 8^{2} under the randora effects nodel.

Secondly, Geisser (1967) obtains posterior limits on the conditional or "index" probabilities of misclassification when using classification rale (2.1.19) based on the sample discriminant function $V_{12}(x)$. Because of the complicated distribution theory involved, asymptotic theory is used to ohtain approximate limits in ierms of the standard normal integral Which he shows should be reasonably accurate even for moderate sample sizes. Finally, he obtains expressions, in terms of the t-distribution function, for the unconditional (or posterior predictive) probabilities of misclassification when the, sample-based clissification ruie is used.

To apply this Semi-bayesian approach to our random effects morch, we need first to obtain the joint postepior distribution of the param; in this modeI corresponding to expression $(6,4.12)$ in the fixed effects case. In what follows, therefore, we will derive this distribution using a diffuse prior on the paramaters Σ^{-1}, ξ and T^{-1}. As shall be seen, however, applying this distribution to the discriminant analysis problem in a manner analogons to seisser (1957) does not promise to be a straightforward matter.

244.

Considering first the two-group case, the joint posterfor density of the parameters $\mu_{1}, \mu_{2}, \varepsilon^{-1}, \zeta$ and T_{*} given the training sample is $=\left\{x_{i j} ; j=1, \ldots, n_{i} ; \quad\{=1,2\}\right.$, way be written:

$$
\begin{equation*}
P\left(\mu_{1}, \mu_{2}, \Sigma^{-1}, \xi_{,} T^{-1}\right) \propto f\left(T S \mid \mu_{1}, \mu_{2}, \Sigma^{-1}\right) P\left(\mu_{1}, \mu_{2} \mid \xi, T^{-1}\right) \quad P\left(\Sigma^{-1}, \xi, T\right) \tag{6.4.14}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
f\left(T S \mid \mu_{1}, \mu_{2}, \Sigma^{-1}\right)=\prod_{i=1}^{2} \prod_{j=1}^{I_{1}}(2 \pi)^{-\frac{1}{2} p}\left|\Sigma^{-1}\right|^{\frac{1}{2}} \exp f^{\left.-\frac{1}{2}\left(x_{1 j}-\mu_{i}\right)^{\prime} \Sigma^{-1}\left(x_{1 j}-\mu_{i}\right\rangle\right)} \\
P\left(\mu_{j}, \mu_{2} \mid \xi, T^{-1}\right)=\prod_{\mid=1}^{2}(2 \pi)^{-\frac{1}{2} p}\left|T^{-1}\right|^{\frac{1}{2}} \exp \left\{-\frac{1}{2}\left(\mu_{j}-\xi\right)^{\prime} T^{-1}\left(\mu_{i}-\xi\right)\right\} \\
\text { and } \\
P\left(\Sigma^{-1}, \xi, T^{-1}\right)=|\Sigma|^{\frac{1}{2}(p i l)}|T|^{\frac{1}{2}(p+1)}
\end{array}\right.
$$

After some simplification, and assuming that $n_{1}=n_{2}=n_{2}$, this becoses: $P\left(\mu_{1}, \mu_{2}, \Sigma^{-1}, \xi_{5}, T^{-1} \mid T \Sigma\right) \times|\Sigma|^{-\frac{1}{2}(N-p-1)}|r|^{\frac{1}{2}(p-1)} \exp \left\{-\frac{1}{2} \operatorname{Tr} \Sigma^{-1} A_{2}\right\}$

$$
\begin{equation*}
x \exp \left\{-\frac{1}{2} \sum_{\{=1}^{2}\left[n\left(x_{1},-u_{i}\right)^{\prime} \Sigma^{-1}\left(x_{i},-\sum_{i=1}\right) \gamma\right\}\right. \tag{6.4.15}
\end{equation*}
$$

where,
and $\quad \begin{aligned} & N=2 n \\ & A_{2}=\sum_{j=1}^{2} \sum_{j=1}^{n}\left(x_{i j}-x_{i}\right)\left(x_{1 j}-x_{i,}\right)^{\prime} .\end{aligned}$

We nasy simplify the expanent in $(6.4 .15)$ by using the following identity given by Box and Tiao (1973) in their appendix A7. T:
$(x-a)^{\prime} A(x-a)+(x-b)^{\prime} B(x-b) \times(x-c)^{\prime}(A+B)(x-c)+(a-b)^{\prime}\left(A^{-1}+B^{-1}\right)^{-1}(a-b)$
where,
$\therefore x, a$ and b are p-dimensional vectors, A and B are $(p \times p)$
symotric nonsifinguiar matrices
and $c=(A+B)^{-1}(A a+B b)$

This finally yields the following expression for the joint posterion density of $\mu_{1}, \mu_{2}, \Sigma^{-1}, \xi$ and T^{-1} :
$P\left(\mu_{1}, H_{2}, \Sigma^{-1}, \xi, T^{-1}\right\rangle=|\Sigma|^{-\frac{1}{2}(4-p-1)}|T|^{\frac{1}{2}(\mathrm{p}-1)}$

$$
\begin{align*}
& \times \exp \left\{-\frac{1}{8} \operatorname{Tr}\left[\Sigma^{-1} A_{2}+\left(n \varepsilon^{-1}+r^{-1}\right) \sum_{i=1}^{2}\left(\mu_{i}-c_{i}\right)\left(\mu_{i}-c_{i}\right)^{\prime}\right.\right. \\
& \left.\left.+\left(n^{-1} i+T\right)^{-7}\left(\sum_{i=1}^{2}\left(x_{i .}-x_{.}\right)\left(x_{i},-x,\right)^{\prime}+\lambda\left(x_{.},-\xi\right)\left(x_{.}-E\right)^{\prime}\right)\right]\right\} \tag{6.4.16}
\end{align*}
$$

where $c_{i}=\left(n \Sigma^{-y^{2}}+T^{-1}\right)^{-1}\left(n \Sigma^{-1} x_{i .}+T^{-1} \varepsilon\right) \quad\{=1,2$
For thife generaif k-group case $(6,4,16)$ becomes, assuming $n_{i}=n, \quad \forall i=1, \ldots, k$:
$P^{P}\left(\mu_{1}, \cdots, \mu_{k}, \varepsilon^{-1}, E, T^{-1}\right) \propto|\Sigma|^{-\frac{\beta}{k}(N-p-1)}|T|^{-\frac{1}{2}(k-p-1)}$.

$$
\begin{align*}
& x \exp \left\{-\frac{1}{2} \operatorname{Tr}\left(\Sigma^{-1} A_{2}+\left(n \Sigma^{-1}+T^{-1}\right) \sum_{i=1}^{k}\left(\mu_{i}-c_{i}\right)\left(\mu_{1}-c_{i}\right)^{\prime}\right.\right. \\
& \left.\left.+\left(n^{-1} z+T\right)^{-1}\left(A_{1}+k(x,-\xi)\left(x_{\ldots}-\xi\right)^{\prime}\right)\right]\right\} \tag{6,4,17}
\end{align*}
$$

whers,

$$
\begin{aligned}
& c_{i} \text { is the same as in }(6.4,16) \\
& A_{1}=\sum_{i=1}^{k}\left(x_{i,}-x_{*}\right)\left(x_{i,}-x_{.}\right)^{\prime}
\end{aligned} \text { and } A_{2}=\sum_{i=\}}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i,}\right)\left(x_{i, j}-x_{i,}\right)^{\prime}, ~ l
$$

Expressions $(6,4,16)$ or $(6,4,17)$ should therefore be used instead of (6.4.12) as starting point for the Semi-Bayesian analysis under the randoa effects model.

Comparing these expressions, it is apparent that the Semi-Bayesian analysis under the randoe lffects model will be considerably more difficult then under the fixed effects model, and we will therefore not proceed any further with it is this thesis.

Nevertheless, this promises to be an interesting direction for research, especially if it is applied to the classification rule based on the modified discriminant function (6.4. 8) derived in Sub-section 6.4.1 using the Empirical Bayes approach.

Finally it is interesting to note that the approach of Chapter 3 and 4 is the classical analogue, under the randow effects modet, of Geisser's Sesi-Bayesian jpproach to the analysis of the properties of the clessical rules of discrivinant analysis.

Appendix 6.1 Derivation of the $r^{\text {th }}$ mosent of the $\chi_{v}^{2}(\lambda)$ distribution
The density function of $X \sim \chi_{v}^{2}(\lambda)$ can be written in the following form (see, for example CR. Rao, 1965):

$$
\begin{equation*}
f_{X}(x)=\exp \left\{-\frac{1}{2} \lambda\right\} \prod_{j=0} \frac{\left(\frac{1 \lambda}{j}\right)^{j}}{j!} g_{v+2 j}(x) \tag{A6+1:T}
\end{equation*}
$$

where $g_{v+2 j}(x)$ is the density of the contral $x_{v+2 j}^{2}$ distribution. Therefore,

$$
\begin{equation*}
E\left[X^{r}\right]=\exp \left\{-\frac{1}{2} \lambda\right\} \sum_{j=0}^{\infty} \frac{\left.\left(\frac{1}{2}\right)^{j}\right)^{j}}{} E\left[\left(x_{v+2 j}^{2}\right)^{r_{j}}\right. \tag{AE.1.?}
\end{equation*}
$$

by the uniform convergence of the infinite series in (A6.1.1). Now, it is well known that

$$
\begin{equation*}
E\left[\left(x_{v+2 j}^{2}\right)^{r}\right]=2^{r} \frac{r(3 v+j+r)}{\Gamma(2 v+j)} \tag{A6.1.3}
\end{equation*}
$$

for $\mathrm{P}>-\frac{1}{2}(v+2 \mathrm{j})$ and is not defined otherwise. Substituting (A6.1.3) into (A6.1.2) yields:

$$
\begin{equation*}
E\left[x^{r}\right]=2^{r} \exp [-1 \lambda] \sum_{j=0}^{\infty} \frac{(j \lambda)^{j}}{j!} \frac{P(j v+j+r)}{T(j v+j)} \tag{A6,1,4}
\end{equation*}
$$

where $x \sim x_{v}^{2}(\lambda)$.

Appendix 6.2

Derivation of the computational formiae for

$$
\begin{equation*}
A_{2(r, l)}^{*}=\sum_{i=1}^{k} \sum_{j=1}^{n}\left\{x_{i j}-x_{i} .\right\rangle^{2}(r, l) \tag{A6.2.1}
\end{equation*}
$$

and ;

$$
\begin{equation*}
A_{1(r, \ell)}^{*}=n \sum_{i=1}^{k}\left(x_{i}-k_{1} . .\right)^{2}(r, 2) \tag{A6.2.2}
\end{equation*}
$$

248.

where the subscript (r, ℓ) denotes that observation $x_{r 2}$ from the $r{ }^{\text {th }}$ population has been replaced by x. The computational formulae derive fmediately from the following two general results:

Let x_{f} be replaced by x in the sample $\left\{x_{i}, i=1, \ldots, n\right\}$. Then;
(i) $x_{+(j)}=x_{+}+\frac{x-x_{j}}{n}$
(ii) $S S_{(j)}=S S-\left(x_{j}-x\right)^{2}+(x-x)^{2}-\frac{\left(x-x_{j}\right)^{2}}{n}$.
where ;

$$
x=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

and

$$
S S=\sum_{i=1}^{n}\left(x_{i}-x_{i}\right)^{2}
$$

and the subscript (j) has the same meaning as above.

