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Abstract

In th is  thesis the characteristics o f discriminant analysis under the 

random effects model are investigated.

Assuming that the elements within any randomly selected population 

are normally distributed with mean vector y and common covariance matrix 

E, and tha t over d iffe ren t populations p has a normal d istribution with 

mean vector % and covariance matrix T, the distributions o f the popula­

tion-based and sample-based Mahalanobis distances between two different 

populations are derived. From these, expressions and bounds are derived fo r 

the expeeW probabilities o f mis- and correct c lassification under 

classical discriminant analysis, applied to two- and k-population problems 

respectively, when using either the population-based or sample-based 

linear discriminant functions.

The distributions and expected probabilities mentioned above are 

e ll expressed in terms of the eigenvalues o f T2f"*, so the problems of hy­

pothesis testing on, and more particu la rly , estimation o f these eigen­

values are fu l ly  discussed.

Using the Predictive Bayesian Approach to  Discriminant Analysis, 

expressions for the predictive density o f an observation, given that i t  

has come from a particular population, are derived under the random ef­

fects model. B rie f consideration is also given to the empirical Bayes 

and semi-Bayes approaches to discriminant analysis under this model.

F inally, the results derived in  th is  thesis are applied to a 

s tra ti graphic problem ir. underground mining.
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Chapter 1 Introduction

Suppose that ir^, Hg.• . . are k populations o f p-component vectors.

Let x be a vector known to have come from one of these populations. 

Ojiscriminant analysis deals with the problem of identifying the popu­

lation from which x was drawn.

The case covered most thoroughly in the lite ra ture  is  that f t  which 

the vectors from rr.. follow a multivariate normal d istribution with mean 

vector jj.j and a common covariance matrix Z. (Anderson, 1958). Generally, 

i t  has been assumed that are fixed populations predeter­

mined by the problem faced.

This thesis deals with the case where the p.. have been randomly 

selected from some population in advance of the experiment. Once the 

k mean vectors have been selected we are then faced with a conventional 

problem in discriminant analysis of classifying vectors into one o f the 

k (now fixed) populations.

In d iffe ren t experiments, there are d iffe rent sets o f y.., in general 

with d iffe ren t numbers o f elements k, a ll drawn independently from the 

same parent population.

The aim of th is research is to investigate the characteristics of 

discriminant analysis under these circumstances. I t  w il l be assumed that 

the population from which the ii^ are drawn is multivariate normal with 

mean vector £ and covariance matrix T.

This study was.motivated by . stratiyraphic problem in mining. 

(Hawkins and Rasmussen {1973), Hut. ■' n , Skinner and Bowes (1976))

In the Witwatersrand gold fie lds the gold bearing reef Is one band (the 

"pay band") o f a sedimentary succestic and is usually v isually un­

recognisable. In badly faulted areas this pay band usually faults 

away, and the miner wishes to  know the position in the sedimentary sue-
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cession of the blank band facing him, from which he can deduce the new 

pv§U1on of the pay band.

One method of iden tifica tion  is via trace element geochemistry of 

the bands. I t  is  reasonable to suppose that the geochemistry o f each 

band can be described by a (multivariate) s ta tis tica l d istribution .

The mean of the d istribution  reflects the average conditions a t the 

time of deposition o f the band, while the spread re flects local varia­

tion in  grade. Furthermore, the average conditions a t d iffe ren t times 

and loca lities  o f deposition o f the bands are themselves s ta t is t ic a lly  

variable, being themselves drawn from some parent population. Thus 

the bands intersected by any given cross-section w il l be fixed fo r the 

immediate c lassifica tion problem and yet w ill follow some random ef­

fects model as we move from one area in the mine to another.

Another example o f a random effects model in discriminant analysis 

occurs in an* ropology (de V in te rs , 1973, 1976). Here the problem is 

to classify an ancient skull from a certain period as having come from 

one o f a number of tribes suspected to have lived in  the lo c a lity  in 

which the skull was found. The classification is bX <ious

measurements (lengths and angles) made on the maxima arm/..,-mandible, 

and fo r any given tribe  , sex and ago-group these may be regarded as 

having a jo in t d istribution with fixed mean vector and covariance ma­

t r ix .  D ifferent •'•vibes w i l l ,  in  general, have d iffe ren t mean vectors, 

and these may t |  selves be considered to have come from some multi­

variate d istribution.

Another type o f random effects model in discriminant analysis is 

considered by Geisser (1973), in the context, '-f multiple b irth  dis­

crimination. Supposing that a b irth  gives t >  to t  llke-sexed o ff­

spring, the problem is  to decide which of t / rv -  offspring have come 

from the same eggs and which ones have coim d iffe ren t eggs. Assume



that each offspring is characterised by a p-dimensional random variable 

x, where x ~ Offspring from the satoe egg (monozygotes)

have the same , whereas offspring from d ifferent eggs (heterozygotes) 

have d iffe rent p^. D ifferent p̂  are assumed to  have been generated by 

a random effects model;

i . e . p.j ~Np(p,£B), Independently Vi ,

Geisser considers the difference zr  = xt  -  xr  between the t th and 

the r ^  offspring. I f  t  and r  come from the same egg, then:

and i f  they are from d iffe ren t eggs, then

The jo in t d istribution o f z and z is also multivariate nnrmal with

cov(z ,z )

£„ * Eg i f  t , r  and s are a ll from d ifferent eggs,

E y ff f lg  i f  ra n d s  are from the same egg but 

t  is  from a different one.

Given the jo in t d istribution o f z , , , fo r each o f the Various

possible combinations o f offspring and eggs, and the prior probabilities fo r 

each o f these possible combinations, posterior probabilities can be ca l­

culated fo r each case, and the case fo r which th is  is a maximum is  th^n 

chosen.
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The situation discussed in this thesis is ,  however, entire ly 

d iffe ren t from that ju s t describees. Here we assume that the i ^ 1 

population is characterised by a Np(y. ,E) d istribution and that d if ­

ferent art. independently distributed as Np(5,T). On the basis of 

these assumptions the characteristics o f classification in th is en­

vironment are then assessed.

i . e . Givpr an observation known to have come from one of k popula­

tions from the abovementioned random effects model, where the para­

meters o f these populations are either known or estimated from tra in ­

ing samples, how well are the classical procedures of discriminant 

analysis fo r classifying the observation into one of these populations 

lik e ly  to perform?

When i t  comes to ibe Predictive Bayi ian Approach to discriminant 

analysis, the random effects model actually leads to  a new procedure^ 

fo r classifying the observation into one of the k populations.

1.1 The Scope of the research covered in this Thesis

As mentioned earlie r, the aim of th is thesis is to investigate 

the characteristics of discriminant analysis under the Random Effects 

model.

In order to do so, and to provide a framework within which to con­

duct the investigation, a summary o f the theory o f classical and Predictive 

Bayesian discriminant analysis is given in chapter 2 : By the classical ap­

proach we mean that given by Anderson (1951 ,1958) and by the Predictive 

Bayesian approach we mean that o f Geisser (1964,1966)i and Dunsmore (1966).

Chapters 3 to 5 cover the classical approach. In chapter 3 the 

Random Effects model is set out in  more deta il, and then the d istribu­

tions of the four quantities central to the classical approach are de­

rived under this model. Chapter 4 uses the distributions derived in 

chapter 3 to evaluate the performance of classical discriminant analysis



under the random effects model. Specifically, the probabilities o f 

correct and misclassification are considered, separately fo r the 

two-group and multiple-group problems and fo r the two situations where 

the parameters ^re  known and unknown.

A ll the results in chapters3 and 4 are expressed in terms of 

Xj > X2>...>Xr  > 0, the r  nonzero eigenvalues o f TE"""1 where T and 2 

are the covariance matrices o f the mean vector y. and observation vector 

X, respectively, so chapter 5 is  devoted to the question o f inference .

on these parameters. A fter a short review of hypothesis testing on the

A.|, the rest o f the chapter addresses1 the question o f the ir estimation, 

on the basis o f "train ing samples" taken from a number o f rapdomly 

selected populations. "

Whereas the treatment o f the classical approach is  confined to

$p.evaluation o f the standard, theory within the framework o f the random ef­

fects model,the application of th is  model to the Predictive Bayesian approach 

results in a modification of the usual classification rule. Chap­

tered deals with this apprr xh and in i t  the predictive density of a 

new observation, given the tra in ing samples and assuming that I t  comes 

from a specific group, is  derived under the random effects model. A 

b rie f treatment o f the Empirical Bayes and Semi-Bayes approaches completes 

th is chapter.

In chapter 7 the theory o f the preceding chapters is applied to 

some data obtained from underground mining, contrasting the results with 

those obtained by applying the usual fixed effects theory.

The thesis Is concluded In chapter 8 with a discussion o f various 

avenues fo r future research and with some comments on the app licab ility  

and Usefulness of the theory developed here to the solution o f practical 

problems In discriminant analysis.



li

Chapter 2 A Summary o f the Classical and Bayesian approaches to 

Discriminant Analysis 

In th is  chapter a b rie f suimtary is given o f the theory o f Discriminant 

Analysis under the Normal d istribution.

'Ihe Classical approach, pioneered fay Fisher (1936), Welch (1939), 

Wald (1944) and others is described by Anderson (1958) ;  La.chenbruch 

(1975) and G iri (1977) so only a b rie f sketch o f the basic theory w il l 

be given in section 2.1. The coverage is  not complete, and prime 

emphasis w il l be given only to those aspects that w ill be of- direct 

relevance to  the treatment o f the random effects model.

The Predictive Bayesian approach, pioneered by Geisser (1964),

(1966) and Dunsmore (1966) is described in  section 2.2. Once again, 

only a b rie f summary o f the approach w il l be given, and only one main 

result, useful fo r comparison with the results derived in th is thesis, 

w il l be give*. A description o f the approach is  given in Press (1972). 

v> A c r itic a l comparison o f the Classical and Predictive Bayesian 

approaches, as well as a concise description of them that highlights 

the point of departure between the two is  given by Aitchison, Habbema 

and Kay (1977). This paper'comes out strongly in favour o f the Bayesian 

approach, at least within the framework o f the "fixed effects" (Classical 

approach) or "Diffuse p rior" (Predictive Bayesian approach) model, ' I t  

would be interesting to compare the re lative efficacies o f these two 

approaches within the random effects framework.

z .i

Suppose we have a p-dlmsnsional observation x known to have come 

from one of k populations itp tf j* • • • >1̂ .  • Anderson (1958) proves that

i t  J

0-
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the BaySf ^ca tion  procedure, that assigns x to one o f the popula­

tions ip; . * way that the expected loss froiri m isclassification is 

,5pinimise''d, is ,  under mild restric tions, an admissible procedure and 

that the class o f Bayes procedures is minimal complete.

Assuming that the costs of misclassification from a ll k populations 

are equal, the Bayes procedure leads to the following simple classifica­

tion rule:

Assign x to population ^  where,

q1 f 1(x) = j _1max f t  f j ( x) (2.1.1)

vAere is the prior probability that x comes from ttj and f j( x )  is the 

probability (density) function o f x assuming that i t  has come from ly .

The case considered most frequently in the lite ra ture  and in prac­

tice  is  that in  which observations from i i j  follow a multivariate normal 

d istribution with mean vector ty  and common covariance matrix I .  In 

th is  case,

qj  f j M  = qj (2’ir}"|1/'2 | S| "® exp ( - -

Taking logarithms and sim plifying, rule (2,1.1) becomes:

Assign x to population -ry where,

lo g  g < - i ( x - P i ) '  s ' V - w !  o max ( lo g
- \ y  ........k '  '  \  . /  ^

(2 . 1 .2)

(X -  y l a ,  + U j ) ) '  J - ’ lu ,  -  Uj -Jxlog  i  » j = l  k i f V  ) ( 2 . 1 . 3 )

i  "
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In the case where the prior probabilities are a ll equal, rules 

(2.1.2) and (2.1.3) become, respectively:

Assign x to population it. where,

(x -  p .) ' r \ x  -  y ,)  = min (x -  p j '  e‘ ] (x -  p .) (2.1.4)
1 ' j= l ........ k J J

(;Fd

(X - t  V j)) ' E", (n1 -  H jJ.O  V j= l ...... k ;> 1  . (2.1.5)

From (2,1.4) i t  is  clear that for equal prior probabilities the 

Bayesten classification ru le is also a minimum distance rule in that 

x is  classified into that population nr,, to which i t  is  closest as 

measured by the Mahalanobis distance from x to ir  ̂ :

< | ( x )  = (X -  H j ) '  E_1(X -  l i , )

The Case k = 2 ..

In this case rule (2.1.3) becomes: - ' ^

Assign x to ir̂  i f :

u12(x) = (x -^ (p 1 + p2) ) '  E-1(p1 - p g l^ log  ^  (2.1.6)

and to ir2 otherwise.

To obtain the probabilities o f misclassification under rule (2.1,6) 

note that i f  we le t X be the random vector corresponding to the observed 

x then, under the assumption that X is from ir^, u^2(X) has a univariate 

normal d istribution with mean: Yl



ECu^JX)!^] = 1(11-, -  P2) ’ -  yg)

- ? ' h

where 5 ^  denotes the Mahalanobis distance between ir̂  

variance:

: (W;i -Wg)

So, given that X is from ir-,,

u12(X) -  N(i 6 ^  ,6f2} 

il^here 6f2 B (p- , - y2) ' - w?)

Sim ilarly, i t  can be shown that i f  X is from Tr2, then 

U12(X> ~N (- j  af2 ,«f2)

» PtMisclassify a random observation from 

= 'PCU^(X) < c|ir^3 . where = log 

f C - J f i ? -

and w,, and

~VZ)1

(2.1.7)

( 2 . 1 . 8 )

(2.1.9)



10.

where $(•) denotes, the standard normal d ls trib tition  function, and

/ 2 = PCMisclassify a random observation from

= PCû 2(X) c|ir2]

(2. 1. 10)

For equal p rio r probabilities q̂  a q2 s i ,  c -  0 and (2.1.9) and ... 

(2.1.10) become:

This case has not received nearly as much attention as the two - 

population problem. Although there is not much increase in complexity at 

a conceptual level when moving from the two-to the multiple population 

problem, the evaluation of misclassification probabilities becomes con­

siderably more complicated. To see th is , note that i f  we use the 

notation:

(2 . 1. 11)

k > 2 populations

U jjM  = (x -  i(U i + P j)) ' r " 1(yi  -  ujV (2.1.12)

then classifica tion rule (2.1.3) becomes: 

Assign x to population ^  where,

(2.1.13)



Letting X be the random vector corresponding to x, and assuming 

that X is From we have, as in the case k = 2 "populations:

-  s ij

■here -  w y 1 E-1(ii,' -  Vj)

and i t  is  easy to show that

covcu.u (x), '.>u m i y  -  61 jt  

"h e re  i 1 } t  ■ (wt  -  H j ) '  I ' h v j  -  vt )

Using the notation:

and noting that the k-1 random variables u ^ ,  J*1 are a ll

linear functions o f the normally distributed random vector X we have 

that, given Xer^:

tii  B ( " i l  Ui i - V  u1 i+ l uik^ ' ;

has a (k-1) -  dimensional Normal d istribution with mean vector:

I  = 4 {8 iv , “ ,611-V 6ii. i.V - , *,5'|k^)

!j and covariance matrix:



,k; j,H*1 (2.1.14)

Remark 2.1.1 I f  k-1 > p then w ill have a singular normal d is tr i­

bution with its  mass concentrated on a p-dimenslonal., subspace.

Therefore, the probability o f correct c lassifica tion, given XeKj

is :

I ' ,  | - |   ( " ' ' s )
U « i J  n  j - l

where.

= (Ŝjjp) » i •• •
where we have used the notation:

6m  n 6id

q,
cj i  = l09 q 7 s log qj -  log q,

and (u^) is the density function o f the (k-l)-dimensional Normal dis­

tribu tion  given in (2,1.14),

Lachenbruch (1973) has evaluated the integral in (2.1.15) when 

the prior probabillites qj are a ll equal (so that the lower lim its  o f 

integration are a ll zero) fo r two particular configurations o f the 

mean vectors'w.|. The two configurations that he considers are:

(a) the are co llinear, with equal spacing of 6 units between 

adjacent means,

and (b) the are placed at the vertices of a regular (k-1^dimension­

al simplex with side of length 6 units.

For configuration (a), with p-, and pk at the two extremes, (2.1.15) 

becomes ''



PCcorrect c la s s if ic a tio n !^ ] = fo r 1=2,...,k-1

-  ©(y) fo r i«1 and k

and fo r configurp.tlon (fa) i t  becomes:

PCcorrect cU.>" .fica tlon l ir .] = f  f$ [  J  dx
1 >-<*1 l / 6 2/2 JJ (/fi* /2J

vrfiere •} is  the standard normal density function,

For a general configuration o f mean vectors, however, tables of 

the (k-l)-dimensional normal d istribution (or an algorithm to compute 

them) are required to evaluate (2.1.15).

The following Iriwijr bounds on the minimum probability PQ o f correct 

c lassification when thfi p rior probabilities are a ll equal, that are 

fa r easier to compute than (2.1.15), have been given by Cacoullos (1973):

pd s i - ( k - i )  e ( - . | )  (2.1.17)

where,

Gv(*) is  the d istribution function of the chi-squared dis­

tribu tion  on v degrees o f freedom,

and 62 = min 6 | , ' is  the minimum Mahalanobis distance between arty
Vi t j

two of the k popalations.

For k s 3, (2.1,17), whicii is  derived using Bonferroni's f ir s t  

inequality, gives a stronger bound than (2.1.16), whereas the opposite



is  generally true fo r k > 3.

2.7.1 Unknown Parameters

r
Thus fa r i t  has been assumed that a ll the parameters in the popula­

tions ir,., i  k , are known.. In most practical situations, however,

these are not known, and have to  be estimated from a "train ing sample"

consisting o f observations x^-, j = l , known to have come from

, fo r each of the k populations ^  , i= 1  k .

- friderson (1951) proposed that the unknown parameters ^  

and I  in (2.1.3) he replaced by the ir maximum likelihood estimators, the 

sample means,

and pooled sample covariance matrix, respectively

I ? r1

k
where v » ^  (n^ -  1). This gives the sample-based classification rule: 

Assign x to population tî  where,,

> ,1 ,g  ^  I 2 ' 1 - 19 )

This procedure o f "plugging in " the sample estimates of the



unknown parameters into the optimal Sayes classification rule (2.1.2) 

or (2.1.3) is  essentially an Empirical Bayes procedure; see, for ex­

ample, Maritz (1970), Aitchison, liabbema and Kay (1977) refer to i t  as ■

an "estimative" method, 1n contrast to the "predictive" method used in  1

the "pure" Bayesian approach o f Geisser (1964) that w il l be described 

in section 2.2.

Anderson (1958) ju s t if ie s  the use of the sample-based discriminant :

function V^j defined in (2' '%) in the two-population case by pointing

out that i t  can be written as* .

V „  .  X' + \ . ) '  j

and that.the f i r s t  term ("Fisher's discriminant function") is  the 

linear function of x that has the greatest "between group" variance re­

la tive  to the "within group" variance. He also appeals to the fact 

that " i t  seems'intuitively reasonable".

Geisser (1967) adds further ju s tif ic a tio n  by pointing out, in  the 

two -  population case, that the posterior mean of the population d isc ri­

minant function u-jg, defined in (2.1.6), given the tra in ing sample and 

assuming a noninformative prior d istribution fo r p2 an<l fo r :

fixed x:

Etu,2|x , TS] = \  -  n j1) + »,2 (2.1.20)

where TS denotes the tra in ing sample ( x ^ ;  J=1................. i= l,2 } . ;;

Expression (2.1.20) derives from the fact that, under the above- j,

mentioned prior assumptions, the posterior mean of r’

* (x -  ; , ) '  z" (x -  V l)

i



EE6|(x}tx, TS] = p n^‘ + d|(x) (k.T.21)

where

d|(x) -  (x - ) ' S"1(x -  xL )

This result is  c learly not confined to the two-population case, and 

the bias in and d^(x) evident from (2 .1.20) and (2.1.21) respective- 

v' ly» may be incorporated into c lassifica tion rules (2.1.18) and (2.1.19) 

by substituting log ^  ^  P fo r log q^, j= l , . . . , k ,  in these two

rules. ^

Remark %.2.1 In the situation where the tra in ing samples from the 

d iffe ren t populations a ll have the same size,

i.e . nj ”  n , j = l  k

thy bias |  p(n^ -  nT1) in vanishes, and that in d^(x) is a constant, 

p n " l and therefore dcas not a ffect rule (2.1.18).

As a fina l ju s tif ic a tio n  fo r using sample-based rules (2.1.18) and 

(2.1,19) Glick (1972) proves tha t, under very general conditions, 

sample-based classifica tion rules are asymptotically optimal in the 

sense that they converge (almost surely) to the ir corresponding popula­

tion-based optimal rules (2.1.1).

k * 2 populations

This is the case that has received the most attention in the l i t e ­

rature. Conditional on x ^ ,  Xg and Sv'and le tting  X be the random
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vector corresponding to x, V = V^(X) has a normal d istribution with

ew |« ,t . x2 i, S; X .T ,]  = (* , + X; ) ) '  S"'(xL  -  x , )

and variance

VarEVlx^, , S; X c ir^  = (x ^  - x 2 i) ' S-1 2 5""\x^ -  x2 )

Using rule (2.1.19) with k=2 and considering the case q1 = q2 = 

i .e . :  "Assign x to ^  i f

V > 0

and to ir2 .otherwise, (2.1.22)

and arguing in  a way sim ilar to that leading to (2.1.11) we obtain the 

'[(following expression fo r the conditional probability t k t  a randomly 

chosen member of ir  ̂ w il l be mi (c lassified:

«
p9 » Pcmlsclassificationjx-, , x2 , S; Xcir^]

1 / <{xL - x 2 i)- S"I 2!S 'I (x1i - x2 i)} j

(2.1.23)

John (1961), H ills  (1966),Lachenbruch and Mickey (1968),Dunn (1971) 

Sorum (1972a), McLachian (1974a, b, c, 197S; 1976a, b) 

have studied the conditional error rates (2.1.23) (termed the "actual" 

error rate by H ills ).

A simple estimator o f p!? , 1=1,2, is  obtained by replacing and

2 respectively by x̂  and S in (2.1.23). This yields:
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?c. "= ? l , (2.1.24)

where d2 = =(xl i  -  Xg_)' S '^ x ^  -  Xg J  1

Glick(1972) proves that th is "apparent error-rate” »(--|) converges uni­

formly to the "optimum" error rate ${- | )  given in (2.1.11) as the,sample 

sizes n-, and n2 increase.

However, fo r moderate sample sizes (2.1.?4) may be badly biased 

and give much too favourable an iidpression of the probability o f error.

H ills  (1966) proves that:

E » ( - 4)1 '  ® (-■§> < ECPj'-l

and Dunn and Vara*/ (1966), Lachenbruch and Mickey (1968) and Dunn (1971) 

show empirically that th is bias may indeed be substantial fo r moderate 

sample sizes.

McLachlan (:1974c) gives the following estimator of Pp with bias 

o f order 3 with Respect to (n ^ ,  n g \  v~^) where v » n1 + n2 -  2 :

pC = - ,> £ - ^ )+ » (5 ) ( ^ - l- j '- (4 (4 p - l) -d s)} + 02 (2.1.25)

(02 denotes the term of order 2 with respect to (n ^ ,  n^» v-1) ;  th is 

is given e xp lic it ly  in McLachlan (lh75).)

Hhilo the conditional error rates are o f Interest in assessing;the 

performance of a particular discriminant function, the unconditional or 

expected error rates, obtained by considering and S as random

variables, are more appropriate when considering the expected perfor­

mance of the sample discriminant function V when based on randomly 

Chosen samples o f sizes n̂  and n2 from rr̂  and rr2 , respectively. -Z



Several authors, including Okamoto (T963, 1968) H il ls  (7966), 

Laohenbruch (1967, 1968), Lachenbruch and Mickey (1968), Dunn (1971), 

Sorum (19726.) and Anderson (1973a, 1973b) have studied ttov. expected error 

rate when the sample-based classifica tion rule (2.1.22) is used.

Okamoto (1963) obtained an asymptotic expansion fo r  the d istribu­

tion o f the sawple discriminant function V. Applying th is to the classi­

fica tion  rule (2. 1.22) and assuming equal-sized tra in ing samples 

n-| « n2 = n, yields the following expression, to terms of order n"2, 

fo r the expected probability o f m isclassjfication fo r a randomly chosen 

member o f r-|:

P® = PCmisclassi ?ic x tio iijT i^ = *  ( -  | )  + *  (- |)  ^  6) +0(n'"2)

(2.1.26)

(Okamoto also gives a (very complicated) expression fo r the terms of 

order n '2.)

Anderson (1973a, 1973b) derives an alternative asymptotic expansion for

V in the "studentized" form which, fo r n-j = n2 = n has the form:

P[ " 4 ~ " £ y liri ] t$(y) + *<y)xF (^r-1 -

(2.1.27)

Expression (2.1.27) is  useful when one wishes to choose the cut-off 

point fo r V fo r classifying x into so as to achieve a given probabi­

l i t y  of misclassification. (Anderson (1973b), McLachlan(1977))

( Lachenbruch and Mickey (1968) use a simulation study to compare 

the performances of a number of estimators o f and P® including 

Okamoto's- expansion with two d iffe rent estimators for 5, and a d is tr i­

bution-free method proposed by lachenbruch (1967) based on a sample 

reuse approach.
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k > 2 Populations

As in  the case where the parameters are known, the multiple popula­

tion problem has received fa r less attention than the two-population 

problem.

McKay (137/) has considered the problem of variable selection with­

in the context o f multiple population discriminant analysis, and 

Michael is  (1973) has performed simulation experiments to assess the 

error rate o f the c lassifica tion rule (2.1.19),' based on the linear dis­

criminant function V^" in some multiple population situations. Click, 

(1972) proves that the "apparent non-error rate", obtained by replacing 

the parameters in  (2.1.15) by sample-based (maximum likelihood) estima­

tors, converges uniformly to the "optimum" probability o f correct 

c lassifica tion as the sample sizes increase.

Assuming equal prior probabilities = 1/k, i= l , . . . , k  fo r the k 

populations, c lassification rule (2.1.19) becomes:

Assign x to  u. where,

d|(x) = min d*(x) 
j= l, . . .» k  3

where dj(x) = (x -  Xj ) 1 S” 1(x - Xj ) (2.1.28)

I f  X6ir.| , le tting  X be the random variable corresponding to  x and 

considering x̂  and S as random variables,

j - '  + 1 )- ' 4 m  ~ fp .  , - p + i

(2.1.30)



21

where,

fp v _ p + i  denotes the central, unnormed f-d is tribu tion  with 

p and v - P  + 1 degrees o f freedom, 

fp v _ P+ denotes the corresponding noncentral d istribu­

tion with noncentrality parameter

and (Slj = -  P j) ' E"1^  -  Vj) .

(See, fo r example, G iri ,(1977) chapter 7),

So the probability o f correct c lassification using rule (2.1.28) 

and given x e r .  and be written:

PCcorrect c la ss ifica tion |x f tt. ]  = Pfz^ < (2.1.31)

where,

-  +  Z, ~  fp ,

v ‘ , nj ( nj t l ) " ' z j - f p ,  v . p + 1 ( l 1j>  j v 1  k ;  j ’ 1

and the z^, j= = l,...,k  are not independent random variables, due to the 

fact that X and S occur in a ll the dj(X), j= l , . . . , k  .

To evaluate the probability on the right-hand side of (2.1.31) 

requires the jo in t d istribution of k correlated random variables, k-1 

of which have noncentral f  marginal d istributions, the las t one having 

a central f  marginal d istribution . This problem has received l i t t l e ,  

i f  any, attention to date.

Cacoullos (1973) giVsiS the following lower bound on the minimum 

probability PQ of correct c lassification using rule (2.1.28):

p „ z  j ^ P C z ,  s  ( M - p t l l n ^ t e p v ) " 1 m  -  „ k  (2 .1 .3 2 ) '':
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z.| denotes a (normed) F - random variable with p and (v -p  + l )  

degrees o f freedom,

and n = 1 .
" 0

2.2 The Predictive Bayesian Approach

Siveff the training sample TS = {x ^ ',  j  = l, . . .,n ^ ';  i = l j . . . , k }

from k populations ir ^  i  = l , . . . , k  and an observation x o f unknown orig in ,

the Predictive Bayesian approach consists in evaluating the posterior

probability, given TS and the underlying model together with any known

parameters, that x belongs to  ir^ fo r r  = 1 to k, and then assigning x

to that population fo r which th is probability is  the greatest.

More specifica lly, suppose that each ir^, r  = l , . . , , k  is specified

by a probability density function f (* |0 r ,ily), where 0r  is the set of

unknown parameters and the set o f  known parameters ( i f  any). Let

e = u 8 and # = u w be the sets o f d is tinc t unknown and known
r=l r»l

parameters, respectively, in the k populations. Denoting the jo in t

prior d istribution of 0 given iji by g(0|i|i), then the predictive density

o f x given the training sample TS, i|i and assuming that x comes from -ny,

is:

f(x|TS, , r  ) = |  t r )P(o|TS, tjdO (2.2.1)

where P(S|TS, ip) is  the posterior density o f 0 given the training 

sample and ip, and is given by:

P(9|TS, ip) « A(TS|6, ip) g (0|ip) (2.2.2)
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where &(TS|e, ip) is the jo in t likelihood of the tra in ing sample.

When the in  the tra in ing sample are random observations then 

£(TSj8, ip) becomes:

k ni
* ( t s | 6 , * )  -  f ( x i J |e 1, . {2 .2 .3 )

F ina lly, given the set q = {q^, i  = l , . . . , k }  o f prior probabilities that 

x belongs to  ir ., i  = 1 , . . . ,k ,  we obtain the posterior probability that x 

belongs to Tiy :

PCX € irr lTS, * ,  q ]« q r  f(x$TS, 4. \ )  (2.2.4)

.where the constant o f proportionality is obtained from: 

k
^  PCX « trr |TS, iM :  -  1 (2.2.5)

For the situation, considered in th is thesis, where a ll the parame­

ters are unknown & p r io r i,  a ll references to ip, and ip are deleted from 

formulae (2.2.1) to (2.2.5).

Seisser (1964, 1966) gives formulae fo r the posterior probability 

given by (2.2.4) fo r the case where the ir^, i  = l , . . . , k  are each charac­

terised by a univariate or multivariate normal distribution and assum­

ing a noninformative p rio r d istribution fo r the unknown parameters . 

D ifferent formulae are given for each o f the various possible assumptions 

about the parameters o f these distributions, such as whether they are 

known or unknown and whether or not some o f them are equal fo r a ll k po­

pulations.

For the case of Interest in this thesis, v iz , unknown ipnd d ifferent 

mean vectors, and unknown but common covariance matrix fo r the k popula­

tions, Geisser derives the following formulae fo r the posterior probabi -



l i t y  that x belongs to t y  given the training sample TS. 

Fo( the univariate case:

s2 is the pooled sample variance 
k

and N = T n.i=l 1
and fo r the multivariate (p-dimensional) case:

(nr+l)(N-k)

where 5 is the pooled sample covariance matrix.

( 2 . 2 . 6 )

-i(N-k+1)

(2.2.7)

Remark 2.2.1 Factors o f proportionality that do not affecto.the probabi­

l it ie s  have been omitted from expressions (2.2.6) and (2,2.7) .



25.

Chapter 3 Distribution Theory associated with Classical Discriminant 

Analysis under the Random Effects'Model 

In th is chapter we consider some of the d istributions that arise when 

applying the random effects model to the classical theory o f discrimi­

nant analysis.

As mentioned e a rlie r, our concern is  to investigate the characte­

r is tic s  o f discriminant analysis under the random effects model. In 

the classical approach th is involves assessing the performance o f the 

c lassifica tion rules derived from th is  approach, as described in 

chapter 2, when applied to problems where the k populations have 

emanated from a random e ffe c ts  model. Thus we are conr^med with the 

performance o f  future c lassification problems; once the populations 

have been chosen the problem becomes a more conventional one o f classi­

fying observations o f unknown orig in  into one o f k fixed populations.

The assumption underlying the random effects model is that the k 

populations in any particular application have, in fact, been drawn 

from the same parent population. I f  we know the parameters o f the 

parent d istribution then we should ba able to assess the expected per­

formance of any future classification problem involving k populations 

randomly chosen from f t ,  {Clearly, k m y  vary from one application to 

the next).

As mentioned in chapter 1, we assume that observations from popu­

lation i  have a d istribution and that d iffe rent are inde­

pendent realizations from a Np(£,T) d istribution. In tu itive ly  speak­

ing, i f  T is in some sense large compared to £, then we would expect 

discriminant analysis, to perform w e ll. I f  not, then we cannot expect 

very re liab le  classification.

More specifica lly, i f  T is large compared tc E, then we would 

expect that the Mahalanobis distance:
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= 5-1 "  V j)  ( 3 - U

between any two randomly selected populations ir  ̂ and vould be large. 

As pointed out by Das Gupta (1972), the probabilities o f correct 

classifica tion under a large class o f c lassifica tion rules (including 

those considered here), based e ither on known or estimated parameters, 

are monot^nlc increasing functions o f the 6?^, and so we would expect 

re liab le  classification under these circumstances.

This fact Is also evident from the various expressions Involving 

fo r the probabilities o f mis -  and correct c lassification under 

the classical approach, as given in chapter 2.

Under the random effects model 6 ^  Is a random variable, and i t  

is  clear from the preceding discussion that its  d is tr ib u t io n  is  o f 

central importance in understanding the characteristics of discrimi­

nant analysis under th is model. The d istribution  o f sijj Is therefore 

considered in section 3.1.

Another distance measure appearing in the c lassification rules 

described in chapter 2 is the Mahalanobis distance between a new 

observation x and the I**1 population ir.:

i} (x ) ■ (X -  V ,)1 E '^X  -  11, )  (3.2)

As mentioned there, the Bayesian c lassifica tion procedure, when the 

parameters are known and prior probabilities'are equal, is equivalent 

to classifying x into that population 7̂  to which i t  is  closest in 

terms of 6^(x). Although 6|(x) does not appear In any o f the formulae 

for the probabilities o f mis-and correct c lassifica tion , its  d istribu­

tion un^br the random effects model is  o f in terest because of the 

insight i t  provides into the relationship between the parameter values

' t# . . . . I  ,



and the likelihood o f correct c lassification. The d istribution o f 

6f(X), where X is the random variable corresponding to x, is  considered 

in Section 3.2.

The sample equivalents o f 6 |j and 6|(x) are and d^(x), res­

pectively, where:

- - y . )

d iW  -  (X -  X, ) ' S"'(x -  X, ) . (3A )

These two quantities are important in the classical approach to  d isc ri­

minant analysis when the parameters E and 1=1, . . . ,k  are unknown and 

are estimated from tra in ing samples. Specifically, d^. appears in  some 

of the expressions in  chapter 2 for the probability of m isclassifica- 

tion (conditional and unconditional) when the "plug-in" c lassifica tion 

rules are used. Tn turn, these "plug-in" rules, when the p rio r proba­

b il it ie s  are equal, are equivalent to a minimum distance classifica tion 

rule In terms o f the d?(x).

Under the random effects model both and d^(x) are random 

variables, f i r s t ly  because o f the ir sampling distributions, and second­

ly  because the underlying parameters 1=1,.. . .k  in these sampling 

distributions are themselves random variables. Their distributions are 

considered in section 3.3 .

3.1 The Distribution o f 5^j 1

We now investigate the d istribution of 6 |j e (p^ ■ P j)' -  p j)

.under the random effects model i



i .e . where p. and Pj are independent realizations from a pyg, T) 

d istribution.

Because p. and pj are assumed to have been rar.domly selected from 

a ll possible combinations represented by the pair o f indices 

j= l , . . . , k ;  i * j ,  the d istribution o f w il l not depend on the values 

o f i  and j .  In this section, therefore, the subscript i j  w ill be 

omitted and the notation 5!  = 6-j Will be used.

I t  w ill be assumed tha t E is a symmetric positive defin ite matrix 

and that T is a symmetric positive defin ite  or semi defin ite  matrix o f 

rank r  s p. The case where E is  not o f fu l l  rank w ill be given b rie f 

consideration.

The main result o f th is section is given in Theorem 3.1.1, in 

which the d istribution o f 62 is expressed as a sum of weighted chi- 

squared1 random variables." The remainder o f the section w il l be devoted 

| to  p y  properties o f th is d istribution , and in particular to obtaining 

^expressions fo r t k ;- density - and d istribution functions o f 62.

Theorem 3.1.1

Let X1 a X2 a ...a  Ar  > 0 be the r(fip) nonzero eigenvalues o f TE"\ 

Then 62 is distributed like :

where the are independent x | random variables.

Remark 3.1.1 This theorem is an >  Mediate consequence o f a result 

given by Sox (1954), a proof u f which is given in Johnson and Kotz (1970b), 

pages 150-1. See also Ruben (1962). However, because of its  importance 

in th is thesis, another proof, s lig h tly  d iffe ren t from those mentioned



above, is  given here.

Proof: Let X = p. -  vk . Then X ~ Np(0,ZT). Let T = where T1 Is 

the (p x r)  matrix whose columns are the r  orthonormal eigenvectors 

corresponding to the r  nonzero eigenvalues o f T multiplied by the square 

root o f the ir respective eigenvalues, and le t  X *  &  T^Z n

Then Z ~ Nr (9 ,Ip) ,  and

52 -  X' Z-1X - 2 2 ' ^  Z"1 T̂  Z » Z Z‘ VZ

Where . V = T̂  £ * T-j .