Proof:
(i) $x_{\cdot(3)}=\frac{1}{n}\left\{\sum_{i=1}^{n} x_{i}-x_{j}+x\right)=x_{i}+\frac{x-x_{j}}{n}$

$$
7
$$

249.

(ii)

$$
\begin{aligned}
& S S_{(j)}=\sum_{i=1}^{n}\left(x_{i}-x \cdot(j)\right)^{2}-\left(x_{j}-x \cdot(j)\right)^{2}+(x-x \cdot(j))^{2} \\
& =\sum_{i=1}^{n}\left(x_{1}-x_{i}-\frac{x-x_{j}}{n}\right)^{2}-\left(x_{j}-x-\frac{x-x_{j}}{n}\right)^{2}+\left(x-x_{-}-\frac{x-x_{j}}{n}\right)^{2} \\
& \left.=\sum_{i=1}^{n} \cdot x_{i}\right)^{2}+\frac{\left(x-x_{j}\right)^{2}}{n}-\left(x_{j}-x_{i}\right)^{2}+\frac{2}{n}\left(x_{j}-x_{j}\right)\left(x-x_{j}\right)-\frac{\left(x-x_{j}\right)^{2}}{n^{2}} \\
& +(x-x)^{2}-\frac{2}{n}(x-x)\left(x-x_{j}\right)+\frac{\left(x-x_{j}\right)^{2}}{n^{2}} \\
& =S S-\left(x_{j}-x_{0}\right)^{2}+\left(x-x_{0}\right)^{2}+\frac{\left(x-x_{j}\right)^{2}}{n}-\frac{2}{n}\left(x-x_{j}\right)\left(x-x_{f}-x_{j}+x_{j}\right) \\
& =S S-\left(x_{j}-x_{j}\right)^{z}+\left(x-x_{.}\right)^{2}-\frac{\left(x-x_{j}\right)}{n} . \quad \text { Q.E.D. }
\end{aligned}
$$

Applying (A6.23) and (A5.2A) to $A_{2}^{*}(\mathrm{r}, \mathrm{L})$ yields:

$$
\begin{align*}
& A_{2(r, l)}^{*}=\sum_{\substack{i=1 \\
i=r}}^{k} \sum_{j=1}^{n}\left(x_{i j-}-x_{i},\right)^{2}+\sum_{j=1}^{n}\left(x_{r j}-x_{r}\right)^{2}(r, \ell) \\
& =\sum_{\substack{i=1 \\
i w r}}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i}\right)^{2}+\sum_{j=1}^{n}\left(x_{r j}-x_{r}\right)^{2}-\left(x_{r i}-x_{r}\right)^{2}+\left(x-x_{r}\right)^{2} \\
& -\frac{\left(x-x_{r l}\right)^{2}}{n} \\
& =\sum_{i=1}^{k} \sum_{j a 1}^{n}\left(x_{i j}-x_{i}\right)^{2}-\left(x_{r e}-x_{r}\right)^{2}+\left(x-x_{r}\right)^{2}-\frac{1}{n}\left(x-x_{r l}\right)^{2} .
\end{align*}
$$

Co1,5idering $A_{1}^{*}(r, t)$, note that, from (A6.2.3),

$$
{ }_{i r}^{x} r,(r, R)=x_{r}+\frac{x-x_{r l}}{n} .
$$

Therefore, applying (A6.2.4) to (A6.2.2), with n replaced by k, x_{i} by $x_{i_{1}}, x_{\text {. by }} x_{\ldots}, x_{j}$ by $x_{r .}$ and x by $x_{r} .+\frac{x-x_{r l}}{n}$ gives:

$$
\begin{align*}
& \frac{1_{n}^{*}}{A} 1(r, 2) \text {, } \sum_{i=1}^{k}\left(x_{i .}-x_{n}\right)^{2}=\left(x_{r_{*}}-x_{\ldots}\right)^{2}+\left(x_{r}+\frac{x-x_{r l}}{n}-x_{\ldots}\right)^{2} \\
& =\frac{1}{x}\left(\frac{x-x_{r 2}}{n}\right)^{2} \\
& =\sum_{i=1}^{k}\left(x_{i},-x_{\ldots}\right)^{2}-\left(x_{r},{ }^{-x_{\ldots}}\right)^{2}+\left(x_{r_{*}}-x_{\ldots}\right)^{2}+\frac{2}{n}\left(x_{r_{i}}-x_{\ldots}\right)\left(x-x_{r \ell}\right) \\
& +\frac{1}{n^{2}}\left(x-x_{r R}\right)^{2}-\frac{1}{k n^{2}}\left(x-x_{r l}\right)^{2} \\
& =\sum_{i=1}^{k}\left(x_{i},-x_{\ldots}\right)+\frac{2}{n}\left(x-x_{r l}\right)\left(x_{r}-x_{.}\right)+\frac{k-1}{k n^{2}}\left(x-x_{r l}\right)^{2} \tag{A6.2.6}
\end{align*}
$$

Appendix 6.3

Evaluating:

$$
I=\int_{T} \int_{\xi}|T|^{-\frac{1}{2}\left(k+v_{2}\right)} \exp \left\{-\frac{1}{i} \sum_{i=1}^{k}\left(\mu_{i}-E\right)^{i} T^{-1}\left(\mu_{i}-\xi\right)\right) d E d T
$$

where,
T is a ($p \times p$) symetric satrix and $\quad \xi$ is a $p \times 1$ vector.

Note that:

251.

$$
\begin{align*}
\sum_{i=1}^{k}\left(\mu_{i}-\xi\right) \cdot T^{-1}\left(\mu_{i}-\xi\right\rangle & =\sum_{i=1}^{k}\left(\mu_{i}-\mu_{i}\right) ' T^{-1}\left(\mu_{i}-\mu_{.}\right)+k\left(\xi-\mu_{.}\right) T^{-1}\left(\xi-\mu_{.}\right) \\
& =\operatorname{Tr}\left(T^{-1} A_{j_{j}}\right)+k\left(\xi-\mu_{.}\right) T^{-1}\left(\xi-\mu_{.}\right) \tag{A6.3.2}
\end{align*}
$$

where

$$
\mu .=\frac{1}{k} \sum_{i=1}^{k} u_{i}
$$

and

$$
A_{i t}=\sum_{i=1}^{k}\left(\mu_{i}-\mu_{1}\right)\left(\mu_{j}-\mu_{1}\right)^{\prime}
$$

Substituting (A6.3.2) into (A6.3.7) yie1ds:
$I=\int_{T}|T|^{-\frac{1}{2}\left(k+y 2^{-1}\right)} \exp \left(-\frac{1}{2} T r\left(T^{-1} A_{I V^{\prime}}\right)\right\} \int_{\xi}|T|^{-\frac{1}{B}} \exp \left\{-\frac{1}{d} k\{\xi-\mu)^{\prime} T^{-1}(\xi-\mu)\right\} d \xi d T$
($46,3,3$)

Since the integrand of the inner integral in (A6.3.3) is proportiona? to the multivariate normal density function, we have that:

$$
\begin{equation*}
I=\int|T|^{-\frac{1}{2}\left(k+v_{2}-1\right)} \exp \left\{-\frac{1}{2} T r\left(T^{-1} A_{L}\right)\right\} d T \tag{26,3.4}
\end{equation*}
$$

The integrand in (A6, 3, 4) is proportional to the density function of the Inverted Wishart Distribution (see, for example Pross, 1972), the constant of proportionallty being

$$
\begin{equation*}
c=\left|A_{w}\right|^{\frac{1}{2}\left(k+v_{2}-p-2\right)} / 2^{\frac{1 p\left(k+v_{2}-p-2\right)}{}} r_{p}\left(\frac{1}{2}\left(k+v_{2}-p-2\right)\right. \tag{A6.3.6}
\end{equation*}
$$

where $r_{p}\left(\frac{1}{k}\right)$ is the multivariate ganma function defined in $(5,3.5)$. Hence,

$$
\begin{equation*}
I=C^{-1} \propto\left|A_{y}\right|^{-\frac{1}{2}\left(k+v_{2}-p-2\right)} \tag{A6,3.6}
\end{equation*}
$$

Appendifx 6.4

Evaluating

$$
\begin{align*}
& I=\iiint_{\sigma^{2}} \underset{\sim}{\sim} \tau^{2} \xi a^{-\left(N+v_{1}\right)} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-\mu_{j}\right)^{2}\right\} \\
& \times \tau^{-k}\left(\sigma^{2}+\pi x^{2}\right)^{-\frac{2}{2} V} \exp \left(-\frac{1}{2 \tau^{2}} \sum_{i=1}^{k}\left(\mu_{i}-\xi\right)^{2}\right\} d \xi d \tau^{2} d y d \sigma^{2} \tag{A6.4.1}
\end{align*}
$$

The exponent in the integrand in (A6,4.1)can be written:

$$
-\frac{1}{1}\left(\frac{1}{\sigma^{2}} \sum_{i=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i j}^{*}\right)^{2}+\frac{n}{\sigma^{2}} \sum_{j=1}^{k}\left(\mu_{i}-x_{i}^{k}\right)^{2}+\frac{1}{\tau^{2}} \sum_{i=1}^{k}\left(\mu_{j}-\xi\right)^{2}\right\}
$$

where x_{i}^{*}, is defined in (6.1.6)

$$
=-\frac{\{ }{2}\left(A_{2}^{*} / \sigma^{2}+\sum_{i=1}^{k}\left(\frac{n}{\sigma^{2}}\left(\mu_{i}-x_{i}^{*}\right)^{2}+\frac{1}{\tau^{2}}\left(\mu_{i}-\xi\right)^{2}\right)\right\}
$$

where

$$
A_{2}^{*}=\sum_{f=1}^{k} \sum_{j=1}^{n}\left(x_{i j}-x_{i}^{*} .\right)^{2} .
$$

Using the result given by Box and Tiao (1D73) in their equation (A1.1.5), viz:

$$
A(z-a)^{2}+B(z-b)^{2}=(A+B)(z-c)^{2}+\frac{A B}{A+B}(a-b)^{9}
$$

253.

where

$$
c=\frac{1}{A+8}(A a+B b)
$$

the exponent becomes:-

$$
-\frac{1}{2}\left\{A_{2}^{*} i \sigma^{2}+\left(\left.\frac{n}{\sigma^{2}} \right\rvert\,+\frac{1}{\tau^{2}}\right) \sum_{i=1}^{k}\left(\mu_{i}-c_{i}\right\rangle^{2}+\left(\frac{1}{\sigma^{2}+m^{2}}\right)\left(A_{1}+n k(\xi-x,)^{2}\right)\right\}\langle A 6.4 .2)
$$

where

$$
\begin{aligned}
& c_{1}=\left(\frac{n}{\sigma^{2}}+\frac{1}{r^{2}}\right)^{-1}\left(\frac{x_{j}^{*} .}{\sigma^{2}}+\frac{k}{\tau^{2}}\right) \\
& A_{1}=n \sum_{i=1}^{k}\left(x_{i}^{*},-x^{k}\right)^{x},
\end{aligned}
$$

and $X_{.}$. is defined in (6.1.9).
Interchanging the order of integration, and using the above hesult, we get:

$$
\begin{align*}
& \frac{t}{t}=\int_{J}^{\tau^{2} \sigma^{2}} \int^{-\left(N+V_{1}\right)} \tau^{-k} \exp \left\{=\frac{A_{2}^{*}}{2 \sigma^{2}}-\frac{A_{1}^{*}}{2\left(\sigma^{2}+n \tau^{2}\right)}\right\}\left(\sigma^{2}+n \tau^{2}\right)^{-\frac{3}{\varepsilon} V_{2}} \\
& \times \int_{\xi} \exp \left\{-\frac{n k}{2\left(\sigma^{2}+n \tau^{2}\right)}\left(\xi-x^{*},\right)^{2}\right\} \int_{\dot{X}} \exp \left\{-\frac{2}{2}\left\{\frac{\tau^{2} \sigma^{2}}{\sigma^{2}+n \tau^{2}}\right)^{-1} \sum_{i=1}^{k}\left(\mu_{i}-\alpha_{i}\right)^{2}\right\} \\
& \underset{\sim}{d} d \xi \xi^{2} d \sigma^{2} d \tau^{2} \\
& \approx \int_{\tau^{2} \sigma^{2}} \sigma^{-\left(N+V_{1}-k\right)}\left(\alpha^{2}+n \tau^{2}\right)^{-\delta\left(v_{2} 4 k-1\right)} \exp \left(-\frac{1}{2}\left(\frac{A_{2}^{*}}{\alpha^{2}}+\frac{A_{1}^{*}}{\sigma^{2}+n \tau^{2}}\right)\right] d \sigma^{2} d r^{2} \tag{A6.4.3}
\end{align*}
$$

If se now make the transformation:

$$
\begin{aligned}
& y=\sigma^{2} \\
& z=\sigma^{2}+n \tau^{z}
\end{aligned}
$$

with Jecobian $y=\frac{1}{n}$, we get:

$$
I=\int_{0}^{\infty} y^{\left.-\frac{3(k+v}{1}-k\right)} \exp \left(-\frac{1}{2} \frac{A_{2}^{*}}{y}\right\} \int_{y}^{0} z^{-1}\left(v_{2}^{4 k-1}\right) \exp \left\{-\frac{1}{1} \frac{A_{1}^{*}}{z}\right) d z d y \cdot(A 6.4 .4)
$$

Denoting the inner integral in (A6.4.4) by I_{1} and making the transfor mation:

$$
w=\frac{1}{2} A_{1}^{*} / z
$$

with Jacobian $\mathrm{J}=\frac{2 A_{1}^{*}}{*} / \mathrm{w}^{2}, I_{1}$ becomes:

$$
\begin{align*}
I_{1} & \left.=\left(\frac{1}{2} A_{1}^{*}\right)^{-\frac{1}{2}\left(v_{2}+k-3\right)} \int_{0}^{\frac{A 1}{2 y}} z^{\frac{1}{2}\left(v_{2}+k-3\right)-1} \exp t-k\right) d v \\
& =\left(\frac{1}{2} A_{1}^{*}\right)^{-\frac{1}{2}\left(v_{2}+k-3\right)} \int_{\frac{1}{2 y}}^{A_{1}^{*}}\left(\frac{1}{2}\left(v_{2}+k-3\right)\right) \tag{A6.4.5}
\end{align*}
$$

where $r_{x}(n)$ denotes the incomplete gamma function.
Hence,

$$
1 \propto\left(A_{1}^{*}\right)^{-\frac{1}{2}\left(v_{2} 4 k-3\right)} \int_{0}^{\infty}\left[\frac{A_{1}^{*}}{\frac{1}{2 y}}\left(\frac{1}{2}\left(v_{2}+k-3\right)\right) y^{-\frac{1}{8}\left(\left(k+v_{1}-k\right)\right.} \exp \left(-j \frac{A_{2}^{*}}{y}\right) d y\right.
$$

Finally, making the transformation:

$$
z=\frac{A_{2}^{*}}{y}
$$

255.

with Jacobian $J=\frac{1}{2} A_{6}^{*} / z^{2}$, we get:

$$
\begin{align*}
& x \exp (-z) d z \\
& =\left(A_{i}^{*}\right)^{-\frac{1}{2}\left(v_{2}+k-3\right)}\left(A_{2}^{*}\right)^{-\frac{1}{2}\left(N+v_{2}-k-2\right)} E_{z}\left[\sqrt{\frac{A_{1}^{*}}{A_{2}^{*}} z^{(2}\left(v_{2}+k-3\right)}\right] \tag{A6.4.7}
\end{align*}
$$

where z has a gamma distribution with parameter $\frac{1}{2}\left(\mathrm{~N}+\mathrm{v}_{1}-k-2\right)$.

Appendix 6.5 FotitRall Subroutine for computing the Hypergeometric and
Confluent Aypergeometric Functions.
SLEROUTINE MYP官FN(A, A , C , X,NMAX,EFRRR, HYPFN)
C
c
c
c
c
c
c
SURADOUTINF TO CGMPUTE HYPERGECNETRIG FUNCTIONE F(A\&S $\ddagger C$; X) AND
C CONFLUENT HYPERGFCHETRTC FUNCTIONS M $\mathcal{C A}: C$:X).
C THE OARAMETEHS ARE:

C NMAX $=$ MAXIMUM NO. CE TERMS TO BE CALCULATED (INPUTS:
ERFDR a NAXIUUV VALUE OF LAST TERM (INPUT) :
HYPFN = FUNCTION VALUE (OUTPUT).
RFAL \#G A, H, C, X, ERGOR , HYPFN
REAL*S TGNM, $\mathrm{FUM}, \mathrm{AJ}$
TVRA 퐁․
SUM=THPU
TF(f) LE. 0.) GO TD 2
$001 \quad s=1$. NMAX

SUN = SUM - TFRM
IF (TERM .LT. FRROR) 60 TU 4
1 CONTINUE
GO TO a
2 CONTINUE
003 J\#2. NMMAX
AJ t g
SHM $=T E R M *(A+A, J-1 *) /(A J *(C+A J-1-)) * x$
SHM TERM SUM + TERM
TEITEAM \& LT. ERBRD) GC TQ 4
3 CTNT TNUP
4 HYPRN 4 SUM
PETURN
END
255.
with Jacobian $J=1 A_{2}^{*} / z^{2}$, we get:

$$
\begin{aligned}
& I=\left\langle A_{1}^{*}\right)^{-\frac{1}{2}\left(v_{2}+k-3\right)}\left(A_{2}^{*}\right)^{-\frac{1}{2}\left(k+v_{1}-k-2\right)} \int_{0}^{\infty} \sqrt{\frac{A_{1}^{*}}{A_{2}^{*}}} 2^{\left(\frac{1}{2}\left(v_{2}+k-3\right)\right) z^{\frac{1}{2}\left(k+v_{1}-k-2\right)-1}} \\
& x \exp (-2) d z \\
& \left.\propto\left(A_{1}^{*}\right)^{-\frac{1}{2}\left(v_{2}+k-3\right)}\left(A_{2}^{*}\right)^{-\frac{1}{2}\left(N+v_{1}-k-2\right)} E_{z}\left[A_{1}^{*} z^{\left(\frac{1}{k}\left(V_{2}+k-3\right)\right.}\right] \quad \text { (Ar, }, 7\right)
\end{aligned}
$$

where z has a ganma distribution with paraneter $\frac{1}{2}\left(\mathrm{H}+\mathrm{v} 1^{-k-2)}\right.$.

Appendix 6.5 FORTRMN Subroutine for computing the Hypergeonetric and Confluent Hypergeometric Functions.

SLEROUTINF HYPGFN(A,A,C,X,NRAX,ERRCR,HYPFN)
C SURRDUTINE TO COMPUTE HYPERGECNETHIC FUNCTIONS F(A,B;CIX) AND C CONFLUENT HYPVRGFCNETRIC FUNCTIONS M(AIC:X).
C THF OARANYTCRS ARE:

C NMAX = MAXIMUM NO. CF TEKMS TO BE CALCULATTD (INDUT).
C ERTOR = NAXIMUN VALUE OF LAST TERM IINDUT).
C HYPFN = FUNCTION VALUE (GUTPUT).

PEAL * $\mathrm{A}, \mathrm{B}, \mathrm{C} * \mathrm{X}_{\text {, ERRDR }}$ HYPFN
GEAL WA TERM, SUM + AJ
TFAM
TVN
SUN $=$ TERM
IF (B . LE. 0.$)$ G Tn 2
$0_{A} 1, j=1$. NMAX

SU\# $=S U M+$ TERM
IF(TERN - LT. FRRGR) GD TG a
1^{2} CONT INUE
G0 TO a
2 CONTINUE
OO $3 \quad J=1$, NMAX
TERM \mathcal{A} FRRM* $(A+A, J-1=) /(A, J *(C+A J-1=)) * x$
SUM $=$ SUM + TRAK
TF(TERU - LT. ERRGR) GC TD A
3 CDNT INUE
HYPFFN = SUM PETURN
END

Chapter 7 A Practical Application

In this chapter the theory developed in the thesis is applied to the stratigraphic problem in gold mining zentioned in Chapter 1. Given a training sample from each of fifteen strata, we will first evaluate the expected performance of classical discriminant analysis applied to this situation and then we will use the classical and Predictive Bayesian approaches to classify two observations of unknown origin into one of the strata,

After first transforming the data in the training sample to remove an umanted dilution effect, the data is tested for multivariate normality and homoscedasticity. Using the methods described in Chapter 5 , tests are performed to establish whether any of the eigenvalues $\left\{\lambda_{1}\right\}$ of Tz^{-1} are zero, and then estimates of the λ_{i} are obtained. These estimates are used to estimate the distribution of δ_{15}^{2} and $\delta_{j}^{2}(x)$ given in Chapter 3 , as well as to evaluate the expected probabilities of correct- and misclassification under classical discriminant analysis, given in Chapter 4 .