We can express the (r  x r) syoimetric matrix V In the canonical fam :

'
V « p a  p1

where A is the diagonal matrix whose diagonal elements ire the eigen­

values o f V, and P is the orthogonal matrix whose columns are the 

corresponding orthonormal eigenvectors oF V.

Noting that;

ei'gs (V) » eigs (T{ e"1 T ,) -  elgs fT,T{ E-1) = eigs {T e" ' }  

we have:

) 62 = 2 Z' VZ = Z Z' PA P.'Z » 2 Y' A Y ,J 2 I  A, y?
1=1where: /

y = (yv . . . 1yr ) '

and {X5; i= 1 , . . . , r }  are the r  nonzero eigenvalues o f Tz"1. The result 

now follows from the fact that » i= l , . , . , r  , are independently

v,' in d  identica lly distributed x? ranter,i variables.
I’

Remark 3.1.2 The result s t i l l  holds i f  F. is  not o f fu l l  rah*:, anc^l'""1 

denotes the Moore-Penroso unverse o f E . (See fo r example, G r^M ^l 

(1976).'f  In this case the «-,immation goes to where r^ = rank{TE ^).

Aa an immediate result o f Theorem 3.1.1, we obtain the following

7



expression fo r the cumulants o f 62

Ks -  22s" ' ( s--|): X? s -  1 ,2 ,... (1.1.1) ;

In particular, the mean and variance o f 62 are, respectively:

E l f ]  -  E, = Z ^  1, ■ 2Tr TE*' (3.1.2)

v a r  [ f ]  -  k2 = 8 £ x |  -  a rrlT E "1) 2 (3 .1 .3 )

The d istribution  o f the sum of weighted, independent chi-squared 

■random variables has received considerable attention in the lite ra ture , 

and in f in ite  series expansions for the density and d istribution functions 

have been obtained in the following three forms:

( i )  as Power series

( i i )  as Laguerre series

and ( i i i )  as mixtures of chi-squared distributions.

Good reviews of th is work have been given by Kotz, Johnson and

Boyd (1967a)(with derivations) and by Johnson and Kotz (1970b) chapter

29. In the special case whe>e the eigenvalues are a ll o f even multi­

p lic ity ,  f in ite  series expansions have been obtained. (Robbins (1948) 

and Sox (1954) ). A recent a rtic le  on the power series expansion has 

been written by Davis (1977).

The simplest approximation to the d istribution  o f the sum of 

weighted, independent chi-squared random variables is the scaled chi- 

squared approximation proposed by Satterthwaite (Box, 1954). Other, 

more accurate approximations have been considered by various authors,
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a recent a rtic le  on the subject being by Solomon and Stephens (1977). 

Htiever, in view o f the satisfactory computational experience with the 

. evaluation o f the exact d istribution as a mixture o f chi-squared dis- 

/  tributions as reported la te r in th is section, these approximations were 

not considered in th is thesis. \

Robbins and Pitman (1949) derive the distribution o f the^um o f'1' 

weighted, independent chi-squared random variables as an in f in ite  ch i- 

squared series. Letting

v = i i l  “ i  Vi "  “ r  * i  vi ■ (3.1.4)

where,

a1 a a2 a ...a  ar  > 0 ,

a1 = a ./ar  , i= l , . .  , r  , ar  = 1 • j

and ~  independently, i= l , . . . , r  ,

these authors show that the d istribution function o f Y can be expressed

as- " '1

where,
' • z ,-/ r

j (- ) is  the x^.2j  d istribution function, v « ^ v1

and the constants c j are defined by the identity:

r-1 i -&v, ”  * j
n a. { l - ( l - a ’ )z) £ c* Z1 (3.1.6)

1=1 1 j=0 J

They also provide convenient recursion formulae whereby the



c* may be confuted.

* Ruben (I960), considering the case where = 1, 1=1,... , r  (the 

case o f interest here) derived the following generalization o f (3.1.5):

Fy(y) = J 0 cj Br  + 2 j(y /p ) ( 3 l l -7)

where 8 is  an arbitrary positive constant and the constants Cj, as in 

(3 .1 . 6), are defined by the identity:

^  ( P / e ^ O - O - W O i W 8 "  ,Z0 Cj zJ‘  (3 .1 .6 )

The following recursion formulae fo r the Cj are also given:

Wiere h j  s ^  (3 .1 .9 )

Ruben (1960) proves that for any B > 0 the series (3,1.7) is unformly

convergent In any bounded y-interval o f y  > 0> and uniformly convergent

fo r f l l  y  > 0 i f  6 is chosen so that .max |1 - g /a j <1, He also
j =l i»»»*r

suggests that the value:

$ » 2«i + ar } (3.1,10)

may be close to the optimal choice o f g as regards the i4te o f conver­

gence of the in f in ite  series (3.1.7). \



Renark 3.1.3 For (3.1,7) to be a true mixture d istribution the cy

must be nonnegative and £ c. = 1. Ruben (I960) shows 'khat, for 
J=0 J

0 < fi S 'Xr  these c rite ria  are satisfied, so that (3,1.5). is  a mixture 

d istribution . (Here 6 = a^). For the choice of B in  (3.1.10), (3.1.7) : 

may or may not be a. mixture d istribution, depending on the actual values 

of/the a^. I f  B > r  ( ^ then (3.1.7) is not a mixture d is tr i­

bution.

The density function o f Y is ,  from (3.1.7):

ty y )  - P-1 Jo Cj S ^ y W li)  (3.1.11)

where gr+2j (•} is  the xf+gj density function.

From Theorem 3.1,1 the d istribution o f 62 has

0  ̂ = 2X̂  and = 1, 1=1,.. . , r  (3.1,12)

so i ts  d istribution and density functions may be expressed as (3.1.7)

(or as (3.1.5)) and (3.1.11), respectively.

A major sim plification o f the d istribution o f 6Z results when

X| = X , 1=lc. . . , r .  For then, by the add itiv ity  property o f the chi-

squared d istribution: 1

dV2A~X* (3.1,13)

'M  Since (X,) = eigs {Ts"b = eigs {A- '* T A"' } where £ = AA', and fC^ T A” 1
is  a nonnegative defin ite  symmetric matrix, this could only occur when:

■jj-
ft-1 T A"1 = x!b 

or T » XABA1 (3.1.14)



where B is a synrnetric idempotent matrix o f rank r .  (See, for example, 

Graybill (1976), Theorem 1,7.2).

For r  = p ( i.e . T is  o f fu l l  rank) condition (3.1.14) implies that:

T = XA I A' = AE 

i.e . that T is a scalar multiple o f Z,

As mentioned e arlie r, the probability o f correct c lassification is 

a monotonic increasing function o f 62. Therefore, fo r reliable classi­

fica tion we require the value o f 62 to be as large as possible. In

terms of the d istribution o f 62, th is  implies not only that the expec­

tation o f 6* should be large, but,also that the probability o f low 

values o f 62 be low. ?

.Therefore, using Chebychev's inequality, a crite rion fo r establish­

ing whether c lassifica tion is  lik e ly  to be reliable (in the sense that 

the probability o f correct c lassifica tion is large) could be based on 

the expectation and variance o f 62; a high value of the former and a 

low value o f the la tte r indicating the most favourable situation.

From expressions (3.1.2) and (3.1.3) fo r the mean and variance o f 62 *

respectively, i t  is  clear that th is  situation is achieved when I  A, 
r  r  i= l 1

is large and, given I  A,, I  A? is  as small as possible.1=1 1=1 1
So, given % Â  = Tr T if^ and r  = r ( t ) ,  the best situation is

when the Â  are a ll equal, the worst being when one is very large and 

the rest small. Furthermore,.the greater the rank o f T, the better.



3.1.1 Computing the Density and Distribution functions o f <5̂ .

In order to have an idea o f the form o f the d istribution o f 62 = 6 |j,  

its  density and d istribution  functions were computed using (3.1,7),

(3.1.11) and (3.1.12) fo r particular sets o f eigenvalues {X^} o f T jf1.

To do th is , two Fortran subroutines were written:

CONSTS computes the constants Cj using formulae (3.1.9), 

and CHISER computes the chi-squared density and d istribution functions, 

using formulae (2.3.1) and (2.3.2) in Johnson and Kotz (19/0a) for 

the la tte r, fo r degrees o f freedom starting from r  and going up in 

steps o f two fo r  as many terms as necessary to obtain the density 

. and d istribution functions of 62 to the required level of accuracy. 

(See (3.1.7) and (3.1.11)).

F ina lly , using these two subroutines, the density and d istribution 

functions o f 62 were computed in a main program fo r values o f 62 going 

up in equal steps from zero to an appropriate upper lim it .  Subroutines 

CONSTS and CHISER are given in Appendix 3.2.

Using r  = 5, three d iffe ren t sets o f eigenvalues, a ll with the 

same trace, were used, namely {11, 1, 1, 1, 1), {3, 3, 3, 3, 3} and 

{5, 4, 3, 2, 1>, representing two extreme situations and one in the 

middle, respectively. Table 3.1.1 below gives the expected value and 

standard deviation' of S2 fo r each o f the three sets o f eigenvalues.

Table 3.1.1

Ei&nvalues E H '] /V a r[6 2]

(» )" n ,  i ,  1, i ,  i 30.0 31.6

(b) 3, 3, 3, 3, 3 30.0 19.0

(=) 5, 4, 3, 2, 1 30.0 21.0

Figures 3,1.1 and 3.1.2 give the density and d istribution functions
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Figure 3.1.1 
Density Function of 6!
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Figure 3.1.2
(Distribution Function o f 5*
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of 62, respectively fo r each of the three cases (a), (b) and (c). From

them we clearly see that the remarks concerning the relative magnitudes

o f the X.j are borne out in practice.

For example, considering the two - group c la s iifica tion  problem, we 

have from Chapter 2 in the case where the parameters p , , u2 ancl 2 w ill 

be known and the prior probabilities are equal, that:

PCmisclassification] = * ( -  i.v'&M, |

Suppose now that we wish th is probability to be less than .05. This

means that § must be greater than 1.64,

i .e . :  62 >(2 *  1.64)2 = 10.7,6

From Figure 3.1.2 we see that the probabilities o f th is occurring 

in  any ffiture classification probability are 0,74, 0.88 and 0.86 res­

pectively, fo r cases (a), (b) and (c).

3.2 The Distribution o f 6|(X)

Using the d istribution o f 6L obtained in Section 3.1, we now obtain
- i

the d istribution o f 6|(X) = (X -p ^ )' l~  (X -p^) under the assumptions 

given that section.

Clearly the d istribution o f 6^{X) depends on which o f the k popula­

tions X comes from, so we consider f i r s t  the situation where X is  from

7ri .

I t  follows Immediately from the properties of the multivariate 

normal d istribution that in th is  case 6|(X) has the central chi-squared 

d istribution on p degrees of freedom.

i.e . < |(X )|X e ii  «Xp (3.2.1)
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When X comes from ttj, j  » i then, conditional oji 62 = (S|j =(y. - y i j) ’ 

E""1 -  vij) » S|(X) has a noncentral cM-squafed iiis tr ibutlo ti on p

degrees o f freedom, with noncentrality parameter 62.

I.e . ^ W lX s T f j,  62 ~ X£(62) {3-2.2}

Therefore, using the notation Z = 6|(X), we have the following re­

presentation o f the conditional density function o f 6|{X) as a mixture 

o f central dti-squared densities;

z »)

where 9p ^ ( z )  is the density function o f the x^.2s d istribution.

"[he unconditional d istribution o f z is  now obtained by integrating 

f  (z |x c Hj> 62), as given in (3.2.3), over the d istribution o f ,6* .
, '

This is done most conveniently by using the fact that conditional on 6Z 

the d istribution o f z is  a mixture o f a central chi-square distributions 

with p+2S degrees o f freedom where the mixing Is done over the varia­

ble S which, as is evident from (3.2.3), has a Poisson d istribution tvith 

parameter £62 .

Since only the d istribution o f S depends on 62, its  unconditional 

d istribution w ill f i r s t  be obtained and this w ill then be substituted 

in to  (3.2.3) to give the unconditional d istribution of z.

So' P[S = s] = f PCS = si623 f  (fS2)d62 (3.2.4)
•’ o <S2

where,

P£S = s |6 2] = i i ^ l S e"-^ 5



and f  (S2) is  the density function o f <S2.
52
Using expressions (3.1 .UJ and (3.1.12), f  ^(S2) can be w it te n  in 

the following fora: ,,

whpre,

8 is  an arbitrary positive constant, 

the Cj are given by fpraulae (3.1.9} with ,

i= l , . . . , r

and is the density function o f the x^.2j

d istribution.

SiAstituting (3.2.5) into (3.2.4) and interchanging the order of 

summation and integration (th is is ju s t if ie d  by the uniform convergence 

of the series (3.2.5) fo r a ll 52 > 0 when 0 is  chosen appropriately - 

see the comment following (3.1.9))yields:

 .
The integral is  readily evaluated as a gamma function, giving:

„ .  . v w y

The unconditional density o f z = 6|(X) is now obtained by replacing 

the Poisson d istribution by (3.2.6) as mixing d istribution in (3.2.3), 

yielding:



where ag = PCS = s] as given in (3.2.6).

The mean and variance o f 5|(X) are most easily f  jluated from expression 

{3.2.1) when Xeir^, and from (3.2.7) when X eirj, j * i .  For the f i r s t  

case we Immediately get:

EC6f(X)|X«m3 = ECxp = P (3.2,8) '

and

VarCefW IXeT^ -  VarCxp -  2p ' t (3.2.9) 

vie use the following well-known results on conditional

>» '  - .:^ |(X )] = Eg[E[6|(X)|s]] (3.2.10)

and

VarC6^(X)3 « E5[;VarC6^(X)|s]3+-Vars[;tL612(X)|s]3

(3,2.11)

where ESC‘ ]  and Vars[-3 d a ' t h e  expectation and variance, respective­

ly , o f taken over the d istribution o f S. Now, from (3.2.7), condi­

tional on S = s, 6|(X) has a Xp.h2s d istribution , whence

E[6|(x)Js] -- p + 26 

and Varr6|(x)|s] = 2p + 4s. 11

Applying these to (3.2.10) and (3.2.11) we get:

For X e TTj i j  *  1, 

expectations:

EC6|(X): » e ai :p + 2« ] = p + ze8csi 11



and VarCS|(X).l ■ EsCp + 46] + Varstp + 8/3 

= 2p +4 EsCs] + 4 varsCs3 {3.2.13)

- Furthermore, conditional on 62 =6?j , S has a Poisson d istribution with 

with parameter 6?'/2 , so using tiiv above results on conditional expecta­

tions to find the mean -end variance o f S, we get

/>
ECs] = E tE u s |j» 3 J - t 61 = 1 * 2  I  X, from (3.1.2)

- j / ,

and VarCs] = E [VarCsja^]] + Var cE[s|S2] ]

? v' * « •  2 I  X. + i - 8  % X» from (3.1.2) and {3.1.3)
^ . ;=1 ^ ^ A=1 *

, .  ' ,  S  "

, S liJ lly ,  substituting {3.2.14) and (3.2.15) into (3.2.12) and (3.2.13) 

.? aivi sim plifyng , we get '

EC6|(X)|Xc lf j]  -  p + 2 T "(3.2.16)

V a rC J lm iX .W  < 2p+ s f  J X. t  £ Xil (3.2.17)
' J * &=1 * ] ’ ,

■?;,! Although the uniform convergence of expression (3.2.7)

f.>or the tensity o f 6^(X)|XGiTj is  d if f ic u lt  to establish d irectly , the 

exisUnce^vf the (f in ite ) expectation (3.2.16) implies i t ,  by the 

Lebesyugf^'btnAted Convergense Theorem. I t  is  therefore permissible" to
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integrate under the summation sign in (3.2.7), yielding the following 

expression for the d istribution function o f 6^(‘X)|Xc iTj :

P [5 |(X )  5 z fX c T f jJ  = J  as Gp + gs { z )  (3 .2 .1 8 )

where, :|

6p + 2s{z) is the Xp + gs d istribution function and as = PCS « s] is  

given in (3.2,6) .

Remark 3.2.2 Comparing expressions (3.2.8) and (3.2.16) and recalling 

that x is classified into that population it., fo r which 6|(x) is  a minimum, 

clear!# demonstrates the importance, fo r reliable c lassification, of 

having ^  as large es possible. Furthermore, as in the

case with , expression (3.2.17) fo r the variance o f 6?(X)|X e ir.
r  r  i  . J

shows that, fo r given ^  X£ » ^  should be as small as possible,

i .e . the sliould a ll be equal and r  = r(T) should be as large as 

possible, fo r the most reliable c lassification.

3.2.1 Computing the Density and Dij^n'butfon functions o f 6| (X)

As in Section 3.1, the density and d istribution functions o f 6^(X) 

were computed fo r particular sets o f parameter values, using (3.2.1), 

(3.2.7) and (3.2.18). The constants as, given in (3.2.7) and (3.2.6) 

were computed using the Fortran subroutine CONST!, given in Appendix 3.2, 

and the chi-squared dansity and d istribution  functions were computed 

using the subroutine CHISER, described In Section 3.1 .

The same three sets o f eigenvalues as used in Section 3.1 were 

usi-d fo r the d istribution o f ^ (X ) |X t i^ ,  and the d istribution of 

S |(X )jX e^ was also computed. The expected value and standard devia­

tion of 6?(X) fo r each of these cases are given in Table 3.2.1 and the
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density and d istribution functions are given in Figures 3,2.1 and 3.2.2, 

respectively.

Table 3.2.1

(a) X t i i i  11, 1 , 1 , 1, 1 35.0 33.6

(b) X iir.j 3, 3, 3, 3, 3 35.0 22.1

(C.)0 X iir i 5, 4, 3, 2, 1 35.0 23.9

(d) X6tt. 5.0 3.2

As in the previous section, these figures confirm the general re­

marks, made under Remark 3.2.2, regarding the desirab ility  o f hiving the 

X.j as close together as possible.

I 3.3 The d istribution o f d^. and d?(X)

In this section we consider the d istributions, under our random 

effects model, o f the two s ta tis tics  d |j and d|(X) o f in terest in dis­

criminant analysis when th6 parameters i» l , , . . , k  and I  are unknown 

and have to be estimated froKi a training sample.

Specifically, suppose we have the tra in ing sample:

X jj ., j= l , . . . ,n .  ; 1=1,.. .,k  .r

from the k populations 1 = 1 ,...,Ic, where the are p-dimensional

random vectors.

Under the assumptions enumerated earlie r:

K) independently, Vi , j  .
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As usual, the maximum likelihood estimators are, fo r y.., i= l , . , , ,k :

,.k (3.3.1)

and fo r  z (corrected for bias):

(3.3.2)

where v = X (ni  -  1)

and from standard multivariate normal theory we know that:

\  x1‘ . ~ s) i- l» .'> »k  independently

and (3.3.3)

/ vS ~ Wp(S, v) independently o f the

where Wp(E, v) denotes the p-dimensional Wishart

d istribution with v degrees o f freedom and 

parameter matrix E .

The tvra s ta tis tics  are defined as follows:

di j  " ( xi .  " X j.) ' -  Xj ) i,d = l,...,k 5  Iwj (3.3.4)

i \ m  -  v  -  xu y  s ' \ x  -  x u ) i . i  k (3.3.6)

where X is  a random observation from one o f the ir., 1=1,. . . ,k  .



J
We w ill f i r s t  consider the distribution o f d | j.  From (3.3.3) i t  

fallows i,immediately that:

' " i .  -  " j . - " , ( 4

and therefore that, .conditional on 11̂  “  V j. (rTTTn^j di j  fo11ows 8 non“ 

centa l p-dimensional Hotelling's T* d istribution  with v degrees o f 

freeJom. (See Anderson (1958), chapter 5 or Gin' (1977). chapter 7). 

Therefore, conditional on a2,

[ i r f r S ^  ~ F(l’* + (3.3.6)

(ly  - f j ) '  - “ j )

"  ( n, + " , )  6} j

and F(Vp v2; «s) denotes the noncentral F d istribution  with v1 and v2 

degrees o f frledom and noncentrality parameter a4,

I t  w il l be more convenient in what follows to work with the 

unnormed noncentral f-d ls tribu tion , f(v p  Vg. o2)(see, fo r example 

C.R. Rao (1965), pp.175-6), so I f  we le t

i  . /  .
then* conditional on ctz,

2 ~ f(p , v -p  + Is ct2) and.therefore has density
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function:

v - p + iM

where

9p * 2 s , v - p + i t z i  a r { T p v - ' p t l ) ) '  ^  + zy ^ - i - l ) + s '

(3.3.9)

r ( l ( v + l )  + s)r ( t ( v * l )  + s )  2i p + s -1

is  the density fU iction o f the central unnomed f-d is tribution  v/ith 

p + 2.s and v -  p + 1 degrees o f freedom, which we w ill denote by 

f(P *  2s, \c ? p  + 1).

To obtain the unconditional distribution o f z we now integrate 

f z(z|a2) over the d istribution  of

where the d istribution o f 6? => 6 | j is  given in section 3.1 . As in

z is  a mixture o f unnormed f-d istributions with p + 2? and v -  p 1 

degrees o f freedom, where the mixing variable S has a Poisson d istribu-

sectlon 3.2, we note from (3.3.8) that the conditional d istribution o f

tion with parameter & a2. Noting that the density function o f a2 is , 

from (3.2.5);

(3.3,10)

/



i t  is  clear that the unconditional d istribution  of S is exactly the 

ni + " j
same as in Section 3.2 , with g replaced by . The unconditional

density o f z therefore becomes:

M Z ) % l a*  W v - p + l W  (3 .3 .H )

where, • u

9p-i-2s, v -p + 1 ^ )  ‘is the density function o f the f(p.+ Zs, v - p + l )  

d istribution given in (3.3.9),

■4 W p ....
x) ■ '

(3.3.12)

and the Cj are given by formulae (3.1.9) with a, = , i » l , . . . , r  .

F ina lly, transforming back to d^j using (3.3.7) we get the follow­

ing expression fo r its  density function:

(3.3.13)

The mean and vaiiance o f d^j are also most readily found in the 

manner o f Section 3,2 , the details o f which may be found in Appendix 

3,1, yielding;



The existence o f the ( f in ite )  mean of d?j permits integration under 

the summation sign in (3.3.13) (see Remark 3.2.1) yielding the following 

expression fo r the d istribution function o f d^. :

where Gp+2Sj v_p_i(*) is  the f(p+2s, v-p+1) d istribution function.

" Remark 3.3.1 For the balanced situation where the training sample con­

tains the same number n from each o f the k populations, a ll the rele­

vant formulae o f this section may be sim plified by replacing n. ny(n^+rij) 

by |  wherever i t  appears/ For example, the mean and variance o f d?j 

become. :

and

V a r m  =Var£d,%] * — B l — ------ f j ^ l l £ + \  X,
1d (v -p - l)2(v-p-3) 1 n2 n &=1 z

4j, j/l]
Note further that fo r large viand n expressions (3.3.17) and (3.3.18) 

tend to the corresponding expressions (3.1.2) and (3.1.3) fo r the mean
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and variance, respectively, o f .6^ .

The d istribution o f d*(X) depends on which o f the k populations X 

comes from. I f  X belongs to x .,  then i t  follows immediately from the 

defin ition (3.3.5) o f d|(X) that V l j ^ l(X} fo,)1ows a central p-dimen- 

sional Hotelling's T2 d istribution with v degrees o f freedom. Therefore;

( 3 -3-19)

where F(p, v - p * l )  denotes the central (noroed) F -d istribution with p 

and v -p  + 1 degrees o f freedom.

I f  X belongs to Wj, j  * i ,  tiien from (3.3.4) and (3.3.5) i t  is  clear 

that the d istribution o f d|(X) is the same as that for d ^  with x. equal 

to 1. Therefore, using expressions (3.3,13) and (3.3.16) we Immediately 

obtain the following expressions fo r the density and d istribution func­

tions o f dj(X);

V ) ! d f W |x < ' i ) ’ ^ ' ’’ 1 s L  i  1 d‘ (xi)

(3.3.20)

wl,ere sp tZ s ,v -p  + l< -) and Sp + 2 s , v - p . l ( ) def,md 1"
and (3.3.16) respectively, and a* is defined in (3.3.12) with n, equal

to 1. v

The mean ant’ variance o f d|(X) follow immediately from (3.3.19) for 

the case where x e x j :

E[d;(X)|X = -  ( ^ ]  (3.3.22)



f V 1]*  v» (v -l) t 
I 1 (v.p-l)>(v-p-3)

(3.3.23)

and from (3.3.14) and (3.3.15) with ty = 1 when x t  rr̂  :

ECd^(X)JXiir (3.3.24)

VarCdf(X)!X t

Remark 3.3.2 As in the case o f d | j we note that fo r large v and the

as related to the re lia b il ity  o f classification when the parameters are 

known, made in SectionsS.l and 3.2, also pertain to th,? situation when 

the classifica tion rules are., based on estimated1 parameters, discussed 

in ' th is section.

Remark 3.3.3 The constants a* in the distributions o f d l j  and

d |(X )|X W j are the same as the constants a in Section 3.2, with the 
i1 n, n, i

parameter 0 replaced by [ n ^ 7 n jjg (nj  * 1 ^  the case o f d|(X)). 

Therefore"the subroutine CONST!, used to compute the as may also be used 

for the a*. So, as done in Sections 3.1 and 3.2, the density and dis­

tribution functions o f d|(X) may be confuted using a subroutine that 

computes sequences o f density and d istribution function values fo r the

mean and variance o f df(X) tend to the corresponding expressions fo r

5|(X) given in Section 3.2, both when X e|i7j and when X i  tt̂  . In view

of th is , the remarks concerning the magnitudes o f T A„ and T
?.=1 *  #.i *A=1 *  &=1



f(p  + 2s, v -p + 1 ) d istribution fo r values o f s- increasing from zero 

in steps o f one, as done fo r the chi-squared d is tribu tio r by thd sub­

routine CHISER,



Appendix 3.1 Derivation o f the Mean and Variance o f

From (3.3.8) we have that, i t

then, conditional on a2, the d istribution o f z is  a mixture of unno ĵjofl 

f-d ls tributions with p + 2 S and v -  p + 1 degrees o f freedom, where S 

has a Poisson d istribution with parameter |  a2. Given S = s, therefore, 

z has the following conditional mean and variance (See, fo r example, 

Johnson and Kotz (1970b)):

E t iM  -  t  ( k f p t ) 5 tA 3 ' l ' 1)

vartz ls) ,  i M s l t i a r i l   ------------i -------- (p(M-))+2(vtp-l)st4ss)
(v-p-1)- (v -p -3 ) ( v - p - l ) 2(v -p -3 j

(A 3.1.2)

Using (3.2.14), (3.2,15) and the relationship between a* and given

above, we immediately get:



We now apply results (3.2.10) and (3.2.11) to (A 3.1.1) and (A 3.1.2) 

to obtain the unconditional mean and variance o f z.

E M  -  es ce: z | s h  -  t  ( ^ j  E[SJ

' VarCz] = CgTVarCzlslD + VarsEEC2ls33

 ---- — ^------:—  (p (v -l) + 2(v-hp-l )Ets3 + 4ECs21/
(v -p - l)2(v-p-3) t,

Using (A 3.1.3) and (A 3.1.4) and the fact that E[s*] = VarCs2] + (ECs])2 

we get, a fte r a l i t t l e  sim plification,



;  - £54’

F ina lly, transforming back to .d^j we get:
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Appendix 3.2 , Fortran Subroutines used in computing the Density and

.Distribution Functions o f 6?. and .6^(X)

SUBROUTINE CCNSTStNORO ,B E T A , ElGS,CV=CtNSTOP.NTERMS,ERROR)

SUBROUTINE TO COMPUTE THE CONSTANTS C < J ) FOR THE D ISTR IBUTIO N  OF DELTA, 
USING FORMULA ( 3 * 1 , 9 ) ,  THE PARAMETERS ARE:
NORD = NO. OF EIGENVALUES. PETA = PARAMETER BETA IN  FORMULA ( 3 . 1 . 9 ) .  
E IG S  *  THE VECTOR OF EIGENVALUES. CVEC =  THE VECTOR OF CONSTANTS.
NSTOP =  MAX. NO. OF CONSTANTS THAT W ILL  BE COMPUTED. NTERMS = ACTUAL NO 
CONSTANTS COMPUTED. ERRCR =  MINIMUM VALUE OF THE SMALLEST CONSTANT.

IM P L IC IT  R E A L *8  (A - H .O - Z )
S E A L *8  E IG S (N O R D ). CVEC (N STOP),
0 0  1 1 =  l.AO R D  
A V E C (I )  s B E T A /E IG S ( I )

DO 2 1 =  I  ,  NORD 
PROD s  PROD *  A V E C (I)
POlWERd ) = I .

J TOP = J -  1

0 0  A * !  = 1 .NORD 
P d W E R (I) a POWERd ) *  (1 ,
SUM =  SUM f  POViHR(l)w f iTno 1 -  e i u .

H d ^ O O ) ,  PNWER(30  ) ,  AV EC (30)

■ A V E C d ) >

HTJTQP) = SUM 
StiM I = C . 1
DO 5 I  ■= 1 .  JTDP 
sUMl = SUM 1 *  H ( J - I ) *  C V E C (I)
C V E C IJ )  » S U M l/ (2 ,  *JTOP)
SUM2 = SUMS + CVEC(J)
lS (D A 8 S (C V E C < J ))  . L T .  ERRCR) GC TO 6 
CONTINUE
W R iIT E (6 ,1 0 1 ) NSTOP. ERROR, NTERMS. BETA, EIGS 
FdR M AT('OTABLE OF C O N S T A N T S '// ' MAX NO O f TERMS' 

IV A i. .U S ',T 3 C ,0 1 2 . 3 / '  NO OF TERMS COMPUTED' »T 3 0 , I S / ’ 
2« E IG E N V A L U E S '/(T 2 ,1 0 0 1 2 .5 ) )

W R U TEtS .lO O ) SUMg
FORMAT! « SUM OF CONSTANTS' .T 3 0 .0 1 2 .5 )
W RiTE( S . 1 0 2 )  (C V E C d )  .1  = 1 .NTERMS)
FORMAT! '  CCONSTANTS'  /  ( T2 .1 0 0 1 2 . S) )
RETURN
ENO



SUQROin INS TO COMPUTE THE CONSTANTS A (S )  FOR THE D ISTR IBUTIO N  OF D E L T A !X ) . 
USING FORMULA ( 3 . 2 . 6 ) ,  OR FOR THE D IS TR IB U T IO N  OF V  OR O (X ) USING FORMULA . 
( 3 . 3 . 1 2 ) .  PARAMETERS ARE:
NORD a NO. OF EIGENVALUES. SETA » PARAMETER BETA IN  THE FORMULAE.
FACT a I .  =OR ( 3 . f t . 6) AND = N ( I  ) *N  ( J )  /  ( N ( I  )  <-N ( J ) 1 FOR ( 3 . 3 . 1 2 ) .  CVEC a 
VECTOR OF CONSTANTS C (J )  FROM SUBROUTINE CONSTS. NTERMS = NO. OF B.EMENT 
IN CVEC. NSTOP a MAX NO. OF CONSTANTS THAT W ILL BE COMPUTED.
NMAX = ACTUAL NO. CF CONSTANTS COMPUTED. ERROR = CUTOFF VALUE FOR 
CALCULATING CONSTANTS. ERROR1 a MINIMUM VALUE OF SMALLEST CONSTANT.

IM P L IC IT  REALMS 7 A -H .O -Z )
R E A L*8 CVECCNTCRMS), 0 V E C (K S T i» .  C C EFFT(lO O a)
INTEGER NCIOOO)
BET = BETA *  FACT 
.B P IIN V  = l . / ( l . + 8 E T >
B IN P IZ  = 1 . /C 1 .  + l . /B E T )
AN02 = N O R D /2.
TERM a  B P 1 IN V **A N 02

DO 1 J = I,NTERM S 
C O S FFT(J) = C VEC {J) *  TERM 
SUM = SUM + c r tE F F T (J )
TERM = TERM *  B P IIN V  
D V E C (l)  a SLM *  FACT

N u f  a NTERMS* 1
START = B I N P ll  i
00  2 1 =  2 . NSTOP ;
NMAX a I  !

1 TOP = 1 - 1
SUM a 0 . I
0 0  3 J =  1 , NTERMS '
N ( U  = J j

PROD =  COEFFTl J )  *  START !'
DO 4 K = 1 ,1  TOP
PROD a PR00 *  ( AND2 f  AJ + K -  2 . ) / K  :
SUM = SUM + PROD
IF C J  .G T . 20 .A N D . PROD . L T . ERROR) GO TO 6 

\ CONTINUE
i DVEC( I ) = SUM *  FACT

SUMZ = SUMS + D V E C (I)
< DVEC( I  > .L T .  ERR0R1) GC To 5 

; L-TART = START *  B lN P t I
; W R ITE (6 , 101 ) NMAX, (D V E C m  .1 = 1  .NMAX ) 'i '
01 FORMAT ( * OCONSTANTS -  FORMULA ( 3 . 2 , 6 V / / ’ tvO. OF TERMS COMPUTED*. *

„  1 T 3 0 , I 5 /«  CONSTANTS» / (  T 2 , I0 D 1 2 .S )  ) !>
WRI TEC 6 , 1 0 0 )  ERROR , ER R O R !,  SUMS 

CO FORMAT! 'OCUTOFF VALUE IN  SUM♦ ,T 3 0 . D 1 2 . 5 / ’  CUTOFF VALUE IN  CONSTS* ,

02  FORMAT ( 'O N O . OF TERMS IN  EACH CONSTANT*/ (T 2 » 10 1 1 2 )>
RETURN



SUBROUTINE CHISER (A • NSTART .NSTCP .C H I .P C P C H  )

S ^ ifiO U T IN E  TO COMPUTE A SEQUENCE OF CHI-SOUARED CCF AND PDF TERMS FOR 
DEGREES OF FREEDOM GOING LP I k  STEPS OF TWO. PARAMETERS ARES 
A = BETA IN  FORMULAE ( 3 . ! . ? ) «  E T C .. X *  X-VALUE FOR WHICH PDF AND C D F' 
TO BE COMPUTED. NSTART = DEGREES OF FREEDCM FOR FIR ST TERM.
NSTOP =  NUMBER OF TERMS I t s  SEQUENCE, CHI = VECTOR CDF VALUES.
POFCHZ = VECTOR OF PDF VALUES.

IM P L IC IT  R E A L*6 ( A -H  t O—ZI 
R 6 A L *8  C H ItN STQ P ) .  P D FC H I( NSTOPi 
FACT = D E X P (- X /( 2 .* A > )

IF  ( MOO(NSTART.23 .G T . 0 )  GO T C I  i
NS =  N S T A S ly2  

= TERM 
I #  „(NS .L T .  21 GO TO 7
0 0  3 1 = 2 .h 3  >
TERM =  TER M >IX /(2. *Ai«l( 1 - 1 .  ) )

i SUM =  SUM +  TERM '
'  CONTINUE /

P O F C H I( l)  = TER^V *  FACT *  . 5  ■ - ' ;
CH I t 1 ) = I .  -  SUM *  FACT ' • :
DO 4 J  = 2 .  NSTOP
TERM = T e R M 4 X /t2 .*A 4 |tN S  + J -  2 . ) )  - -  ou - I T -  1 •‘TC n M — A -

: TERM0 * F̂ ACT * 
-  SUM *  FACTC H i( J )  = t  

CONT.’NUE
NS = (NS TAR T-1 ) /2
TERM = TERM/DSORT <X * 3 « 1 4 1 5 9 2 6 5 3 5 3 9 7 9 3 /( 2 . * A ) J  
SUM e  0 .
IF  (N S  .L T .  1) GO TO 8 
D O S  1 =  I .N S
TERM « TERM *  X / ( 2 . * A * ( 1  -  0 . 5 ) )
SUM # SUM 4- TERM 
C O S T tN te
P D F C H K l)  = TfeRM *  FACT # .5  
P H I = DERF COSQRTt X /(2 » "*A ) ) >
C H I ( l )  = P H I -  SUM *  FACT 
00  6 J = 2 . NSTOP
TERM *  TffRM *  X / (2 .* A * ? N S  J  -  1 . 5 ) )
I F  ( TER" .L T .  1 .0 - 2 0 )  TERM a 0 .
P O F C H K J) = TERM *  FACT *  . 5  ;i
SUM » SUM f  TERM
C H U J )  = P H I -  SUM *  FACT
CONTINUE
RETURN



58.

Chaper 4 Evaluatina the Performance of Classical Discriminant

Analysis under- the Random E ffects  Model -  Probabilities 

of Correct and H iscUssification 

In th is chapter we apply the results o f Chapter 3 to evaluate the 

probabilities o f correct- and misclassification under the random 

effects model when the classical rules of discriminant analysis are

i .e .  We are interested in  the expected performance of these 

rules when applied to future c lassification problems where the k 

populations ir . , i  = w il l have arisen from the random effects

model. Using the classifica tion rule based on the parameters o f these 

k populations, whether known at the time or estimated from a training 

sample, we w il l c lassify an observation o f unknown orig in into one of 

them. How well are w  ‘’ ii'.ely to perform? Or more specifica lly: What 

are the expected probabilities of correct- or misclassification?

This chapter attempts to Answer these questions.

As in Chapter 2 we w ill f i r s t  consider the situation where the 

parameters in  the distributions o f the k populations are known and the 

classification rules are expressed in terms of them, See Section 2.1. 

Thereafter we w ill discuss the more common situation where the para­

meters are unknown and the parameters in the abovementioned c la s s if i­

cation rules are replaced by the ir sample estimates,resulting in the 

"plug-in11 rules discussed in Section 2.2.