Finally, using the Predictive Bayesian approach, two observations of unknown origin are each classified into one of a subset of the strata In the training sample. In this case it is possible to make direct comparisons with the results when using the Predictive Bayesian approach under the fixad effects mor -1, as well as with those whan using the classical approach. This fllustrates the effect that the differences in the assumptions underlying these models have on the performance of discrininant analysis ir practice.

7.1 A Problea in Stratigrapiny

As wentioned in Chapter 1, this study arose out of the problen of fitting a particular band of rock encountered in a gold wine into the sedimantary succession of the area. As the trace elament geocharistry of each rock band can reasonably be described by a random effects mode),
257.
it seems an appropriate area for application of the theory developed in this thesis.

The concentration of trace elements in rock satnples were measured by means of Instrumental Neutron Activation Analysis, a technique that allows accurate chemical analyses to be made down t i very low concentrations. A pilot study was undertaken to assess the feasibility in general terms of using gejchemical data to relocate the pay band. Five samples were taken from each of 15 bands, and 12 trace elements were beasured on each sample. For the reasons given in Hawkins and Rasoussen \{1973), a log transfornation was applied to the data.

A complicating factor in the analysis is the presence of unknown but varying amounts of silica in the samples which tends to give a proportional decrease in the concentrations of the trace elements. This gives rise to an additive "dilution effect" or "growth affect" corresponding to each sample when using the transformed data.

The probiem of staisistical inference, with particular reference to canonical variate analysis, on multivariate data in the presence of additive growth effects has been studied by Gower (1976), and an interesting application to a problem in Palaeontology has been given by Reyment and Banfield (1976), Gover (1976) considers the case whem a p-dimansional observation x is contaminated by m ($<p$) additive growth effects, each of which may be represented by a $(p \times 1)$ grouth vector whose elements are the relative responses of the corresponding elements of x to the unobservable growth effect. Gower (1976) uses the fact that if K is the $(p \times m)$ matrix whose columns are these growth vectors, then the symmetric idempotent matrix

$$
\begin{equation*}
Q=I-K\left(K^{\prime} K\right)^{-1} K^{\prime} \tag{7.1.1}
\end{equation*}
$$

258.

projects X on to the space orthogonal to. K so that the projected value is free from these growth effects. Therefore, if

$$
\begin{equation*}
y=Q x \tag{7,1,2}
\end{equation*}
$$

then y is free from growth effects. Furthernore, if the sarple space of x has rank r ($s p$) then y occupies a sample space of rank $\operatorname{rar}(\mathrm{K})$.

In the context of the present example, it is clear that the growth effect in the rock samples die to dilution by unknown guantities of silica is the same for all of the log trace element concentrations, so that it can be represented by the single p-dinensional vector

$$
\begin{equation*}
K=(1.1 \ldots,)^{\prime} . \tag{7.1.3}
\end{equation*}
$$

Therefore, in the present situation

$$
\begin{equation*}
Q=l-\frac{1}{p} E \tag{7.7.4}
\end{equation*}
$$

where E is ti.a pxp matrix whose elements are all unity, so that the transformed variable becomes

$$
y=Q x=\left(1-\frac{1}{P} E\right) x
$$

i.e.

$$
\begin{align*}
y_{1} & =x_{i}-\frac{1}{p} \int_{j=1}^{p} x_{3} \\
& =x_{1}-x, \quad, \quad 1=1, \ldots, p \tag{7.1.5}
\end{align*}
$$

where x_{1} and y_{f} are the $i^{\text {th }}$ elemants of x and y, respectively. So, to ramove the dilution effect fros each observation we make the (intuitively reasonable) transformation of subtracting the average of all p log trace element concentration values in the sample fron each these p values in turn. This will clearly reduce the disionsionality of the sample space to $\mathrm{p}-1$ (assuming that the origina) data are of full rank) and the easiest
way to handle this is to drop one or mone yariables from the analysis.
Because of the finding in Chapter 5 that the number of populations in the training somple should be as large as possible, relative to the dimension p of the data vectors, for relfabie estimation of the eigenvalues $\left\{\lambda_{1}\right\}$ of $T x^{-1}$, 伦was decided to base the discriminant analysis on a subset of four of the twelve trace elements. The following trace elements were chosen, primarily because of the fact that, out of the taelve, their aarginal distributions most closely fitted the normal:
T. Cobalt (Co)
2. Iron (Fe)
3. Hafniun (Hf)
4. Gold (Au)

The data on these four elements (after \log transfomation and removal of dilution effect) are given in Table 7.1.1 below, and in Tables 7.1.2, 7.1.3 and 7.1.4, respectively, their mean vectors, within groups and between groups covariance matrices are given.

Table 7.1.1
The Trace Element Data (after log transtormation and removal of dilution effect.)

Population	Co	Fe	Hf	Au
1	0.3858	0.0534	-0.0981	-1.1539
	0.5065	0.3371	-0.3136	-0.3335
	0.4081	0.1967	-0.7308	-0.3231
	0.3210	0.1054	-0.4605	-0.5441
	-0.2393	-0.1483	~ 0.2902	-0.9580
\geqslant				
2.	0.4255	0.3744	-0.0853	0.0657
	0.4008	0,3604	-0.1572	0.0465
	0.4735	0.2852	-0.5006	0.2523
	-0.3862	0.2177	-0.4931	1.0496
	0.0569	0,2095	-0.1794	-0.0990

260.

Table 7.1.1 continued

Population	Co	Fe	Hf		Au
3	-0.1660	0.1619	0.0849		-0.2998
	0.3160	0.3020	-0.0110		0.0073
	0.1448	0.7650	0.0443		-0,0790
	0.1572	0.1438	0.0974		-0.3205
	-0.1533	0.3362	0.0462	-	-0.6277
4	0.6285	0.5011	0.1421		0.2181
	0.3091	0.3204	-0,4308		0.1654
	0.2866	0.2446	-0.5342		0.4794
	0.3784	0.1976	-0.5416		0.3688
	0.2984	0.2540	-0.2706		0.3448
5	0.5217	-0.0967	-1.0894		0.2355
	0.5099	-0.0587	-1.0972		0.0230
	0.5490	? 0.0535	-1.2592		0.1496
	0.2981	-0.0877	0.0159		-0.1717
	0.3222	0.1997	0.0222	, 1	-0.0271
6	0.3330	0.0663	-1.1813		0.5933
	0.6824	0.4103	-0.4853		-0.1420
	0,5272	0.0614	-0.4651		-0.3413
c	0.1279	-0.0432	-0.1307		-0.9191
	0.3033	0.1018	-1.2192		-0.7925
7	0.4148	0.5829	-0.3087		-0.0125
	0.8251	0.8348	-0.5070		0.8449
	0.4799	0.4441	-0.6221		0.5807
	-0.2183	0.3549	-0.2613		0.4129
	0.5873	0.7194	-0.4033		0.8994
8	-0.2589	-0,0187	0.1143		-0.3241
	-0.2214	-0.0381	0.0565		-0.2860
	0.0087	-0.0215	0.0426		-0.3333
	0.0340	-0.0688	0.1452		-0,6939
	-0.1673	-0.0867	0.1975		-0.9541
9	-0.0765	-0.0008	-0.7813		-0.4238
	-0.0\% 39	-0.0392	-0.0504		-0.6489
	0.2947	-0.0156	-0.0310		-0.2426
	0.4301	0.3128	-0.0601		-0.2107
.	-0.1776	-0.0629	-0.0250		-0.4863
$4-10$	0.5880	0.5608	-1.2298		0.4444
	0.5295	0.4700	-0.3861		0.8965
,	0.4256	0.4546	-0.4285		0.3291
	-0.1759	0.1368	-0.5196		-0.0553
	0.2849	0.4989	-0.3383		0.0128

Table 7.1.1 continued

Population	Co	Fe	Hf	Au
11	0.4872	0.6116	-0.5951	0.2322
	-0,0089	0.5342	-0.4469	1.2533
	0.5219	0.6603	-0.4632	0.3363
	-0.0709	0.2994	-0.7964	0.8250
	0.0478	0.2138	-0.1079	-0.1087
12	0.1739	0.0751	0.1398	0.3477
	0.0322	-0. 1939	0.1958	-0.4244
	-0.5402	-0,5064	0.1750	-0.3985
	-0.4637	-0.4060	0.1644	-0.3229
	0.4625	0.2718	0.0311	0.0873
13	-0.3224	0.0470	0.0641	-1.0616
	-0.5506	-0.1525	0.0243	-1.0777
	-0.5330	-0.3666	0.0121	-0.1080
	-0.3700	-0.2176	0.1564	-1.0220
	-0.3114	-0.3491	0.0350	-0.4336
14	-0.1766			
	-0.4704	-0.3250	-0.1079	- 0.8878
-	-0.4110	-0,2990	0.0718	0.6778
	-0.5465	-0.2368	0,0851	-0,9229
	-0.3710	-0,3077	0,0623	-0.3984
15	0.2866	-0.0016	0,3986	-0.2626
	0.3875	0.1105	0.2587	-0.3552
	0.3904	0.1987	0.3219	-7.0482
	0.3823	0.1131	0.3753	-1.0876
	0.2989	0.1169	0.5886	-0.5389

Table 7.7.2
Moan Vectors

FI	Hf	Au
0.1089	-0.3787	-0.6625
0.2795	-0.2831	0.2630
0.2138	0.0523	-0.2639
0.3036	-0.3839	0.3153
0.0023	-0.6815	0.0419
0.1193	-0.6965	-0.3203
0.5872	-0.4205	0.5451
-0.0468	0.1132	-0.5183
0.0389	-0.1916	-0.4026
0.4242	-0.5792	0.3255
0.4639	-0.4819	0.5076
-0.1519	0.1414	-0.4011
-0.2078	0.0584	-0.7406
-0.2765	0.0513	-0.1674
0.2608	0.3886	-0.6585
0.1288	-0.2194	-0.1424

262.

Table 7.7 .3
Within Groups Covariance Hatrix (Degrees of Freedom 60)

	Co	Fe	Hf	Aut
Co	0.0584	0.0287	-0.0051°	0.0122
Fe	0.0281	0.0257	-0.0016	0.0086
Hf	-0,0061	-0.0016	0.0759	-0.0384
Au	0.0122	0.0086	\cdots	0.1866

Table $7: 1,4$
Between Groups Lovariance Matrix (Degrees of Freedom 14)

	Co	Fe	$\underline{\mathrm{Hf}}$	Au
Co	0.4167	0.2654	-0.2990	0.3089
Fe	0.2654	0.3177	-0.2296	0.4297
Hf	-0.2990	-0.2296	0.5614	-0.4433
Au	0.3089	0.4297	-0.4433	0.9794

The data was tested for multivariate nomality and honoscedasticity using the test of Hovkins (1978) based on the $N=\sum_{i=1}^{k} n_{i}$ sample-based Mahalanobis distances of each observation fron its group mean:
\&- $d_{i}^{2}\left(x_{i j}\right)=\left(x_{1 j}-x_{i,}\right)^{\prime} s^{-1}\left(x_{i j}-x_{1}\right) \quad j=1, \ldots, n_{i} ; i=1, \ldots, k$
where S is the pooled covariance matrix conquted from all k groups. Hawkins (1978) shows that under the null hypothesis the statistic

$$
F_{i j}=\frac{(N-k-p) n_{i} d_{i}^{2}\left(x_{i j}\right)}{p\left\{\left(n_{i}-1\right)(N-k)-n_{i} d_{i}^{2}\left(x_{i j}\right)\right\}}
$$

follows an F-distribution with p and $N-k-p$ degreas of freedoos, so that if

$$
A_{i j}=\operatorname{Pr}\left[F>F_{i j} J\right.
$$

denotes the tail area of $F_{i j}$ undor this Aistribution then $A_{i j}$ is distributed exactly as a uniform variate over the range $(0,1)$. Departures from efther normality or homoscedasticity 9111 cause departures of the A_{ij}
263.
froa the uniform distribution, and Hawkins therefore uses the AndersonDarling test-statistic X_{i} computed from the n_{i} grder- tatistics of the $A_{i j}$ in group $\{$ to test for efther of these types of departure in the $i^{\text {th }}$ population, for $j=1$ to k. Furtnermore, splitting the W_{f} into cosponents allows for heteroscedasticity and non-nomality to be testad separately. Finally, Hawkins uses a simulation experinent to show that, although asymptotic results ara used at a few points in his theory, his text may nevertheless be used for sample sizes n_{i} as small as 5 , as long as H is sufficiently large.

Applying the abovenentioned test to the data in this example reveals moderate departures from honoscedasticity in popu1ations 4,5,6 and 8 (5 and 6 having larger, and the other two smaller covariance matrices than the average) and also that population 4 has a slightly ighter-tailed distribution than the normal. However, because these departures are fairly minor, and $s\rangle$ as not to reduce the nunber of populations in the trafning sample, it was decided not to remove these populations from the example.

As mentioned in Chapter 5, the first step in applying this data to the random effects adel in discriminant analysis is to test the hypothesis $H_{0}: T \equiv 0$, for if it-is accepted then there is no point in continuing with the antlysis. Using the subroutine CANOK described earlier, the eigenvalues $\left\{g_{i}\right\}$ of $A_{1} \hat{A}_{2}^{-1}$ vere computed. These are given in Table 7.1.5, together with the two test statistics T_{2} and T_{2} defined in \{5.2.3) and (5.2.4), respectively.
264.

Table 7.1.5
The eigenvalues of $A_{1} \mathrm{~A}_{2}^{-1}$

$$
\begin{aligned}
& T_{1}=\sum_{i=1}^{4} \log \left(1 / g_{i}\right)=12.6614 \\
& T_{2}=\sum_{i=1}^{4} g_{i} \quad=129.9673
\end{aligned}
$$

From (5.2.5) we have that under the null hypothes is m_{1}, j_{1} has approxinately a $x_{D v_{1}}^{2}$ distribution there $a_{1}=v_{2}+\frac{1}{2}\left(v_{1}-p-1\right)$ and v_{1} and v_{2} are the between groups and within groups degrees of freedon, respecti:jely. Since $\mathrm{m}_{1} \mathrm{~T}_{1}=816.7$ and $\mathrm{Pv} 1=56, H_{0}$ is rejected resoundingly.

In order to test whether any of the $\left.\hat{\lambda}_{1}\right\}=$ eigs $T \Sigma^{-1}$ are zero, we first consider the sub-hypothesis: $H_{07}: \lambda_{4}=0$. Our two test-statistics for testing H_{01} are:

$$
\text { and } \quad \begin{array}{ll}
T_{11}=\log \left(1+g_{4}\right) & =2.0987 \\
T_{21} & =g_{4}
\end{array}=7.1559
$$

(See (5.2.11) and (5.2.12)).
Using T_{11}, we have from $(5,2,13)$ that under $H_{01},{ }^{[111}{ }^{T}{ }_{11}$ has approximately a X_{f}^{2} distribution
where

$$
\begin{aligned}
f & =(4-3)(14-3)=11 \\
m_{11} & =60+\frac{1}{2}(14-5)+\sum_{i=1} \lambda_{1}^{-1} \quad z_{1}^{\prime}
\end{aligned}
$$

and

Using the estimators of the λ_{i} given below in the expression for m m_{1} yields value ${ }^{[} 11=65.01$, whence ${ }^{n} 11^{T} 11=136.4$ which again is highly significant. So wo conclude that all the λ_{1} are greater than zero.
265.

Our next step is to estimate the λ_{i}. Using the techniques described in Chapter 5, the five estimators $\hat{\gamma}^{(1)}$ to $\hat{\gamma}^{(5)}$ of the eigenvalues $\left\{\gamma_{i}\right\}$ of $\Sigma \Sigma_{1} \Sigma^{-1}=(\Sigma+n T) \Sigma^{-1}$ were computed. Unfortyinately the "unrestricted" and "restricted" maximum narginal likelthood estimators $\underset{\sim}{\hat{Z}}(4)$ and $\underset{\sim}{\hat{\gamma}}{ }^{(5)}$ both failed to give meaningful results, so the approximate maxitom marginal likelthood estimator $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(2)} \underset{\sim}{\langle\gamma} \hat{\sim}^{(3)}$ was identical to $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(2)}$) was used to compute $\underset{\sim}{\hat{\lambda}}$ from the relationship

$$
\hat{\lambda}_{i}=\frac{1}{n}\left(\hat{\gamma}_{i}=1\right) \quad i=1, \ldots+p
$$

These estimates are given in Table $7,1.6$. The estimation procedure was then repeated with variable 3 (Hafnium) dropped from the sampie, reducing the number of variables to 3 . In this case all five astimators gave meaningful resu?ts, so that $\hat{\lambda}$ could be obtained froo $\underset{\sim}{\underset{\sim}{\gamma}}{ }^{(5)}$. These estimates are also given in Table 7.1.6.

Table 7.1.6
Estimatas of $\underset{\sim}{ }$ and λ
$p=4$ variables (Co, Fe, Hf, Au)

$\underset{\sim}{\sim}(1)$	$17, \frac{1}{3176}$	$\frac{2}{8.2874}$	$3 . \frac{3}{0510}$	$\frac{4}{1.6697}$
$\hat{y}^{(2)}$ (and $\hat{\gamma}^{(3)}$)	14.7864	8.6950	3.3602	2.5431
$\hat{\gamma}^{(4)}$ and $\hat{\gamma}^{(5)}$	failed to give meaningful results			
$\hat{\hat{\lambda}}$ (from $\hat{\gamma}(2)$)	2.7573	1.6390	0.4720	0.3086

266.

$\mathrm{p}=3$ variables (Co, Fe, Au)

$\hat{\gamma}^{(1)}$	16.2545	6.2701	1.7935
$\hat{\gamma}^{(2)}$ (and $\hat{\gamma}^{(3)}$)	14.7184	6.7841	2.2072
$\hat{\gamma}^{(4)}$	14.2456	6.9484	<2.2390
$\hat{\gamma}^{(5)}$	13.9191	6.6518	$\hat{2} 1261$
$\hat{\lambda}$ (from $\hat{\lambda}^{(5)}$)	2.5838	1.1304	0.2252

Using the $\hat{\lambda}_{i}$ given in Table 7.1.6, the estimated distribution of the Nahabanobis distance

$$
\delta_{i j}^{2}=\left(\mu_{i}-\mu_{j}\right)^{\prime} \Sigma^{-1}\left(r_{i}-\mu_{j}\right)
$$

between two randomly selected populations, derived in Chapter 3, and that of the Mahabanobis distance

$$
\delta_{i}^{2}(x)=\left(x-u_{i}\right)^{\prime} \varepsilon^{-1}\left(x-u_{i}\right)
$$

of a random observation $x \in \pi_{j}$ fry s $y_{2} ; i \neq j$, were computed using the ${ }_{i f}$ subroutines given in Chapter 3. 19 'bile 7.1.7 values of the distribution functions of $\delta_{i j}^{2}$ and $\delta_{j}^{2}(x)$ are given ate selected points, separately for the four- and three variable cases. In addition, distribution function values for $\delta_{i}^{2}(x)$, when $x\left(\pi_{i}, /\right.$ are given at the same points for comparison.
267.

Table 7.1.7
Estimated Distribution. Functions of $\hat{\delta}_{1 j}^{2}, \delta_{i}^{2}(x) \mid x \in \pi_{j}$ and

$$
8_{i}^{2}(x) \mid x \in x_{i}
$$

$\mathrm{p}=4$ variables (Co, Fe, Hf, Au)

Value of the random variable	δ^{2}	Distribution Function Values	
		$\underline{\delta_{i}^{2}(x) \mid x<\pi_{3}}$	$\delta_{i}^{2}(x) \mid x \in \pi_{i}$
1	. 031	. 012	. 045
2	. 098	. 043	. 144
3	. 177	. 085	. 264
5	. 335	. 189	. 496
7	. 470	. 298	. 677
10	. 626	. 450	. 845
15	. 789	. 646	. 960
20	. 880	. 776	$\cdots \quad .990$
25	. 931	. 858	. 998
30	+960	+910	1,000
40	. 986	. 963	1,000
50	.995	. 985	1.000
$p=3$ variables	, Fe ,		

Value of the random variable

1	.089
2	.202
3	.305
5	.474
7	.600
10	.731
15	.858
20	.923
25	.957
30	.976
40	.992
80	.997

Distribution Function Values

$$
\begin{aligned}
& \frac{8_{15}^{2}}{15} \\
& .089 \\
& .202 \\
& .305 \\
& .474 \\
& .600 \\
& .731 \\
& .858 \\
& .923 \\
& .957 \\
& .976 \\
& .992 \\
& .997
\end{aligned}
$$

$\left.8_{1}^{2}(x)\right\} \times \square_{6} \pi_{3}$	$\underline{\delta}^{2}(\mathrm{x}) \mid \mathrm{x} \in \mathrm{T}_{4}$
. 044	+ 119
. 111	+ 279
. 184	. 428
. 326	. 657
. 449	. 802
. 596	. 917
. 780	. 981
. 856	. 996
. 913	. 999
. 947	1.000
4979	1,000
. 992	1.000

The expected probabilities of misclassification indicate, how well classical discriminant anatysis is likely to perform when applied to the problem of fitting a particular rock band iffto the sedimentary succession of the area, on the basis the concentrations of the four (or three) tace elements in a rock sample from that band. These vere
268.
computed from the formulae derived in Chapter 4, using the subroutine PROBS for the "optimun" probabilities, where the parameters in the linear Giscriminant function are assumed to be known and slassification rule ; (2.1.3) is used, and subroutine PROBSI for the cise where the samplebased classification rule (2.1.19) is used. Table 7.1.8 gives tie twopopulation probabilities of wisclassification as well as the lower and approximate upper bounds for the probabilities of correct classification for the 5-population case, for both sftuations where the populationbased and sample-based classification rules are used.