In each of the above two situations separate consideration w ill be 

given to the case where k = 2, since the results in this case are more 

tractable than those fo r general k. Moreover, as is clear from Chapter 

2, fa r more work has been done on th is case, and consequently much more 

is known about i t .
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I t  is  traditional in most o f the lite ra ture  to talk o f the pro­

b ab ilitie s  of misclassification in the case whe're k = 2 but o f the pro­

b ab ilitie s  o f correct c lassification when k > 2. We w ill follow this 

trad ition  here.

As in Chapter 3, the results w ill a ll be expressed in terms of the 

eigenvalues {X., i  = l , . . . , k }  o f T 2 "\ either d irectly  or in  terms of 

quantities derived from them. In Chapter 5 we w ill address the question 

o f estimating the x  ̂ when they are unknown.

4.1 " Known Parameters

In th is situation the Bayes classification ru le , when the prior 

probabilities o f each o f the k populations are a ll equal, may be ex­

pressed either in  terms of the Mahalanobis distance: 

i.e .  assign the new observation x to that population fo r which

S f(x )  = _ \^ i in  ^  G ij(x) (4.1.1)

where

or in terms of the linear discriminant function:

i  .e. assign x to tt, i f

u . j ( x )  > 0  Yj = l , . . . , k ;  j  2 i (4.1.2)

See Section 2.1.

/



if

The distribution o f 5 |(x ), under the assumption that x either 

belongs to, or does not belong to %. was discussed in Section 3.2, 

giving a general insight into the expected probabilities o f correct­

e d  m isclassification when using (4.1 or (4.1.2), as we! 1 as the ir 

relationship to the eigenvalues (X^, i  = o f T E "\ Expressions

fo r these probabilities w il l now be derived for the specific case where 

there are two populations. We w il l consider only the situation where

the p rio r probabilities are a ll equal.

4 ,1-; 1 The case k = 2 Populations

When the prior probabilities q^, i  = 1,2 are equal, we have from 

(2.1.11) the following simple expression fo r the conditional probability 

o f m isclassification, given <5Z:

P(62} = PCm1sclassification|s?]  = 4(-^5) (4.1.3)

11 (  " 
where, S2 = 6 ^  =

and $(•) is  the Standard Normal Distribution Function.

The unconditional probability o f misclassification is therefore:

? = ECP(6a} l = E W -iS )! (4.1.4)

where the expectation is taken over tft- - is tr ibu tion  o f 62. (1 - x

Now, from Section 3.1 we know tr.uv under the random effects model

S2 is distributed as 2 % X.v. where X1 Xg %...& a 0 arc the nonzero

eigenvalues of TZ"  ̂ and the v̂  are indeppjiUcnt random variables.



An approximation to (4.1.4) may be obtained by approximating 

* (" I") by the f i r s t  three terms of its  Taylor expansion about EC62] 

and then taking expectations. For any twice- d ifferentiable function 

f(x ) o f a random variable this approximation takes the form:

E [ f ( x ) > : f  f ( E m ) .  t  g | P ] i  v a r m  (4 .1 .5 )

where f" ( * )  denotes the second derivative o f f ( - ) .

So the approximation becomes:

P * (4.1.6)

Now, from section 3.1 we have that

E[6l :  = 2 f  X. 
i=1 1

and - " S

r  . t ' '
"  A  4  - /  \  (4 .1 .7)

Also,

I J

'  SA? =*Z/8 4 " l  ■ . (4.1.8)



Substituting (4,1.8) and (4.1.7) into (4.1.6) yields the following ap­

proximate expression fo r the probability o f misclassification:

r f — ' "Z i  V 8 r 2 i  1, -

n -— ' n -— 1 <’  *
^  p . ' . ' )

where * ( - )  is  the standard normal density function.

An exact expression fo r the probability o f misclassification may 

be obtained by evaluating ECf(-56)3 in (4,1.4). d irectly . To do this 

we need the density function of z = 52 which,'-from (3.1.11) may be ex­

pressed as:

f «‘  iJ ) •  B J 0 Cj  <4' LM1

where P is an arbitrary positive constant, g ^ j M  is the cle,,s1'ti'

where the exchange of the summation and integration operations ju s tified  

by the uniform convergence of (4.1.10). Note that

@(-&/z) = Pf'X s - 5/23 where X ~ N(0,1)

-  5(1 -  6 ,( |) )  (4.1.1|)
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where Gr (- )  denotes the dfstrfbutiorj function of t h e distribution. 

Substituting th is into (4.1.11) yields

where we hoxo assumed that (4.1.10) is  a mixture d istribution, so that

[  c, = 1 (See Remark 3.1.3). Denoting the integral in (4.1.13) by I -  j=0 3 3
and making the transformation y  = g- gives:

Integrating by parts and simplifying vields:

Substituting I j  back into (4.1.12) yields:

The integral in  (4.1.14) may be evaluatedbyusing the following expres- 

sions fo r G ^g j(y ), obtained by direct integration (See, fo r example, 

Johnson and Kot? (1970a) page 173)

1 -  e " ^  (^) Si 1 for r  even

(4.1.15)



Considering f i r s t  the case where r  is  even, using (4.1.14), (4.1.15) 

and the formula:

( 4 1 " )

Consider now the case where r  1s odd. Using the same approach as above,

y ,  (4.K17)

Denoting the f i r s t  term in (4.1.17) by I ,  we get a fte r making the trans­

formation x = # :  "

4(«) / S W 8 e l<i75>dx • (4 .1 ." )

The above integral is  a particular case o f Hojo’ s integrals (see, for 

example Kendall and Stuart Volume 1 (1969) pages 326-7). F. Downton (1973) 

gives the following closely related result:



X ~ N(m,c?2)

Y ~ N(0,1) independently.

PtY s XJ = f  * ( t )  —  dt . (4.1.19)

By analogy with (4.1.19)J(4.L18)can’be expressed as: 

I *  2PCY 5 X n X s 0] !;

X ~ N(0,<.'8)

V ~ N(0,1) independently

I = 2PCX -  Y a 0 n X a 03 . (4.1.20)

To evaluate the jo in t probability in (4.1.20), we need the jo in t dis­

tribu tion  o f X-Y ?,nd X. Now, by independence, the jo in t probability density 

function o f X and Y is:

27T/W

;Making the transformation:

T = X - Y 

U = X



./'-"W noting that the Jacobian o f the transformation is  unity, we get the 

; "'tensity of T and U as:

, _ J ___  e- i(u a(l+ 3 /4 )-2 tu rt2)

So T and U have blvarlate normal d istribution  with zero mean vector, 

variances a | and a* and correlation coeffic ient p, where the la tte r three 

parameters way be obtained from the following identities:

Cu(i-pz) = f r 1

This y ie ldse

Now, applying the result given in Anderson (1958) page 43, problem 43, viz: 

i f

PCX a 0 n Y a 0] = «

p =• cos(l-2ct)Tr
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a =• i ( l  -  1  cos"1p), 

we get, from (4.1.20) and {4.1.21) that: '

I = 2P[T a 0 n U £ O] = 1 ~ 1  cos-1 ({ l + { ) " * ) .  (4.1.22)

Substituting (4.1.22) back Into (4.1.17) and simplifying, yields the 

following expression fo r the probability o f misclassification when r  is  

odd;

(4.1.23)

4.1.2 Evaluating the Probabilities o f M isdassification fo r k = 2 

populations

In order to  evaluate formulae (4.1.16) and (4.1.23) fo r the probability 

of m isdassification, the FORTRAN 'yti.ie  PROBS, gi,ven in  Appendix 4.3, 

was written. This was used to I  .'.probability o f m isdassification

for the case r  = 5 fo r the same ,d'ts o f eigenvalues (X^) that were

used in Chapter 3, as well as fjbr the corresponding three sets when the 

trace- Is halved. The results are given below in Table 4.1.1, together with 

those obtained from the approximate formula (4.1.9).
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Table 4.T.7

Exact Proba- ' Approximate Proba-

Case (X j}
b ility .o f"M is - 

Trace' classification
bi n ty  o f Mis- 
classification

(a) 11.0,1.0,1.0,1.0,1.0 15.0 .0392 .0334

(b) 3.0,3,0,3.0,3.0,3.0 15.0 .0204 .0140

(=) ' 5.0,4.0,3.0,2.0,1.0 15.0 .0233 .0154

(d) 5.5,0.5,0.5,0.5,0.5 7.5 .0827 .1044

(e) 1.5,1.5,1.5,1.5,1.5 7.5 .0553 .0543

(f) 2.5,2.0,1.5,1.6,0.5 7.5 .0596 .0606

Trcmi Table 4.1.1 the relationship between the probability o f mis- 

classifica tion and both the trace and relative sizes of the eigenvalues 

o f T l f \  that was predicted 1nulhapter 3, is  clearly evident. However, 

the.approximate formula (4.1.9)', which is  fa r easier to compute than the '' 

exact formulae and therefore useful fo r quick assessments o f the proba­

b i l i t y  o f m isclassificatfcn, is not very accurate.

4.1.3 The case k > 2 populations

From classifica tion rule (4.1.1) the probability o f correct c la s s if i­

cation, given x c tt̂ , becomes:

PCcorrect c lassifica tion jx c ir-] = P® 5(x) < Min 6?-(x)i x c tt>1 .’ 1 J 1
J * 1

(4 .1 .2 4 )

Now, from Section 3.2 we have that, given x r :

- x ;

«$ j( x )  -  Xpfe^j) conditionally on 5 ^ . (4.1.25)

<7 o



Unconditionally 6 j(x) has the density given in (3.2.7):

where gp+2s(*). Jenotes the x ^ s  density function and the coefficients 

as are given by (3.2.6). Moreover, the fi^(x) are clearly 

not independent.

So, in order to evaluate (4.1.24) we need the jo in t d istribution of 

the minimum of k -  1 correlated,identically distributed random variables 

5 j(x) whose marginal densities are given by (4.1.26) and the chi-squared 

random variable 6 |(x ) which is  also correlated with th?G.?(x).

' I t  is  clear, therefore, that th is approach to evaluating the proba­

b i l i t y  o f correct c lass ifica tion  is  not a promising one, and w ill not be 

pursued further here.

Another approach would be tq use expression (2.1.15) fo r the proba­

b i l i t y  o f correct c lass ifica tion  given x e tt̂ , conditional on the values 

of j,&  * 11 and then to obtain

the unconditional probability by integrating i t  over the jo in t d istribution

Since there is no analytic expression fo r (2.1.15), i t  would have to 

be evaluated numerically or by table look-up over a multidimensional grid 

o f points defined by the 6 ^  and then integrated numerically over the ir 

jo in t d istribution.

In addition to the complexity of the abovementioned operation, an ex­

pression fo r the jo in t d is tribution  of the would have to be found. As 

in  the previous approach, the marginal d istributions o f the 6 ^^  are known. 

Viz: the 6 ^  = 6 ^ j  have the d istribution derived in Theorem 3.1.1



and the 6 ^ ^ , j  *  A can, in a manner very sim ilar to Theorem 3 . 1 be 

shown to be distributed as % Xs(vs-ws), where = Eigs{TE~^} and 

the vs and ws are independent random variables. I t  can also be 

shown that the correlation coefficient between 5?  ̂ and <s^, j  *  £. is 

However,, .the jo in t d istribution o f the 6 .. .  is  unknown, so this 
1!approach wilT-also not be pursued any further.

This leaves only the lower bounds (2.1.16) and (2.1.17) on the pro­

b a b ility  o f correct c lassification. However, these expressions give 

lower bounds on the minimum probability o f correct c lassification.

Stronger bounds than these may be obtained from Bonferronf's f i r s t  in ­

equality by noting that (4.1.24) can be written:

Ptcorrect c lassifica tion |x e = P C ^ ^ ( x )  < 6^(x)|x e n .] 

j * i

k
& 1 -  .1 PC6|(x) > d ](x )|x  e t .1 .

&

Now P[5?(x) > 6^(x)|x e i^3 is ju s t the probability o f misclassification 

with two populations and Hj, and is therefore equal to $ (-& ^ j) .  So

k
PCcorrect classifica tion jx e s p  a 1 -  I  *(-&G jj)- (411.27)

Under the random effects model 5?j is  a random variable, so (4.1.27) be-

k
' PIcorrect classifica tion jx e i r ^  a 1 -  [

= 1 -  ( k - ? ) E g ^ [ $ H ^ j ) ]  (4 .1 .2 8 )

since the d ^ a re  identica lly distributed.
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Note that (4.1.28) does not depend on the particular population ir̂  

from which x comes, so i t  is  also the unconditional probability of correct 

c lassifica tion. F ina lly, using results (4.1.16) and (4.1.23) of the 

previous sub-section in (4.1.28), we get 

fo r  r  even:

PCcorrect c la ss ifica tion ]* !- J  I | - i ± ^ ( i + | ) “ ( 1 + ̂ )}

(4 .1 .2 9)

fo r  r  odd:

PCcorrect classification]^?-

1 (4.1.30)

An upper bound on the probability o f correct classification may also 

be obtained by using the fact th r t,

PCmisciass-ificaVivnl'V 1C'#.PCmisclassification to it̂ 's closest neighbour!xe^]

a $ ( - je ^ )

whore 6? -  min 5?..
1 Vj»i 1j

So,

,P[correcf classifica tion!x .c ir .] s 1 - $(-^6^) . (4.1.31)

Under the random effects model, this becomes:
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P[correct c lass ifica tion jx  c s 1 - . (4.1.32)

To evaluate the expectation in {4.1.32) the d istribution  of

6? = min 6?.. is  required. Unfortunately, although the have identi- 
1 YjM u J

cal marginal distributions given by Theorem 3.1.1, and the correlation

cot-' •-ient between 6^. and 6 ^  is known, the ir jo in t d istribution  is un­

known. :  so th j d istribution  of ( j  cannot be found.

However i f  we assume that p.] is  fixed, then i t  is  possible to obtain 

the d istribution o f 5^ and hence to evaluate the upper bound (4.1.32) on 

e probability o f correct classification.

In what follows, we w ill therefore f i r s t  obtain the d istribution of 

G?, conditional on y^. Unfortunately i t  is  not possible to  obtain the 

unconditional d is tribution  from i t .  This d istribution w il l then be used

pression fo r the upper bound is obtained i f  instead we ignore the in ter­

correlations hetwuen the and proceed as i f  they were independent.

Under these circumstances i t  is not necessary to assume that is  fixed.

The d istribution o f Si- ■ min 6L« conditional on tu1 Vial 13 1

conditional on u.p under the random effects model.

Under th is model, the ly  are independently and iden tica lly  distributed ' 

Np(|,T) random variables. Therefore, conditionally on »

to evaluate (4.1.32). Finally we shall show that a very sim ilar ex-

We f i r s t  consider the d istribution of

65 j "  ( " i -  -  " 0

-  ^ i ~ Np(E-Uj,T) independently, j  = j  * i -

(4.1.33)
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Theorem 4.1.1, given below, allows us to find the conditional d is­

tribution of <5*j.

Theorem 4.1.1

Let d2 = X'b'^X, where X ~ N (p,T). Then dz is distributed as 
r  p

1=1 where the X. are the r  (sp) nonzero eigenvalues of T2-1 and the 

V-i ~ x*{u*)> independently. The square root o f the noncentrality para­

meter o f v.j is  the 1th element o f P’n where P is the (r«r) orthogonal 

matrix whose column is ths eigenvector ofT.j'E"'^T^ corresponding to 

X j , T = TjT, and T̂  is  a p x »- matrix o f rank r  = r(T ), and n is the 

solution to T-jti = u-

The proof o f this theorem, which is essentially a generalization of 

Theorem 3.1.1, is  given in Appendix 4.1.

Applying Theorem 4.1.1 to (4.1.S3) immediately yields the d is tr ib u t io n  

of conditional on in the following form:

5i j  ~ ^  Xsvg, independently, j  = l , . . . , k ;  j * i  f4,1.34) 

{Xs} » B lg sm "1)

Vs ~ (oig) independently, s = 1....... ..

= P'n,

P is the (rxr) orthogonal matrix defined in Theorem 4.1.1, 

n is  the solution to T^n = 5 - 

and T̂  is  the (pxr) matrix defined in Theorem 4,1.1.

Clearly, i f  T îs of fu l l  rank, i.e . r  «= p, then n = T^(5-v^)-
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The mean and variance o f vs are, respectively (See, fo r example 

Johnson and Kotz (1970b) page 134):

ECvs] = 1 +

VarfVg] « 2(l+2co|)

and since the$i' independent, we obtain the following expressions 

fo r the conditioraT Tean and variance of 6 ^ :

-  S Xs( l« * )  (4.1.35)

V a rC iljl li^  = 2 ^  1=0+34). (4.1.36)

As in  the case of the sum of weighted central chi-squared random 

v a r f^ ^ s ,  the d istribution o f the sum of weighted noncentral chi-squared 

random variables may also be expanded as an in f in ite  series o f centra! 

chi-squared distributions (See, fo r example, Ruben (1962), Press (1966), 

Kotz, Johnson and Boyd (1967b), Johnson and Kotz (1970b)). This fie lds  

the following expression fo r the d istribution - and density functions, 

respectively, o f 6 | j ,  conditional on Letting z = 6 ^ :

Where 0 is an arbitrary positive constant, and 9 , ^ ( 0  are the

distribution- and density functions, respectively,of the d istribution 

and the constants c j are given by: J "



The mean and variance o f vs are, respectively (See, fo r example 

Johnson and Kotz (1970b) page 134):

E[v$]  = H 'W * ij 

Var[vs3 .= 2(l+a>>|)

and since the vs are independent, we obtain the 

fo r the conditional mean and variance o f 6^.:

- j, .
r

■ , V a rH ’ j I v , ]  -  l= ( U a « ‘ ) .

As in the cabo of the sum of weighted central chi-squared random 

variables, the distribution- o f the sum of weighted noncentral chi-squared 

random variables may also be expanded as an in f in ite  series of central 

chi-squared distributions (See, forXexamp’ s , Ruben (1962), Press (1966), 

Kotz, Johnson and Boyd (1967b), Johnsdn and Kotz (1970b)). This yields 

the following expression fo r the d is tribution - and density function^, 

respectively, of 6 ^ ,  conditional on Letting z = 6 ^ :

and

)/
where 6 is an arbitrary positive constant, G ^ g j( ')  and g ^ g j( ')  are the 

d istribution- and density functions, respectively,of the x ^ g j d istribution 

and the constants c j are given by:

following expressions

(4.1.35)

(4.1.36)



Ruben (1962) shows that fo r 0 < e s ctr  (4.1.32) is  a mixture d istribution

( i t  may or may not be fo r other values o f B) and that i t  converges uniformly

i i i  any bounded z-interval o f z > 0 fo r any 6, and converges uniformly for

a ll z > 0 i f  S is chosen so that max|l -  t - |  < 1- 
'' 5 Aj

Renremberfng that, conditionally on tito j  = w J ^ U

are independently distributed, a ll with d is tribution  given by (4.1.31) we 

immediately get the d is tr ib u tio n  and density functions of 6| = min in 

the folljpwing form (See, fo r example Gibbons (1971)),

\  F g ^ W . I - O - F q ^ W , ' - '

/  f

wfiere j^ ( z )  and f 6^ | v (z) are given in (4,1.37).

Using (4.1.38), the upper bound (4.1.32) on'the probability oi^/correct 

c lassification under the random effects model, given x e tt-, can ^  evalu­

ated conditionally on p... Using the notation '■?
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P]J_ == PEcorrect c lassifica tion |x s U i

using result (4.1.1?), where G^(-) is  the distribution function. In­

tegrating by parts yields,

V "  -  * C  ^

where g ^ * )  is  the %] density function 

-  10  M  ^

from (3.1.37) and (3.1,38)

making the transformation y = ^  .

Now, uij'lng expressions (4.1.15) fo r  G^gj(y) and considering the case 

where r  is even, ive get \

i f
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where we have assumed that (4.1.37) is a mixture d istribution so that

I  c'. = 1. From the identity:
0*0 J

' j l  ' j  I * " ' '  j l ' /

where-the â  are obtained by equating coefficients o f y* on the le f t-  

and right-hand sides (See Appendix 4.2 fo r the ir values) we obtain:

where the interchange of summation and integration operations is ju s t i­

fied by the uniform convergence of (4.1.37) and hence o f (4.1.39),

H Evaluating the above integral as a gamma function fin a lly  yields after 

' some sim plification,

f p( 5 $tl * / m ! m  J 0 aj |W F T ,; i, !, i: '’ :i1 (4' , -40)

where (a)f ^ =  a(a4-l) ........ (a+j-1),

Unfortunately, the case where r  is  odd is so complicated that i t  is 

>\!?ot considered here.

Remark 4.1.1 The drawback to expression (4.1.40) is that i t  refers to 

the conditional probability of correct classification and requires to 

be given before i t  can be used.

An approach that gives an unconditional but approximate upper bound 

is to ignore the intercorrelations between the 6 ^ ,  j  = l» ...,k ?  j  *  i 

and to proceed as i f  they were independent. Therefore, instead of using 

the conditional d istribution (4.1.37) in expression (4.1.38) fo r  the
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distribution o f 6? = rain .65,, we use the unconditional d istribution 
1 Vj*i 1J

(4.1.1) fo r .d jj that was derived in Chapter 3. Noting that (4.1.10) 

and (4.1.37) d if fe r only in respect o f the ir constants Cj and c l,  re­

spectively, i t  is  clear that the arguments go through exactly as for 

the conditional case with c j replaced by Cj. So expression (4.1.40) 

can also be used as an approximate upper bound on the unconditional 

probability o f correct c lassification i f  c j is  replaced by Cj in  defi­

n ition (4.1.39) o f the a,. „

Another link-up between the upper bourn , bn the conditional proba­

b i l i t y  o f correct classification and the approximate upper bound on 

the unconditional probability is  achieved i f  is  fixed at the value 

Uj = I  in the former. For then i t  is  clear front (4.1.34) that, condi­

tiona lly  on p.. = £

where now the vs are central X] random variables. Comparing th is with 

the unconditional d istribution o f 6^j derived in Theorem 3.1.1:

where the vs are also central X] random variables, we see that fo r a 

given set o f eigenvalues {Xs>, the values of the upper bound (4.1.40) 

fo r the probability of correct c lassification conditional on y . =5, w ill 

be equal t )  that o f the corresponding approximate bound on the uncondi­

tional probability to r the case when the eigenvalues are a ll ha lf as large.

This is  in tu it iv e ly  reasonable, as one would expect poorer c la s s if i-  . 

cation from populations situated near the mean of the ir d istribution.



4.1.4 Evaluating the bounds on the probabilities o f correct 

classifica tion fo r k > 2 populations 

Expressions (4.1.29) and (4.1.30) fo r the lower bound on the proba­

b i l i t y  of correct classification have been derived d irectly  from the two- 

population case, and they are also computed by the subroutine PROBS given 

in Appendix 4.3. Table 4.1.2 gives the values of the lower bound fo r the 

same three sets o f eigenvalues {A..}, a ll with a trace o f 15, that were 

used in  e a rlie r examples, and fo r k = 5 populations. Values fo r k = 5, 

i’ = 4 and a s im ilar three sets o f {A..}, a ll with trace 10, are also given, 

fo r comparison with the upper bounds discussed below.

Expression (4.1.40) fo r the upper bound on the conditional probability 

o f correct c lassifica tion is not evaluated as easily because of the in­

creasing complexity o f the formulae fo r the constants â . appearing in  i t  

fo r values o f j  greater than £. See Appendix 4.2.

However, fo r the specific case where the eigenvalues {As> of T jf1 are 

a ll equal, say Xs == A, s = and y.. is  fixed at the value ^  =‘0

i t  is  clear from Remark 4.1.1 above and from defin ition (3.1.9) fo r the Cj 

that i f  S = A then = 1 and cj = 0, Vj > 0, and that i f  @ = 2A then 

cQ = 1 and Cj = 0, Vj > 0. (This is also an immediate consequence of the 

fact that when the As are a ll equal then Sj\j is  proportional to a x£ 

randr"fVariable. See (3.1.13)),

Under these circumstances (4.1.39) becomes:

( " i '  i  l  = , y j  (4 .1 .4 1 )
i*0  c j=0 ^

so that the sequence of nonzero fy terminate? a fte r a f in ite  number of 

terms and they are readily computed, especially fo r low values o f r-
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For example, fo r the case r  = 4 and k = 5 populations, (recall that 

formulae (4.1.39) and (4.1.40) are valid only fo r r  even), using either 

(4.1.41) or the formulae derived in Appendix 4.2, we get the following 

values fo r the 8 j:

and = 0, Vj > 4 .

Using these Values fo r the a^, the upper bound (4.1.40) on the con­

d itiona l probability o f correct c lassification with = 5 , as well as 

the approximate upper bound on the unconditional probability (see Remark 

4.1.2) were computed fo r the case where ^  = X2 = X3 = X4 = 2.5. For a 

given value o f the trace o f T E "\ the case where the Xi  are a ll equal gives 

the best c lassifica tion, so these upper bounds are also valid fo r the 

other cases with r  = 4 given in Table 4.1.2.

Table 4.1.2

Bounds on the probabilities of correct c lassification fo r 

k = 5 populations

Upper bound on condi­
tional prob. evaluated Approximate

Case Lower bound at X1 = £ Upper bound

(a) 11,1,1,1,1 .8433 _ >
3,3 ,3 ,3 :3 .9183 - -

(c) 5,4.3.2,1 .9068 - -
(d) 7,1,1,1 .7517 .7970 .8694
(e) 2.5,2.5,2.5,2.5 .8220 .7970 .8694
( f) 4,3,2,1 .8063 .7970 .8694

As remarked at the end o f the previous sub-section, classification 

tends to be poorer when the new observation comes from a population whose 

mean is  situated at the centre o f its  d istribution, than when i t  is  s itu -
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ated elsewhere, This is  reflected by the low Value of the upper bound 

on the conditional probability evaluated at y.] ‘= g given in Table 4.1.2, 

which is in fact lower than the corresponding lower bound in two out 

of the three cases (d) to ( f ) .  Thus i t  would appear that the upper 

bound on the conditional probability is  o f lim ited use in practice, and 

that the approximate upper bound, obtained by assuming that the 6^., 

j  = j * i ,  are independent, is  fa r more useful.

4.2 Unknown Parameters •

In th is  section we consider the probabilities o f correct- and mls- 

classification when the sample-based classifica tion rule, with equal 

p rio r probabilities for* each o f the k populations, is  used, viz: Assign 

new observation x to that population it., fo r which,

d?{x) = min d!(x) (4.2.1)

d j(x) = J  ,

Xj is  the mean of the tra in ing sample of size n̂  from population Uj, 

and S is the pooled sample covariance matrix based on v degrees o f freedom, 

or equivalently, assign x to ir  ̂ i f

V ^(x) > 0  Vj .  1 k; j  *  1 (4.2.2)



As described in Section 2.2, two types of misclassification pro­

b a b ility  may be defined when the sample-based classification rule is 

used. (Although we refer to the misclassification probability, the re­

marks hold equally well fo r the probability o f correct c lassification).

They are the conditional probability of m isclassification, p9 given a 

particular training sample and that x e and the expected probability 

o f m isclassification P.. given x e ir^, when the classification rule is 

based on tra in ing samples of size n^, j  =

Both these probabilities may be expressed in terms of the population 

means Vj (or functions of them) which, under the random effects model, 

are random variables. Under th is model, therefore, we are interested in 

the expectations of and P® over the d istribution o f the

Interpreted in  a Bayesian sense, taking the expectation of p9 over 

the d istribution o f the gives the posterior probability o f misclassi­

f ica tion , given the training sample. As shall be seen in the case of 

k = 2 populations th is leads to results that are not very useful from a 

practical point o f view, so the greet majority o f this section w il l be 

devoted to obtaining expressions fo r the expected probabilities o f covrect- 

and misclassification under the random effects model when the classifica­

tion rules (4.2.1) and (4.2,2) are based on training samples of size n j,

4 = l» . . . ,k .

4.2.1 The case k ° 2 populations

The conditidiidl probability o f m isclassification, using the c la ss ifi­

cation rules (4.2.1) or (4.2.2) based on tra in ing samples yielding x-j ,*g 

and S, is given in Section 2.1, equation (2.1.23). Thus,



p9(p.) = P lm is c la s s if ic a t io n |,x 2 i ;x t  n^]

I / ^ - xz_),s- |is ‘ i (x1_-*2_T j

■ • ( H ) 1 (Vt -« )'b /c ) (4.2.3)

where,

a = i ( ^ +  x2>)

^ = S " \ .  - *2.)

and c = vPIB1 .

Under the random effects model -  N(5,T), independently, so con­

sidering the case x eit-j and taking expectations over the distribution 

of pj yields:

_ (v>a)'b
P-[ = Pfmisclassification|X| yXg ,S;x e ir^3 = H^C4>(----- L —  ) ] .

(y .-a j'b
Letting y = — —  , we have tha t, under the random effects model,



//

So,

n = (C-a)'b/c 

crs = b'Tb/c2,

P? .  f  $(y ) - l_ e - i(» + n )* /t> a dy, 
yffiia

This Integral may be evaluated using the result in  Down ton (1973) re­

ferred to in expression (4.1.19) in Section 4.1. This immediately yields:

■ *(1 •
' " / n ? " '

y(i<^-x2 i) 'S 'r (£.T)S"l (x, -Xj )
* (4.2.4)

S im ilarly,

P2 = P[misclassification|x^,Xg_,S;x t  itg]

’(g -  | ( X li+x2 )) 'S “ J(xu -x2 ) ]

' ^ 1

(4 .2 .5 )

Remark 4j2.1 Although results (4.2.4) and (4.2.5) arc elegant mathema­

t ic a lly ,  they are not very useful from a practical point of view. This 

is highlighted by the fa c t that since the p rio r probabilities and q2 

o f ir.| and Hg, respectively, have been assumed equal, the average posterior 

probability o f misclassifiqation becomes, using (4.2.4) and (4.2.5):

P C m is c la s s i f ic a t io n lx ^ X g jS ]  = + Pg) = & (4.2.6)
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Independently o f the values o f x-j ,Xg and S.

The reason fo r this anomaly 1s that once x j and x2 are given, 

the populations ir  ̂ and 7r2, and hence ^  and h2 are no longer randomly 

chosen but are fixed fo r the present problem. Therefore i t  Is not 

meaningful to take the expectation o f the conditional probability of 

m isclassification, given the tra in ing sample, over the distribution of 

" i
From Remark 4.2.1 above i t  is  clear that there is  no further need 

fo r considering the conditional probability o f misclassification under 

the random effects model.

The most useful result on the expected probability of misclassifica­

tion fo r the two- population problem is that of Okamoto (1963), given in 

expression (2.1.26) of Section 2.1 fo r the case of equal-sized training 

samples = n2 » n from ttj and l y

P®(<S2) « P|;misclassification|n,v»62;x t  ir^]

■ = + I  ^  f - )  +  0 ( * f 2) (4 .2 .7 )

S1 = 6 |g  = ,

v is the degrees o f freedom of S and * ( - )  Is the standard normal density 

function.

The expected probability of misclassification under the random ef­

fects model may therefore be obtained by taking the expectation o f (4.2.7) 

over the d istribution o f 62. Since there is no difference in (4.2.7) 

fo r x c tt1 or x e rtg (th is is not the case i f  n-j * n2) the subscript i ■ 

w il l be dropped from P®(62). So,



Pe » PCmisclassificstionip.v] = E52CPe{62)] 

= E4,C*C:  | )  + ^  4 > { |) ( ^  + + 0 (n '2) (4 .2 .8)

As in the case where the parameters are known, we may approximate 

(4.2.8) using the approximation (4.1.5). The f i r s t  term in (4.2.8) is 

jus t the probability of m isclassification when the parameters are known, 

and its  appro..imation is given in (4.1.9), so we need look only at the 

second term. As before, we need the second derivative of th is tern with 

respect to 62. Some straightforward calculations y ie ld , le tting  z = 62:

Applying (4.1.5), (4.1.7), (4.1.9) and (4.2.9) to (4.2.8), we get:

5
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i .e . Pe # 9

' f h ! , 4  4 ) '

(4.2.10)

A more accurate expression fo r Pe may be obtained by evaluating (4.2.8) 

exactly, using expressio n (4.1.10) fo r the density of 62. y ,

The f i r s t  term in the above integral is ju s t the probability o f mis- 

c lassifica tion in the case where the parameters are known, and is given in 

(4.1.16) and (4.1,23) fo r r  even and odd, respectively. The second term 

may be evaluated, a fte r interchanging the summation and integration opera­

tions, in terns o f gamma functions. After some sim plification, i'.his yields 

fo r r  even;

L e ttin g  z = <S2 as before, th is becomes:

P" -  i  f  Cj ,  i n n " : )  .

(4.2.11)

:1

-  +  f W W "  *  M r " ' ) '
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fo r r  odd:

Pe ■ iO  “ |  cos"1
er ( u i )

(4,2.13)

4.2.2 Evaluating the Probabilities of Mi sclassifl cation fo r k  = 2 

populations

FORTRAN subroutine PR0B1, given in Appendix 4.3, evaluates formulae

(4.2.12) and (4.2.13) fo r  the probability of misclassification when the 

parameters are unknown. Table 4.2.1 gives the probabilities o f misclassi- 

fica tion  fo r the case r  = 5 fa r  the same three sets o f eigenvalues (A^>, 

a ll with a trace o f 15, that were used in the earlie r examples, and two 

values of v, together with the corresponding approximate probabilities ob­

tained from formula (4.2.10). .

Table 4.2.1

a . )
Probability of 
Misclassification 
correct to  0(n"2)

Approximiate Pro­
b ab ility  of 
M isclassification

(a) 11,1,1,1,1 20
(b) 3,3,3,3,3 20
(c) 5,4,3,2,1 20
(d) 11,1,1,1,1 40
(e) 3,3,3,3,3 40

( f)  5,4,3,2,1 40

.0570

.0315

.0354

.0481

.0260

.0294

.0585

.0253

.0295

.0460
.0197
.0230

Comparing the probabilities of misclassification fo r the eases v = 20 

and v = 40 with each other and with the corresponding probabilities in 

Table 4.1.1, which represent the case where v •* », clearly indicates the
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effect that sample size has on them. Moreover, as in 'the case where the,/ 

parameters are known, the approximation to  the probability provided by '' 

formula (4.2.10) is only correct to about two decimal places.

4.2.3 The case k > 2 populations

Using classification rule (4.2.1), the probability o f correct classi­

fica tion, given x e v. becomes; • ^

PCcorrect c lass ifica tlon jx  c ir,3 = Prri?(x) s Min d^(x)|x e %.]
1 1 j = l , . . . , k J 1

j« i
(4.2.14)

Now', given that x s tt^, the marginal d istribution o f d^(x) is  proportional 

to tbe central F(p,v-p+l) d istribution , and is given by expression (3.3.19), 

On the other hand, the marginal d istribution of d^(x), j  *  i ,  is ,  condi­

t iona lly  on S?j, proportional to the noncentral F(p,\>-p+l) d istribution 

with noncentrality parameter proportional to 6 ^ .  See (3.3.6). its  un­

conditional d istribution is given by (3.3.20) and (3.3.21). However, the 

jo in t d istribution o f the d^(x), j. = l , . . . , k ,  is  unknown, so that expres­

sion (4.2.14) cannot be evaluate,', }

Using classifica tion rule {4.2;S j, t^e probability of correct classi­

fica tion , given x e ir^, is :

P[ correct c la ss ifica tion ^  c 1rr̂ 3 ® PCV.j(x) > 0, V j= l,. . . ,k ;  j  * i j x  e ir ^ .

(4.2.15)

As in the above case the marginal d istribution of V ^ (x ), conditional on 

is known (Okamoto, 1963) and the unconditional d istribution can, in 

principle, be obtained by integrating over the d istribution o f 6 ^ .  How­

ever, the jo in t d istribution of the V^.(x) is  again unknown, so that ex­

pression (4.2.15) can also not be evaluated.
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As in the case where the parameters are known, we therefore consider 

boynds on the probability o f correct c lassifica tion. As before, Cacoullos' 

lower bound {2.1,32) refers to the minimum probability o f correct classi­

fica tion and we can improve on them by using Bonferroni's f i r s t  inequality. 

Using the analogous argument as that leading up to expression (4.1.28) in 

the case where the parameters are known, and using Okamoto's (1963) ex­

pression (4.2.7) fo r the probability of m isclassification fo r  two popula­

tions together with the assumption that the tra in ing samples from each of 

the k populations are a ll the same size n, yields the following lower 

bound on the probability o f correct classification under the random ef­

fects model;

PCcorrect c lass ifica tion ] a 1 -  { M  )Ega ^

*  + (4.2.16)

Finally, substituting expressions (4.2.12) and (4.2.13) fo r the expecta­

tion in (4.2.16), y ie lds, 

f or r  even:

PCcorrect c lass ifica tion ) % 1 - - ^ 0  -  ..