In the situation where it is possible to make sore than one observation on the unknown population (as in the case in our stratigraphic problem) it is well known that arbitrarily good classification may be achieved by increasing the number of independent observations from the unknown population and basing the classification on their mean. It is a ts ivial matter to show that the situation where the mean of a observations is used for classifying the anknown population is exactiy equivalent, under the fandon effects mode), to that shen the eigenvatues $\left\{\lambda_{1}\right\}$ are all multiplied by in and a single observation is used for ciassification. As an fliustration of this, the expected probabilities corresponding to the situation where the classification is besed on $=2$ observations from the unknown population are also given in Table 7,1,8.

Table 7.1 .8

Expected Probabilities of Correct- and Hisclassification

$\mathrm{p}=4$ variables ($\mathrm{Ce}, \mathrm{Fe}, \mathrm{Hf}, \mathrm{Au}$)
Probability of mis- Probability of correct ciassificlassification with cation with ko5 populations

Probability of Lower bound to Probability Misclassification of correct classification with two yopulations with ku5 populations

Known Paramaters
One observation . 1429 .4282
from unknown pop.
Two observations .0860 . 6561
from unknown pop.
$\frac{\text { Loter Bound }}{.5724} \frac{\text { Approx. upper Bound }}{.8202}$ from unknom pop.
.0555
.7780
.8930
from unknown pop.
5
.5307
.8039

One observation from unknown pop.	.1173	.5307	.8039
Two observations from unknom	.0676	.7534	.8808

$p=3$ variables \quad (Co, Fe, Au)

Unknown Parateters (Degrees of freedom a 60)
One observation
from unknown pop. . 1518 . 3929
Two observations
from unknown pop. . 0915
.6341
Note that, since p is odd, the ipper bound to the probability of corvect classification cannot be computed;

Ue now turn to the Predictive Bayesian approach. Because of our inabillty, at present, tife compute the predictive densities under the randon effects mode1 in the multivariate case. (see sub-section 6.2,1) we will consider classifying two obseryations of unknown origin using only the trace element cobalt (Co). The concentration of Cobalt in each of the tho unknowns, after log transfornation and rewoval of dilution errfect, are given below:

Unknown 1:	0.2854
Unknown 2 :	$\mathbf{- 0 . 4 0 7 5}$

The predictive densities under the random effects model, given by ($6.1,17$), were coltputed using the subroutine HYPGFN and are given in Table 7.7.9 for each of the fifteen populations and both unknowns. For comparison, the correspording predictive densities under the fixed effects sodel, given by ($2.2,6$), as bell as the sample-based Mahalanobis distances between each of the two unknowns and each of the fifteen populations, are also giver in Table 7.1.9.

271

Table 7.1.9

Predictive densities of the two unknowns under the randon effects
and fixed effects models, as well as the corresponding Mahalanobis:
distances, using one variable (Co) only.

Unkrown 1
Predictive Densities

Population	Randon Effects Nodel	Fixed Effects Mode?	Maha Tanobis Distances
1	. 0844	. 0955	0.0017
2	. 0947	. 0899	0.1461
3	. 0598	. 0560	0.8800
4	. 0810	. 0897	0.1506
15	.0876	. 0806	0.4049
6	. 0793	. 0884	0.1863
7	. 0681	. 0677	0.8187 :
8	.0371	. 0294	2.8426
9	.0883	,0693	0.7630
10	. 0822	. 0943	0.0331
11	. 0978	. 0900	0.1479
12	. 0388	.0391	2.1401
13	. 0068	.0032	8.4861
14	. 0093	. 0038	7.9550
15	. 0849	.0929	0.0673

Unknown 2

1	.0161	.0109	8.0108
2	.0232	.0219	6.1979
3	.0649	.0590	3.7368
4	.0068	.0041	10.6259
5	.0056	.0022	12.3063
6	.0056	.0037	10.9124
7	.0026	.0011	14.2623
8	.1294	.1506	7.4059
9	.0522	.0524	3.9928
10	.0090	.0066	9.3248
11	.0232	.0217	6.2250
12	.1190	.1185	1.9847
13	.2623	.2715	0.0017
14	.2709	.2714	0.0026
15	.0094	.0055	9.8043

The posterior probabilities of each of the populations are corputed from the predictive densities in Table 7.1.9 by multiplying then by their respective prior probabilities. For example, suppose that uninown I
272.
is equally likeiy to have cone froe one of the first five populations and from none of the others. Using the classical approach ons would unhesitatingly classify it into population 1. On the other hand, afthough population 1 has marginally the highest posterior probability under the fixed effect model, population 2 has marginally the highest probability under the random effects model. In practice, using the Predictive Bayestan approach under either of the fixed effects or randon effects models, one would consider Unknown 1 to be unclassifiable. The divergence between the classical and predictive Bayesian approaches observed here is in line with the findings of Attchison, Habbosa and Kay (1977) whose ganeral conclusion is that the classical (or "estivative") approach tends to give too qptimistic a picture of the reliablitity of sample-based discrimination procedures.

The picture is far clearer with Unknow 2. Assuming that it is equally likely to have cone from one of the last five populations, all three classification rules come out stringly in favour of efther of populations 13 or 14, the prediccive approach under the randon effects model giving sifight preference to population 14 whereas the other two marginally favour the forner.

The reason for the improved reliability of classification in the latter case is quite evident under the random effects model. Since observation 2 is much further than cbservation 1 from the estimated mean E of the individual population moans μ_{4}, one would expect better classification with it as populations would tend to be much less clustared in its vicinity than they would be nearer to $\xi_{\text {, }}$

Chapter 8 Review and Conclusions

In this, the final chapter, the theory developed in this thesis is reviewed, and the areas still requiring further work, as well as the various possible avenues for future research are pointed out. Finally, some conclusions are drawn regarding the applicability and usefuiness of this theory to the solution of practical problens in discriminant analysis.

Before starting the review, some comments on the practical situation Where this theory might be applicable, are in order. It ir envisaged that the investigator will, in general, have too (possibly overlapping) training samples at his disposal. The first, more propariy called an "estimation sample" will consist of random samples from each of a number of populations, each of them in turn being a random observation fros a "super-population" under the random effects model. This sample will be used to estimate the parameters $\left\{\lambda_{\mathbf{1}}\right\}$ in the manner described in Chapter 5, winich will in turn be used to estimate the distributioses of any of the four diptance variables discussed in Chapter 3, as well as the expected probabilities of corract - and misclassification under the classical approach, derived in Chapter 4. The second training sampile, which may only becotfe available atra later date, will consist of random samples from each of k p populations (with possible ovarlap between'it and the estimation sample - together they make k independent samples from the "super-population") and one or more observations x known to have come from one of these k_{1} populations. The objoctive of the investigator is to assign x to one of these k_{1} populations in the second sample.

Clearly, the information from the second training sample can be conbined with that of the first to produce improved estimates of the $\left\{\lambda_{1}\right\}$ and of the distributions and expected probabilities of correct and misclassification mentioned above. Under the Predictive Bayesian approach $t 00$, no distinction need be made between these tho samples,
except when it comes to the choice of populations into which the unknown may be classified. The device used in Chapter 7 of assigning zero prior probabilities to all those populations not involved in ary particular classification probies, is a convenient way of making the abovementioned distinction without formally having to distinguish between the two samples.

8. 1 Review

Starting the review at Chapter 3 , it is clear that inile only the distribution of $\delta_{1 j}^{2}$ is of direct reievance to the evaluation of vorract and misclassification probabilities under the random effects model, the distributions of the other three quantities $\delta_{i}^{2}(x), d_{i j}^{2}$ and $d_{j}^{2}(x)$ are of interest in that they provide further insight into the 1ikely performance of classical discriminant analysis under this model. As has been seen, the evaluation of the density and distribution functions of all four of these distance variables is a relatively straightfonard matter on a computer, so that approximating them by means of, say Pearson curves, is not considered to be worth while,

Cowing now to the avaluation of the probabilities of correct - and所sclassification considered in Chapter 4, the two - poputation case where the parameters are known has clearly been solved satisfactorily and the probability of misclassification under the randoin affects model is readily evaluated using a computer, The k-population case is slightly less satisfactory in that only iower and (conditional and approximate) upper bounds to the probability of correct classification have been found, although it is evident from the examples considered that these two bounds can be fairly dose. An exact expression for this probabi11ty will however only be found once the corresponding exact expression (4.1.24) for the conditional probability of '. Frect classification,
given $\delta_{i, j}^{2}$, is available in a nore to table fom. Two further proGlems requiring solution are firstly, the evaluation of the upper bound on the probability of corract classification for the case where the nubber r of nonzero λ_{f} is odd, and secondly, the derivation of convenient computational formulee, when the λ_{1} are not all equal, for the cosfficients a_{j}, defined in (4.1.39), appatring in formula (4.1,40) for the upper bound shen r is even.

In the situation where the sample-based classirication ruife is used all the results derived are based on Okamoto's (1963) asymptotic expa.i) ion $(2,1.26)$ to terms of order n^{-1}. Therefore, nore accurate results could be obtained, at, the cost of considerable increase in complexithe by including all the teras of order n^{-2} in Okanoto's expansion.,.. . the k-population case exactly the same remarks hold es in the situation where the parameters are know.

An tuportant piece of research that is still outstanding in Chapter 5 is to obtain unrestricted and rastricted maximut marginal likeThood estimators of $\left\{\gamma_{i}\right\}=$ Eigs $\left\{\Sigma_{j} \Sigma^{-7}\right\}$ based on Khatri and Srivastava's (1978) asyeptotic expansion $(5,3,8)$ for the joint density of $\left\{g_{j}\right\}=E$ igs $\left\{A_{1} A_{2}^{-1}\right\}$ rather than on Chang's (1970) iess accurate expression (5.3.5). Sinulation experiasents on these two estimators, correspanding to those done in Ghàpter 5, will give an indication of how nuch an improveament they are over those proposed in this cilapter, A further area for yesearch arising as a tide issue out of the results of Chaptar 5, is the derivation of a scaled F-approxination to tha distribution uf Hotelling's To for the case whore the numerator and denominator matrices have indepetidont Wishart distributions but with different paratseter matrices Σ_{1} and \&. See the coments at the end of Sub-section 5.4.2.
275.

The treatment of the Predictive Bayesian Approach under the random effects model is fairly complete, at least for the case where the parameters $\Sigma, 5$ and T hese diffuse prior distributions. A great deficiency in this epproach is, however, our inat11ity to compute the predictive densities in the multivariate case. Possibli approaches towards rectifying this are, firstly, to try and evaluate the hypergeometric functions of matrix argunent, appearing in the predictive densitites by using the prograns of van der Mesthuizen and Nagel (1979) on a very much faster computer than the University of South Africa's Burroughs B6800 computer. Secondly, the efficiency of these programs could possibly be improved, although a reduction in computing tine by at least a few orders of magnitude would be required to ensure that a suffigient number of terus can be compuied for the hypergeometric functions to convenge. Two promising directions for research do, hotever cone out of the last section in Chapter 6. Firstly there is the Eapirical Bagaslapproach to discriminant andlysis under the randon effects podel; an interesting study would be to investigate the properties of the proposed classification rule (6.4.8). Secondly, an investigation * the semi-Bayes approach under the random effects mode1, using the. busterior density (6.4 .17) as stenting point would also aike an interesting, if complicated, study.

8.2 Conclusions

In this thesis, discriminant analysis under the random effects model has been treated froa two vieupaints. With the classical approach, the properties of the classification rules have been investigated under this nodel, whereas with the Predictive Bayesian approach new expressions for the predictive densities appropriate for this model have been derived.

Considering first the clas: *cal approach, the assumption of the randun effects model has alloved expressions for the expected probabilities of correct - and misclassification to be derived that depend only on the eigenvalues $\left\{\lambda_{1}\right\}$ of $T L^{-1}$. These may be estimated with arbitrary precision as long as training samples can be drawn from a sufficient number .of populations. On the other hand, under the fixed effects model, whether using Okonoto's (1963) expression (2.1.26) or Anderson's (1973a, b) expression $(2,1.27)$ for the expacted probability of misclassification with che sample-based classification rule, the value of the Mahalanobis distance δ_{12}^{2} between the two populations is required. This has to be estimated using the means of the training samples from only the two populations concerned, althoyth I may be estimated using training samples from othar populations as we17. (See Lachanbruch and Nickey (1968) for an estimator of δ_{12}^{2} that partially corrects for the bias in d_{12}^{2})
278.

Therefore it would appear that as lung as there are a sufficient number of populations in the training sample (relative to the number of variables - see Section 5.5) more reliable estimstes of the probabilities of correct * and missclassification will be obtained wide, the random effects model than under the fixed-effects model. On the other hand, the requirement that there should be a large nupber of populations (relative to the number of variables) in the training sample for reliabie estimation under the randam effects model, can also be considered to be a drawback to this model, particularly in situations where samples from many populations are hard to come by.

A topic that has not been discussed in this thesis is variable selection. Since under the randon effects model the probabilities of correct - and misclarsification are functions only of the eigenvalues $\left\{\lambda_{1}\right\}$ of $T \Sigma^{-1}$, we would want a procedure that selects variables on the basis of the values of the λ_{i}. Now, it is clear from (5.2.3) that the TikeTihood ratio statistic T_{1} for testing $\mathrm{H}_{0}: T=0$, is a annotonic increasing finction of the eigenvalues g_{i} of $A_{1} A_{2}^{-1}$ and hence of the $\left\{\ell_{i}\right\}=\left\{\frac{v_{2}}{v_{1}} g_{i}\right\}$. Since the λ_{i} are maximum Ifkelfow iestinators of the $\gamma_{f}=1+n \lambda_{1}$, he would expect that variable selection based on T_{1} would be appropriate for our situation. Hakins (1976) proposes a stepolse procedure based on T_{f} for selecting variables in Multivariate malysis of Variance. Although he applies the procedure to a probles in multipie discriminant an lysis using the fixed effects zodel, it is, from the above rmarks, also applicable to the random effects model.

Coning now to the Prediubive Bayesian approach, an imediate conclusion that may be drawn from the uxamples considared is that the prudictive densities (and hence posterior probabisities) are generally more conservative under the randal effects model than they are under the fixed effects mode1. Therefore, if the predictive densities for the
279.
fixed effects model, given by $(2.2 .6)$ and $(2.2 .7)$, are computed in a situation where the randore effects model holds, then they will tend to give posterior probabilities that are too optimistic. On the other hand, if the random effects model is applied to dato where the fixed affects model is more appropriate, it will give results that are too conservative.

Finally, a corment on tile applicability of the randon effects model to discriminant analysis with unequal covariance matrices in different populations, is in order. Atthough it is possible, from a purely mathenatical viewpoint, to perform similar analyses th those given in this thesis for the heteroscedastic situation, it is our opinion that the results would have little application in practice. The reason for this is that if different populations have different covariance matrices then it is highly unlikely, in any practical situation, that their mean vectors would cone from the same distribution. A more likely situatios would be that for any particular population the covariance matrix of its 'aean vector μ would be some function of the covariance matrix within that population.

References

1. Abramowitz, M. and Stegun, I.A. (1965). Handbook of mathematical functions. Doyer, New York.
2. Aitchison, J. Habbema, J.D.F. and Kay, J.K. (1977), A critica) comparison of two methods of statistical discriminant analysis. Applied Statistics, 26, 15-25.
3. Anderson, G.A. (1965). An asymptotic expansion for the distribution of the latent roots of the estimated covariance watrix. Ann, Math. Statist., 36; 1153-1173.
4. Anderson, T.W. (1951). Classification by aultivariate analysis. Psychometrica, 16, 31-50.
5. Anderson, T.W. (1958). An introduction to multivariate statistical analysis. Wiley, Hew York.
6. Anderson, T.K. (1973a). An asymptotic expansion of the distribution of the studentized classification statistic W. Ann. Statist., 1. 964-972.
7. Anderson, T.N. (1973b). Asynptotic evaluation of the probabilities of misclassification by linear discriminant functions. Discriminant analysis and applications, T. Cacoullos, ed, Academic Press, New York, 17-35,
8. Beale, E.M.L., Kendall, M.G. and Mann, D.N. (1967). The discarding of variables in multivariate analysis. Biometrika, 54, 357-365.
8a. Bellman, R. (1970), Introduction to matrix analysis, NcGraw-Hil1, New York.
9. Bissell, A.F. and Ferguson, R.A. (1975). The Jackknife - toy, tool or two-edged weapon? Statistician, 24, 79-100.
10. Box, G.E.F. (1949). A general distribution theory for a ciass of like1ihood criteria. Biomatrika, 36, 317-3A6.
11. Box, G.E.P. (195C). Soze theorems on quadratic foms applied in the study of analysis of variance problems, 1. Effect of inequality of variance in the pheway classification. Ann. Nath. Statist., 25, 290-302.
12. Box, G.E.P. and Tiao, G.C. (1973). Bayesian inference in statistical analysis. Addison-Wes ley, London. .
13. Brand, L. (1955), Advanced calculus. Wiley, New York.
14. Cassullos, T. (1973). Distance, discrimination and error. Discriminant analysis and applications, T. Cacoullos, ed. Acadenic Press, Naw York, 61-75.
15. Chang, T.C. (1970). On an asymptotic representation of the distribution of the characteristic roots of $\mathrm{S}_{1} \mathrm{~S}_{2}^{-1}$. Ann. Nath. Statist., 41, 440-445.
16. Constantine, A.G. (1963). Some non-centra\} distribution problems in multivariate analysis. Ann. Nath. Statist., 34, 1270-1284.
17. Cox, D.R. and Hinkley, D. X. (1974). Theoretical statistics. Chaptan and Hall, London.
18. Das Gupta, S. (1972). Probability inequalities and error in classification. Uniy, of Mimesota, School of Statistics, Teci Rep. No. 190.
19. Davis, A.W. (1977), A differential equation approach to linear combinations of indapendent cisi-squares. J. Ager. Statist. 2.5soc., 72, 212-214.
20. de Villiers, H. (1973): Human skeletal remsins froa Border Cave, Ingwavuna District, Kuazulu, South Africa. Annals of the Transvaal Nuseum, 28, 229-256.
21. de Villiers, H. (1976). A second adult humon mandible from Border Cave, Ingwavuma Bistrict, Kwezulu, South Africa. South African S. Sci., 72, 212-215.
22. de Waal, D.J. (1976), A revien of tests of various hypotheses in multivoriote statistical analysis. Sputh African Statist. J., 10, 153-175.
23. Dickey, J.M. (1967). Matirlcvariate generalizations of the multivavariate $\frac{t}{2}$ distributions and the inverted multivariate +
24.

distribution. Ann. Math. Statist., 38, 511-579.
24. Downton, F. (1973). The estimation of $\operatorname{Pr}(Y<X)$ in the nomal case. Technometrícs, 15, 551-558.
25. Dunn, O.J. (1971). Some expected values for probabilities of correct classification in discriminant analysis. Technometrics, 13, $345 \cdot 353$.
26. Dunn, O.J. and Yarady, P.D. (1965). Probabilities of corvect classification in discriminant analysis. Biometrics, 22, 908-924.
27. Dunsmore. I,R. (1956). A Bayesian approach to classification. J. Ray Statist. 306. B, 28, 568-577.
28. Fatti, L.P. and Hawkins, D.K. (1976). Fortran IV program for canonical variate and principal component analysis. Computers \& Geosciences; 1, 335-338
29. Fisher, R.A. (1936). The use of multiple measurement in taxonomic pr $\mathbf{r}^{-} \quad$ Ann. Eugen., 7, 179-188.
30. Fujikoz.
). Asymptotic expansions for the distributions of tuem. ativariate tests. Multivariate analysis IV, P,R. Kriahnaieh, ed., North-Holland, Amsterdant, 55-7n.
31. Geisser, S. (1964). Posterior odds for multivariate normal classifications. J. Roy. Statist. Soc. B, 26, 59~76.
32. Geisser, S. (1966). Pradictive discrimination. Wultivariate analysis, P.R. Krishpaiah, ed., Academic Press, New York, 149-163.
33. Geisser, S. (1967). Estimation associated with linear discrininants. Ann. Math. Statist., 38, 807-617.
34. Geissei', S. (1973), Multiple birth Iiscrimination. Nultivariate statistical inference, D.G. Kabo and R.P. Gupta, eds,, NorthHolland, 49-55.
35. Geisser, S. and Co:nfileld, J. (1963). Posterior distributions for
multivariate normal parameters. J. Roy, Statist. Soc. B, 25, 368-376.
36. Gibbons, J.D. (1971). Nonparamatric statistical inference. NcGraw-Hill, London.
37. Giri, N.C. (1977). Multivariate statistical inference. Academic Press, New York.
38. Girschick, M.A. (1939). On the sampling theory of roots of detarminantal equations. Ann. Math. Statist., 10, 203-224.
39. G1ick, N. (1972), Sample based classification procedures derived from density estimators. J. Amer. Statist. Ass0c., 67, 116-122.
40. Cower, J,C. (1976). Grouth-free canonical variates and generalized inverses. Bull. Geol. Instn. Univ. Uppsala, 7, 1-10.
41. Gray, H.L. and Schucany, W.R. (1972). The generalized jackknife statistic. Narcel Dekker, Mew York.
42. Grsybill, F.A. (1976). Theory and application of the linoar model. Duxbury Press, Massachusetts.
43. Hawkins, D.M. (1974). Conputing mean vecters and dispersion matrices in multivariate analysis of variance. Applied Statistics, 23, 234-238, Algorithm AS 72.
44. Hawkins, D.R. (1976). The subset problem in multivariate analysis of variance. J. Roy, Statist. S0c, B, 38, 132-139.
45. Hawkins, D,M. (1978), A new test for multivariate norality and horoscedasticity. T/ch, Report. TKISK 45, 14p, CSIR, Pretoria.
46. Hawkins, D,M. and Rasmussen, S.E. (1973). Use of discriainant andlysis for classification of atrata in sedimentary successions. J. Wath. Geology, 5, 163-177,
47. Hills, N. (1966). Allocation rules and their error rates. J. Roy. Statist. Soc. 8, 28, 1-31.
48. Hughes, D.T. and Saw, J.G. (1972). Approxiwating the percentage points of Hotelling's generalized T_{0}^{2} statistic. Bionetrika, 59, 224-226.
49. Hutchison, R.I., Skinner, D.L. and Bowes, D.R. (1976). Discriminant trace-element analysis of strata in the Witwatersrand system. J. Math, Geology, 8, 413-427.
50. IMSL (1975). Intemational mathematical and statistical libraries, library 1, edition 5, Houston, Texas.
51. James, A.T. (1954). Normal multivariate analysis and the orthogonal group. Ann. Math. Statist., 25; 40-75.
52. James, A.T, (1961). Zonal polynoaiais of the real positive definite symmatric matrices. Ann. Math., 74, 456-469.
53. Jares, A.T. (1966). Inferenge on latent roots by calculation of hypergeometric functions of matrix argument. Multivariate anaTysis, P.R. Krishnaiah, ed., Acadenic Press, New York, 209-235.
54. Janes, A.T. (1968). Calculation of zonal polynomial coefficients by use of the Laplace-Beltrami operator. Ann. Math. Statist., 39, 1711-1718.
56. James, W. and Stein, C. (1961). Estination with quadratic loss, Proc. 4th Barkley 5ymp., 1, 36]-379
56. Jeffreys, H. (1951). Theory of probability, 3rd edition. Clarendon Press, Oxford.
57. John, S. (1961). Errors in discrimination. Ann. Nath. Statist., 32, 1125-1144.