- + „.-2) (4 .2 .,7 )
• v T f p W '  7  T l w <

fo r r  odd; ''

PCcorrect c lassification^ a 1 - -  |  ^  ĉ

)+j-1 I  - ( in - j- i)

t  0(n"2). (4.2.18)



We can also obtain an upper bound on the probability of correct 

c lassifica tion in a manner sim ilar to that used when the parameters are 

known. Using Okamoto's (1963) expression"(4.2.7) and assuming tra in ing 

samples o f equal size n,yields the expression inalogous to (4.1.32):

' Pteorrect classifica tion jx c 1^3 * 1 -

*  u *  0(|,-Z) (4,2.19)

d! -  min 6?.. 
1 VjVj

The f i r s t  teriji inside the expectation was evaluated in the case where 

the parameters are known, conditionally on’u^. The second term is ,  using 

the d istribution (4.1.38) o f 6?, conditionally on

fo r the case when r  is  even, where the are defined i'fi (4,1.39) with (k-1) 

replaced by (k-2) and the c j are defined in (4.1.37). Interchanging the 

order o f integration and evaluating the resulting integral yields:
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J M ?  , r  Cj  rP-T

J t ik  s=0': 's j=0 2 ^ V ( I r +j )  /g

(4 .2 .2 0 )

Substituting (4.2.20) and (4.1.40) into (4,2.19) and sim plifying, gives 

the following upper bound on the conditional probability of correct classi­

f ica tion , given when r  is  even:

the Sj are defined in (4.1.39) and evaluated in Appendix-4.2, 

the â  are s im ilarly defined, but with (k-1) replaced by (k-2) and 

the cj are defined in (4.1.37).

Remark 4.2.2 As in the case where the parameters are known, an approxi­

mate upper bound on the unconditional probability of correct c lassification 

with k populations way be obtained by ignoring the Intercorrelations be­

tween the d | j ,  j  = j  *  i ,  and proceeding as i f  they were Indepen­

dent. Arguing in exactly the same way. as in  Remark 4.1.2, we conclude, that 

(4.2.21) is  also an approximate upper bound on the unconditional probabi11-r 

ty  i f  the c j are replaced by Cj (defined in (3,1.9)) in this expression

Ptcorrect class1f1cation|x « 5 H I

{

and in  the defin ition (4.1.39) of the â  and a^. Furthermore, fo r a



93.

given set o f eigenvalues the upper bound on the conditional proba­

b i l i t y  of correct c lassification evaluated at y'. = £ is exactly equal 

to ffre approximate bound un the unconditional probability fo r the case 

where the eigenvalues are a ll halved,

4.2,4 Evaluating the bounds on the probabilities of correct 

c lassification fo r k > 2 populations 

Expressions (4.2.17) and (4.2.18) fo r the lower bound on the proba­

b i l i t y  of correct c lassification are also computed by subroutine PR081 

given in Appendix 4.3. Table 4.2.2 gives the values of th is bound fo r 

the same six sets o f eigenvalues that were used in Table 4.1.2.fo r tho 

case when the parameters are kncwn, and fo r k = 5 populations. The de­

grees o f  freedom v were taken to be 20.

Upper bound (4.2.2!) on the conditional probability of correct classi­

f ica tion , given u.] = £ was computed fo r the special case where the eigen­

values are equal, as was the corresponding approximate bound on the un-v- 

conditional probability. See Sub-Section 4,1.4 fo r the details and.for 

the values of the aj when r -  4. The corresponding values fo r the a j arei

3 1» aj = -g, Sg * 5̂ * a3 K ^  and â , a 0, Vs > 3. :

For the same reason given in Sub-Section 4.1.4, the upper bounds computed 

fo r the case of equal eigenvalues are also valid fo r other sets o f  eigen­

values with the same trace.
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Table 4.2.2

Bounds on the probabilities of correct c la ss ifi cation for 

k = 5 populations and degrees o f freedom m = 20

Upi>rr bound on
Case % .} bound

conditional prob, 
. evMuated at

Approximate 
upper bound

(a) 11,1,1,1,1 .7719 -

(b) 3,3,3,3,3 .8739 -

(c) ’5,4,3,2,1 .8582 - -

(e)

7,1,1,1 ,6713 .7416 .8325

2.5,2.5,2.5,2.5 .7579 .7416 .8325

(f) 4,3,2,1 .7386 .7416 .CMS

• As in  the case where the parameters are known, the upper bound on the 

conditional probability o f correct c lassifica tion, evaluated at = 5, 

tends,.to be unrea lIstically low, and is in  fact lower than the lower bound 

in one case. For practical purposes, the approximate upper bound on the 

unconditional probability is  therefore generally more useful. .



Appendix 4.1

Proof o f Theorem 4.1.1

Since T is a nonnegative defin ite symmetric matrix o f rank r ,  we

may as in Theorem 3.1.1 le t  T = T-| T-j , ' where T-| is  a p x r  matrix of

rank r, Making the transformation

' X = %

we Immediately have that 

'

where n is the solution to n = u •

Therefore d2 -  X' £"’  X = Z'TJ E-1 T, Z = Z' V Z, where V -  Tj e" '  T,

is  an ( r  x r)  positive defin ite  symmetric matrix. Now V can be expressed 

in the canonical form:

V = P A P1

where A = diacftxp and {X.} ■- eigs{T^ s""1 T^> = eigs{T z:""1} and P is  the 

orthogonal matrix whose column is  the eigenvector o f V corresponding 

to Xj.

Therefore d2 becomes:

d2 = Z ' P A P ' Z  = Y' A Y =  X̂  y^ 

where » * ( I ’ ) = P' Z.-~ »r (P 'n ,»

So y | ~ x |( “ p» independently> where is  the 1 ^  element o f P'n •



Evaluating the coefficients a. in iden tity  (4.1.39):

Theorem A 4.2.1

a. = i -̂ .r  fo r j  = 0 ,1»... J r - ! 
J 2 j i

Proof The le f t  hand side o f (4.1.39) may be written: 

....

. r  '

0=1 K” I

 .
where we have assumed that (4.1.37) is  a mixture d istribution, so that

A ' i "

'  ' I ,  ^   ̂ "

= (1 -  I  c i) /2 s si fo r s = ijr+ j-1; j  = 1,2.........
1=0 1
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Using the multinomial theorem to evaluate (A 4.2.2) and substituting 

th is into iden tity  (4.1.39) immediately yields:

' " " ' I

whej'O the summation is  taken ovor a ll partitions l Q,  o f k-1 fo r

which:

j
I  1 ^ - 4  (A 4.2.4)

Subsituting the values o f bg given in (A 4.2.1) into (A 4.2.3) and using 

(A 4,2.4) gives, fo r j  < & r- l:

aj (tt> 1 tir>Z"- (Tr)1 (a 4.2.5)

The f i r s t  few coefficients are,from (A 4.2.5):

•i ■ <rr>} ■ W

“z “ r , { Tt-irP+r ?r + <Tr) *}

and so on.

The rest o f the proof-follows by induction. Assume that the result

is  true fo r a ll j  a i and a ll k, where 1 < ^r-1 . i
/ )

i



//

i.e . ajk-1) . I f c l L  fo r $ = 0 ,1 , . , . , i  (A 4.2.6)
J 2J j !  : .

where the superscript in ) indicates its  dependence on k-T,

Now,

, j=0 J s=0 b j=0

Equating coefficients o f y 1+ on both sides o f (A 4,2,7) y ie lds;

'  O "  -  4 ^  * h  ^  " 1 ^  4 ^

4 5 "  ' '

by assumption (A 4.2.6)

Therefore,

K ( ( ^"S+l ) ^1 -  (k-2)1* 1)

and ifnce (A 4.2.8) holds Identically fo r a ll k i t  Immediately follows . 

that:

• S S '1 = f o r  a , !  k ( *  *  z  »)



F ina lly , as the theorem has already been shown to be true fo r a ll j  s 3, 

i t  is  true fo r a ll j  s | r - l  by induction.

Remark A 4.2.1 The coefficients &J fo r j * ) r  are most readily calou? 

lated from (A 4.2.1} with the help o f Tfieorenr A 4.2/5. Unfortunately 

no general result is  available fo r them. Writing (A 4.2.1} as:

(A 4.2.10)

and.using the following obvious generalization o f Theorem A 4.2.1:

\  we vbtafn the  f i r s t  few higher coefficients as follows:

, V , c
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- - f i t f r p -  {(k-l)Jrtl- Ci(l ♦ (k-J)(!r+2)(l +i(k-Z)(JM-l)))
2 * r  " ( i n - Z ) : . . £

-  c j( l  +(k-2)(ir+2)) -  c p  (A 4.2.Ijl)

and so on.

Result {A 4.2.13) only holds fo r &r > 1 and (A 4.2.14) only fo r £r > z .

For ) r  = 2 , l.o . r  = 4, (A 4.2.14) becomes, Instead:

84 = ^  " ^ (H 4 {k ~ 2 ) ( l ^ |(k -2 )) -  3(k-2))

- c j ( l  + 4 (k -2 )) -c p  (A 4.2.15)

and fo r j r  « 1, i.e . r  = 2, (A 4.2.13) and (A 4.2.14) become, respectively:

a2 * ^ 7 l k " V c i t '  ■»(k-Z ) ( 2 - c p ) - c p  (A 4.2.16)

a3 = - k l _  - c p i  *  3(k-2)(t -1  -  Cjtk-ZJ-t, + c j ( | -  1))

-C j()  + 3 (k -2 ))-c p  IA 4.2.17)



101.

Appendix 4.3 FORTRAN Subroutines fo r computing probabilities o f correct- 

and tnisclassification
•-RKS.SRRi:fi.NTEFi|41 .PFGEa.NC-PS, ' •

FRr.CRAM TO COMPUTE P R O B A B IL It 165 CF Ml S C L A S S IF IC fi t  K 'K . ' ^.KSOaK PARAMETER? 
THE PARAMETERS ARE:
AOFC = N O, OF EIGENVALUi.S, BETA *  THE PARAMETER BETA.
CVEC = THE VECTOR OF CONSTANTS C( J l>  NTEHM3 = LSNbTt- OF VECTOR CVEC. 
ERFCR e  MAXIMUM VALUE OF THE LAST TERM IN  THE IN F IN IT E  SUM IN  THE FORMUL/ 
M E F M t = NO. CF TERMS IN  SUMMATION ACTUALLY COMPUTED,
PRCB2 a P fio aA B tt-Z T Y  OF M IS C LA S S IF IC A T IC N  Vi ITH TWO GROUPS,
NGFS = N O. OF GROUPS. PROBK = LOWER SOUND ON THS PR C BABIL ITY OF CORRECT 
C LA S S IF IC A T IO N  H IT H  'NGPS» GROUPS,

IM P L IC IT  R 6A L*a ( A - H , 0 - Z )
REALMS CVEC(NTERMS)

SCTPI = O SQ R T(P I)
CF = NDF
IF IM O D IN O P O .2 ) .G T . 0 )  GO TO 10 
H O P  *  NORR/2
TERM = D SO R TiBSTIN ) *  SOTPI 
SUM = TERM 

„ IF (  ITOP .L e >  i  ) GO TO ?.
CC 1 I f  2 . ITOP '

TERM =• TERM* (A 1 -1 . 5  ) *B E T IN / C A I - 1 .  )
- SUM « SUM 4- TERM

CONTINUE •
s u m i  = c v e c m  *  sum 
NTERMI = 1

AJ = ITO P + J -  i  «
TERM = T E H M M A J - l. f j  > * e E T IN / i  A J - 1 . )
SUM 8 SUM + TERM
TERMI » CVEC(U3 *  SUM
IF(TER M 1 .L T .  ERPOR) GO TO 4
htSR M I = J
SLM1 = SUM! + TERM1
p c y a a  = . 5 * ( i . - , s * ; ) S 0 H T ( B S T A ) / s c T P i o a u M :  >
PROBK «  1 , -  < N G P S -1 .) *PR0B2
gc to ao

3 IT tiP  s tN C K O -I3 /2
TSW  = 2 , * t iE T IN /S 0 T P I 
SUM *  TERM

IF !  ITOP t u l *  I t  Go''TO 12 
c c ^ i i ^ i  »  a . i r o p

TERM = i -R W * tA t- 1 1 > * O e r iN / { A  I - , 3 >
SUM a SUM <• T“ RM r

! CONTINUE
SUMi = C V E C U ) SUM l

I f- { NTERMS1 » LS . 1 )  C.0 TO 14
CC 13 J = E.NTEWMS i
AJ ? ITO P + J W !
TERM a TERM4 1 A J -1 , 1 * 0 £ T IN / I  A J - o 5 )  , !
SUM «  SUM +  TERM ,, I'
TBRMl = C V E C U ) *  SUM /
IF IT E N M l , L T ,  ERROR) GC TO ,14 . J  !■
NTERMI = J • . • ) >

i SUMI a SUM! + TERM! i
I PROSa a . 5  -  DARCOS lOSQRT ( B E T IN ) ) /P l  ~  t.SORT ( BETA) Z (4»  *S O TP I )*SU M I ! >

FROEK '«  1 ,  -  tN C PS-1 ■> ) +PR0D2 i
) CONTINUE

k F IT E ( 6 .1 01  I ERROR. NTERMI . PRCB2. NGPS. PROdK !

RETURN ' .
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PROGRAM TO COMPUTE P R O B A B IL IT IE S  OF rilSCLASS IF IC A T IO N » UNKNCWN PARAMETER 
THE PARAMETERS ARE:
NOKC a N O. OF EIGENVALUES. NORD1 =  THE DIMENSION OF THE: PROBLEM >
NDF = DEGREES GP FREEDOM OF COVARIANCE M ATR IX . BETA = PARAMETER BETA.
CVEC « THE VECTOR,OF CONSTANTS C (J ) »  ■ NTERMS = LENGTH CF VECTOR CVEC.
EFFOR = MAXIMUM VALUE OF THE LAST TERM IN  TbE ZN FZN tTp SUM IN  THE FORMULAE.

. NTERM1 = NO. OF TERMS tN  SUMMATION ACTUALLY COMPUTED.
FRC82 = PFOOABIL. IT Y  OF M ISC LA SS IF  ICAT ION WITH TWO GROUPS., ' '
NGPS a N O . OF 'GROUPS. PROBK = LOWER 6CUN0 ON THE PRCBASiiLI TV OF CORRECT
C LA S S IF IC A T IO N  WITH • NGPS * GROUPS.

IM P L IC IT  REAL*9 (A - H .O - Z )

p r a  3 . I4 1 S 9 2 6 5 3 5 B 9 7 9 3  ^
SCTPI = D S U R T (P I) I
CP % NDF I

" IFtMOOCNORO. 2 )  .G T . 0> GO TO 10 
ITOP = NORD/2
TERM » OSORT(BETIN) *  SOTPI 
SLM = TERM
IF t lT O P  •  L E . 1 )  GO TO 2  .
C0 1 I  = 2 , ITOP

TERM = T £ R M * ( A I - 1 .5 ) * B e T I N / ( A I - - l .  I f
SUM *  SUM f  TERM 
CCNTINUE
SUMl = C V E C tl)  *  (SUM -  T E R M /O F *(2 » * (NO RD t- 1 • ) /BETA + NOROl* |

I ( A I - .S ) * B S T T N ) I  
NTERMI a 1
IF{NTERMS • LE» 1 )  GO TO 6 ,
CO 3 J = 2 . NTERMS ;
AJ = ITOP +  J -  1 .  I
TSRM -  T E R M * (A J - le5 ) * B E T IN / ( A J ~ 1 .> i ■
SUM « SUM + TERMx- ' i
TERMl =  C V E C (J) *  (SUM -  T 5 f iM /0 F * (2 » * (N 0 R 0 1 —it ) /E E T A  *  NOROl* 

t ( A J - . S ) * 0 E T IN > >
IF tT E R M l • UTe ERROR) GC TO 4 ;
NTERM1 = Ji c
SUMl = SUMl + TERMl
P fio aa  = ,S > (  t» -,5 *> S Q R T < B E T A )/S C T P I*S U M l >
FP09K = 1 .  -  (N G P ij-1 . > *PR 082 :
GO TO 2 0  . 1

1 ITOP « ( N O R D -D /2  v  
TERM =  2e * a E T IN /5 0 T P l 
SUM = TERM
IF ( IT O P  , L « .  0 )  SUM » 0 .
IFC tTO P .L E .  I )  GO TO 12 ’
CO 11 ^1 m 2 , ITOP

2 CCNTINUE -> • ' — t ,
SUMi »  CVEC(1 ) *  (SUM -  T E fiM /b P ^C e . * (N 0 f3 0 1 -I>  l / s e r *  + AORDM

V t I rM I S i

a ^ s 513 T0 14 '
AJ # XTOP *  J -  I .

TERMl = C V E C (j)  *  (SUM -  TEF6<Z 0 F *<  *(NOROZ - 2  • ?/, 8 -" r  A #■ N 0 » 5 1 * : I
1A J *3 E T IN ? ) !

IF fT E R M l . L T .  ERROR) GO TO 14 '
hTERMl a J  ‘

$ SUMl e SUMl f  TERMl ' :
t P fl0 32 =  , 5  -  DARC05 lO S Q R I( B 5 T J N ) ) /P I  -  CSORT(BETA)/ ( 4 * tS D T P I) A5UM1 ' 1 9

»  F O W A T c Io P R O b Ib iL IT Y  8 r a £ L Y S i ? ^ k S ? ! 6 N ? R08| i t ¥ 5 ^ D Pg S g l f ^ 6 R». I  ̂ '

- !  $. .
ENOURN / 1 L.



Chaper 5 Hypothesis Testing on and Estimation o f the Eigenvalues

" ° q l 1

5.1 Introduction

The results derived 1n chapter 3 and ‘•I1 are a ll expressed in terras 

o f a X2 Xr  > 0, the r  nonzero eigenvalues of TS- "1, either ex­

p l ic i t ly  as in the expressions of the means and variances, or im p lic itly  

through the constants Cj appearing in a ll the density and distribution 

functions as well as in the probabilities o f correct- and misclassifica­

tion.

I t  is  clear, therefore, that in  any practical implementation of these 

results, sample-based estimates o f these quantities w ill be required.

Since we are only concerned with the nonzero eigenvalues of IE-1,

the logical f i r s t  step is to test the hypotheses that some of the smaller

eigenvalues are in fact zero. (They cannot be negative).

In this chapter, therefore, we w il l consider the two questions of 

hypothesis testing on and estimation o f these eigenvalues.

Section 5.2 w ill be devoted to the f i r s t  of these two questions.

None of the results given in th is section are new, so only the formulae

fo r the various tests w il l be given, together with a discussion on the ir 

app licab ility  to our problem.

fn the remaining sections o f this chapter the less understood ques­

tion  o f estimation of the eigenvalues w il l be considered. Various estima­

tors w il l be proposed, and in Section 5.5 they w ill be compared by means 

o f a simulation experiment.

As in Section 3.3, we w ill assume that we haye a training sample 

o f random observations from each of k populations. Furthermore, because 

o f the inherent problems associated with estimation in random effects 

models when the samples are unbalanced (see, fo r example Johnson and Leone

\



Vol I t  (1964) page 13) i t  w il l be assumed that the sample sizes from 

each o f the' k populations are the same.

{  Therefore, our sample w ill consist o f p-dimensional random vec­

tor's, ‘

X g j 3 = 1.........  i  * 1 k . (5.1.1)

where, under our random effects model,

. x * j ~ Np(p^iE) , independently

and v '{ ‘-Np{5 ,T) , independently.

n-

N = kn

From the data we can construct the following MANOVA table:

Table 5 .1 .1

i: Degrees Expected
Sgurce o f Sunis_o.f Squares o f Mean Mean
Variation ' \  : freedom. Squares Squares

Between group:. = n ^ ( ^ _ - x _ _ ) ( x ^ - x _ _ ) '  v ^ k - 1  si a E+nT

k n J \  a
Within groups A?= T I  ) (x .,-x , ) ' V.=N-k V o  E

^ 1=T.1*1 ) 10 1' 13 11 4 c 2



Defining,

S j - S f r n T  (5 .1 .2 )

we have, under the random effects model:

4  " V W
and A% -  Wp(v2»S)« independently (5.1.3)

where Wp(y,z:) denotes the p-dimensional Wishart d istribution with v 

degrees of freedom and parameter matrix Z.

5.2 Hypothesis testing on the

In th is section we discuss the problem of testing whether some, or 

a ll o f the eigenvalues of TE"̂  are equal to  zero.

Log< '•» f i r s t  hypothesis to test is  H0 : T = 0, fo r i f  i t

were tru ‘ j ,  which would imply that the k populations w^'’

identical, ana v.uu I t  would be fru itless to continue with the discrimK. 

analysis.

From (5.1.2) th is null hypothesis becomes,

1 H0 : 5̂  » E

with alternative, ,

^  : Z1 > >; . (R.2.1)

Clearly would imply that r(T) > 0.

The usua'l KAWVA tests using the s ta tis tics  and Ag defined in

Table 5.1.1 are based on;the fixed effects model. See fo r example, de Wael 

(1976). Under the null hypothesis, however, the distribution^ of these 

two s ta tis tics  are not affected i f  instead the random effects model per-
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tains, so the abovementioned tests are also appropriate fo r our situa­

tion. On the other hand, under the alternative" hypothesis, has the 

noncentral Wishart d istribution , 2̂  ,fi) with noncentrality parame­

te r Q when the fixed effects model pertains, as opposed to the dis­

tribu tion  given in (5.1,3) fo r the random effects model. So the power 

functions of these tests w ill be d iffe ren t and w ill have different in ­

terpretations under the two models.

A ll the invariant tests of hypotheses (5.2.1) are based on

{g-j a g2 2 ........... & gp) * s ig s fA ^ 1}. (5.2.2)

Two frequently applied test s ta tis tics  are:

( i )  The likelihood ra tio  s ta tis tic  (M ilk's criterion)

T, ■ lo jt lA jl/ IA ,- !* ^ )  -  f  logO+gj) (5.2.3)

( i i )  Hotelling's Tq s ta tis tic :

T8 “ v2T0 = t r  A1A21 "  J ,  3f  < (5-2.4)

Remark 5.2.1 Two further test s ta tis tics  due to Roy and P illa i respec­

tiv e ly , also appear frequently in. the lite ra tu re , but they won't be con­

sidered here. The reason fo r mentioning HoteVing's T^ s ta tis tic  is  that 

i t  is considered again in Sub-Section 5.4.2 where its  d istribution under 

the random effects model is discussed.

Anderson (1958), using results from Box (1949), shows that the 

asymptotic null d istribution o f can be written:
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t Y ,  « w  .  « p ^C ) + -  S ^ M )

*  -  « ^ W )  -  "  S h ' " »  *  " O '" * '

(5 .2 .5 )

* V2 + K ^ -p - l )

;Ptz = PV1(p 8+ v |-5 ) /4 8

Y4 = jYg +  t3 {p ''+ v p  + 10p2\>! + 5 0 (p *+ v p  + 159)

and Gv ( ’ ) is  the d istribution function. As a rough rule, Anderson (1958) 

suggests that accuracy to three decimal places may be achieved using the 

f i r s t  term only in the above expression i f  p2 + s m^/3.

The asymptotid null d istribution of T2 is  given by Fujikoshi (1977) 

in idle following form:

I f  H0 is  rejected, the next test of in terest is  whether any subset of 

the Xj could a ll be zero. $ f true, then the d istribution o f S2, the

PCm2T2 £ z] = Spv (z) +
pv^p+ v^l)

^ " w X ' ) )  " ( 4 ' ) (5.2.6)

m2 = v2 -  p -  1.

Mahabanobis distance between any two populations, under the random effects ,,
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model could be expressed in  terms of the remaining non-zero X1's only.

See Theorem 3.1.1. The null hypothesis of th is test is ,

Hoi 1 V i  " V z  ■......... - , p = 0

where 0 < r  < p.

Fujikoshi (1977) discusses tests fo r dimensionality of the noncen­

t ra l i ty  parameter 0 under the fixed effects MANOVA model. That these 

tests are appropriate fo r testing H01 can be seen by the following ar­

gument..

Conditionally on p-j, we have a fixed effects model, in

which case Aj has the noncentral Wishart d istribution Wp(vp£,£i) with 

noncentrality parameter,

0 -  V)' (5.2,7)

-> k
where y = ^ J  y .. Now, under the random effects model,

U-j ~ Np(C,T) independently, (5.2.8)

so that, ' '

"W p h 'T ) ' (S.Z.9) =

k
C learly , from (5.2,7), r ja )  = " " ( ^ ^ ( ^ " W , ) ( u , ^  u long as 

k > r(T), then from (5,2.9), with probability 1, r ( ^ ( i i 1-u_)(lJ1- l i i) '}sr(T). 

so, fo r k j 'r (T ) ,

r(n) » r(T) r a i " 1) (5.2.10)
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and therefore any test fo r dimensionality o f Q w ill also be a test of 

r(TE“ 1). F ilia lly , since r(T2"^) is  equal to trie number o f non-zero 

testing is equivalent to testing the hypothesis r(fi) » r  against 

the a lternative r(fi) > r.

The two test s ta tis tics , corresponding to T-j and Tg, fo r testing 

N01 ire :

f , ,  » 103(1+9,) (5.2.1.)

Fujikoshi (1977) gives the following results on the asymptotic null dis­

tributions of Tp, and Tg^.

PCmn Tn  s z] = Gf (z) + O(m^) , (5.2.13)

f  = (p-r){\>|-r)

and tnn  = v2 H yf P 'U  + ^  ■

f(p+v,-2r+ l)
.  i ]  .  Y "

* 6f t 4(z ) )+ 0 ( li;j)  (5.2.14)

,-1

- I



no.

To apply these tests we.'clearly need to know i = l , . . . , r  

appearing in and nigy A simple expedient is  to  replace by ? ' 

where is one o f the estimators o f discussed in the remainder 

o f th is chapter.

5.3. ELtimatlon of C y  = E1gs{TE- l >

From Table 5.1.1, expressions (5,1.2) and (5.1.3) and the usual 

theory associated n ilh  the Multivariate Normal d istribution i t  Is clear 

that Sj = and S2 = "v^Ag are maximum likelihood point estimators

(corrected fo r bias) of E-j = E + riT and 2 , respectively.

Thus we have the following maximum likelihood estimators fo r E and

T:

T -1 (S ,-S 2) (5.3,1)

since the transformation Is onp-to-one. (See, for example, Anderson (1958) 

page 48).

Moreover, as long as the are d is tinc t, the eigenvalues o f TS*"̂  

w il l be the maximum likelihood estimators of the corresponding eigen­

values of. Tr™1 (See, fo r example, Anderson (1958) pages 279-80). There'': 

fore, noting that:

, (5-3.2)



where I  is  the iden tity  matrix, we have the following maximum likelihood 

estmators of the X.., as long as they are d is tinct:

^ = 1 ( ^ - 1 )  (5.3.3}

Remark 5.3.1 Note that {£ .} = E ig s ^S ^J  = eigs{“  ̂ = ^ - g ^ .

. Girshick (1939) proves that the-eigenvalues o f a sample covariance matrix 

from a Normal sample are asymptotically independent, unbiased and nor­

mally distributed estimators of the corresponding population eigenvalue 

as long as they are d is tinc t. Using the multivariate analogue of the 

argument used to prove that the F-distribution tends to the chi-square 

' d istribution as the denominator degrees o f freedom get large (see for 

example- Hflks (li/62) page 191) f t  can be shown that the above asymptotic 

result also holds fo r the eigenvalues of S-jS^as both numerator and 

denominator degrees o f freedom get large.

However, as w il l become clear from the results of the Simulation ex­

periment described in ssction 5.5, very large sample sizes are necessary 

before these results C’n b* uaSu-iied to hold to any reasonable degree o f 

accuracy.

For moderate values of Vj and the situation is not so simple.

Khatri (1967) obtains the jo in t density function o f the eigenvalues

g-j > g2 >...>  g > 0  o f A^A^which can be expressed in the following form:

\ .......g <8, .........V "  = i 1̂ 1

x f l  -  r " 1, 6 (1 ^6 )" ') (5.3.4)
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■y-j z y2 a ...a  y > 0 are the eiger- alues of

Y is  an arbitrary non-negative real number 
P P

n denotes the oroduct: n H
-  U j  i=1j= i+ l

r  -  d ia g f v ^  J  '-N

S = diagfg.) ./

^Pq(v ; A»B) denotes',a generalized hypergeometHc function with matrix 

arguments. (See, fe t  example, Johnson and Kotz (1972) equation (3.1.2).) 

and c is  a constant. ..}■

5.3.2 Since = £ + nT have the following relationship be-f( (

tween /he  y1 and the X1:

(y^) = eig%f(£+nT)£"b = eigs{I+nT£’“ ^  = {1-rnA^)

Therefore, estimators of the Y-j would also produce estimators o f the 

corresponding A..,

As i t  stands, formula (5.3.4) is not very useful fo r obtaining estiraa- v:> 

tors o f tiie (and hence of the X^), but Chang (1970) shows that when 

\>1 + v2 is  large and the y^ are d is tinc t then the following expression for 

the lim iting  jo in t density of the may be derived from (5.3.4):

J tV P - l)

rry

(5.3.5)

where y  ̂ > Yg ^  are the eigenvalues o f E-,}.'” 1,

, StUn-H-U
P f 91-9^ I P Si

 W  M

%

• O. ' .



■f at  )

and r  (|v ) = ;P[ r ( J (d-j+l)) is  the .multivariate gamma function,
H d=i

As a check on formula (5.3.5) we evaluate i t  fo r the case p ® 1:

|v r l  . M V v2^

so that g^/Y] has an (unncrmed) f-distr1bution. So Chang's lim iting dis­

tribu tion  (5.3.3) Is exact in  the one-dimensional case, with expected 
\  .Xvalue,

Thus has expected value f ~ y  from which the following

unbiased estimator o f Yj results:

(S .'.f) .

For higher’ dimensions, however, the calculation of expected values 

from (5.3.5) becomes intractable analytically.

Remark 5.3.3 In a very recent paper, Khatri and grivastava (1978) give 

the following asymptotic expansion fo r the jo in t density function fo r 

g-j > g2 >...>  5p > 0 when the are d is tinc t:

 V - ....

(5.3,8)
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where,

( g v - 'S p )  is bang's expression (5.3.5)

ci j  = (‘i ' j1-Y^1)(gi -gJ'){U g i Yi1)"1(H9j Y j1)‘ 1 .

p p
and E denotes the double sum T T . 

i< j
For the situation where only the f i r s t  q are d is tinc t and the 

las t (p-q) are equal they give a s im ilar, but more complicated expression 

fo r the jo in t density o f the .

Unfortunately the abovementioned paper appeared in p rin t after 

the research in  th is chapter had been completed, so that expression

(5.3.8) was not used to obtain maximum likelihood estimators o f the y .. 

However, since v-j + v2 « kn-1 and k must be greater than r(T) (which 

usually equals p) to ensure th a t r(T) = r(T ), where I  is  given in 5.3.1, 

v-j + Vg w ill tend to be large In most practical applications. Thus the 

correction factor jjn (5.3.8) w il l be small in practice.

Nevertheless, i t  would be a re la tive ly  straightforward but lengthy 

matter to obtain unrestricted and restricted maximum marginal likelihood 

estimators of the from (5.3.8) corresponding to those obtained from

(5.3.5) described in the remainder of th is section and in the ne- I t  

would then be interesting to compare these two additional estimators of 

the y.| with those proposed below, by repeating the simulation experiments 

described in Section 5.5.

5.3.1 Maximum Marginal Likelihood Estimators of {y ,} « Eigs{E^r"b

James (1966), considering the eigenvalues o f a"simple Wishart 

matrix, argues that although the sample eigenvalues and eigenvectors are 

jo in tly  maximum likelihood estimators of the ir population counterparts.



the sample eigenvalues do not maximise the likelihood function,of the ir 

marginal d istribution . He then goes on to solve the maximum likelihood 

equations obtained from the lim iting  marginal d istribution of the sample 

eigenvalues to give estimators (to 0 (v"2)) o f the population eigen­

values. I t  is  interesting to note that.Lawley (1956} obtains the iden­

tica l estimators using a quite d iffe rent approach. We now apply the 

same approach as James (1966) to Chang's formula (5.3.5) fo r the lim iting 

density o f {g^} = eigsM-iA^}:

Starting with the log likelihood of the »

P P
‘ L = '.(r ig ) = log c + K v^-p -l) J, log g. -  % log y,, •is] 1=1

P g
- lo g ( l + yj-) + t

log(Y^-Y (5,3.9)

d iffe rentiating with respect to and simplifying yields:

   /

(5 .3 . i0 )

#ere  I  denotes the'single am  from j  = ) to p excluding the term where 

i  -  i . J" '

Equating th is to zero gives:

... . (5.3.11)
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Before attempting to solve equations (5.3.11) fo r the y,., le t us 

f i r s t  check whether they do, in fact, give a maximum fo r the log l ik e l i ­

hood (5.3.9). Taking second derivatives o f L:

m

(6.3.12)

at the stationary point given'by (5.3.11). Clearly i-1 . < fl. fo r + Vg 

su ffic ien tly  large. '< 1‘

- 4 L  =
WfWT

i c 0 .
T f T j  Z b j-Y j) '

Using the crite rion  (see, fo r example Brand (1960) page 188)

(5.3.13)

(5.3.14)

we see that, fo r v1 + v2 su ffic ien tly  large > 0, Vi , j ,  at the sta­

tionary point, implying that (5.3.11) gives a maximum.

Going back to equations (5.3.11) i t  is  obviously no straightforward 

matter to solve these in terms of the i = However, solving

them in ferns o f the (which gives the modal value of the ir d istribution) 

yields:

\
I,



1 , - Y ,
1

At th is stage, i t  is  convenient to return to the

(5.3.15)

= eigs{S^S^} = e igs{^- A^A^) » g.,}.

The modal values o f the are, from (5.3.15):

&i  = Yj

Y . J l  
V1 J>i Y j-^ i

] - 2 2 ' -  y
'Z jS lT jT l

(5.3.16)

As a f i r s t  check of the correctness o f formui:' (5.3.16), note that, 

modal a.; ->■ as and \>2 get large.

Further checks on (5.3.16) can be made by noting that, as Vg « 

the A,, become the eigenvalues of the single (nomied) Wishart Matrix S^r""*, 

where v^S^z:"' ~ W(Ê E*‘^,v1). Formula (5.3.16) then reduces to;

(5.3.17)

which is equivalent to James' (1966) equation (8.1) fo r the lim iting  maxi­

mum marginal likelihood estimators of the population eigenvalues o f a 

Wishart matrix (he uses the notation ). Formula (5.3.17) is also

equivalent (to 0 (v ^ ))  to Lawley's (1956) expression fo r E d : 1 •Mained 

by using a perturbation argument. ,/



5.3.2 Approximate solution o f the Maximum Likelihood Equations

* To obtain the maximum likelihood estimators o f the from {5.3.11), 

note that from (5.3.16) we have:

'  ■ v i  J i  J

(5.3.18)

and,,,fo r v2 large this becomes:

= & i+  0 (v^ ). (5.3.19)

"Plugging" (5.3.19) into the right hand side of equation (5.3,18) yields 

the following approximate formula fo r the asymptotic maximum marginal 

likelihood estimators fo r the

+ O (v^). (5.3.20)

I t  may also be noted in passing that the method of successive approxima­

tions (see, fo r example McCracken and Dorn (1964)) for solving (5.3.18), 

considered as the system of equations,



/
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yields (5.3.20) in Its  f ir s t  step i f  the in it ia l values are

As a check on formula (5.3.20)» note again that, as ~ we get

which is the same as formula (8.2) of James (1966) fo r the maximum mar­

ginal likelihood estimator, as well as LawTey’s (1956) formula fo r the

single Wishart matrix.

5.3.3 Numerical Solution of ti.a Maximum Likelihood Equations

Since there is  no exact analytic solution to the maximum likelihood 

equations (5.3.11), we now consider the ir numerical solution.

From expression (5.3.9) i t  is  evident that the lim iting  log.^"likeli­

hood function of i = l , . . . , p }  tends to in f in ity  whenever any two 

of the y / s  are equal. However, since Chang's formula (5.3.5) is valid 

only fo r d is tinc t population eigenvalues, these singularities in  the log 

likelihood occur at inadmissible values o f the Nevertheless these 

“ inadmissible singu larities '1 could cause considerable d iffic u lt ie s  when 

trying to solve the maximum likelihoo- equations (5.3.11) numerically.

To get around this problem, we con - the following reparameterW- 

tion of the problem:

Let

-1

’ i  j * il A r '  +  " ( S ' )
(5.3.21)

estimator with bias o f order v^2, of the 1^  population eigenvalue of a



■ . a g  ̂ + e. i i=i 2 ,, . ,  ,p (5,3.22)

where the e^, i  = are preassigned small positive quantities.

The reasons for- choosing th is re parameterization is as follows:

(a) i t  ensures that y1 > y2 >•••> Yp > 0 »

(b) the new parameters {5^; 1 = pi are unconstrained in value » and

(c) the y  ̂ appear only in the forms —  and i -  - , j  > i , in the

density function (5.3.5) of the (considered as a likelihood func­

tion) and both these forms can be expressed simply in terms of the 

new parameters.

" "  \

- i -  *  I  (6 k*ck) h i  -  1 Pi j  > i .

. .

A drawback to th is reparameterization is  that i t  ent^i.ls preassigning 

values fo r the e^. In practice th is presents no d ifhcu lty-, jja practical 

rule is to le t be some small fraction of fo r i  = 2,...»p  and

■x of ~  fo r 1 = l ,  wher/ i  y° sre in it ia l estlma toil's "'of the y^-

Tl  ' \ /  ' .
In terms of the new parameters the log likelihood becomes; .



L = L(6lg,g) = log c + ,|09 9  ̂ .

P J &  p J 6k
+ iv , I  log( I  e K+ek) -  5(v,->'>2-p+l) ^ logtl+g^ I  e +t ) )

1 j= l k=l K . 1 c j= l J k=l K

^ "  j «.
■ f(a ) *  Sv, l o g i ^  e +ck) -  Mv] w 2- p t l ) J ] log(Hgj ( J i  a +ek))

P - ' P  i  t

where f(g ) is a function o f the only. D ifferentiating L with respect 

to the 6 's and simplifying yields the new maximum likelihood equations:

 .

(S.3.85)



A standard numerical technique fo - solving the maximum likelihood 

equations fo r the maximum likelihood estimator 6 = (6) , . . . , 6p>1 1s 

the Newton-Rftpfoson ite ra tive  procedure. Defining the (pxl) vector of 

f i r s t  derivatives 05{L{S)), whose Jlth element is and the (pxp) 

Hessian matrix D|(L{6) ) ,  whose element is the Newton-

Raphson ite i& tive  method can be written (See, fo r example, Si Ivey (1975) 

or Cox and Hink'iiy (1974)),

(5.3.25)

Given an in it ia l approximation to '5, successive approximations

are obtained from (5.3.26) which hopefully converge to &. 

As an in it ia l approximation we may ly t  y ^ ' 1 = & = (A p - .- . tp ) 1 and 

then obtain 6^  from (5.3.22). 

v iz i

i" -  i = 2 , , . .  ,p

(5.3.27)

l-09Pl^mT - 1 = 1

2(0 ) .

Another, possibly better, in it ia l approximation may be obtained by using 

the approximate maximum likelihood formula (5.3.20) fo r y ^ .

Differentiating,'(5.3.25) with respect to Sm yields the elements of 

the Hessian matrix:

p j  g To pP j  *

A, m = 2........  (5.3.28)
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where.Top = min(A,m) -  1, Low * max(A,m), For Jl = 1 or m = 1 the last 

term in (5,3.28) is dropped.

Finally, as the transformation from 6 to y  is  one-to-one the rraximum 

likelihood estimator y  o f  y  may be obtained from £ by merely transforming 

back via (5.3.22).

5.3.4 Large Sample D istribution o f the Maximum Marginal Likelihood 

Estimators {? ,}

I t  is  well known (see, fo r example Si Ivey (1975), or Cox and Hinkley 

(1974)) that under certain regularity conditions that are usually satisfied 

in practice (and are satisfied here) the maximum likelihood estimators

Y = (Y]»• • • .Yp) ' are asymptotically e ffic ien t and approximately normally 

distributed with mean vector y  = (Y j,...,Y p) ' and covariance matrix I f 1, 

where is  Fisher's Information matrix given by;

A = 2, , . . ,p , (5.3.29)

For £ « 1, drop the la s t  term in in (5.3.29).
1 •  u - i

(5:3.30)

,L s L(Yjg) is the log likelihood of y given in (5.3.9) and D^(L(y|9)) is  

the Messiah matrix whose ( i , j ) ^  element is 9 L. The expectation in

(5.3.30) is taken over the d istribution o f g = (g i,...*9 p ) '«



Differentiating given in (5.3.10) with respect to Yj yields:

V j * i  (5.3.31)

and with respect to y^:

The off-diagonal elements o f  D^/L) given in (5.3.31) do not depend on g,

sb we have immediately, from (5.3.30)

b  3----- , i  » j  • " (5.3.33)
11 Z h j-Y ,)*

The diagonal elements are given by:

bi i  “ '  -p*n-(i‘i « 2- pt i ) (Egr[7 :  - 1)

As noted e arlie r, the evaluation o f the expected values of the g,. using 

Chang's asymptotic expression (5.3.5) fo r the ir jo in t density is in trac­

table analytically fo r p > 1, and so, a fo r t io r i,  is that o f (1 + ^ - ) “ 2.

r " \  ■
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... ,- '< f we make the transformation: 

siu,- = ~  , i  =

in {5.3.5), we get the lim iting jo in t density of the as:

i ( v i “ P+1)-1

....
(5.3.36)

p -(■£!)
where K = c and c is defined in (5.3.5).

. Anderson (1965) has shewn that i f  i  = l , . . . , p  are the eigenvalues 

o f a single (normed) Wishart matrix, and i  = are the ir

corresponding population values, then the "linkage factor"

i< j

tends to 1 with probability i  as the sample size n -*•«.

Now, in our case, the "linkage factor" is :

A f f f - l ' S )  , ; | # l

where the {Z^} = eigs{Sj5^5. By the same argument u sed ^ 'N ie r, as 

Vg ^  ” > the become eigenvalues of a single (normed) WiSi.di-t matrix, 

and so by Anderson's result our "linkage factor" tends to 1 with proba­

b i l i t y  1 as V} and Og ».

Using the above result in (5.3.36) i t  is  clear that, fo r large 

and v2, the are approximately independently distributed as (unnormed) 

f-random variables on (v^-p+1) and v2 degrees of freedom. Hence, trans­

forming to beta random variables:

' • . " 's



0

E [( l + ^1 ] 3 = E tO tu , ) -2 :  -  EC(I-X( )! 3

| = 1 -  EE txp t  ECx|3

, i where, fo r large v1 and v2, has, approximately, a beta d istribution

v with parameters » M vj-p+ l) and n2 = lv 2. So

n^n^Zng+l)
(r^+n^Tn^+ngfly

{ v 1-p H - l) {v 1+2vv'rp+3)
(5.3.3?)

Substituting th is  result back" into (5,.-. . .,dnd (5.3.34) gives:

1 = (5.3.3B)

F ina lly, substituting (5,3.38) and (5.3.33) into (5.3.30) gives the approxi­

mate large sample d istribution o f the maximum marginal likelihood estimator

Y of y.
\1



Example 5.3.1 To test how good th is approximation is ,  the approximate 

means, standard deviations and correlation coefficients of the y. were 

calculated from the above formulae fo r the case p = 3, using the two 

sets o f eigenvalues and three o f the sample sizes, each represented by 

a pair of values fo r v-j and' Vg, that were used in the simulation experi­

ments described in Section 5.5. In the f i r s t  set the eigenvalues are 

equally spaced whereas in the second the spacing between and is 

much larger than that between and Y3- The three saiuple sizes re­

present, roughly,(fmedium sized", "large" and "very large" samples, re­

spectively. The results are given in Table 5.3.1 below, together with 

the corresponding va'/ues obtained.from the simulation experiments. (Be­

cause o f the frequent fa ilu re , 'especially in the smaller sample sizes, 

o f the maximum likelihood estimator described in Sub-section 5.3.3 to 

produce meaningful results, the results from the simulations on the ap­

proximate maximum likelihood estimators given in expression (5.3.20) are 

used/ Admittedly (5.3.20) sometimes also produces meaningless results, 

but its  alternative, the "hybrid" estimator described in Section 5.5 

that always gives meaningful results, is not a maximum likelihood e s ti­

mator. See Section 5.5 fo r a fu l l discussion of these points.)
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Table 5.3.1

Approximate Means, Standard Deviations and Correlation Coeffi­

cients of the Maximum likelihood Estimators o f  the for

p = 3 dime' 'ions 

Notation: ( i )  Denotes the values obtained from the formulae

( i i )  Denotes the values obtained from the simulation experi­

ments .

A. Degrees of Freedom == 15, Vp = 64

Means Standard Deviations Pair. Correlation Coefficients

i l l i l i i i l l . m 1 U 1 i l l i m i
6 6.70 2.94 0 ,2 ) -.082
4 4.12 2.44 0 ,3 ) -.098
2 1.85 - 0.86 (2,3) - -.049

16 16.71 8.31 8.13 d i 2) -.051,_ -.122

4 4.30 2.31 2.21 (1.3) -.003 -.135
2 1.87 0.95 0.83 (2 ,3) -.255 .006

B. Degrees of Freedom = 30, Vg = 124

Means Standard Deviations Pair. Correlation Coefficients

m m i l l m O.J) i l l 1111
6 6.09 2.86 1.71 (1,2) -.484 -.067
4 4.31 1.69 2.13 (1,3) .005 . -ooi ,
2 1.90 0.62 0.68 (2,3) .107 -.051

16 15.56 5.13 4.63 (1,2) -.023 .045
4 4.33 1.32 1.36 (1,3) -.006 .009

■ i 1.94 0.61 0.81 (2,3) -.100 -.168

.ii



C. Degrees o f Freedom v1 = 60, v2 = ^^4

Mean Standard Deviations Pair Correlation Coefficients

i l l m 01 m i M L ill m
5 6.10 <  i - e 1.42 " 0 ,2 ) - 0 6 2 -  ,154

4 4.33 0.92 1.05 0 .3 ) -.011 -.077

2 2.00 0.42 0.45 ; (2 .3 ) .045 .013

16 16.26 3.43 3.63 0 , 2 ) -.0 1 0 .018

4 4.26 0.87 0.89 (1 .3) -.003 -.0 6 8

2 2.01 0,42 0.46 (2 ,3 ) -.046 -.061

The missing values in part A of Table 5.3.1 indicate that formulae

(5.3.30), (5.3.33) and (5.3.38) broke down in that they produced nega­

tive  variances. (This also occurred in both cases when the formulae ; 

were applied to the "small” sample size with v-[ = 6 and v2 = 28.)

Looking at means and standard deviations alone, the agreement be* 

tween the approximate and simulation results in the case where the spa.- . 

cings between the Increase with the ir values is excellent, even for1, 

the “medium sized" samples. In the case where the spacings are equal, 

the agreement between the standard deviations is not quite so good fo r 

the "large" samples but is again excellent fo r the "very large" samples.

Looking at the correlation coefficients, the picture is not so rosy, 

although there is reasonable agreement fo r the "very large" samples. This, 

however, could as much be a result of the occasional breakdown in  the 

simulation experiments of the approximate formula (5.3.20) fo r the maxi- 

mum likelihood estimators, as of the poor performance of the approximate 

formula for the ir covariance matrix. I t  is  well known that even a small 

fraction o f outlie rs where the orderings o f the variables are permuted, 

can have a drastic e ffe c t on the sample correlation coefficient. This 

fact is  evidenced by the very large differences between the correlation



//

coeffic ient in Table 5.3.1 and the corresponding coefficients in 

Table 5.5.5 where only "well-behaved" estimates have been included in 

the sampl,e.

In summary, the formulae fo r the approximate mean vector and co- 

variance matrix o f the maximum marginal likelihood estimators Cy^> de­

rived in  th is sub-section would appear to be fa ir ly  good fo r large

, samples (as defined here and in Section 5.5) and gets better (and be­

comes applicable to smaller samples) as the differences between adjacent 

. eigenvalues Increase.

5.4 Additional Information on f y }  = EigstejE"1}

The maximum h'keTihood estimators o f the , i = obtained

In Section 5.3 are based on Chang's expression (5.3.5) fo r the lim iting  

density of {g^} = E1gs{A^Agb, where,

Al ~ V ' ,V !;l l
A2 ~ Wp(v2»X ) Independently.

In th is section some exact results on the expected values of func­

tions o f the ĝ  are derived." These w ill then be used to obtain moment 

estimators for the means and variances o f the four quantities: S?jV 

5ij(xV» d |j and d|(x) whose distributions under the random effects model 

are discussed in Chapter 3, as well as fo r the approximate probabilities 

of misclasslflcztblon derived 1n Chapter 4. In addition, some of these 

exact results w ill be used to improve the estimators o f the obtained 

( in  Section 5.3.

„ Specifically, in Sub-section 5.4.1, well-known results on the moments

o^the generalised variance from a multivariate normal d istribution w ill.

be used to obtain an exact moment estimator o f n y,-* In Sub-sections
1=1



5.4.2 and 5.4.3 new results on the d is tribution  of T r^ A g 1) lead to exact

expressions fo r the mean and variance o f I  g^in terms of^ y.. and J  y |* These 
1=1 i= l i= l

results are used In Sub-section 5.4.4 to  obtain moment estimators fo r ,

the means end variances of the four quantities and fo r  the approximate 

probability, v-f m isclassification mentioned above. F ina lly, the com­

bination o f t .  tdrtous pieces of information to obtain inproved estima­

tor,r- of the y-j. e-' .Her exactly or by means of the technique o f resticted 

maximum likelihood estimation, is discussed in Sub-sections 5.4.5 and 

5.4.6.

5.4.1 Moments of the Generalised Variance

The h**1 moment of |A |, where A ~ Mp(v ,r ) ,  fo r h an integer greater 

than - i(v -p + l) : is  given by:

^ ( 1 * 1 1 ( 5. 4. D

where r p (£v } is  the multivariate gamma function defined In (5 .3 .5 )  (See, 

fo r example Johnson and Kotz (1972)). Therefore, since and Ag are 

independent Wishart matrices,

X h d V j ’ l l  ■

fo r Hvg-P+I) > h > -Kv^p+1)
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'  ■ ■ , . - i , h .Noting that | A ^ |  ■ ^  g. and |Sl l ‘ 1l h = ^  y}-  and tonsidering

the case h = 1, we obtain;

1-1 ' 1-1 ' rpllv-ilrpdvg)

P P A>1- i+ l\

From (5.4.3) we im ediate ly obtain the following moment estimator

of • II YV 
1=1 1

P P

In terms of the {(..} = EigsfS^S^} th is becomes;

,P/<N' P v , rv»-1-l\

In a sim ilar manner, exact moment estimators of J[ may be obtained 

from (B.4.2), fo r h = 213 , , . , l i( v 5-p+l} -  1- p

In Sub-section 5,4.5 the exact moment estimator (5.4.4) o f li y,. 

w il l he.used as a constraint on the values o f the estimators of the «

in order W obtain what w ill hopefully be iniproveu estimators, through 

the method of restricted maximum likelihood estimation. A second con­

stra in t on the y^, based on the expectation o f T r(A iA^derived, in the/-)
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next two sub-sections, w ill also be used in  the restricted maximum lik e ­

lihood estimation of the -y,. in  Sub-section 5,4.5.

5.4.2 On the.Distribution of Tr(A^Ag')

In th is sub-section the d istribution o f Tr(A^Ag ) « J  g. is  in ­

vestigated, and an expression fo r i t  as a sum of weighted, correlated 

f-random variables i r  V ived. This w il l be used in Sub-section 5.4.3 

to derive the expectation and variance o f Tr(A^A^) which w i l l ,  in turn, 

be used to obtain estimators fo r the means and variances o f the four 

quantities 6 ^ ,  8^{x), d^j and d^(x) whose distributions are discussed 

in  Chaper 3, as well as fo r the approximate probabilities of misclassi- 

fica tion  derived in  Chapter 4. As mentioned e arlie r, the expectation 

of TrCAjAg1) w il l also be used in Sub-section 5.4.5 as a constraint in 

the restricted maximum likelihood estimation <if the y , .

To recap,

A1 ~ Mp(vr s'|) '

A2 ~ independently,

{g^} = EigsCA^Ag1) 

and = E1gs{?;^"b.

Remark 5.4.1 Clearly (see expression (5.2.4)) Tr(A1Ag1) is  a multiple 

of Hotelling's 7§ s ta tis tic . For the central (3  ̂ « K) and noncentral 

cases (A1 -  W ^v^X.n)) a considerable amount o f work has been done on 

the d istribution o f T^. See, fo r example, Johnson and Kotz (1972) and 

Fujikoshi (1977). However, we have not been able to find any publications 

on the distribution of T£ under the situation of interest here, where
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and Ag both have central Wlshart distributions but with d ifferent para­

meter matrices and S.

Now, (see, fo r example Bellman (1970)) i t  is  possible to reduce Zj 

and E to diagonal form simultaneously, j 

i.e . There exists a nonsingular matrix V such that,

VEV’ = I v  

and VZ-jV = A = diagty^} .

Therefore, making the transformation,

A* = VA5V’ 

aild Ag = VA2V'

we immediately have that,

A ^ W p ^ .A )

and Az ~ Wp(y2, I )  Independently.

Furthermore,

Tr(A*A*"') = Tr(VA)Vl (VAgV )“ ^)

-  Tr(A,A;')

so i t  is  clear that Tr(A^A^) is invariant under this transformation.

We w ill therefore assume in the rest of th is section that
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Al ~ tV(vl ,4)

where A = d iag ty^ . (5.4.6)

Remark 5.4.2 For "the case where some of the are zero, we reduce 

the dimension p appropriately.

\ t  is  well known (see, fo r example, Anderson (1958), Theorem 3.3.2) 

that can be written as

A1 = I Vi Vi % (5-4.7)

where 1 Y. ~ Np(0,A) independently, i  = 1 , , . . ,  v •[.

T r ^ A j1) - T r (  J )

' , ! i



X

Clearly can be considered as a sample-based Mahabanobis distance 

between and the origin with the difference tkaVSg is a sample co- 

variance matrix corresponding to a population covariance matrix that 

is  d iffe rent from that in the d istribution o f Y^.

We how consider the d istribution o f D| = Yj Ag1 Y.. Our argu­

ment follows the same lines as those used by A.H. Bowker in deriving 

the d istribution o f Hotelling's T2 s ta t is t ic ,  See, fo r example, 

Anderson (1958) or Gir.i (1977).

Define a (pxp) random orthogonal matrix whose f i r s t  row is 

Yj(Y^Y^)"^ and whose remaining p-1 rows are defined a rb itra r ily , and 

le t

z, - Y i "

and B. = Ag Qj •

The f i r s t  element of Z. is , from the defin ition  o f the f i r s t  row

of qv

whereas the other elements o f are a ll iden tica lly  zero, by the or­

thogonality o f Q.. Therefore

-l

where bj^ is  the (1 ,1 )^  element of Now
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so we get

Y1 A2 yi a ViVi/'bin.2 (5.4.9)

To obtain the distribution of 2, note that, conditionally on 

Q, has a d istribution. Therefore, conditionally on Q,

2 as a »1) d istribution (see, fo r example,Giri (1977)

Theorem 6.4.1) 

i.e .

and since th is d istribution does not depend on Q., i t  is  also the uncon­

d itiona l d istribution o f %. Therefore, using the notation

U1 = bm .Z  we have that*

’m .z " 42-pn

(5.4.10)

where ~ _p<.1 independently o f .

To find the distribution of YjY^, make the transformation

where

Xi = ( x ^ . - . - . x ^ ) '  = A 

A- * ° diagCY^) •



Therefore, from (5.4.7), ~ Np(0 ,I) ,  independently, so that,

Y {Y , -  X |  ^  Y j  ^  Y j  Y , j  ( 5 . 4 .1 1 )

w h e r e ~  X]» independently V I, j.  Substituting (5.4.11) into (5.4.10)

\ we get

and substituting (5.4.12) into (5.4.8) in turn, yields 

v i P
Tr(A,A:1) -  £ I  Y, j i j  (5.4.13)

W  j-1  “ i

where

vi j  ~ X] independently, 1 = 1  j  = l , . . . , p

and û . ~ Xv2-p-f-l independently o f the v ^ .  However, the ui  are not 

mutually independent fo r d iffe rent i .  (For p = 1 i t  is  easy to show that 

the û  are a ll iden tica l.)

Expression (5.4.13) can also be written as:

where the have an unnotmed f(1 ,v2-p+l) d istribution , independently 

for d iffe ren t j  but not fo r d ifferent i .

For the case.where thd (nonzero) eigenvalues Yj are a ll equal, say 

Yj = y V j, expression (5.4.13) reduces to:



(5.4.15)

where the are dependent ffp.Vg-p+l) random variables.

Equation-  ̂ (5 .4 . 15) leads naturally to the scaled F-approximations 

to tiie d istribution of Hotelling's T§ s ta tis tic  in the central case 

(y =1) ,  proposed by F il ia l and Samson (1959) ,  Hughes and Saw ( 1972)  and 

McKeon (1974) .  For the case where the Yj are unequal ( i.e . E-J is not 

proportional +o %) a seated chi-squared approximation (Box, 1954) to 

,1 Yj In (5 .4 . 13) leads to an approximate expression fo r  the dis­

tribu tion  o f Tr(A iA^) in  the form (5 . 4 . 15) .  So a scaled F*approxima- 

tion such as any o f those proposed by the abovementioned authors should 

again be appropriate here.

5.4.3 The Mean - and Variance o f Tr(A^A^)

We now use the d istribution o f  Tr(A^A^)obtained in the previous 

sub-section to find I ts  mean and variance.

Expression (5.4.14) immediately leads to the expected value :

(5.4.16)
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Remark 5.4.3 The result (5.4.16) can be confirmed by the following 

d irect derivation of the expectation:

K T r(A ,A ^)] = TKECAjJErAg1])  .

(This step 1s ju s tif ie d  hy the Independence of and Ag and because 

the trace operation consists only of multiplications and additions of 

th e ir  elements)

= Tr(v.ji:1(v2-p - i) ‘'1i f 1)

from the properties o f the Wishart and Inverse Wishart distributions 

(See, fo r example, Johnson and Kotz, 1972).

-  , - h

f V1 1 r

The variance of Tr(A^A^) does not follow in such a straightforward 

manner, but 1s most readily obtained from expression (5.4.8):

where D| = Y1 Sjj1 . Therefore,

V1
VarCTr(A1A '?)] S ™ C ^ 1 Var[D|] + 2 ^  C o v^ .D p  ). (6.4.17)



Using (5.4.12) we obtain

"  "z j ,  Tj

where

o  v1j ~ x f independently Vj *

and

ui  ~ Xy2. p+i  independently.

Sor

using the fact that the r t(l moment o f the d istribution is

Similarly,

i  R ' l j ]  * :  I  % Y,
J ’ 1 j<&

* (v2-p -1 ) (Vg-p-B)}"1 { 3  4 - 2 ^  Tj Yj,)

(5.4.18)



VtrCDp -  E[(D>)=: -  (ECD|:)«

' Tvs'llV>'3><3jii * 3jL Yj rt1' (v2-P-lf(3Il Vjia

'  p

To obtain cov[D?,D^] note that, from (5.4.8)

where,

Y. ~ Np(0,a) Independently,Vi =

and A ■ diagiy^}.

Using Theorem 3.1.1, with sligh t modification, i t  immediately 

follows that, conditionally on Ŝ ,

where

{a^l = EigsttiSg1)

and
vJl1 ~ x \  independently, U  -  l , . . . , p .



Furthermore,

CovcqSDjJ = E ro |^ ] 7 ECDpECDp

-  E^CEtDfOjISjJ] -  Es [EtD^ISjHE^IEEDjlSjl] (5 .4 .2 1 )

where Eg [ • ]  denotes the expection over the d istribution o f Sg. The 

conditional expectations in {5.4.21) follow immediately from (5.4.20):

by the independence of the

"  ' J i

CovtDjDj] = Eg ( (T r liS ^ ) )1:  -(E jJ J r ls S j1 J l)2 

Z' '  « »ars CTrfiSj1)] ’ (5.4,22)

where Var,. [«] denotes the variance over the d istribution of Sn. Now
s2

T r ( ^ ) . T r ( a ' s ; V ) . ^ T r ( A ' \ a - l ) ' '



A*^ = d iag iy^)

A2 = v2Sg ~ 6Jp(v2, l ) .

A '* AgA"1 ~ W (v2,A'hA-2)

so that (£"$ AgA- ^)--* follows the 'inverted Wishart d istribution 

{vg+p+l,A) (Sse, fo r example Press, 1972). So,

Tr(AS^)= v2Tr(W) (5 .4 .2 3 )

W = (W^) ~ ^  (vg+p+LA) .

Furthermore,

P p
Var[Tr(W)3 = Var C ^ = I  varCw^3 + 2 J CovCw^.w^J

i= l 11 1=1 11 i< j 11 JJ

These variances and covariances are given in Press (1972) on page 112, 

so substituting them into the above and renumbering that A = d1ag{Y^> we 

get, a fter some sim plification,

P Zyl
VarCTrtW)! "

i= l {v2-p - l) i (v2"P_3)

1<j (v 2~ P )(v2" p“ 1^  (v2-p"3)
l  j  ------------------    (6.4.24)
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Substituting (5.4.24) and (5.4.23) Into (5.4.22) yields,

( 5 .4 .2 6 )

F ina lly, substituting (5.4.25) and (5.4.19) into (5.4.17) yields, 

after some sim plification:

(v2-p)(v2-p -l) * (v 2-p-3) 1

♦ ( V g - p - m ^ z f  T )  . (5.4.26)

As a test fo r the correctness o f formulae (5.4.16) and (5.4.26) 

fo r the mean and variance, respectively, o f Tr(A^A^) we consider the 

Case where £-| "  S, i.e . I -  *  1, i  = l , . . . , p .  The formulae then reduce 

to:

V a rC T r(a 1f l ; 1 ) ]  •  ( 5 .4 .2 7 )
(v2-p) (\)z~p-l )2 (V g-p -3 )

which agree with those given by P illa i and Samson (1959) as welji as by 

Hughes and Saw (1972). (The formulae given by McKeon (1974) both appear 

to require the factor v2(v2-p - l) r1.)



Using sim ilar techniques to those used above i t  is  clear that with 

increasing amounts of algebra the higher moments o f Tr(A^A^) may be 

obtained. "J: ;1

Formulae £5.4.16) and (5.4.26) w ill now be used to obtain moment 

estimators o f ^  and \  where {X..2 = Eigs{Ti:'"b1 which may in 

turn be used to estimate the means and variances of the four distance 

variables whose distributions were discussed in  Chapter 3, as well as 

the approximate probabilities of misclassification derived in Chapter 4.

P P
5.4.4 Moment Estimators fo f ^  X.. and % X̂

The formulae fo r the means and variances o f the four distance 

variables 6 ^ ,  6 |(x ), dijj and d^(x) derived in Chapter 3, as well as 

those fo r the approximate probabilities (4.1.9) and (4.2.10) o f misclassi- 

f ic a iia n  derived in  Chapter 4, are a ll expressed in terms o f the two 

quantities: '

p .
^  X2 = T r ( T ^ ) 2 .

In th is sub-section, moment estimators for these two quantities w il l be 

obtained in terms of the expectation and variance o f Tr(S^S^) =

^  TrfA-jAg) derived in the previous sub-section. These may then be sub­

stituted into the abovementioned i ifiulae to obtaijh estimators fo r the 

means aAd variances of the four distance variables ,/Jknd fo r the approximate 

probabilities of m isclassification. i[
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Substituting the expression given in Remark 5.3.?. fo r the rela­

tionship between the {X^} and the

into expressions. {5.4.16} and (5.4.26) fo r the mean and variance o f 

TrCA^Ag1),  transforming to Tr(S^S^) and s inp lify ing , yields:

VarCTrtS^g')] -  C(nz(»2-P-1) I  1- + » '( I  & ,)'

P
+ 2r=(v2- l )  ^  A. + p(v2- l ) )  {5.4.29}

avg^+vg-p -i)
c = —  —  •-

■ V1(v2-p)(v2-p -1)z(v2-p-3)

P
So i t  follows immediately that the moment estimators fo r £ A. and 
P ^ i=1

. J  At are respectively,

I  A. iX ^ E C T r ^ S g 1)!  -  £  (5.4.30)
1=1 1 v 2n

/ ;



where E[Tr(S^S^)] and Var[Tr{S^S^)] are sample-based estimators for 

the mean and variance o f TrCS^S^)*

Now, the obvious estimator fo r E[Tr(S^Sg^)]  from the training 

sample is

E l iT r ^ S j1) ]  * T K S ^ 1) (5 .4 .3 2 )

but there is  no corresponding simple estimator fo r Var[Tr(S^S^)].

However, the Jackknife technique, o rig ina lly  proposed by Quenouille 

(1956) provides an attractive, i f  computationally lengthy, method for 

obtaining an estimator for the la tte r.

The Jackknife Technique Good descriptions o f the technique are given by Gray 

and Schucany, (1972) M ille r (1974) and Bissel and Ferguson (1976), so 

a b rie f summary here w ill suffice.

Given an unknown parameter 6 fo r which a (possibly) biased e s ti­

mator 6 is available from a random sample, suppose that the expected 

value of 6 may be written,

EC8] = 6 + o d l " ')  (5 .4 .3 3 )

where n is the-sample size. The Jackknife technique fo r reducing this 

bias to 0(n’*2) and at the same time producing an estimate of the variance 

of 6 proceeds as follows. Divide the sample into r  subgroups each of 

size ii (r=n and h=l in most applications). Removing each subgroup from



th^Jsample in turn, and re-estimating e from the remainder o f the sample 

i in each case, produces r  "partia l estimates" j  = l , . . , , r ,  each 

■/based on a sample of size h (r - l) .  Now combine these partial estimates 

with the whole-sample estimate to form r "pseudo-values" 0*^:

0*j = re -  (r- l)e _ j j  = 1 r ,  (5.4.3.4)

The Jackknife estimator of e is the average of the 0*j:

a* = 1  ^  6*j “  re - (r-l)9_. (5.4.35)

i.e . EC0*1 -  0 + 0(n“ ) .  • /

Quenouille (1956) shows that, to order n"1, the variance o f e* is the 

same as that of e fo r a wide class of estimators, and Tukey (1958) pro­

posed the following estimator fo r Vartih or VarC6*1:

ST “  rlFTT  (0* j  '

Tukey (1958) also suggested that a confidence Interval fo r 6 may be ob­

tained by assuming that t r  = (0*-e)/ST has, approximately, a t-riis tribution  

on r-1 degrees of freedom.
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Going back to formula (5.4.16) we have:

E [T r(s ,s^ |] ■.^•EETr(A1A;, )3

.  n  -  ^ 1 ) - ' '  r r ^ r ' l

■ T r l^ E '1) + 0(»21) (5.4.37)

which is  clearly of the form, (5.4.33), so i t  would appear that the Jack-

knife technique can provide an estimator fo r Var[Tr(S^S2^)3 via (5.4.36). 

Jackknife Estimation o f V arC Tr^S ^) ] .  As mentioned earlie r, a drawback 

to  the Jackknife technique is  the fact that the amount of computation re­

quired can become very lengthy, especially when the training sample is 

large and h = 1, as is  usually recommended. However, the computation can 

be reduced considerably in the case of Tr(S.|S^) with h = 1 by using the 

following theorem.

Theorem 5.4.1

.Let Aj and A2 be the (pxp) "Between groups" and "within groups" sum

of squares matrices based on k groups and n observations per group, as

defined In the MANOVA table 5.1.1. Lot T_^ jj denote the value o f a 

s ta tis tic  T computed from the MAt|0VA sample with observation x^j removed 

from the i*^  group. Then, using the notation o f Section 5.1, x

T r W ) _ ( , , ] )  = TKA^Ag1 ) + T H A jA ^ E )  + T r lG A ^ :
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where,

i:, E -  n(rw l)M «A:;V(l-n{n-l)eA£V) , ' \

F = I  + £ ,

\  G-s (N -n)ff' + (n - l) (e - f) (e - f) ' -  Nfg' -  g({n-l)e+ f)'

x .,-x ,
i.and e = -— - r—  , f  = — — — , g = x. -  x . The proof Is given fn 

n-i n-1 i .  ••
Appendix 5.1.

From Theorem 5.4.7 ort?y a single matrix Inversion, that of A2, is 

required fo r the computation of a ll N partia l estimates T r ^ A j1} , ^ - ^ ) .

V i, j , and since the other formulae are a ll o f a simple nature the total 

computation time on a modern computer is very small, even fo r large 

values of N and moderate values o f p.

Note that, since and S2 = v^'Ag

Therefore, using h = 1 and r = N in  (3.4.36) we obtain the following 

estimator fo r Var[Tr(S^S^)] from the jackknife method

(5.4.39)

Substituting (5 .4^9) and (5.4.32) into {5,4,30) and (5.4.31) yields 

moment estimators f y r  ^  and ^  X|, respectively, which can in turn 

be substituted into''the relevant formulae to obtain estimators fo r the 

means and variances o f 6 ^ ,  ^ ( x ) ,  d ^  and d?(x) as well as fo r the approxi 
mate probabilities o f misclassification under the random effects model.

^ r n u m
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5.4.5 Restricted Maximum Likelihood Estimators o f the'

In th is sub-section we.investigate the use o f the exact results 

on the moments of lA^A^I and Tr(A^A^) obtained in sections 5.4.1 and 

5.4.3 respectively, to improve our maximum likelihood estimators o f the 

(y^} -  Eigs{ZjE"b based on Chang's (1970) expression fo r the lim iting 

density o f the {g .} = EigsCA^1}.

But f i r s t ly  we investgate the special cases p = 1 and p = 2.

'P a 1. In th is case Chang's (1970) formula, and Tr(A^A^) a ll

lead to the same resu lt, v iz:

where f(v^.Vgjdenotes the unnormed f-d is tribu tion  on Vj and u, degrees of 

freedom (See (5.3.6) and (5.4.13)). Therefore, using any one o f expres­

sions (5.3.7),(5.4.4)or (5.4.16), we obtain the following unbiased moment 

estimator of y^: / '

a*  v 9-2  v 9-2
? l ° - % - 9 l  (5.4.40)

where {&.} = Eigs{S-]$2^} or = 5^/Sg in th i:  case.

The maximum likelihood estimator is  given by:

■ ^ S ,  ■» , (6.4.41)

which clearly has a s ligh t bias.
P

'p >  2. In this case we can solve the moment estimators fo r IT y.i-i 1
and I  y j obtained from the exact f i r s t  moments of |A^A2 1 and 

Tr(A1A21}, respectively, fo r y  ̂ and y2. From (5.4.5) we have:



P '■ AS', ^ P ' /v?-M-x

1:1 ^ "  W  .M

p p
and from (5.4.30) and (5.4.32), remembering that J = P + n J X^, 

we have

P Vy-P-1 P
w , .  (:.4 .W )

Letting the estimators and yz satisfy the relationships!

Yi ^ Y2 = V ^ Y 2 (5.4.44)

(5.4.42) and (5.4.43) lead to the following solutions:

Y j “  i ( b  -k v^"2-4a )

Y2 ° i(b  - »̂ i2-4a). (5.4.45)

For p >.2, we use the technique o f Restricted Maximum Likelihood 

Estimation (see, fo r example, Si Ivey, 1975) to incoporate the information 

from the exact moments of jA^Ag1] and Tr(A^A^) as constraints into the 

maximum likelihood equations obtained from Chang's (1970) formula (5.3.5) 

fo r the lim iting  jo in t density function o f the .
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Using the same reparsmeterisation as before to get around the 

problem o f the "inadmissible s ingu larities" In the likelihood function 

(see (5.3.22))and reformulating the constraint (5.4.42)

r -

fo r algebraic convenience by taking logarithms on both sides, we obtain 

the following constrained maximization problem (see (5.3.24), (5.4.42) 

and (5.4.43)). ,

Maximise:

P j  6.
L * f  (g) -  i,(V',+\)g-p+l) I  log(l+gi ( I  e +e.))

* j=1 J k=l K

H p  j  .

subject to:

P J Au
( i)  - I  log( I  e +ek) « log a

j " l  k=l K

p j  ,
"  and ( i i )  e +ek)*'1 b (5.4,46)

where f  (g) is  a function of the gj only.^ (Note that, because of the 

f i r s t  constraint, the term: Jv1 _f 1og( I  e in the objective 

function of (5.4.46) is a constant and has therefore been incorporated 

in to f* (g )) .



Remark 5.4.4 Although the estimated value of % y*., obtained from 

the variance of Tr(A^A^) could also have been brought in as a constraint,

i t  was fe l t  that i t  would be unrealistic to do so, particularly in view 

of the indirect method in which i t  is  obtained, r

The constrained maximization problem (5,4.46) is a nonlinear pro­

gramming problem and is therefore most readily solved using one o f the 

standard algorithms (see, fo r example l.'alsh, 1975) fo r the restricted 

maximum likelihood estimator 6*. F inally, by transforming back via (5.3.22) 

we obtain the restricted maximum likelihood estimator y*  of y.

5.4.6 Large Sample Distribution of the Restricted Maximum Likelihood 

Estimators of the Y-j

Si Ivey (1975) shows that fo r large sample sizes the restricted maxi­

mum likelihood estimator y* is  approximately normally distributed with 

mean vector y and covariance matrix E, where E is obtained by the following 

matrix equality:

Where By is Fisher's Information Matrix given by (5.3.30), (5.3.33) and 

(5,3.38) and H is the (px2) matrix of partial derivatives:

(5.4.47)



I t  follows from (5;4.47) that the elements o f y w il l tend to have 

smaller approximate variances than those of the "unrestricted” maximum 

likelihood estimators y , discussed in  Section 5.3,fo r, as shown by Silvey 

(1975), Appendix A:

(
r. -  B“ 'V-  By1 K'B^1 . (5.4.49)

The result now follows, since is the approximate covariance matrix of 

Y and is a positive semidefinite matrix.

However, the above result could be rather misleading in our situation, 

since formulae (5.4.47) and (5.4.48) are based on the assumption that the 

two constraints
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are deterministic,whereas, in fact, they are stochastic since a and b 

are random variables. Thus result (5.4.49) w il'l tend to give too opti­

mistic a picture o f the large sample behaviour of the restricted maxi­

mum estimator y*. -

This point is  illus tra ted  in Table 5.4.1 below, which gives the 

approximate large sample standard deviations fo r the elements o f y and 

Y* as well as thii corresponding standard deviations obtained from the 

simulation experiments on y* described in the /,ext section, fo r two of 

the sets o f parameter values used earlie r in Example 5.3.1.

Table 5.4.1

Standard Deviations

Degrees of 
Freedom True y , Approx fo r y Approx for y* From simulated

v.j = 60 6 1.45 0,59 1,06

v 2 = 244 4 0.92 0.79 0.59

2 0.42 0.20 0,33

V , -  30 16 5.13 0.58 4.33

v z » 124 4 1.32 1.01 1.21

2 0,61 0.43 0.51

As is evident from Table 5,4,1 there is a marked reduction in the 

approximate standard deviations when moving fromjlthe unrestricted to the 

restricted maximum likelihood estimator for y, thti reduction being by fa r 

the greatest fo r the estimator of the largest eigenvalue y^. However, i t  

is  also clear that most of this reduction is not realised in practice, 

Nevertheless, the simulation experiments described in the next sec­

tion do suggest that with regard to both bias and standard deviation the 

restricted maximum likelihood estimator y is a slight iiprovement over 

i ts  unrestricted counterpart y. ; i



5,5 Simulation Experiments on the Various Estimators of 

(Y,) = E1gs(E,E:'}

In th is section we describe some simulation experiments that were 

carried out to evaluate the performances o f the various estimators of 

= Elgs'tEyE” '*} that have been proposed in  the earlie r sections. 1,1 

addition, because of the problems associated with some of these estimators 

under various circumstances, another, "hybrid" estimator, defined below, 

was also considered. Specifically, the following five  estimators of

i  -  l,....yp  were considered:

(1) The ma*' • '& likelihood estimator where = ElgstS^S^l.