57a. Johnson, D.E. and Hegemann, V, (1974). Procedures to generate randon matrices with noncentral distributions. Com. Statist., 3(7) 691-699.
58. Johnsort, K.L. and Kotz, S. (1969). Distributions in statistics: discrete distributions. Houghton Mifflin, Buston.
59. Johnson, K.L. and Kotz, S. (1970a). Distributions in statistics:
continuous univariste distributions - 1. Houghton Mifflin, soston.
60. Johnson, N.L. and Kotz, S. (19706). Distributions in statistics: continuous univariate distributions-2. Noughton Miffin, Boston,
61. Johnson, R.L. and Katz, S. (1972). Distributions in statistics: continuous multivariate distributions. Hiley, Hew York.
62. Johnson, N.L., and Leone, F. (1964). Statistics and experimental design, volume 2. Wiley, New York.
63. Kendall, M.G. and Stuart, K. (1969). The advanced theory of statistics, volume I. Griffin, London.
64. Khatri, C.G. (1967), Some distribution problews associated with the characteristic roots of $S_{1} S_{2}^{-1}$. Ann. Math. Statist., $38,944-9 / 6 \mathrm{~b}$.
65. Khatri, C.G. and Srivastava, M.S. (1978). Asymptotic expansions for distributions of characteristic roots of covariance matrices. South African Statist, J., 12, 161-186.
66. Kotz, S., Johnson, K.L. and Boyd, D.K. (1967a). Series representations of distributions of quadratic forms in normal variables 1. Central rase. Ann. Nath. Statist., 38, 823-837.
67. Kotz, S., Johnson, N.L. and Boyd, D.W. (1967b). Series representations of distributions of quadratic forms in nomal variables 2: Non-central case. Ann. Math. Statist, 38, 838-848.
68. Lachenbruch, P.A. (1967). An almost unbiased method of obtaiking confidence intervals for the probability of wisclassification in discriminant analysis. Bionetrics, 23, 639-645,
69. Lachenbruch, P.A. (1968). On expected probabilities of misclassification in discriminant analysis, necessary sample size, and a relation with the multiple correlation coefficient. Biometrics, 24, 823-834.
70. Lachenbruch, P.A. (1973), Some results on the muitiple group discriwinant problem. Discriniinant analysis and applications, T. Cacoullos, ed., Academic Press, New York; 193-211.
71. Lachenbruch, P.A. (1975). Discriminant Analysis. Hafner Press, New Cork.

286.

72. Lachenbruch, P.A. and Mickey, M.R. (1968). Estination of error rates in discriminant analysis. Technowetrics, 10, 1-11.
73. Lawley, D.N. (1956). Tests of significance for the latent roots of covariance and corselation watrices. Biometrika, 43, 128-136.
74. Lindley, D.V. and Salith, A.F.M. (1972). Bayes estimates for the Linear Model. J.Roy, Statist, Soc. 3, 34, 1-41.
75. Naritz, d.S. (1970). Empirical Bayes methods. Methuer:, London.
76. Mc Cracken, D.D. and Dom, H.S. (1964). Numerical methods and fortran programing. Wley, haw York.
77. Nc Kay, R.J. (1977). Sirultaneous procedures for variable selection in multiple discriminant analysis. Biometrika, 64, 283-290.
78. Nc Keon, J.J. (1974). F approximations to the distribution of Hotelling's T_{0}^{2}, Biomatrika, 61, 381-383.
79: Mc Lachlan, G.J. (1974s). The asymptotic distributions of the conditional error rate and risk in discriminant analysis. Bionetrika, 61, 131-135.
79. Mc Lachlan, GiJ. (1974b), Estimation of the errors of misclassificaction on the criterion of asymptotic mean square error. Technometrics, $16,255-260$.
80. Nc Lachlan, G. timating the error rates in discriminent analysis. Bianetrics, 30, 239-249.
81. Mc Lach1an, S.J. (1975). Confidence intervals for the conditional probability of misallocation in discriminant analysis. Bionatrics, 31, 161-167.
82. Ne Lachlan, G.J. (1976a). The bias of the apparent error rate in disoriminant analysis. Bionetrika, 63, 239-24i4.
83. Mc Lachlan, G.J. (1976b). A criterion for selecting variables for the linear discrimimant function. Biunetrics, 32, 529-534,
84. Ne Lachlan, G.J. (1977), Constrained sample discrimination with the studentized classification statistic \mathbf{W}. Coma, Statist., $\mathrm{A}_{\text {, }}$ 6, 575-583.
85.
86. Nichaelis, J. (1973). Simulation experiments with multiple group 1 inear and quadratic discriminant aņalysis. Discriminant analysis and applications, T. Cacoullos, ed., Academic Press, i New York, 225-238.
87. Miller, R.G. (1974). The jackknife - a review. Bionetrika, 61, 1-15.
88. NAG (1975), Nottingham Algorithas Group Iibrary. Univ. of Mottingham.

88a. Odel1, P.L. and Feiveson, A.H.(1966). A numerical procedure to generate a saniple covariance matrix. J, Amer, Statist. Assoc., 61, 199-203.
89. Okamoto, M. (1963). An asymptotic expansion for the distribution of the linear discriminant function. Ann. Fith. Stailist., \&., 1286-1301, (Correztion(1968). Ann.Nath.Statist., 39, 1358-1359).
90. Pearson, R. (Ed.)(1922). Tables of the Incomplete 5 -Function, H.M. Stationery Office, London, (Since 1934, Cambridge University Press).
91. P1llai, K.C.S. and Sawson, P. (1959). On Hotelling's genaralization vf T^{2}, Binmetrika, 46, 160-168.
92. Pross, $\$.3$. (1966). Linear conbinations of non-central chi-square variates , Ann. Math. Statist., 37, 400-487,
93. Press, S.J. (1972), Applied aultivariate analysis. He't, Rinehart. and Winston, Hew York.
94. Quenoutlie, M.H. (1956). Notes on bias in estimation. Biometrika, 43, 353-360.
95. Rao, C.R. (1965). Linear statistical inference and its applications. Mley, Nen York.
96. Reyment, R.A, and Banfield, C.F. (1976). Growth-free canonical variates applied to fossil forminifers. But1, Geol. Instn. Univ. Uppsala, 7, 11-21.
97. Robbins. $5 . E$, (1948). The distribution of a definite quadratic formi. Ann. Nath. Statisti, 19, 256-270.
98. Robbins, H.E. and Pitman, E.J.G. (1949). Application of the method of mixtures to quadratic forms in normal variates. Ann. Math. Statist., 20, 552-560,
99. Ruben, H. (1960). Probability content of regions under spherical normal distributions, 1. Ann. Nath. Statist., 37, 598-619.
100. Ruben. H. (1962). Probability content of regions under spherical normal distributions, 4. Ann, Math. Statist., 33, 542-570.
101. Silvey, S.D. (1975), Statistical inference. Chapman and Hall, London.
102. Smith, A.F.M. (1973). A general Bayesian linear model J. Roy. Statist. Soc. B, 35, 67-75.
103. Solonon, H. and Stephens, M.A. (1977). Distribution of a sun of weighted chi-square variables. J. Ater. Statist. Assoc., 72, 881-885.
104. Sorum, M. (1972a). Three probabilities of misclassification. Technonetrics, 14, 309-316.
135. Sorie, M. (1972b). Estimating the expectod and the optimal probabilities of misclassification. Technomatrics, 14, 935-943.
106. Sparks: D.N. and Todd, A.D. (1973). Latent roots and vectors of a symnet, ic matrix. Applied statistics, 22, 260-265, A1gorithan AS 50.
107. Tukey, J.W. (1958). Bias and confidence in not quite targe samples. (abstract), Ann. Nath. Statist., 29, 614.

107a, van der Westhuizen, A.J, and Hage?, P.J.A.(1979). Prograiss for the evaluation of zonal polynomials. Submitted to App?. Statistics.
108. van"Niekerk, J.N. \{1978). An introduction to the empirical Bayes approach to statistical decision problems. Tech, Report. TWISK 18, 14p, CSIR, Pretoría.
109. Kald, A. (1944). On a statistical problem arising in the classification of an individual into one of two groups. Ann. Nath. Statist., 15, 145-162.

289.

110. Walsh, G.R. (1975). Methods of optimization. Wiley, London.
111. Welch, B.L. (1939) Note on discriminant functions. Biosetrika 31, 218-220.
112. Wilks,S.S. (1962). Mathematical Statistics. Miley, New York.

Author Fatti Libero Paul
Name of thesis The random effects model in discriminant analysis. 1979

PUBLISHER:

University of the Witwatersrand, Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the University of the Witwatersrand, Johannesburg Library website are protected by South African copyright law and may not be distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

The University of the Witwatersrand, Johannesburg, is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the Library website.