(2) The approximate maximum marginal likelihood estimator y M ,  given 

by (5.3.20) obtained as an approximate solution to the maximum 

marginal t  • hood equations (5.3.11) derived from Chang's lim iting 

d istribution o f the gv

(3) The "hybrid" estimator y j 3^, defined below.

(4) The "unrestricted" maximum marginal likelihood estimator y j4* ob­

tained by solving equations (5.3.11) numerically, as described in 

Section 5.3.3.

(5) The "restricted" maximum marginal likelihood estimator y !5  ̂ obtained 

by solving the constrained ilaximization problem (5.4.46).

In a sense that shall be made clear la te r, and excluding for the 

moment the "hybrid" estimator y the "goo.’ness" o f the estimators in ­

crease in the above order, being worst and y ^  best. However, the re­

l ia b i l i t y  of these estimators, defined os the ir a b il ity  to produce meaning- 

fu'l results over a wide range of parameter values, increases in the re­

verse order. In fa r t,  and y ^  generally only produce meaningful re­

sults when the sample sizes are large and the eigenvalues well separated, 

whereas y ^  is completely re liable. 1
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can produce meaningless results in the following ways:

(1) the Yf >  may not be monotonirally decreasing with i ,  

or ( i i )  some o f the v |2  ̂ may be negative,

or (H i)  both (1) and ( i i )  may occur.

However, in many cases when fa ilu re  of any one, b f the above three 

kinds occurs, the f i r s t  few are well-behaved and the fa ilu re  only 

affects the estimates o f the lower-valued parameters.

For this reason, and because:
( i )  the greatest improvement occurs between estimators y ^  and 

y (2\  the incremental improvement between y^and y®being re­

la tive ly  much smaller,

(11) y (2) fa ils  less frequently than y ^  and y ^ ,

and ( i i i )  y(2) is fa r simpler to  evaluate than y ^  or y ^ \

th«) "hybrid" estimator y ^ ^  has been defined as that combination o f y ^  

and y^2) th f, makes maximal use o f yet never produces meaningless

results. Thus y ^ ’  ̂ is  defined to be equal to y ^  whenever the la tte r - 

' does not f a i l ;  otherwise i t  uses as much of the "meaningful" part of 

y (2) as possible and uses y ^  fo r the rest. This leads to the following 

forma), defin ition o# y ^ :

Let s >e one o f the integers {0 ,1 ,. . . ,p ) such that, s p i f  y^2  ̂ does 

''/not f a i l ;  otherwise s is the largest integer fo r which both

( i )  fa ilure  o f y j2  ̂ occurs for the f i r s t  time when i  > s

y,?'.  dl"........ is  defined as:

I , i  = l , . . . , s  (unless s = 0)

, i  « s + l , . . . , p  (unless s = P)-
(5 .5 .1 )
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5.5.1 The Experimental Setup

The experiments, performed on the Council fo r Scientific  and In­

dustrial Research's CDC Cyber 174 computer, consisted in:

(a) ^electing the parameters p.v.j, v2 and y»

(b) generating two random matrices A] and A2 from Wishart distributions 

with the selected values o f the parameters,

(c) computing the eigenvalues = e ig s tA ^ 1}, .

(d) computing the five-estimators to and

(e) repeating steps (b) to (d) a hundred times and computing summary 

s ta tis tic s , separately fo r each selection o f parameter values.

A ll the computer programs were written in FORTRAN TV making use of 

the University o f the Witwatersrand's multivariate s ta tis tica l lib ra ry  

developed largely by Prof. D.M. Hawkins, as well as o f the 1MSL (1975) and 

the NAG (1975) program lib ra ries.

(a) Selecting the Parameters

As is often the case in simulation experiments, the computer pro­

grams were developed and tested using a particular set o f parameter values, 

and many o f the conclusions could be obtained from jus t this one set of 

values. I t  also became apparent during the development stage that soma 

of the estimators broke down fo r particular parameter values and th is, 

to a large extent, guided the choice o f parameter values (in particular the 

degrees of freedom and v2) used in the experiments.

( i)  The dimension p Four values, 2 (see comment below), 3("small"), 

5(nmedium") and lO fla rge") were used. For values greater than 10 the 

computing time associated with estimators y ^  and y ^  became too large 

to allow enough simulation runs to be performed fo r meaningful conclusions 

to be drawn from them. The value p = 2 was included to test the estimator 

(5 .4 ,45).
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( i i )  The degrees of freedom v1 and v2 Here again, four sets of 

values were chosen, corresponding to "small", "medium", "large" and "very 

large" sized samples. C learly, the ''largeness'̂  of the. samples depends 

very much on the dimension p, so "small" samples were considered to have 

v-j = 2p "medium" samples v1 = 5p and "large" samples v̂  = lOp. The "very 

large" category (v^ = 20p) was included because o f the tendency fo r  the 

estimators and to fa i l  fo r the smaller sample sizes. This was par­

t ic u la r ly  so fo r  the larger values o f p and the "equal separations" 

choice of eigenvalues (see ( i i i )  below). v2 has, by defin ition, to  be 

greater than v1 and since the results were not very sensitive to varia­

tions ih Vg, almost a ll the simulation runs reported here were done as­

suming that there were n = 5 observations per group, so that v2 = 4 (v ^ l) .

A few runs were aiso performed with n = 10 observations per group.

(H I)  The Eigenvalues ly^) Since 5  ̂ .= 2+nT, and T is a nonnegative de­

f in ite  matrix, the cannot be less than 1. This is easily seen by noting 

that the y^ a ll satisfy the relationship:

|E,E‘ 1 - l7 ,| t 0
and since

= (?>nT)?f1 = I  + nTi;*1 ,

'We have that

|e, e"1 - i r t l -  InTE"’ - ih g - n i  -  o.

Therefore, rince nTS is a nonnegative defin ite matrix 

T.| - 1 : 0 .  i.e . , i 5 1.

Furthermore, we may assume that a ll the y^ > 1, since y^ = 1 

corresponds to A, = 0, and in  the practical situation we would have tested 

fo r this (see Section 5.2) and i f  accepted we would have no further use 

fo r tyrtt eigenvalue.
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Finally, bearing 1n mind the fact that the y. should a ll be 

d iffe ren t from each other fo r Chang's expression (5.3.5) fo r the lim i­

ting jo in t  density of the to be va lid , the following two sets of y-j 

were selected fo r the simulation experiments:

Equal separations 20 18 16 14 12 - 10 8 6 4 2

Increasing separations 1024 512 256 128 64 32 16 8 4 2

For p < 10 the lower p values were used.

(b) Generating the Random Mishart Matrices

As discussed in Section 5.4.2, there exists a nonsigular matrix

V that simultaneously diagonah'zes E to the fdentity maf>ix and Sj to

a diagonal matrix A whose diagonal elements are the eigenvalues of

S - lf* . As the eigenvalues o f A ^ 1, where ~ Wp(vi  »S-|) and 

Ag ~ Wp(v2,i;) independently, are invariant under this transformation, 

we may assume that, for the purpose o f the simulation,

f  A, ~ ly.jj.s) 

and • ^  A2 ~ Wp(v2, I )  Independently

where A = diag-Cy^} .

Sfven values fo r  p4v , , v2 and (y .), two random Matrices from the " ' 

Wp(VpI) and Wp(v2#l )  d istributions, M~spectively, were 'jdnerated as 

described below and then Â  was obtained by equating its  ( 1 element 

to v'y^yJ times the ( i , j ) ^  eleront of the f i r s t  ran'Join matrix,Vi,d, and 

Ag was obtained by equating i t  to the second random matrix.

The most e ffic ien t procedure fo r generating a random Wp(v,J) matrix 

is  th a t  o f Odd? and Feiveson (1966), a gooti description of which "is • 

given by Johnson and Hegemann (1974). To apply the ir procedure,



p(p-1)/2 independent standard normal random variables {x^., 1 < j  = l ,  

2 ,...,p>  must be generated, as well as a sequence of 'independent chi- 

square random variables {v^, j  = l , . . . , p }  where fo r each j ,  Vj *  Xy_j+T  

The random Wp(v ,I) matrix W ■« (w ^) is then constructed as follows:

4 j  ...............

" l j  ‘  x l j  ^  J '  %........P

w1j "  xi j  ^  ^  xkJ xkj i . j  -  2 , 1 < i  V  (5.5.2)

Subroutine RANDN, from the W'itwatersrand lib ra ry , an exceptionally 

fast routine that generate?, random samples from the standard normal dis­

tribu tion  by transforming a uniform {0,3} random variable by interpolation 

in a table o f the normal inverse probability transformation (with exact 

evaluation in the ta i ls ) ,  was used to generate the x^j.

The Vj were generated by f i r s t  generating k uniform (0,1) random 

variables u^, where k is the integer part of and le tting

f k
-2 loge u.j fo r v - j  + 1 even (5.5.3)

•v. = •
■i k

-2 1oge + x* for v -  j  + 1 odd

where x is  a random variable from the standard normal d istribution. The 

were generated by tiie CDC b u ilt- in  mixed congruential generator RANF.

Subroutine WSHRT was written to generate random Wishart matrices 

as described above.



(c) /Computing the Eigenvalues {g^} of

ii Subroutine CANON (Fattt and Hawkins (1976)) was used to find the

eigenvalues {g^} o f AjAg"'.. This subroutine solves the eigen problem:

(B - AA)Z = 0, (5.5.4)

|where A is  a pxp symmetric, positive defin ite  matrix (generally an error 

^covariance matrix) and B is a pxp symmetric matrix (generally an hypothesis 

covariance matrix) by f i r s t  obtaining the Cholesky inverse square root 

A"&, where A"^ i i  a real, nonsingular lower triangular matrix such that

A - % - & ) '  = I.

A'^ is  computed e ffic ie n tly  in  the following manr.er. Note-th^t

i f  X = is  a random vector with observed covarianL trix ." '

A, then, f o r i  =2  to p, the residual, , on its  predictor based on the 

least-squares regression line of x̂  on x^,x2, . . . Is uncorrelated with 

XpXg,., So, i f  we standardize y^ to have unit variance by dividing

i t  by tlW"square root of the residual mean square of on x-j0x2

for i  = 2 to p, and le t  y^ «x j//va r(xy), then y = (y^ ,y2........yp) ' has co-

variance matrix 1, the p-dimensioral iden tity  matrix.

Clearly Y is obtained from X by the transformation:

Y -  CX,

where C is a lower triangular matrix whose elements may be computed from 

A by performing successive pivotal swaps on k using the diagonal elements ■

o f A as pivots, as described In Beale, Kendall, an '̂Monn (19157).
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F ina lly, we note that the covariance matrix o f Y is

:o C .  A * I

The eigen problem

(5.5.5) ■

then is  Solved using the two subroutines TDIAG and LRVT (Sparks and Todd, 

1973} and f in a lly  the matrix Z of eigenvectors o f the original system (5.5.4) 

is  C/tained by transforming the W matrix:

Z -

(d) (y ' 'e five  Estimators

:i u , i  = estimators and were com  ̂ \

in a strnightfoward manner from the ir defin itions,

C (1)

__ _
" l  j5 i

and then was computed from find according to  defin ition

(5.5.1).



was computed by the Newton-Raphson ite ra tive  procedure as 

described in Section 5.3.3.

Subroutine GRAD was written to compute the vector of f i r s t  deri- 

vativesrof the log likelihood function (in terms of the new parameters 

.6) as given in equation .(5.3.25) and subroutine HESS was written to 

compute the Hessian matrix whose elements are given in equations (5.3.28) 

and (5.3.29). F inally, the Newton-Raphson ite ra tive  procedure was carried 

out by subroutine UNREST, using as convergence c rite ria  both the value of 

the vector o f f i r s t  derivatives at the previous ite ra tion and the .‘hange 

in value o f the log likelihood function (computed by subroutine FUNC7) 

over the previous two iterations.

To compute the restricted maximum marginal likelihood estimator 

the NAG (1975) lib ra ry  subroutine E04HAF was used to solve the non­

linear programming problem (5.4.46). This subroutine uses a penalty 

function technique (lootsma, 1972} to solve constrained minimization 

problems. A fu l l  description o f this subroutine is  given in volume I of 

the NAG manual (1975), Subroutines FUNCT, GRAD and HESS were used to 

compute the values o f the function and its  f i r s t -  and second derivatives, 

respectively, a t the various t r ia l solutions, as required by E04HAF.

(e) Repeating and Computing Summary Statistics

One hundred simulation runs were performed fo r each combination 

o f parameter values given in  (a). Because of the large amount of com­

putation required fo r each evaluation of y t f 'K  the even larger amount 

required for and the fact that in many o f the simulation runs both

fa iled  to produce meaningful results, the following procedure was adopted 

fo r each selection of parameter values:



( i )  F irs t perform 100 simulation runs, computing only y ^ K

and y ^ \  and compute summary s ta tis tics  on them. Because of the e f f i ­

ciency o f subroutine WSHRT and CANON and the small amount of computation 

required to obtain these three estimators, the time required fo r this step 

was fa ir ly  small.

( i i )  Repeat the 100 simulation runs, th is  time computing y ^ \

y ^  and y ^  on each run. I f  y ^  fa iled  on any run, then none of the 

estimators from that run were included in the summary s ta tis tics . I f  

y ^  produced meaningful results, then y ^  was computed and i f  that too 

produced meaningful results a ll five  estimators were included in the 

summary s ta tis tics . Otherwise none of them were included.

In this way a considerable amount o f computing time was saved, 

since y ^ ,  which requires by fa r the greatest amount o f computer time, 

was only computed in those situations where i t  was like ly  to produce 

meaningful results, ( y ^  very rarely produces meaningful results when 

y W  does not, whereas the reverse occurs more frequently.)

The reason fo r performing steps ( i )  and (11) above separately is 

twofold. F irs tly , step ( i )  gives a larger number o f runs on which to 

evaluate the f i r s t  three estimators. (For some sets o f parameter values, 

especially fo r the larger values o f p, y ^  or y ^  never produced 

meaningful results.) Secondly, y ^  and y ^  are fa r more lik e ly  to 

produce meaningful results when the = E igs^Sg1) are spaced widely 

apart than when they are closer together, with the result that the e s ti­

mators in step ( i i )  have a b u ilt- in  bias towards larger spacing botw,-1.-. ’ 

the eigenvalues. Therefore the results from step (11) are only useful 

fo r evaluating the relative performances o f the five estimators.



The summary s ta tis tics  fo r each of the estimators were computed 

and printed using the Witwatersrand Library's fcOVUP (Hawkins, 1974) and 

PRINT subroutines, producing mean vectors, standard deviations, covari­

ance and correlation matrices over the various sets of simulation runs.

5.5.2 Results

Summary s ta tis tics  in the form of mean vectors and vectors of 

standard deviations fo r each o f the five  estimators are given in Tables 

5.5.1 so 5.5.4, separately fo r each selection of parameter values. From 

considerations o f space and because the same conclusions seem to hold in 

a ll cases, correlation matrices are only given fo r the case o f p = 3 d i­

mensions and four combinations o f the other parameter values in Table

5.5.5.

As mentioned earlie r, two sets o f simulation runs were performed 

fo r each selection o f parameter values, only the f i r s t  three estimators 

being computed in the f i r s t  set which always consisted o f a hundred runs, 

and a ll five  being computed in the second set, but only on those occa­

sions when y W  and y ^  both produced meaningful results. The only 

exception occurred in the case p = 10 when, because of converge >,ce 

problems in the nonlinear programming package E04HAF, y ^  was mostly 

not computed at a l l . Because y ^  never fa ils  when either y ^  or 1 '

y W  produce meaningful results, y ^  and y ^  were identical (see

defin ition (5.5,1)) fo r a ll of the simulation runs in the second set. 

Therefore summary s ta tis tics  fo r y ^  are not included in Tables 5.5.1 

to 5.5.5 fo r  those sisiuHtion runs.

Failure of y ^  or y ^  to produce meaningful results can be de­

tected when any of the assumes a large negative value. This 1s im­

mediately clear from the defin ition  of the given in expression (5.3.22) 

since i t  implies th.it y ^  and y^ e ffectively d if fe r only by the arbi-



trary constant or, fo r i  = 1 , that y-| is  effectively equal to e ^ .

As earlie r experimentation had shown that the values o f y ^ )  an£j y(5) 

are unaffected by the choice o f values o f the e.. over a fa ir ly  wide 

range (fo r the actual simulation runs the were chosen to be ten per 

cent o f (1 /y j3) -  1 /y j f ] ) ,  or fo r i  = 1, of 1 /y j3^; y^3  ̂ v/as also used 

as in it ia l value in the maximization algorithms) a large negative value 

o f 6̂  implies that the maximisation algorithm has found a "false" maxi­

mum near one of the "inadmissible sirt0. ia r it ie s '‘ 1n Chang's formula (5.3,5).

Since, as is clear from Tables 5.5.1 to 5.5.4, fa ilures of y ^  

and y(5) occur fa r more frequently for smaller values of v-j and v2 and 

fo r closer separations between the g^, i t  would appear that under these 

circumstances the likelihood surface (5.3.24) may either:

( i )  have no maxima within the admissible region, or

( i i )  have extremely f la t  maxima within the admissible region, or

( i i i ) have very localised maxima which may be missed by the maximization 

algorithms.

In ofder to try  and establish which o f the above three poss ib ili­

ties pertain, the subroutine FUNCT was used to evaluate the likelihood 

function (5.3.24) over a two-dimensional grid for the case p = 2 dimen­

sions. A number o f cases were tr ie d , resulting in the following conclu­

sions: For small wiough values o f v-| and v2 and su ffic ien tly  closely

spacfed g ., case ( i )  pertains, but as the degrees of freedom and/or the 

spacings increase a single maximum (for the case p = 2, at least) de­

velops. Case ( i i i )  never holds.

In the remainder o f this sub-section some comments are made on 

the results of the simulations as may be gleaned from Ttfo^es 5.5.1 to

5.5.5, under the headings/of bias, standard deviation and correlation.

ila s :
In general, the top few eigenvalues are over-estimated and the
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bottom few under-estimated, although th is bias is d iffe rent fo r the 

d iffe ren t estimators. This e ffect decreases as the degrees o f freedom 

Vj and v2 increase, but i t  is  more e ffic ie n t to increase them by in ­

creasing the number (k) of groups than by increasing the number (n) of 

observations per group, where = k -  1, v2 = k (n -l).

More specifica lly:

( 1) has the greatest bias, both in the upper anti lower few 

eigenvalues. Roughly speaking, the proportional bias in the top 

and bottom eigenvalues are the same.

(2) has markedly less bias than both in the upper and 

lower eigenvalues. For low degrees of freedom and equal separa­

tions of the Y-j> there are some anomalous results in th middle 

values, reflecting the re la tive ly  frequent occurrence o f meaning­

less results amongst these values.

(3) has s lig h tly  greater bias than y^  in the upper and lower 

eigenvalues, but there are no anamalies on the middle values. The 

difference between y^  and y ^  v ir tu a lly  disappears fo r higher 

degrees o f freedom and increasing separations of the eigenvalues. 

As mentioned earlie r, in  the cases where either y ^  or y^  

produce meaningfuly results, y ^  and y^  are identical.

\4) Y4 has s lig h tly  less bias than y ^  (or Y ^ )  in both the upper 

and lower eigenvalues. { When i t  produces meaningful results).

The Newton-Raphson procedure (with checks to prevent tho 6  ̂ from 

getting two large or too small) nearly always converges, but is 

unlikely to produce meaningfu'1 results fo r equal separations of 

the eigenvalues and low degrees of freedom, unless the dimension 

is small (p=2 or 3). For p = 10 meaningful results were only pro­

duced fo r increasing separations of the eigenvalues'.

■1
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(5) The elements of are a ll smaller than the corresponding 

elements o f the proportional differences being approxi­

mately constant. As a result, has the lowest bias o f a ll 

in its  top element but tends to have a s lig h tly  worse bias than 

and y ^  (or y ^ )  in  ijks bottom one. For p = 10 the non­

linear programming package E04HAF had convergence problems, wi'h 

the result that value: o f y ^  could be computed in one case 

only. For p ® 2, where Yg is given e xp lic it ly  by (5.4 45), the 

same conclusions as abovn hold. In this case meaningless re­

sults are characterised by imaginary solutions to (5.4.45), and 

as before, the frequency of the ir occurrence decreases as the de­

grees of freedom increase or when the separation between y-j and - 

Y2 increases (relative to y2).

Standard Deviation

(1) Whereas y ^  has the greatest bias, its  standard deviations, apart

from that of i ts  top element, are generally the smallest. Using
xl

Girshick's (1939) result (see, fo r example Press, 1972), and the 

cotmients following Remark 5.3.1, that the are asympto­

t ic a lly  independent, unbiased, normally distributed estimators of 

the corresponding y . , with standard deviations S0(yM)= v^TTTj-TJy 

as a reference, i t  is  clear that fo r very large and v2 this 

standard deviation is approximately correct. Otherwise, the stan­

dard deviations of the top (few) y | ^  tend to be larger than

and those of the bottom (few) smaller. This tendency 

' is  more marked in the smaller sample sizes and when the y.j have 

increasing separations.



(2) The standard deviation the top element o f is  usually ap­

proximately the same as that of the corresponding element of

but those of the other elements are always larger. For 

small sample sizes some of the middle elements can l.ave extremely 

large standard deviations, reflecting the frequency of occurrence 

of meaningless results amongst then.

(3) The standard deviation o f y |3  ̂ is  sometimes s lig h tly  less, than 

that of y j ^  whereas those of the other elements of y ^  are a l­

ways s lig h tly  larger than those of the ir counterparts in y ^

(4) The standard deviations of y ^  are s lig h tly , but consistently 

larger than those of th e ir counterparts in y ^  (or y ^ )  but 

that o f y |4  ̂ may s t i l l  sometimes be smalle;  ̂ than that o f y | ^ .

(5) Kr,e standard deviations o f y ^ ^  are always smaller than the 

corrs-yfr.-^ing one: o f y ^ ^  ariJ sometimes even smaller than those 

of y ( ^  (or y ^ h -  lias the smallest standard

deviation o f a ll the estimators Ci This confitm  tha t -“ (v 

reduction in standard deviations (especially o f the e s tiim f' • vr 

the top eigenvalue) suggested in Sub-section 5.4.6 by expression 

(5.4.49) and Table 5.4.1 fo r the case where the constraints are 

deterministic, is  at least partia lly  realised in our situation, 

where the constraints are stochastic. '1 For the case p = 2 ,y|5  ̂

always has the smallest standard deviation, and that of y ^  is 

always larger than that of y ^  but smaller than those o f the rest.

Correlation "

The correlation coefficients in Table 5.5.5 were computed only from 

■Viose simulation runs in which y ^  and y ^  produced meaningful results, 

.-nci therefore, because of the b i^ lt - in  bias towards larger spacings be­

tween the eigenvalues resulting from th is , these correlations have to be
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treated with some caution. Nevertheless certain trends are clearly evi­

dent:

( i )  For any estimator the correlation coefficient between y M  

and y M ,  j  *  i ,  can be quite large, especially fo r adjacent pairs, 

but i t  tends to decrease as the degrees of freedom are increased. 

Incrr ising the separation between y. and y j tends, however, to e l i ­

minate this correlation completely.

( i i )  The correlation coefficients are appreciably smaller fo r y ^  (or

y ^ ) )  than fo rY lu  and s lig h tly  smaller again fo r y ^ ,  although 

there is generally l i t t l e  difference between those of y ^  and 

;<5>.

5.5.3 Conclusions

Going back to  the expression fo r the d istribution of 6 ^  given in 

Theorem 3.1.1

Vs ~ xf , independently, s = '  r

l s - | iY s- 1) s -  1.........r

and i* = r(T)

i t  is  clear that, y^, being the largest, w il l have the greatest influence 

on the d istribution, and y the smallest.

O



From th is point o f view therefore, is  the best estimator, 

since has the lowest bias and often has the lowerfc standard de­

viation amongst the five  estimators. The drawback to th is estimator 

is that, apart from the case p = 2, i t  requires a nonlinear program­

ming algorithm fo r its  evaluation and frequently produces meaningless 

results. Moreover, fo r large values o f p i t  may be d if f ic u lt  to obtain 

convergence of the nonlinear program (although other algorithms may 

give better performance than E04HAF).

Next In line  is y^ >  its  only advantages over being that 

i t  occasionally produces meaningful results when the la tte r does not, 

and that (fo r dimensions up to 10, at least) i t  does not have conver­

gence problems.

is  perhaps the most practical o f a ll the estimators, being 

siaiple to compute and, by de fin ition , never producing meaningless re­

su lts. In terms of bias, i t  is  a considerable improvement over y ^  

and not much worse than y ^  or y ^ .  A regards spread, its  standard 

deviations are not much larger than those of y ^  (the standard deviation 

fo r y( ^  can In fact, be smaller than that of y j 'h  whereas .they are a l­

ways s lig h tly  smaller than those of y ^ a n d  are often even smaller than 

those o f y ^ .

As y ( ^  retains a ll o f the good pt>.<ts of y ^  and circumvents the 

problem of its  un re liab ility , thtire is no reason fo r preferring the 

la tte r. Because of its  large bias y ^  should not be useri. , %

I f  the programs are available and computer time no object, the 

following practical procedure fo r estimating % is recommended:

(1) Compute U..} = EigsCS.Sg1} and hence y ^  from formula (5.3..20).



e” ew r

175.

(2) I f  ‘( ^  does not give meaningful results use as defined by

(5.5.1) as estimator of y .

(3) I f  y^  does give meaningful results, compute and use this as 

estimator i f  i t  gives meaningful results. I f  i t  does not, compute 

Y ^  and i f  that also does not give meaningful results, go back 

tOY<2>.

Remark 5.5.1 I t  is  interesting that, even when the likelihood function 

apparently has ho maximum outside the "inadmissible" regions, the approxi­

mate solution to the maximum marginal likelihood equations, y ^ K  is  a 

better estimator than y ^ »  and i f  i t  does not produce meaningful results 

then y ^  is s t i l l  usually better than y ^ *

Remark 5.5.2 I t  is  clear from the results o f the simulations that fo r 

re liab le  estimation the number o f populations, k, needs to be large, pre­

ferably a t least ten times the number o f dimensions, p. I f  there is  a

choice, i t  is  generally better to increase k than i t  is  to  increase n,

the number o f observations per group (so long as n is at least equal to 2).



Appendix 5.1 Proof of Theorem 5.1

We w il l consider the more general case with (possibly) d ifferent 

sample sizes from each o f the k groups. i.e . our tra in ing sample is : 

j  = 1 , . . . , ^ ;  i  = Then, analogously to Table 5.1.1,

k

*2 "  j : ,

, k ni  , k

M = i v

Therefore,



Nx
F I—

Applying the above"two results, we obtain,

- i * i . - x, . ) |x i . " x. . i '  ♦ ( " i- i ) ( f - = ) ( xi . - x. . ) '

+ *  (ni - l ) { f -e ) { f - e )1

= a1 - >y(*r\ + (N"niJffl

- (N-ni ) f(x i>-X|>)- v ipr l) ( x 1i-X | i ) ( f-6 )1 + (nr 1 )(f-e)(f-s)'



j / A . - ' . . ) "

■ A, - Hfg' -  9{f+(n^-l)e)' + (N -n ^ f f  + (n,

ni

" 1

n1

"S- (Sj-s.thj-s.)'

+ (n^-T)ee'

I
i"

+e)'



J i,

= A2 - (n ^ -y 2ee' -  (n .-l)ee ' -  (n^-T)ee' + (n .-l)ee '

= A2 - n.(n1-'I)ee' ■

which agrees with Lachenbruch's (1967) result.

Now, applying the Binomial inverse theorem (Press, 19,72):

which reduces to the following, fo r u and v column vectors and E 

(A tu v T 1 = A-1 -  A '1uv'A"1/ (H v ,A"1u) , 

to the above expression fo r A2 - ( i , j ) ’ we 9et:

A2 K i , j )  = (A2-n1(r'1-'!)ee’ ) "1

* A j1 + ^ ( ^ - l ) A 2^ee'A2^ / ( l - n . ( ^ - l ) e 'A ^ e )



■ T H A /g ') + T r ( * /^ E )  t  Tr(GA-'F).

Remark Wh e n , -  n, V^» we ju s t remove the subscripts from a ll the 

n^'s appearing in the above formulae.
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Table 5.5.1

Means and Standard Deviations of the five  estimators o f the 

{"Y\}= H igs{2 il'1}froin the simulation experiments fo r the case p = 2

Degrees of Freedom = 10, Vg. = 44.

Estimators and from a ll 100 simulations

".Means Standard Deviations

4
2

6.76 5.90
1

6.07
1  2 

4.21 4.10
3

4.05
2 1.20 -3.46 1.56 1.12 189.41 1.29

8 11.>89 10.78 10.78 7.99 7.67 7.67
2 1.41 2.36 1.85 1.26 2.74 1.40

Estimators Y i1 ) , r t5) from n simulations

Means Standard Deviations
True y 1 2 4 5 1 2 4 5

4 8.53 7.90 7.73 6.97 4.80 4.52 4.53 4.04
2 0.65 0.91 0.96 0.83 0.44 0.62 0.66 0.57

8 14.44 13.44 13.23 11.91 8.38 7.94 7.97 7.11
2 0.89 1.24 1.30 1.12 0.57 0.81 0.88 0.74

Degrees of Freedom v-j = 10, v2 * 44

Estimators Y ^ »  and y '̂  from a ll 100 simulations

Means Standard Deviations

IH S LI
4

1
5.24

2
4.83

2
4.85

1  2 
2.24 2.21

3
2.19

2 1.46 1.86 1.73 0.82 1.28 LOO

8
2

9.65 9.13 9.18
1.67 2.06 1.92

4.63 4.60 4.55
1.05 1.57 1.20



Estimators and v*5) from n simulations

Means ; Standard Deviations

a True y 1 2 4 5 1 2 4 5
65 4 5.81* 5.15 5,44 5.22 2.36 2.29 2.29 2.18

2 1.08 1.26 • 3.29 1.21 0.51 0.60 0.64 0.58

83 8 10.38 9.95 9.89 9.45 4.67 4.55 4.56 4.34
2 1.36 1.56 1.58 1.49 0.74 0.87 0.89 0.83

e. Degrees of Freedom V'j = 20, v2 = 84

c . r ; Estimator; V ' K Y ^ \  and from a ll 100 simulations

Means Standard Deviations
True y i 2 3 1 2 3 f "

4 4.50 4.21 4.26 1.41 1.46 1,42
2 1.71 2.09 1.87 0,70 1.47 0.75

8 8.57 8.31 8.31 2.93 2.93 2.92
2 1.82 1.99 1.96 0.78 0.92 0.86

C.2. Estimators ; ( u . ^  and y^  from n simulations

Means Standard Deviations

a l i m :  1 2 4 i  " I 1 1 1
60 4 4.91 4.72 4.68 4.59 1.42 1.42 1.41 1.37

2 1.42 1.55 1.57 1.51 0.48 0.53 0.55 0.53

95 8 8.71 8.47 8,44 8.24
2 1.73 1.86 1 .87 1 .82

2.91 2.88 2.90
0.64 0.70 0.72
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Degrees of Freedom v-j = 40, v2 = 164

Estimators y P K  and y^3  ̂ from a ll 100 simulations .

Means Standard Deviations

Irye jr. 1 2 3 1 2 1
4 4.15 4.00 4.00 0.96 0.98 0.98
2 1.88 2.01 2.00 0.53 0.60 0.59

8 8.06 7.92 7.92 2.02 2.01 2,01
2 1.95 2.03 2.03 0.56 0.60 0.60

Estimators y ^ ^  and-y^5  ̂ from n simulations.

Means Standard Deviations

1 2 4 5 X i i
4.33 4.20 4.17 4.14 0.93 0.93 0.94
1.78 1.87 1.89 1.86 0.47 0.51 0.53

8
2

8.06 7.92 7.91 7.82
1.95 2.03 2.03 2.01

2,02 2.01 2.02 1.99
0.57 0.60 0.60 0.59
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Table 6.5.2

Means and Standard Deviations o f the five.estimators o f the 

<7 ^} = E ig s tZ ^ 'b  from the simulation experiments fo r p = 3 

dimensions

A. Degrees of Freedom v, = 6, Vg = 28

A .I. Estimators and from a ll 100 simulations.

Means Standard Deviations

J rss I 2 3 1 2 3

6 9.61 7.78 8.09 4.99 4.62 4.49
4 3.19 4.68 3.59 1.67 5.76 1.97
? 0.78 2.04 1.07 0.57 3.80 0.76

IS 20.63 17,94 18.15 13.14 12.33 12.11
4 3.87 4.63 4.47 ■ 1,95 3.29 2.44
Z ' 0.85 1.31 1.29 0.63 7.72 0.94

Estimators ;(2)
. and from n simulations.

Means Standard Deviations
ft True y 1 2 4 5 1 2 4 s
9 6 18.06 16.01 15.60 14.50 2.91 2.5b 2.49 2.31

4 3.07 3.62 3.66 3.36 0.91 1.11 1.17 1.07
2 0.40 0.63 0.65 0.59 0.13 0.21 0.23 0.20

34 IS 28.33 25.36 24.81 23.09 13.45 12.38 12.50 11.45
4 ' 3.81 4.45 4.51 4.13 1.56 1.86 1.94 1.74
2 0.53 0.84 0.89 0.79 0.33 0.55 0.63 0.53
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B. Degrees = 15, v2 = 64

B.1.. E s t i m a t o r s a n d  from a ll 100 simulations.

Means Standard Deviations
True y 1 2 3 1 2 3

6 7.68 6770 6.83 2.98 2.94 2.89

4 3.53 4.12 3.71 1.29 2.44 1.51

2 1.37 1.85 1.62 0.53 0.86 0.70

15 17.89. 16.71 16.74 8.28 8.13 8.09

4 4.04 4.30 4.21 1.58 2.21 1.84
2 1.44 1.87 1 .76 0.56 0.83 0.75

B.2. Estimators y ^  \ and y ^ from n simulations-

Means Standard Deviations

n True Y I 2 4 6 I 2 4 5
i i 6 9.47 8.70 8.51 8.32 2.53 2.39 2.39 2.29

4 3.28 3.50 3.52 • 3.39 0.89 1.01 1.09 1.05
2 0.93 1.15 1.19 1.13 0.32 0.41 0.44 0.41

47 16 19.07 17.89 17.74 17.24 7.74 7.45 7.48 7.22
4 4.50 4.74 4.72 4.56 1.41 1.53 1.56 1.50
2 1.22 1.48 1.53 1.46 0.52 0.66 0.69 0.65

C. Degrees of Freedom = 30, u2 » 124

C.l. Estimatorsy^)'. ;< 2> and y(3) from a ll 100 simulations •

Means Standard Deviate
True y 1 1 1 1 2 1

6 6.75 6.09 6.20 L65 1.71 1.63
4 3.84 4.31 3.99 1.01 2.13 1.12
2 1.64 1.90 1.82 0.52 0.68 0.62

16 16.15 15.56 15.56 4.68 4.63 4,63
4 4.28 4.33 4.34 1.22 1.36 '1.34
2 1.67 1.94 1.87 0.53 0.81 ; 6.62
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E s tina to rsy^ , y ^ \  and y ^  from n simulations

Standard Deviations

n
25

Tme Y 
6

2
8.00

2
7.52

1
7.42

5
7?34

1
1.71

2
1.64

I
1.63

5
1.60

4 3.70 3.83 3.85 3.77 0.86 0.92 0.95 0.93
2 1.47 1.65 1.68 1.63 0.38 0.44 0.46 0.44

74 IB 16.74 16.13 16.08 15.84 4.43 4.39 4.41 4.33
4 4.60 4.71 4.70 4.62 3.12 1.20 1.23 1.21
2 1.66 1.73 1.75 1.72 0.45 0.51 0.62 0.51

ip . Degrees o f Freedom v = 60 v2 = 244

D . l. , ' Esclmatorsy^ and y ^ )  from al 100 simulations.

Means' Standard Deviations

JJ3LX
6

I
6.52

2
6.10

3
6.19 1.31

2
1.42

3
1.33

4 4.07 4.32 4.18 0.76 1.05 0.83
2 1.86 2.00 1.96 0.39 0.45 0.40

16 16.56 16.26 16.26 3.65 3.63 3.63
4 4.25 4.26 4.26 0.89 0.88,
2 1.88 2.01 1.99 , ,0.46 0.43

0,2. Estimatorsy^^, y ^ \  and y ^  from n smurttlons.

\Standard Deviations
n 1 i 4 5 1 1 1 5
44 i=. . 7.42 7.14 7.10 7.06 1.07 1.06 1.07 L06

4 3.83 3.90 3.91 3.87 0.55 0.58 0.60 0.59
2 1.77 1.89 1.89 1.87 0.30 0.33 0.33 0.33

91 16 16.75 16.44 16.43 16.30 3.61 3.59 3.59 3.56
4 4.34 4.37 4.36 4.32 0.81 0.84 0.85 0.84
2 1.82 1.93 1.94 1.92 0.36 0.39 0.40 0.40
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. Table 5.5.3 

Means and Standard Deviations of the five  estimators of 

the {y^} = £igs{E-|2f b  from the simulation experiments for 

p = 5 dimensions.

Degrees o f Freedom = 10, \>g = 44

Estimators and from a ll TOO simulations.

l x 2 * x I

Means

2 , 3
Standard Deviations 
1 2  3

10 17.86 13.11 14.83 9.38 8.72 8.10
8 8.73 7,91 8.52 3.13 15.65 3.32
6 4.27 13:58 4.60 1.71 69.15 2.12
4 1.88 8.09 2.29 0.81 49.28 1.12
2 0.72 1.79 0.90 .0.42 3.50 0.64

32 42.94 33.84 36.40 25.86 24.33 22.70
16 16.15 11.00 16.06 7.22 53.48 7.69
8 6.36 8.76 6.93 3.27 17.91 4*10
4 2.51 1.86 2.90 1.07 26.59 1.47
2 "0.83 1.81 0.99 0.51' 4.77 0.64

Estimators and from n simulations.

Failure of either or in  a ll simulations.
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Degrees of Freedom •- 25, = 104

Estimators and from a ll '  100 simulations.

True.j, 1 1 3
Standard Deviations 

1 1 1
. 10 13.97 'J1.35 T2.21 3.08 3.27 2.77

a 9.07 11.50 8.91 1.92 21.52 2.13
6 5.46 6.15 5.64 1.22 2.08 1.46
4 3.18 4.38 3.44 0.80 2.81 0.98
2 1.43 2.02 1.62 0.43 1.15 0.59

32 37.34 33.19 33.60 9.89 9.93 9.64
16 17.81 18.22 17.76 5.01 7.20 5.62
8 7,96 8 .8!i 8.47 2.3% 6.46 2.87
4 3.59 4.32 4.02 1.00 1.62 1.16
2 1.48 1.96 1.78 0.46 0.72 0,60

Estimators PK r(2) j ;(4 ) end from n simulations.

For t y }  = {10,8,6,4,2} e ither or failed in a ll 
simulations.

Means Standard Deviations

IHLI 1 4 5 1 2 4 5
32 44.76 41.12 40.76 40.12 3.87 3.53 3.54 3,50
16 16.97 16.76 16.63 16.28 3.07 3.26 3.40 3.32
8 7.59 8.14 8.11 7.93 1.18 1.30 1.28 1.25
4 3.17 3.70 3.77 3.67 1.01 1.27 1.40 1.35
2 1.06 1.34 1.36 1.32 0.41 0.54 0.56 0.54
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Degrees o f Freedom v-j = 50, Vg = 204

Estimators and y ^ ^  from a ll 100 simulations.

True y 1 * 3
Standard Deviations 
1 1  3

10 12.38 11.38 2.66 2.94 2.69
8 8.28 8.44 8.11 1.50 2.97 1,63
6 5.66 5.26 5.78 0.98 4.83 1.08
4 3.61 4.21 3.81 0.68 1.24 0.77
2 1.75 2.09 1.87 0.35 0.82 0.41

32 35.19 33.21 33.24 9.25. 9.29 9.23
16 16.44 16.39 16.42 3.4T 3.85 3.74
8 7.99 8.34 8.25 1.73 2.25 2.04
4 3.94 4.30 4.22 0.86 1.18 1.01
2 1.78 2.04 2.00 0.36 0.50 0.43

Estimators y ^ ,  y ^ \  y ^ ^  and y^5  ̂ from n simulations. 

For {y.> = {30,8,5,4,2} either y ^ }  or y ^  fa iled in a ll 

simulations.

Means Standard Deviations

2 1 Z 1 2 1 5 1 2 1 1
32 38.04 36,11 35.89 35.60 9.87 9.79 9.88 9.77
16 16.81 16.76 16.79 16.62 2.99 3.18 3.29 3.26
8 7.89 8.13 8.12 8.03 1.45 1.61 1.67 1.65
4 3.82 4.11 4.13 4.08 0.68 0.78 0.82 0.81
2 1.69 1.91 1.93 1.90 0.37 0.43 0.44 0.43
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D. Degrees o f Freedom = 100, Vg = 404

0.1. Estimators and from a ll 100 simulations.

n»  V 1

Means
2 3

Standard Deviations 
1 2  3

10 11.26 10.43 10.64 1.63 1.8,1 1.64
8 8.04 3.00 7.93 0.95 1.44 1.05
6 5.88 6.19- 6.01 0.78 1.12 0.86
4 3.74 4.02 3.88 0.65 0.86 0.69
2 1.90 2.05 2.00 0.27 0.30 0.30

32 33.64 32.56 32.71 5.83 6.21 5.82
16 15.92 16.54 15.84 2.40 7.81 2.56
8 8.29 8.50 8.46 1.34 1.55 1.45
4 3.85 3.98 3.98 0.68 0.75 0.75
2 1.92 2.05 2.04 0.27 0.30 0.30

D.2. Estimators y ^ »  y ^ \  y ^ )  and y^5  ̂ from n simulations.

Means Standard Deviations

J! Tn».Y 1 2 4 5 1 2 i 5
10 12.65 12.07 12.01 11.98 1.41 1.42 . 1.44 1.43
8 7.9.‘> 7.84 7.P-. 7.78 0.55 0.55 0.55. 0.55

8 6 5.37 5.50 5.52 5.49 0.37 0.39 0.40 0.40
4 3.25 : 3.40 3.40 3.37 0.41 0.47 0.50 0.49
2 1.86 2.00 2 .Of 2.00 0.26 .0.30 0.31 0.30

32 33.87 32.92 32.87 32.73 5.32 5.34 5.36 5.33
16 15.97 15.91 15.90 15.82 1.95 2.06 2.08 2.07

85 8 8.14 8.28 8.28 8,24 1.28 1.38 1.41 1.40
4 3.91 ',4.05 4.05 4.03 0.69 0.76 0.78 0.77
2 1.90 2.02 2.03 2.02 0.26 0.29 0.30 0.29
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Degrees o f Freedom = 50, = 459

Estimators o f and •ffom n simulations.

Means Standard Deviations

True y 1 , - 2  4 5 !_ 2 4 5

32~ 36.66 35.27 35.10 34.99 7.15 7.18 7.25 7.21
16 16.70 .C 79 16.80 16.7?. 3.10 3.37 3.50 3.49
3 7.91 ■V, 8.23 8.18 1.35 1.50 1.56 1.55
4 3.89 4.21 4.18 0.62 0.71 0.73 0.72
2 1.72 1.94 1.95 1.94 0.39 0.46 0.47 0.46
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' Table 5.5.4

! Means and Standard Deviations of the five  estimators of the

: . {Y l> -  from the simulation experiments fo r p =10

dimensions

I ' A." degrees of Freedom v1 = 20, v. = 84

Estinrutors and y from a ll 100 simulations.

Means Standard Deviations

i r s t i 1 .2 3 1 2 3
iO 41.19 28.01 33.83 9.25 f.09 7.49
18 27.22 23.75 25.25 5.52 10.05 6.08
18 18.68 18.26 18.14 3.88 10.07 4.01
14 13.50 10.82 13.49 2.39 46.23 2.45
12 9.60 12.59 9.66 2.17 11.57 2.25
10 . 6.70 10.08 6.74 1.47 20.27 1.49
8 4.50 6,84 4.32 1.00 16.42 1.01

6 2.79 4.46 2.81 0.82 9.13 0.83
4 1.63 3.83 1.65 0.57 4.56 0.60
2 0.75 1.66 0.76 0.34 2.24 0.41

1024 1352. 1108. 1141. 427.5 398.2 376.0
512 564.2 368,8 527.7 188.5 1545. 199.3
256 246.3 260.3 247.0 73.97 143.1 84.20
128 120.8 127.9 127.2 36.43 144.8 41.82
64 54.50 67.03 58.30 17.38 29.58 19.16
32 24.28 30.25 26.85 8.51 37.38 10.58
16 11.43 17.29 12.99 3.52 8.44 5.05
8 4.94 6.88 6.63 1.77 11.10 2.34
4 2.25 5.37 2.54 0.81 9.63 1.09
2 0.88 2.34 1.00 0.38 2.99 0.49

Estimators , y(4) and from n simulations.

Failure o f both or in a ll simulations.

< )
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Degrees o f Freedom = 50, \)2 = 204!

Estimators and from a ll 100 simulations.

Means Standard Deviations
True y 1 2 3 1 2 3

20 29.90 23.84 26.37 4.77 5.31 4.57
18 22.10 19.89 21.00 3.00 4.97 3.37
16 16.88 15.40 16.65 2.00 3.77 2.17
'14 n^3.52 18.4.2 ,13.61 1.89 29.14 1.97
12 "10.69 TC/.u> ,10.60 1.35 8.75 1.36
10 8.25 9.7% -:,C,27 1.18 7.75 1.18
8 6.19 8.04 6.21 0.87 3.53 0.89
6 4.45 6.27 4,46 0.75 3.27 0.75
4 2.90 3.81 2.90 0.59 1.81 0.59
2 1.57 2.19 1.58 0.38 0.71 0.38

1024 1139. 1044.- 1048. 261.6 257.7 255.8
512 547.0 534.0 534.1 124.0,? 144.1 133.1
256 256.7 £60.1 257.1 52.45 li5.23 57.01
128 ■ 122.9 127.5 126.5 25.14 31.28, 28.68
64 59.26 63.70 62.21 12.90 18.48 14.96
32 28.83 31.92 30.66 6.15 8.65 6:78
16 14*30 16.24 15.58 3.20 4.47 3.97
8 6.95 8.18 7,73 1.34 2.01 1.71
4 3.30 4.02 3.73 0.78 1.27 0.9"
2 1.64 2.16 1.96 0.39 0.61 0.59
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.\ Estimators and from n simulations.

For {Y i} = {20,18,16,14,12,10,8,6,4,2}, ^ (4) and ^ (5) failed 
in a ll simulations.

Means Standard Deviations
1 2 4 5 I 2 4

------- z

1024 1132. 1042. 1036. 2 202.5 193.7 195.6
512 553.6 637.3 537.7 1 78.07 80.61 83.19
256 260.0 260.2 260.5 f 27.48 29.47 30.62
128 125.9 130.0 ' 130.1 14.13 15.83 16.51

. 64 58.37 61.87 61.89 9.68 11.13 11.58
32 27.43 29.71 29.61 , 3.87 4.50 4.66
16 14.36 16.31 16.43 '■ 1.53 1.84 1.92
8 6.50 .7.51 7.48 1.25 1.60 1.67
4 3.18 3.83 3.84 0.31 0.39 0.40
2 1.57 2.02 2.04 0.34 0.46 0.48

Degrees o f Freedom v-j = 100, v2 = 404

Estimators and y^ ^  from a ll 100 simulations.

True y 1
Means

2 3
Standard Deviations 
1  1 1

~ ~ W 25.62 22.10 23.10 3.02 3.56 2.93
18 20.23 18.69 19.17 2.13 3.83 2.50
16 16.E9 16.24 16.27 1.59 3.32 1.87
14 13.69 14.32 13.69 1.33 3.20 1.56

« 12 11.08 11.79 11.13 1.18 2.46 1.26
io 8.83 9.62 8.88 0.93 2.39 0.93
8 7.10 8.45 7.15 0.82 2.04 0.83
6 5.06 5.77 5.12 0.67 1.12 0.72
4 3.47 4.06 3.51 0.52 0.83 0.54
2 1.75 2.01 1.77 0.23 0.36 0.29

1024 " 1093. 1048. 1048. 175.3 175.2 175.2
512 536.0 528.9 528.5 84.49 90.02 89.32
256 254.4 254.4 254.4 39.45 42.03 42.02
128 126.8 128.9 128.9 '18.13 19.75 19.75
64 60.97 62.72 62.71 19.20 10.21 10.22
32 30.43 31.81 31.80 ' 5.26 5.99 5.99
16 15.27 16.15 16.19 ' 2.24 2.55 2.55
8 7.28 7.81 7.81 1.23 1.44 1.44
4 3.68 4.05 4.02 0.61 0.74 0.71
2 1.79 2.01 2.00 0.29 0.35 0.34

Algor?thm
 

failed 
to 

converge
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Estimators y ^ K  and from n simulations.

For {y .}  -  {20,18,16,14,12,10,8,6,4,2} y (4) ?nd y (5) fa iled in 
a ll simulations. , ■;

M e a n ( ! S t a n d a r d  Deviations

True y I 2 4 \ 5 1 4

1024 1109. 1064. 1062. 5 174.4 172.2 173.4
512 526.8 518.4 518.7 1 80.72 83.94 85.61
256 250.3 250.1 250.2 | 37.79 36.91 37.64

, 128 125.6 127.6 127.7 17.91 19.32 19.64
64 51.46 63.27 63.29 8.90 9.77 9.99'
32 30.24 31.56 31.59 D. 4.84 5.45 5.60

, 16 15.37 16.31 16.33 8 2.25 2.55 2.60
8 7.28 7.82 7.82

1
1.16 1.33 1.36

4 3.66 4.01 4.01 0.50 0.58 0.59
2 1.77 1.59 1.99 0.28 0.32 ,0.33

Degrees o f Freedom v-j = 200, \)g .  80.4

Estimators y ^ \  y^2  ̂ and y^3  ̂ frvm a ll 100 simulations.

Means Standar^eviations
True y 1 1 .. a I £ 3

' - 20 23.29 21.23 21.78 2.05 2.57 2.09
18 19.02 18.08 18.42 1.44 2.06 1.67
16 16.21 16.21 16.02 1.08 2.96 1.23
14 13.62 14.53 13.64 1.00 2.93 1.11
12 11.38 11.73 11.45 0.87 1.64 0.96
10 9.36 9.95 9.44 • '0.77 1.96 0.86
8 7.47 8.05 7.56 0.70 1.19 0.74
6 5.56 5.97 5.64 0.51 0.68 0.57
4 3.74 4.03 3.80 0.44 0.55 0.49

S 2 1.85 1.97 1.87 0.21 0.23 0.22

' 1024 1070. 1048. 1048. 124.3 124.3 124.3
512 519.3 515.1 515.1 57.61 5944 59.44
256 256,} 256.1 256.1 29.31 30.49 30.49
128 125.7 126.7 -126,7 13.98 14.82 14.82
64 62,27 63.14 63.14 7.18 7.58 7.58
32 31.21 31.88 31.88 3.33 3.54 3.54
16 15.45 15.89 15.89 1.65 1.76 1.76
8 7.71 7.98 7.98 0.79 0.85 0.85

■ 4 3.84 4.01 4.01 0.47 0.51 0.51
0  .. 2 1.87 1.98 1.98 0.21 0.23 0.23

Algorithm
 

failed 
to 

converge
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D.2 Estimators y ^ »  and from n simulations. 1 (.A\

For {Y i} = {20,18,16,14,12,10,8,6,4,2} y (4) and ^ (5) failed in 
a ll simulations.

Means  ̂ Standard Deviations
n True Y 1  X 1  i  1  2 4 5 ,

1024 1121. 1097. 1096. 1094. 143.4 143.2 143.5
• 512 567.2 563.3 563.3 561.9 47.88 50.53 50.87

256 267.0 267.3 267.3 266.6 38.55 39.83 39.96
128 121.1 121.8 121.8 121.5 11.95 12.46 12.49
64 60.18 60.97 60.97 60.82,. 8.04 8.45 8.49
32 31.66 32.37 32,38 32.29 3.92 4.16 4.17
16 15.11 15.53 15.53 15.49 1.12 1.20 1.20
8 7.30 7.53 7.53 7.51 0.58 0.62 0.63
4 4.17 4.38 4.38 4.37 0.47 0.52 0.53
2 1.89 2.00 2.00 2.00 0.31 0.33 0.34

1024 1074. 1052. 1051. s 122.3 122.1 122.5
512 518.8 514.4 514.5 1 56.04 57.60 58.13
256 256.7 256.7 256.7 i 29.27 30.40 30.54
128 125.2 126.1 126.1 g- 13.09 13.75 13.86
64 62.37 63.26 63.26 1 7.17 7.58 7.62

• 32 31.27 31.95 31.95 I 3.33 3.55 3.57
16 15.43 15.87 15.37 S' 1.63 1.75 1.75
8 7.70 7.97 7.97 s 0.79 0.86 0.86
4 3.85 4.02 4.02 8 0.48 0.52 0.52
2 1.86 1.97 1.97

1
0.21 0.23 0.23

Algorithm
 

took 
too 

long 
to 

converge
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Degrees o f Freedom = 100,.Vg = 909

Estimators o f y ^ K  and "from n simulations.

Means Standard Deviations
True y 1 1 4 5 x 2 4

1024 1106. 1077. 1075. 155.6 155.4 156.2
512 523.4 521.0 521.0 1 ,83.32. 87.34 88.51
256 249.7 252.3 252.5 1 37.78 40.53 41.50
128 122.5 125.3 125.3 16.67 18.05 18.34
64 60.40 62.60 62.65

2.
9.14 10.10 10.32

32 30.24 31.73 31.73 4.41 4.92 5.00
16 15.50 16.53 16.54 2.31 2.63 2.67
8 7.21 7.75 7.75 1.05 1.21 1.22
4 . 3.1;8 4.04 4.04

1
0.54 0.63 0.64

2 /  1.77 1.99 2.00 0.29 0.33 0.34

i

Algorithm
 

failed 
to 

converge
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Table 5.5.5

Correlation matrices fo r the five  estimators o f the = EigsfEjS 

from the simulation experiments fo r p = 3 dimensions.

C. Degrees o f Freedom = 30, Vg = 124

C .l. True {y^l = (6,4,2}

Number of Correlation Coefficients
- Simulations fa i r -1 1 4 . S.
)  25 0*2) .802 .758 .714 \  '?3

0 ,3 ) .322 .255 .241 '.dSQ

(2.3) .410 .328 .270 .273

•'C.2. True {y^} =- 06,4,2}

Number o f Correlation Coefficients
Simulations Pair 1 2 4 5

74 0 .2) .093 .043 .021 .025
0,3) -.023 -0.41 -.046 -.040

(2 .3) .308 .248 .210 >210

D, Degrees o f Freedom v-j = 60, \ig = 244

D.l. True {y^} = (6,4,2}

Number of Correlation Coefficients
Simulations Pair I 2 4 5

44 0 .2) .425 .356 .319 .324

(1,3) .114 .071 ,061 .070
(2,3) .381 .314 .283 .281

D,2. True {y^> = {6,4,2}

Number of Correlation Coefficients
Simulations Pair I 1 1 6

91 0 .2) -.034 -.067 -.060 -.060
0,3) , .042 .033 .032 .033

(2.3) .289 .235 .210 .211





Chapter 6 The Predictive Bayesian and other Approaches

Our chief concern in th is chapter is the Predictive Bayesian approach 

to discriminant analysis under the random effects model.

As described in Section 2.2 th is approach consists in evaluating the 

posterior probabilities, given the tra in ing sample qnd underlying model 

together with any known parameters, that the new observation x comes from 

each o f the populations in question, and assigning i t  to that popula­

tion fo> which th is probability is  the largest. Therefore, in contrast 

to Chapters 3 and 4 where we are concerned with the expected behaviour 

o f the standard c lassification rules o f classical discriminant analysis 

under the random effects model, this chapter is  concerned with the deve­

lopment o f new classification formulae applicable to this model.

In conformity with the rest o f th is thesis, we w ill assume that the 

p rio r probabilities o f the k populations tt̂ , i  = 1 are a ll equal, 

so that the posterior probability that x comes from irr  is  proportional to 

the predictive density o f x, given the training sample and the assumption 

that x comes from irr . See expression (2.2.4). ( I t  is , however, a t r iv i ­

al matter to adjust the theory fo r the case where the qr  are unequal,}

Therefore, in the next two sections we w ill derive the predictive 

density o f x under the random effects model given the training sample 

and the assumption that x comes from iiy, using a noninformative prior 

d istribution fo r the unknown parameters, f i r s t ly  for the univariate case 

(Section 6.1) and then fo r the multivariate case (Section 6.2). In 

Section 6.3 the predictive density o f x w ill be investigated under two 

alternative prior d istributions o f the unknown parameters, namely,

(1) Box and Tiao's noninformative prior d istribution fo r the random 

effects model, and ( i i )  the natural conjugate prior d istribution.

F ina lly, in Section 6.4 two other Baysian approaches to discriminant 

analysis, the Empirical Bayes and "Semi-Bayes" approaches, respectively,
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Chapter 5 The Predictive Bayesian and other Approaches

Our chief concern in th is  chapter is the Predictive Bayesian approach 

to discriminant analysis under the random effects model.

As described in Section 2.2 this approach consists in evaluating the 

posterior p robabilities, given the tra in ing sample and underlying model 

together with any known parameters, that the new observation x comes from 

each o f the k1 populations in question, and assigning i t  to that popula­

tion fo r which th is probability is  the largest, Therefore, in contrast 

to Chapters 3 and 4 where we are concerned with the expected behaviour 

o f the standard c lassification rules o f classical discriminant analysis 

under the random effects model, th is chapter is  concerned with the deve­

lopment o f new classification formulae applicable to this model-.

In conformity with the rest o f th is thesis, we w ill assume that the 

prior probabilities o f the k populations , 1 = are a ll equal, 

so that the posterior probability that x comes from Tiy is proportional to 

the predictive density o f x, given the training sample and the assumption 

that x comes from See expression (2.2.4). ( I t  is , however, a t r iv i ­

al matter to adjust the theory fo r the case where the qr  are unequal.)

Therefore, in the next two sections we w ill derive the predictive 

density o f x under the random effects model given the training sample 

and the assumption that x comes from 7rr , using a noninformative prior 

d istribution fo r the unknown parameters, f i r s t ly  fo r the univariate case 

(Section 6.1) and then fo r the multivariate case (Section 6,2). In 

Section 6.3 the predictive density o f x w ill be investigated under two 

alternative prior distributions o f the unknown parameters,'namely,

( i )  Box and Tiao's noninformative prior d istribution fo r the random 

effects model, and (11) the natural conjugate prior d istribution. J j  

Finally, in Section 6.4 two other Baysian approaches t^  discriminant •/ 

analysis, the Empirical Bayes and "Semi-Bayes" approaches, respectively,



w il l  be given b r ie f  consideration.

Remark 6.1 In tii^s chapter we have to make a distinction between the k 

populations used in the tra in ing sample and the k^s  k) populations from 

which i t  is  known that the new observation x derives. Clearly these k] 

populations must be represented in the tra in ing sample, but they may 

welt have been sampled a t a la ter stage than the rest o f the training 

sample, possibly only at the time when the particular classification 

problem in question arises,

6.1 The Univariate Case

For dimension p = 1 the discriminant analysis problem under the 

" random effects model becomes:

Given a tra in ing sample,

| TS -  {x.jj : i  a 11. . .  ,k; j  8 11 • •»

where,

~ N(t^, o2) independently, 

and ~ N(S, t 2) independently, ,

classify a new observation x o f unknown orig in  into one o f the popu­

lations irr , r=  1....... k.| , where n,. is  characterised by a N(ur , cr2) dis­

tribution.

; For the Predictive Baysian approach we need to make an assumption 

about the p rio r d istribution o f the unknown parameters a2, g and t4, and 

in th is section we assume that they have the following general type of 

noninforaative jo in t prior density:



X

g{c2» ?, T2)dd2 d? dx2 = o * r  2 do2 dg dt2 (6.1.1)

pema.r̂  6, 1.1 For reasons th a t w il l become clear la ter, we are consider­

ing a more general form of prior d istribution than the usual diffuse or? 

invariant (Jeffreys 1961) prior d istribution whict^ has = Vg = 2. The 

prior density (6.1.1) is also used in Geisser and Cornfield (1963) and) 

in Geisser (1964). |!

Given the above assumptions, the predictive density o f x, assuming 

that x. c Trr , is : j

' 1 i

f(x|TS, Vv  Vg,' TTr ) = |  |  f tx l j j ,  o2, irr )P(u, o2lTS)dii,do2 (6.1.2,')

c ‘  *  ' i
I

where, i,

k  -  (l^l* Wgi ■ • •» P^)1 i;

f(x |y , o2, Trr ) exp { - ) ( —-g— ) 2)

P ( j i ,  o 2 |T S ) «  P ( IS |)2 ,  o2 )P (M , a 2 )

A " " - " ' ' ' '

P(M. o2)-P (o 2) f. f  P(tiie»t2)P(e,T2)d?dT2 
x K



I  /

■ Q,

Pto2)P(E. Tz ) = g(o2, e, t« )  -  o Vl t  Vz ( 6 .1 .3 )

Substituting a l l  th is into equation (6.1.2) and using the notation: 

n!  * " i

Xr  n* = x (6.1.4)

yie lds, Ignoring a ll constants of proportionality.

x T"k exp { -  - L ’ J  - g)a> a  ̂ t  2 d| dTz d)i da2

x ( [  t ^  2  ̂ exp { -  -1 -  ^ (p, -  C)2} d% d-rz dy do2-

Considering the Inner pair o f Integrals:

|  j  t  * Z> exp 1 "  y  ,1 ,  ( " i  "  5  ) ‘ )  =15 A *

I  ,  T Z* e x p ( - j ; :  ^ ( U j - U  I ’ i j  GXp{- y p ( 5 - U  I ’ / d t  d t 2

(whebe V. = 7  I  1*( )

t  II
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where S* * j  (p1 “ I1-)2 .

Transforming to:

so that

dr* —I  u~2 S* du

- the integral becomes (ignoring constants o f proportionality):

~Hk + v , -  3)
' (% ) 2 r(K »  + * 2 -  3))

,  k "4
expt---   I  J, ( x „  -  u ,)2) doa du . (6.1.5)

2ct2 i=1 j= l 10 1

j ,  '  j ,  -  4 , ) '

x -  x
xr .  ' n T T f *  f “  r (6.1 • ĵ|



Now, apart from a constant of proportionality, the inner integral in 

• (6.1.7) can be thought o f as the -Hk+v,-3)th moment about zero o f the un- 

normed sample variance: S® = Jy(p^ -  » ) 8 where the individual are 

independently distributed according to the N(xt^ , o2/ n | ) d istribution.

In order to be able to evaluate th is expected value, we have to make 

the assumption that the nf are a ll equal, say,

-,i = n* i  = 1 ,, , . ,k  (6 .1 .8)

under th is assumption S' has o*/n* times a noncentral x^_^(X*) d istribu­

tio n , with noncentrality parameter,

x* -  ^  Af  (6' ’ ,9)

Af -  n* %  - x * , ) '

Now, although the cumulants o f the noncentral chi-squared d istribu­

tion (and hence the f i r s t  moments about zero) may be expressed extremely 

simply, general expressions fo r the moments about zero are usually *

\  ■



in terms o f in f in ite  sums, (See, fo r example, Johnson and Kotz, 1970b.) 

The following expression fo r the r tfl moment abou.t zero o f the.x^(X) dis­

tribu tion , derived in Appendix 6.1, is  convenient for the present pur-

The inner integral in(6.1.7) is  therefore proportional to:

(6 .1 . 11)

The in f in ite  series in (6.1.11) is proportional to the confluent hyper- 

geometric function M (i(2 -v2) ; i ( k - l ) ;  |  X* ) (see, fo r example,

Abramowitz and Stegun, 1965) and therefore I t  converges fo r a ll values o f 

the parameter |X *. Substituting (6.1.11) into (6.1.7) and Interchanging 

the order o f integration and summation yie lds, ignoring tki6 constants o f 

proportionality: y

f (x|TS.Vv V wr )«  I
1 1 2 r  j"o  r(6 (k -l) + j )  J

x exp (-?— } dc2 
2o2

where, ;

( ^ - xr . ,B + Af  = | u C ^ - x: . ) z

Making the transformation y = A^/2a2, the above iite g ra l may be evaluat­

ed as a gamma function, yielding eventually:
V
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f(x|TS, Vv  v2, irr ) = JI  r ( i ( 2 ' V2)+ J }
j=o r(i(k-i) + j) nH N  + V^+Vg + Zj r 4 ) )

- KN + v ^ V g - 'O "
F ( K 2 - V g ) ,  |(N + v^ i  V g -4 ) ;

i ( k - l ) ;  (A f/A|)) fo r ^ < 2  (6.1.13)

F(a, Bl Yi X) = % - — r'f f " -  4 r  is  the hypergeometric function, 
j=0 y

W  M l  J

a>id oW] ■ o(a + 1) . . .(o  + j  -  1) .

Since, by definition, |A |/A | | < 1 , the hypergeomebric function in (6.1.13)

x e fo r each r  = 1 ,. , . ,k  in ty^n, one of the observations x^j is 

chosen from {xrj., j  = 1 ,. . . ,n }  .uid' is  replaced by x in the sample, 

tinker these circumstances, therefore,the effective size of the. training 

Sample becomes N - 1.

The two terns in (6.1.13)affected by the above are and A|, and i t  

is  shown in Appendix 6.2 that, fo r X6irr  :

converges. ^See, fo r example, Abramowltz and Stegun (1965) or Johnson 

and Kotz()959).)

Remark 6.1.1 Assumption (6.1.8) effectively implies that

rip b n* => n V r  =

and that Wien evaluating the predictive density (6.1.13) assuming that



'  A, *  V  (A -A rj) ' (

/ / I  '

V
k n 1 ' ' ; ^

' (6.1,15)

i=V

are the between groups and within groups sums o f squares, respectively, 

as defined in table 5.1.1 fo r the case p = 1. F ina lly, A| is  obtained 

by summing and A|,

i.e . 4 - ‘ + A| (6.1.16)

Formulae (6.1.14) and (6.1.16) w il l be useful when evaluating the pre­

dictive density (6.1.13) successively for a ll r  = ,

Note also trtat j^nder these circumstances N should be replaced by 

N - 1 in  (6.1.13).

Remark 6.1.2 the fact that v2 must be less than 2 in (6.1.13) implies 

that, fo r the predictive density to exist, t2 cannot have the usual 

diffuse prior d istribution with v2 = 2 .

I t  is  interesting to compare th is with problems encountered by other 

authors studying related problems through the Bayesian approach. Lindley



and Smith (1972) and Smith (1973) studying the problem'of estimation 

under a Bayesian General Linear Model, both start o ff  with the ir analysis 

by assuming a ll variances and covariances known. When passing to the

situation where the variances and covariances are unknown and have prior

d istributions, they come up against intractable mathematical problems 

in evaluating the posterior d istributions and means fo r the parameters 

o f in terest. To overcome th is problem they use instead the mode of the 

jo in t posterior d istribution of the parameters o f interest and the 

nuisance parameters (the variances and covariances) and use these modal 

values as Bayesian estimates o f the parameters. In practice, the modal 

values usually have to be obtained by ite ra tive  procedures. In the ir 

examples they use natural conjugate p rio r distributions fo r the vari-: 

ances and covariances; in  Section 6.3 we w il l Investigate this class , 

of p rio r distributions fo r our problem. '-•-v

Box and Tiao (1973) use a d iffe rent type o f diffuse prior d istribu­

tion  when considering the random effects model, in order to get around 

the ir analytical problems. This p rio r d istribution w ill also be consi­

dered in Section 6.3.

I t  is  rather remarkable that i t  is  the prior d istribution o f the 

second stage "hyperparameter" r 2 in our random effects model that gives 

the problem, while that o f the corresponding f i r s t  stage parameter o2 

presents no problem at a l l ,  a t least within the framework o f the diffuse 

p rio r distributions (6 ,1. 1).

Therefore, in (6.1,12). we may assign the value v1 = 2, giving o2 a 

noninformative prior d istribution re la tive  to the likelihood function 

o f the normal d istribution, both in the sense tha| i t  produces a poste­

r io r  d istribution that is  "data translated" as defined by Box and Tiao 

(1973) and in the sense that probability statements on o2 based on its  ... 

posterior d istribution are invariant funder parameter transformations.
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For Vg we may assign the value v2 = 1 so that t2 has a p rio r d is tribu ­

tion that, while i t  is  not Roninformative, is  as close as i t  may be to 

one without jeopardising the existence o f the predictive density (6.1.13).

Remark 6.1.3 An alternative, asymptotic expression fo r the predictive density 

of x may be obtained by interchanging the order o f integration in (6.1.5). 

This yields.

jo in tly  have a multivariate t-d is tribu tion  with common denominator (see, 

for example, Johnson and Kotz (1972)). Assuming that n| = n, V, and 

that the to ta l sample size N is  large enough for' the multivariate 

t-d is tribution  to be approximated by that o f k independent normal ran­

dom variables with d iffe rent mean? but common variance, the Integral may 

be evaluated approximately using the - i fk  + V g-S )^  moment o f the non- 

ctjhtral xjL'] d istribution. This y ie lds, after some algebra:

Under these parameter values (6.1.13) becomes (remembering that N is 

replaced by N - 1):

F ( i, i(N-2); (6.1.17)

This integral is  proportional to the -J(k + V g- 3 )  moment o f the 

(unnormed) sample variance S2 = £ (u.j -  v_)2 wtore the ^ , 1  = 1
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-i(N + k + v1 + v,,-4) 
f(x:.TS, V1, v 2>Tir )«  (A|) L exp{-iA *}

x M ( i(2 -v 2) ; K k -1 ) ;  > X * ) fo rv 2 <2

(6.1.18)

where,

X* = (N -  k) A^/ A|

M(a; B; x )=  % ^7 ^  —• is the confluent hypergeometric
> 0  8UJ j l

function.

I t  is  Interesting to  note that again the parameter v2 in the prior density 

o f t z can not take the value 2 corresponding to the usual noninfomative 

prior d is tr ib u tio n / Assigning the values = 2 and Vg = 1 as before, 

and replacing N by N - 1 (see Remark 6 .1 .!} , (5.1.18) becomes

f(x|TS, »r ) i  (A*)-KN + k -2 )  w(5. (6 .1.IS)

Example C.1.1 To illus tra te  the use o f the above formulae, the follow­

ing hypothetical example was considered. Given the training samples o f 

size n = 3 from each of k = 5 populations in Table 6.1.1 and 

an observation x = 7 o f unknown orig in , classify x into one o f these 5 

populations, assuming that they are generated by the random effects 

model.

Table 6.1.2 gives the quantities Af, A| and fo r each o f tbs five --, 

populations, as well as the ratios (A|/A|) and (5A|/A5ji) required in fo r­

mulae (6.1.37)>.;and (6.1.19) fo r the exact and approximate predictive den­

s it ie s , assuming that v2=l and ^=2. FORTRAN subroutine HYPGFN, given in 

Appendix 6.5, was written to compute the hypergeometric and confluent 

hypergeometHc functions required in
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the above formulae. The posterior probabilities fo r the five  populations, 

computed using both, the exact and approximate fomulae and assuming 

equal prior p robabilities, are also given in Table 6.1.2. As recommended 

in Sub-section 6.3.3 below, the observation closest to the mean o f the 

training sample from nr  was replaced by x when computing the predictive 

density given x « j y

Table 6.1.1 

The Hypothetical Training Sample

Populations 1 1 3  4 5

1 3 6 7 9

Observations 2 4 7 8 10

3 5 8 9 11

Observation x o f unknown orig in : 7

Table 6.1.2 

Computing the Posterior Probabilities

Populations: 1. 2 3 4 5

Af 87.07 111.60 122.40 119.07 102.00

A$ 26.67 16.00 10.00 10.67 16.00

H 113.73 127.60 132.40 129.73 118.00

0.7655 0.8746 0.9245 0.9178 0.8644

16.33 34.88 61.20 55,81 31.88

Exact Ptfobs. 0.0065 0.0563 0.4981 0.3766 0.0635

Approximate Probs.. 0.0006 0.0199 0.5822 0.3744 0.0228

Fixed Effect Probs. 0.0017 0.0327 0.5680 0.3749 0.0327
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The last row o f Table 6.1.2 gives the posterior probabilities for 

each o f the five  populations computed from formula (2.2.6) fo r the case 

where the population means are given a diffuse prior d istribution - 

roughly speaking* th is corresponds to a fixed effects model (See Box 

and Tiao (1973) pages 379-80 fo r a discussion of th is point). Comparing 

these probabilities with th e ir  counterparts under the random effects 

model, computed from the exact formula (6.1.17), i t  is  clear that in the 

la tte r  case the posterior probabilities are s ligh tly  more conservative, 

in the sense that the highest probability (that of population 3) is 

somewhat lower, and those o f the other populations correspondingly higher, 

than the ir counterparts under the fixed effects model. In tu itive ly  

speaking th is is reasonable, as one would expect classification to be 

better in the situation where, a p r io r i,  the populations tend to be 

further apart, as is the case with the diffuse p r iv ' relative to the 

normal p rio r. (See Cox and Hinkley (1974) page 379 fo r a related dis­

cussion.)

F ina lly, the probabilities given by the approximate formula (6.1.19) 

are clearly too optim istic (in  a sense complementary to conservative) 

giving values that d iffe r even more from the exact probabilities than do 

the corresponding probabilities under the fixed effects model.

6.2 The multivariate case

Analogously to the univariate case discussed in the previous section, 

our discriminant analysis problem becomes;

Given a tra in ing sample from k populations,

TS = ( X j j  * l , . . . , n ^ ,  1 a I , . . . ik }  
where,

x ^ f '  Np(p j, %) Independently V i ,  j

and



Pj ~ Np(e» T) independently V.. :

classify a new observation x o f unknown orig in  in to  one o f the k-j popu­

lations:

.,irr : Np(ur , T.) r  = 1........^

where kj s k

We assume that the unknown parameters Z, $ and T have the diffuse prior 

d istribution with jo in t density:

9(1, C, T)dS dE dT *  |E| !Vl ]T| ! *2 d£ dC dT (6.2.1)

Remark. 6.2.1 As in the univariate case, and fo r  the same reason, we 

are considering the more general form o f diffuse prior d istribution, 

used by fieisser, and Cornfield (1963) and Gej.s5er(1964), than the usual 

one fo r which = Vg = p + 1.

Given the above assumptions, the predictive density o f x, given the 

hypothesis x e 7rr  . becomes;

f(x|TSt v1, v2, wr } -  f f  f(x|% U  Trr )P(tE,S|TS )d l dy (6.2.2)
1(2

where,

U is the p x k matrix (y^, y2 uk)

f(x|ic, r ,  jrp) « (2 ir)*^ |E|  ̂ exp{-J(x  -  y r ) ' -  yr )J

P(1£S r|TS)« P(TS|ic, #P(K, S)



m  p ( e ,  t )  » i ( s ,  e , T )  «  |e |  | t i  ( 6 . 2. 3)

Subst1tutingC6,3.3} jnto(6,3.2) and using the potation:

/
n* = n. V 7 *  r

n* = nr  *  3

!> rin * = x (6,2.4}

gives: ' %

f(x|TS,vr v2,irr ) “ J j  (Kj exp H  (xi j ^ i ^ '  x  txy " yV }

f  r  "K k + y ,) k ,
x I j  |T| w p{"&  T '(^ -O ld S d T  dy:d£

1 ( 6 .2 .5 )



The inner two integrals in (6,2,5) are evaluated using the multivariate 

analogues o f the techniques used in the univariate case, the details o f 

which are given in Appendix 6.3, yielding:

, j |  r V r £ ) > t ! M T «  l y  i(k+V 2 ' ' p 2)

(6.2.C)

k
where -u  ) '

Substituting (6.2.6) into (6.2.5) gives:

*  k "T ,
« M P  t "  $ i I 1 ( X j j - P , ) } * # :  PE

. t r  ii"1 A| + I  n|(n, -x *_ )' f ' l v ,  -  ^  | (6.2.7)



corresponds to the Within Groups Sum o f Squares A? in Table 

( included in the sample from the r  
n* ' fx. V I * )

. ' - v
- C r r

z y

k .
« exp{-J I  I  (u1 -  x^J ldn  dE

(6 . 2 . 8)

iffow the inner integral in (6.2,8) is  proportional to the -J(k + V g -p -2 ) ^  

' moment of the generalized variance o f a random sample u1, p2, . . , , u k where 

the are independently distributed as N (x^, l ) ,

In order to be able to evaluate ..iis expected value, we have, as in 

the univariate case, to make the assumption that the ni|' are a ll equal,

n f *  n* VI (6.2.9)

k
Voter th is assumption, A... = E (w.* -  U )(u, - v ) ' can be cons'ider- 

. o  ^  i« l 1 • 1
ed to have a p-dimensional noncentral Wisliart d istribution with (k-1)

degrees o f freedom, parameter matrix E and noncentrality matrix:



Jjee, fo r example, Constantine (1963).

So the inner integral in (6.2.8) is proportional to the -§(k + v2 -  P -  2)tfl 

moment o f the generalized variance corresponding to the Wp(k-1; >fi*)

d istribution.

Constantine (1963) studies the moments o f the generalized variance 

corresponding to the W (v; I ;  fi) d istribution, giving,''^he following as

4  * ~g~r~ f iv T ~  : I

fo r t  > - J(v-p+1) and v > p-1 (6.2.11)

Q '
where r p(Jv) is the multivariate gamma function defined in (6.3.5) 

and b; n) is  the confluent hynergeometric function with matrix

arfyment defined by James (1954). Thus the inner Integral in (6.2.8) is 

equal to (6 ,* .l f). with t  replaced by -K k  + V g -p -Z ), v by k - 1, Z by 

( 4 f  2, and fi by fi*. . Substituting th is Into (6.2.8) and simplifying.

!§• ' I - ;  x exp(-»trn", A}>)F1(i(ptl-v2) r i(k - l) ;  SE^A^dE

 ̂ fo r v2 < 2 and R > p (6 .2.12)

! k ■
IAf  = ^  ^ ^ i . " x* . ^ xi .  " x. . ^ 1

I corresponds to the Between Groups Sum of Squares Aj in  Table 

j!\ _ 15.1.1, with x included in the sample From the r ^  population,

•|nd A| ■= + A| is the corresponding Total Sum of Squares.
V
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In order to evaluate the integral in  (6.2.12) note that, by defin ition,

* ( x ( W

where,

x ( j)  is a partition  o f the integer j  o f weight p, o f the form 

U p  d2, . . . , jp }  where a 0 and ^  = j ,

C^{jj(fi) is  the zonal ^lynomlal in the eigenvalues o f Q correspond­

ing to partition  %(j),

b ^-1 = b {b+ l),..(b+.i"l)

and I  denotes the sum over a ll possible partitions x ( j)  o f  j  ,
X(d)
-‘&e, fo r example, Constantine (1963) or Johnson and Kotz (1972).

Substituting (6.2.13) into (6.2.12) and interchanging the order o f 

summation and Integration (For ju s tifica tio n * see Constantine (1963)) 

yields:

t -|{N+v.+v9-p - l)  *1 _1
x j  |2j 1 2 e x p f- itrZ  'A |)  Cx { j ) ( i2  1 Af)dK (6.2.14)

fo r v2 < 2 and k > p

The in te g ra l in (6.2,14) may now be evaluated using Constantine's (1963) 

fundamental integral identity:



; |  exp { -  t r  RS} | S | W M  Cx ( j ) (ST)dS

- y t ,  -(( j)) Cx(j) (R ', T ) |R r t  , (6.2.15)

where r p( t lX( j ) )  = r p( t)

In order to use (6.2.15) to evaluate the integral in (6.?.,14} vie need 

to make the transformation:

with corresponding Jacctiian (See, fo r  example Press (1972)):

J ( z  > s )  -

This yields a fte r some sim plification, and ignoring a ll constants of 

proportionality:

'  M W '

•■i(N+Vx+V--2p-2) ,
- !A|I 1 2 2F1(HP'H-V2),MN+v1fV2-2p-2); i ( k - l ) ;  A| 7Af)

(6.2,16)

fo r v2 • 2 am' k > p

where gF^(a^, a2; b^; n) is  the hypergQoineiric function with matrix 

argument defined by James (1954).



221.

Remark 6.2.1 Constantine (1963) states that the hypergeometric function 

o f matrix argument ^^ (a ^ , a25 b^s' o) converges fo r  IlfiH < 1 , Where 6R6 

denotes the maximum o f the absolute values o f the eigenvalues o f $2.

That HA*“  ̂ A| 1 < 1 is  easily shown by the following argument:

For k > p, is  positive defin ite with probability 1 (See, for 

example 61 r i  (1977) pages 74-6), so that under th is condition Aj""1 exists, 

ijlence:

A f 1 Af S£A| *  A !)"1 A*'

= { I  + A | '1 A*)-1

Now, the eigenvalues o f (I + A^"1 A*)~^ are the reciprocals o f the eigen­

values o f (I+A|-  ̂ A|) and the eigenvalues .<?f A|) are the roots

o f the determinants! equation:

| t  + A'l"1 Ag -  XI| = 0 

i.e . lAf 1 A| - (X - l) I  | = 0

For k > p and n* > 1, A^'1 A^ is positive defin ite, so that

(X1. -  1) ^ 0 Vi

i.e . A. > 1 V i

The result now follows, since eigs ( A if * Ap = ( ) . Hence, expression

(6.2.16) fo r the predictive density o f x converges as long as k > p, n *> 1.

Remark 6.2.2 To confirm that (6.2.16) corresponds to (6.1.13) fo r the 

case p = 1, note that in th is case:
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x(d) = d

^

2r n ar  v 01 ■ j i ,  - % m —  r

So (6.2.16) becomes:

which is  exactly expression (6.1.13).

Remark'6.2.3 As in  the univariate case, assumption (6.2,9) effectively 

implies that:

= n* = n, i  »

and that when evaluating the posterior probability that x belongs to 

one o f the chosen from j  = 7»...,nJ is replaced by x in the 

sample. Under these circumstanv ^ therefore, the e ffective size o f the 

training sample becomes N - 1.

Analogously to  results (6.1.14) and (6.1.15) fo r the univariate 

^  case we have that:

A1 t if t l  + (x- xr jH x r i -XM)'- i.(x r, i -Xi i )(x-xr j ) ' i-T ™ (x -x r .)(x-xr .) '

(6,2.17)
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# - * 2 -

'  (6.2.18)

where,

are the between, group and within groups suns o f squares, respectively, 

as .defined In Table 5.1.1 , F ina lly, A| is  obtained from;

A§ = Af + A| (6.2.19)

Formulae (6,2.17) and (6.2.19) w ill be useful when evaluating t ^  pije- 

d ictive density (6.2.16) fo r a ll groups irr , r  » l , . . . , k ^ .  TheiN-, |fs 

are the exact multivariate analogues o f  those given in Appendix 6.^ fbi* 

the case p =» 1 and w ill therefore be omitted,

i f  jiould also be noted that under these circumstances N should be 

replaced by N -  1 in (6.2.16)

Remark 6.2.4 As in the univarivte case, the parameter v1 may assume 

the value p + 1, giving E the usual noninformative p rio r d istribution, 

whereis Vg has to assume a value less than 2 to ensure that the pre­

d ictive  density is  propsrly defined. I f  therefore, analogously to the

univariate case, we assign the values:

1 v-| * p + .1
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giving z a noninformative prior d istribution relative to the likelihood 

function o f the multivariate normal d istribution, and T a prior d is tr i­

bution that is  only very approximately so, then, the predictive density 

becomes (remembering, that N is replaced by N -l):

f(x!TS, 5 (k -l) ; A f 1 Af) (6.Z.20)

fo r k > p

Remark 6.2.5 The alternate, asymptotic expression fo r f(x|TS, v-|, Vg,my) 

corresponding to tha t.in  the univariate case is obtained by reversing 

the order o f  integration in (6.2.8). This yields:

r -$(k+v,,-P'i2) " i ( ^ +vi"P)
f (x | id ,v v v2,Trr ) « ;j i y  2 {A* + fc X * )A {y rX * ) '\ 1 dtc

K

where X* is  the(p x k)matrix: ( x ^ ,   xg )

and A » dfan{ n t; i  = 1.......k }

The seconv-.. in  the integrand is proportional to the density 

tion o f a (p x k) matrix T-distribution centered at X* (See, fo r examjL. 

Dickey, 1967) so the ihtegra'i is  proportional to the -K k  + V g -p -2 )^  

moment o f t iiv  funnormed) sample covariance matrix

where the i  » jo in tly  have the abovementioned d istribution.

Assuming that n | = V 1 and that M is large enough fo r the 

matrix T-distribution to be appixiximated by the jo in t d istribution of k 

independent (since A is  a diagonal matrix), p-varisfcc normal random 

variables with d iffe rent mean vectors x^ , 1 = l , . . . , k  but common cova­

riance matrix, the above integral may be evaluated approximately using
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the -  |(k  + v2- p - 2 ) th moinemt;of the generalized variance of the noncen­

tra l tiishart d istribution Wp(k-1; S|i Q*) 

where:

s2 “  I F i  A2 (assuming N = kn* = kn) 

and £2* = |  S|""̂

Theis y ie lds, a fter some algebra:

-|(N+k+v1+v„-2p-2)
f(x|TS,v1 ,v2>irr ) « |A|| 1 2 e xp{-trfi*} iF , (& (p -y l) ; l(k -1 ) ;P )

(6 . 2, 21)
fo r v2 < 2 and k > P

Once again, the parameter v2 has to assume a value less than 2 so that T 

cannot have the usual noninformative prior d istribution. Assigning the 

values v.] = p +.1 and v2 = 1 as before and replacing N by N-l (see Remark 

6 .2.3), (6,2,21) becomes:

-$iN+k-p-l)
f(%|TS.,p) ; |Ag| exp{- trO*}^F^(& ps |(k - l) :n * ) (6.2.22)

6,2,1 On Evaluating the Predictive Densities in the Multivariate case 

The exact and approximate formulae (6.2,20) and (6.2,.22) fo r the 

predictive density o f x given that i t  comes from ^  are expressed in 

terms o f the hyper-geometric function o f matrix argument ^ ( 1  p, i(N -p -l) i 

j j( k - l) i A|) and the cofflfulent hypergcometrlc function o f matrix 

argument p; l ( k - l ) ;  tl*) respectively. In order to  try  and evaluate 

these functions, the suite o f FORTRAN programs o f van der Westfyizen and 

Nagel (1979) fo r computing the zonal polynomials in the eigenvalues o f a 

matrix 0 , corresponding to a ll the partitions o f an integer j ,  were used. 

This suite consists o f a number o f programs that generate tables o f a ll

9
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the partition  vectors, symmetric functions, elementary symmetric function 

weights and Chi-coefficients (James, 1961, 1968) corresponding to a ll 

the partitions o f the integers o f interest, and then store them on file s  

in the computer. The zonal polynomials corresponding to these integers 

are then computed by the las t program in the suite, using these tables 

and the eigenvalues o f the matrix in  question.

Although the actual computation o f the zonal polynomials is  quite 

rapid once the f ile s  containing the abovementioned tables exist, the 

generation o f these tables is very heavy on computer time, particularly 

fo r large integers, where the number o f possible partitions becomes very 

large. As an indication o f th is , i t  took about 20 hours on the Univer­

s ity  o f South A frica 's Burroughs B6800 computer to generate the tables 

corresponding to a ll the partitions o f a ll the integers up to 18.

Unfortunately in  a ll the examples considered, the number o f terns 

required fo r  either o f the two abovementioned hypergeometric functions 

to  converge was far in excess o f what could reasonably be computed with­

out incurring prohibitive computing costs. An attempt was made to get 

an indication o f the values, or re la tive  values, of the hypergeometric 

functions in the predictive densities corresponding to d iffe ren t popula­

tions by studying the successive sums of the individual terms in the 

hypergeometric series for integers j  = 1 to 18, However, the graphs o f 

neither the values o f these successive sums against j  nor o f the ratios 

o f these sums corresponding to  d iffe rent populations against j ,  provided 

any insight, i-xcept that the values and re lative values o f the hyper- , . 

geometric functions would be very d ifferent from the values and relatiVv 

values o f the sums of the f i r s t  eighteen terms in the corresponding 

hypergeometric series.

Therefore, the unhappy conclusion is that although the programs of 

van der Westhuizen and Nagel (1979) are very useful for computing the
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the partition  vectors, symmetric functions, elementary symmetric function 

weights and Chi-coefficients (James, 1961, 1968) corresponding to a ll . 

the partitions o f the Integers o f interest, and then store them on f ile s  

in the computer. The zonal polynomials corresponding to these integers 

are then computed by the las t program in the suite, using these tables 

and the eigenvalues of the matrix in question.

Although the actual computation o f the zonal polynomials is quite 

rapid once the f ile s  containing the abovementioned tables exist, the 

, generation o f these tables is very heavy on computer time, particularly 

fo r large integers, where the number o f possible partitions becomes very 

large. As an indication o f th is , i t  took about 20 hours on the Univer­

s ity  o f South A frica 's Burroughs B6800 computer to generate the tables 

corresponding to a ll the partitions o f a ll the integers up to 18.

Unfortunately in a ll the examples considered, the number o f terms 

required fo r either o f the two abovementioned hypergeometric functions 

to converge was fa r in excess o f what could reasonably be computed with­

out incurring prohibitive computing costs. An ettempt was made to get 

an Indication of the values, or relative values, o f the hypergeometric 

functions in the predictive densities corresponding to d iffe rent copula­

tions by studying the successive sums of the individual terns in the 

hypergeometric series fo r integers j  = 1 to 18. However, the graphs o f ■ 

neither the values o f these successive sums against j  nor o f  the ratios 

o f these sums corresponding to d iffe rent populations against j ,  provided 

any insight, except that the values and re la tive  values o f the hyper­

geometric functions would be very d iffe rent from the values and relative 

values o f the sums of the f i r s t  eighteen terms in the corresponding 

hypergeometric series.

Therefore, the unhappy conclusion is  that although the programs of 

van der Wssthuizen ant Wagel (1979) are very useful for computing the
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values o f individual zonal polynomials, they are unfortunately not.of 

much practical use, given the computers presently available, for.evaluat­

ing the hypergeometric functions o f matrix argument appearing in the pre­

d ictive densities under the random effects model.

6.3 The Predictive Bayesian Approach using different prior

Distributions ; '

In th is section we investigate the use of two d iffe rent prior 

distributions in  the evaluation o f the predictive density o f a new ob­

servation x of unknown orig in , given the training sample TS = {x ^ ,  

j= l, . . . ,n ^ ;  1=1,. . . ,k }  and the hypothesis that x e irr , one o f the k 

populations in the tra in ing sample.

The reason fo r doing this is  twofold:

F irs tly , other authors have considered d iffe rent p rio r d istribu­

tions fo r the parameters in Bayesian analyses associated with the normal 

d istribution , and i t  is  interesting to investigate the ir use in the 

present context.



Secondly, in the lig h t of the problems encountered with the para­

meter v2 (the exponent o f and |T|"&) when using the nonir,formative 

p rio r d istribution in evaluating the predictive density o f  x, i t  is  in­

teresting to see whether sim ilar problems occur when d iffe rent prior 

assumptions are used.

The following two cases w il l  therefore be investigated in Sub­

sections 6.3.1 and 6.3.2, respectively:

(1) using the d istribution that Box and Tiao (1973) use as reference 

p rio r when considering the random effects model in the context of 

one-way analysis c f variance, and

(2) using the natural conjugate prior d istribution fo r the parameters 

c f(o r £)» 5 and tz (or T).

Because of the fact that the results fo r the univariate and multi­

variate situations are, apart from algebraic complexity, essentially the 

same, the above two cases w ill be investigated only fo r the univariate 

s ituation. In the f i r s t  case the result obtained w i l l ,  however, also 

be given for the corresponding multivariate situation.

F inally, some general comments about the Predictive Bayesian ap­

proach under the random e ffect model w il l be made in Sub-section 6.3,3.

6.3.1 Box and Tiao's Prior Distribution

Box and Tiao (1973), Chapter 5, make the point that Under the random 

effects model with equal sample sizes from each group, tho sampling theory 

estimator t2 fo r the variance t2 of the population means given by:

where S, and Sg are the between groups and within groups mean squares, re­

spectively, as.defined in Table 6.1.1 fo r p = 1 dimension, may be. negative.
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In order to avoid th is poss ib ility  within the Bayesian framework, 

they propose the following noninformative jo in t p rio r density fo r the 

par?r-3ters o2', € and tz:

g(cK,? i Tz)doad5di:z « (0z)"^ (o !!-[-riTE) " 1daJ!d?dT!! . \  (6.3.1)

Remark 6.3.1 This prior d istribution can be c ritic ised  because of the 

fact that the within-groups sample size n appears in expression (6.3.1) 

fo r its  density. Thus the p rio r d istribution is  in th is sense dependent 

on the actual likelihood function o f the sample its e lf ,  and not only Of|; 

the form of the likelihood function, as is  usually the case.

As before, we w il l generalise expression (5.3.1) fo r the prior den­

s ity  s lig h tly  by using the following form:

g(o2 ,5iT£)daad£d-[2 « (a2)  ̂ 3(u^+nt2) ^ ^da*d£dx2 . (6 .3 .2)

The form ussd by Box and Tiao is therefore given by (6.3.2) with 

v'l  = *2  = 2-
Substituting (6.2,2) into (6.1.2) and (6.1.3) of Section 6.1 and 

tisirtg the same notation t>s in  (6.1.4) gives:

|  j  - L  ^

c18 y, t2 e

x T~kexp{~ ™ -  ^  (p,j~Oz>(aa)  ̂ 1(ai +nT2)  ̂ 2d5dT2dydd:i

(6.3.3)

where, as before, i t  has been assumed that n| * p, V i, so that the 

observation from tt̂  has been replaced by x, x has been re-labelled 

Xpj and N has been replaced by N -l.



As shown in  appendix 6 .4 , th is  eventually y ie ld s :

where,

' Q fM k -3 )) 
Atz
% "

(6.3.4)

are the between gtoup and within group sums of squares, respectively^ 

yjith x replacing one 01 ouiervations, xr<> from the r 1**1 group, 

and x? and x* are the correspunaiuq adjusted i**1 group-rnd overall 

means, .,

V # ) " wm-l -i

is  the incomplete garrsna function, and the expectation is taken over the dis­

tribu tion  .of z, where z has a gamma d istribution with parameter i(Nw^-k-2). 

Therefore, fo r = v2 -- 2, the predictive density o f x, given the tra in ­

ing sample, Box and Tiao’ s prior d istribution and the hypothesis that, 

x e ny , is,from (6.3,4)

where 2 has a gamma d istribution with parameter £(N~k).

(6.3.5),

\\



To evaluate expression (6.3.5), the easiest approach is to use 

Pearson's (1922) formula for the incomplete gainmg function (the formula 

given by Pearson is fo r the incomplete gamma function ra tio  r^(m)/r(m)):

ry (m) = n f1exp{-y} ymhj'/( lf .n ) i:j' :i . (6.3.6)

Applying (6.3.6) to (5.3.5) and interchanging the order o f integration 

and summation (jus tifie d  by the uniform convergence of (6.3.6) fo r a ll y ), 

y ie lds: "

f(x|TS,» ) t = ( * p - l ( k- l ) ( A*)-HN-k) I
j=o iM k * n ) UJ

x £  exp{-(A */A *)z}ZH k - l M zi( * - l< ) - leXp( . z}d2

where = A| *  A|.

The integral may be evaluated as a gamma function, and a fter some 

sim plification this eventually yields the following expression fo r the 

predictive density:

fW T s . . , ,  .  i j i ,  ' W

-'tA3r$1W,FO,S(N-n; 6(k*l>; «t/A3> (6.3.7)

wher'e F(a,0;Y5X) is the hypergeometric function defined in (6.1.13).
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Remark 6.3.2 I t  is  Interesting to note the close s im ila rity  between 

expressions {6,3.7) and (6.1.17), the former based on Box and Jiao's 

noninformative prior d istribution (6.3.1) fo r the random effects model, 

and the la tte r on the noninformative prior d istribution (6.1.1), -with 

V-J *  2 and v2 = 1. In order to establish jus t how sim ilar these two ex­

pressions are, (6.3.7) was applied to the data o f Example 6.1.1, y ie ld ­

ing the following posterior probabilities fo r each o f the five  populations, 

assuming equal p rio r probabilities:

Population 1 2 3 4 5

Posterior prob. .0072 .0560 .4921 .3766 .0676

These probabilities agree,to two decimal places, with those obtained using

(6.1.17), confirming that the choice o f noninformative prior distribution 

has l i t t l e  e ffect on the predictive densities.

F ina lly, i t  is  interesting to note that we do not experience any 

problems with the parameters Vj and v2 in the Box and Jiao prior d is t r i­

bution, in contrast to the case with the more usual noninformative prior.

i

Remark 6.3.3 In the multivariate case, Box and Jiao's p rio r distribution 

fo r the Random Effects model is:

y d . : . : ) " / '

and the predictive density o f x becomes, in an analogous manner to (6.3.7):

f(x|Ts,irr ) -  | f l | | " iW ' p)2F1(!(p + l).!(» -P ); M W ); f l f 1 M j) (6.3.9)

where A| and A| are defined in Section 6.2 and 2F^(a^, a2; b^; SI) is  the 

hypergeometric function o f matrix argument defined in (6.2.16).
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6.3.2 Natural Conjugate Prior Distributions

The jo in t  natural conjugate p rio r d istribution fo r the case p * 1 

fo r the mean and variance of the normal d istribution is  the Normal-in­

verted x2 d istribution (see, fo r example. Press (3972)) with density 

function:

. c . a . " )

where v2, b,c and d ,are constants and v̂  > 2, The natural conjugate 

p rio r d istribution fo r a2 is the inverted x2 d istribution, with density 

function  (see, fo r example. Box and Tiao (1973)).-

g(oz) « h 1) ' 1'1'1 exp{-8 r i )  (6.3.11)

where v̂  anti a are constants and v-j > 2, and i t  would seem reasonable to

assume that <;* is  independent o f (5 , iz).

Substituting (6,3.10) and (6.3.11) into (6.1.2) and (6.1.3) yields the 

following expression fo r the predictive density o f  x, where we have 

assumed that n̂  = n, V. and that x has replaced some x^. in tiie training 

sample from 1

f ^ |T S Ja ,b ,Cld,vv v2,7r ) -  f f f (  o"N eXp { - - L  f  f  ( x ^ - y . ) 2}
%  Za 1o1 j=1

x T™k exp 1 exp{-^™ }

2 exp ( t ^ - ) 2 + -altd&k^dydo*



r f  -(N+v,) , k n

|  di ) )d y T! djid„=  (6 .3 .1 2 )

The inner pair o f integrals I-| in (6.3.12) are evaluated in a manner 

analogous to that used to evaluate the corresponding integrals in Section

6.1 , yielding

( * - '  " )

"  ' ' k ' )  '
where g(ji) = I  (y . - \ t  )2 + " . -X -  - b ) z + d1

•1=1 1 * i+c2k *

Therefore,

f(x|TS,a,b,c,d,v^,Vg) = |  (o2) ^ T exP t " ( a2 *  A|)}

02 °  ?

[ "(g(u)) ^  2  ̂ a~H exp{--2_ (8,3.M)

Wh6re A2 s j ,

The inner integral in (6.3,14) can be considered as the expected value 

o f

-i(k+v2-2)
{g(y)) where the i  = are independently dis­

tributed N(x* » ~  ) random variables,
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A way of evaluating th is expected value is to assume that.c2 <  k, 

so that

_ L _  *  k
c2k+1

k
9 (ti ■I .^ (U j " b j ’  + d8

Remark 6.3.4 The assumption c2 ^  k implies that, a p r io r i,  5 has a dis­

tribu tion  that is narrowly concentrated around the value g = b and that 

the information from th is  p rio r d istribution fa r outweighs the informa­

tion contained in the tra in ing sample.

Under th is assumption i t  is  clear that g{y) is distributed as:

9(h) “  £  Xj^A*) + d2

where x^(^*) represents' a1 noncentral chi-squared rar-.'om variable with k 

degrees o f freedom and noncentrality parameter:

X* = ™  I  (x t -  b)a 
o *  1 -V  u

So tiie inner integral in (6.3.14) can be considered to be proportional 

to the -&(k4%-2)th moment o f times a x^{^*) d istribution that has

been shifted an amount —  to the righ t, From Appendix 6.1 we know that
o2

this moment w ill exist only i f

- |( k  + v2 -2 ) > -  |  

i.e . only i f  v2 < 2 .) 1
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However, this condition violates the condition v2 > 2 that is  necessary 

for the natural conjugate p rio r to be a proper d istribution.

On the surface i t  would therefore appear that when the parameters 

ty2 , 5  and t 2 follow the ir natural conjugate p rio r d istributions, then the 

predictive density o f x does not ex is t. However, *his contradicts the fact 

that since the jo in t d istribution o f x, a2, % and t 2 is proper, the

marginal d istribution, and therefore the predictive density, o f x must 

exist. The reaso,, fo r th is contradiction clearly lies  in the approxima­

ting  assumption on g(%) which has apparently been so powerful as to have 

rendered improper the predictive d istribution  of x.

As i t  does not appear to be possible to evaluate the integral (6.3.14) 

analytically Without this approximating assumption on g(jj)» we w ill not 

pursue the matter any further. I t  U  nevertheless interesting to com­

pare the situation found here with tha t when a2, g and t 2 follow diffuse 

p rio r d istributions. Undtr those circumstances the predictive density o f 

x does not exist when the parameter v2 in the prior density o f t 2 is  given 

the value 2, required fo r i t  to be noninformative in the usual sense.

6.3.3 Final Remarks

From the results o f the previous two sub-sections we therefore know that:

1) the posterior probabilities of the k-| populations from which the ob­

servation x could have come are not materially affected by the form of 

noninformative p rio r d istribution used fo r the parameters cr2 (or 2 ),

5 and t 2 (or T), be i t  the more usual (Jeffreys, 1961) invariant prior 

d istribution (with modification to the parameter V2) or Box and Tiao's

(1973) prior d istribution fo r the random effects model;
2) i f  the abovementioned parameters f o l lw  the ir natural conjugate p rio r 

d istribution: then the corresponding predictive densities cannot be 

evaluated.

The formulae fo r the predictive densities derived in th is section an<4. 
in the previous two are a ll expressed compactly in .terms of hyper­

geometric functions, which are readily evaluated on a computer or



even a modern programmable pocket calculator fo r the case p=l. For 

higher dimensions however,.;n spite o f the existence o f the programs of 

van der Westhuizen and Nagel (1979) fo r computing zonal polynomials, 

described in sub-section 6,2.1, the computation o f the hypergeometric 

functions o f matrix argument, and hence the predictive dehsities and pos­

te rio r probabilities, is  not yet a practical proposition.

The only ambiguity in a ll the abovementioned formulae derives from 

the fact that x can replace any one of the n observations j  = l , . . . , n  

in the training sample from tt when computing the quantities A^, A| and 

Appearing in them.

A sensible rule fo r getting around th is ambiguity would be to replace 

that observation xr j  that is  closest to the sample mean from the r ^  po­

pulation, as measured by the Mahalanobis distance, i.e . Choose xr j  such 

that

is  minimised when j  = j* .

This rule would avoid the poss ib ility  of anomalous results due to , fo r 

example, an extreme observation from 7rr  being replaced by x.

6.4 Other Bayesian Type Approaches

In this section two further approaches to discriminant analysis, the 

Empirical Bayes and Semi-Bayes apprOdtl^.s, are discussed in the context 

o f the random effects model. In each < .̂-2 the discussion is confined to 

a b rie f description o f the approach, its  application to the present pro­

blem, the derivation o f preliminary resuV .• and recommendations fo r fu r­

ther research.
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6.4.1 The Empirical Bayes Approach

wjod descriptions o f the Empirical Bayes approach to s ta tis tica l 

fn fr -ice may be found in many texts (see, for example, Maritz (1970),

Cox and Hinkley (1974) and van Niekevk (1976)) and therefore a b rie f 

sketch here w il l suffice.

Suppose we have an observation x made on a random variable X whose 

distribution function F(X(X) depends on an unknown (vector) parameter ,\.

In both the "pure" Bayes and Empirical Bayes methods the parameter X is 

assumed to have a prior d istribution , the point o f departure between the 

two being the way in which th is  p rio r d istribution is treated. As we 

have seen, the "pure" Bayes approach assumes that the prior d istribution 

o f X is  e ither completely specified or that any unknown parameters in 

i t  themselves have p rio r distributions that are completely specified.

In contrast, the Empirical Bayes (EB) approach gives the p rio r distribu­

tion o f X a frequency interpretation whose parameters may be estimated 

from previous data by classical techniques. Therefore the E.B. approach 

uses the mathematical techniques and results o f the "pure" Bayes approach, 

but avoids the problem in th is  approach o f having to specify the prior 

d istribution completely.

For example, i t  is  well known (see, fo r example, |ia>. J) that 

the Bayes point estimator o f X given x is , using a quadratic,; loss func­

tion: |

''

where,

G(X) is the prior d istribution function o f x *r>ti the integration 

‘ is  performed with respect to G(\).

Tho E.B. estimator o f X is now obtained from (6.", . by replacing G(X)



by 8(A), the sample-based estimator o f the prior distribution function 

o f A .

tie may apply formula (6.4.1) to our random effects model as follows. 

Assume that

X lp -N p(p, t )  (6.4.2)

where, *  p r io r i,

y T) (6.4.3)

Given an observation x o f X, our Bayesian point/estimator o f the corres­

ponding p is :

where f(x {p ) and g(p) are the density functions o f the distribu­

tions (8.4.2) and (6.4.3) respectively.

This yields, a fte r some algebra (see, fo r example, Maritz (1970) for the 

univariate case):

Six) -  X -  r.(r, *  T)"’ (X -  li) (6.4,5)

The E.B. .estimator o f p is now obtained by replacing the unknown parame­

ters z, % and T in (6.4.6) by the ir sample-based estimators 2 , 'i,'-and T, 

respectively.

In practice, particularly in discriminant analysis, we w ill general­

ly  have more than one observation x on which to base our estimator o f y . 

In the situation considered in th is thesis, where we have a training
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sample { x ^ ,  j  = o f size n from each o f i' populations

1.- as described in Section 5.1, then our E.B. estimator o f

the mean w in  be based on the sample mean x. . Remembering

that

* .■ > 1 - y v f  w e>

and using ti;e notation o f 'table 5.1.1, the E.B, estimator o f 1s, 

from (6,4.5):

^  ( EB ) = x._ -  ^  S ( 1  2 + f ) " 1 (X._ -  E)

"  x1. " S2 Sl ‘l ^X1. ‘  X. . '  (6.4.6)

where and S2 are the between group and within group mean square 

. matrices, '.espectlvely.

Coning now to our discriminant analysis problem, the Bayesian clas­

sifica tion  rule that minimises the expected loss from misclassification 

(assuming equal costs o f m isclassification) Is to classify the observa­

tion x o f unknown orig in into that population n, fo r which!

( x - K ^ + U j ) ) *  f ’ b j - P j )  ^ l o g ^ -  v j . l  k i j  ii i  (6.4.7)

where qj is  the p rio r probability that x comes from ttj. (See (3.1.3) 

in Chapter 2).

As mentioned in Sub-section 2.1.1, Anderson's (1951) ''plug-in" rule 

(2.1.19) obtained by replacing the unknown parameters u '̂i ly  and £ in 

(6.4.7) by the ir maximum likelihood estimators x̂  , Xj and S2, respec­

tive ly , is  an E.B. procedure under the fixed effects model* Under the 

random effects model the E.B. procedure is  to replace and by ^(EB)
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and tij(E8) respective'!>, given in (6.4 .6 ), and Z by Sg. This yields the 

following E.B. c lassifica tion rule:

Classify x in to  tha t population ir̂  fo r which

V j = l  k ;  j  = i  (6.4.8)

Therefore under the random effects model, the c lassifica tion rule corres­

ponding to Anderson's (1951) rule fo r the fixed effects case is  given 

by (6.4.8).

- The properties and behaviour o f c lassifica tion rule (6.4.8) have 

not yet been studied, and th is indicates a promising area fo r  future 

research.

I t  is  interesting to note that the E.B. estimator (6.4.6) for 

which may also be written as:

i^(EB) .  (I-A)x^ +A(X ) (6.4.9)

where A = S2

is  the multivariate analogue o f the James - Stein (1961) "shrinkage" 

estimator (s lig h t ly  modified) o f y^. See, fo r example, Cox and Hinkley

(1974). I t  also corresponds to the approximate large sample posterior 

mean of under the random effects model, given by Box and Tiao (1973) 

when the ir p rio r d is tribution , discussed in Sub-section 6.3.1, is  used.
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6.4.2 The Senrf-Bayes Approach

Geisser (1967) coins the term "Semi-Bayes" to describe the Bayesian 

analysis o f the properties o f the classical approach to discriminant 

analysis based on the Linear D iscrim inant Function (or the Quadratic 

Discriminant Function in the case o f unequal within-group covariance 

matrices). Considering the two population problem, he investigates both 

situations where the parameters are known and the classifice tion rule 

(given in (2.1.6)) is  based on the population discriminant function:

u,2(x) -  ( x - K v j tV j ) ) '  (6.4.10)

and where they are unknown, and the c la s s if ic a tio n  rule (given in (2.1.19)) 

is  based on the sample discriminant function: /

v12(x) .  (x -} (x , 4X2i)) l s ', r x , , - x 2.) (6.4.11)

Given training samples o f size n̂  and n^ (denoted co llectively by 

T§) from the two populations and , respectively, and assuming a

..diffuse p rio r d istribution fo r the parameters p-j , u2 and f  \  the jo in t 

posterior density o f these parameters becomes: .

f(PV  v r  Z-1 |TS) “  jE~1 ]H v-P+^) exp{-& Tr f ^ v S

+ nl ^ l .  “ ul ^ xl .  " ^ l ) '  + n2(x2, " l12 ^ x2. (6.4.12)

where tiie notation is  the same as that used in earlie r sections.

Using (6,4.12) as his starting point, Geisser (1967) f i r s t  investigates 

the posterior d istribution o f U^(x) and hence obtains expressions fo r 

the posterior lim its  on the "true" probabilities o f misclassification 

when classification rule (2.1.6), based on Û 2(x), is  used, I t  turns



out that these ■’'•y be obtained d irectly  from the posterior dis­

tribu tion  o f (p., -  Pg)' -U2) ‘ to r whi.ch the following expres­

sion fo r its  density function is derived:

V  -  j l ,  " j

where,

the Wj are the individual terms o f a negative binomial density 

and g ^ 2j ( ' )  is  the density function o f the x ^ j  d istribution.

Remark 6.4.1 I t  is  interesting to note the s im ila rity  between (6.4.13) 

and expressions (3.1.11) and (3.1.12) fo r the density function o f 62 

under the random effects model.

■' Secondly, Geisser (1967) obtains posterior lim its  on the conditional 

or "index" probabilities o f m isclassification when using classification 

rule (2.1.19) based on the sample discriminant function V ^(x). Because 

o f the complicated distribution theory involved, asymptotic theory is 

used to obtain approximate lim its  in  uerms o f the standard normal integral 

which he shows should be reasonably accurate even fo r moderate sample 

sizes. F inally, he obtains expressions, in terns o f the t-d istribution  

function, fo r the unconditional (or posterior predictive) probabilities 

o f misclassification when the, sample-based classification rule is used.

To apply th is Semi-Dayesian approach to our random effects , we 

need f i r s t  to obtain the jo in t postdsior distribution o f the param- ■) 

in th is  model corresponding to expression (6,4.12) in the fixed e ffec ts  

case. In what follows, therefore, we w ill derive this distribution 

using a diffuse p rio r on the parameters S"J, ? and T"^. As shall be seen, 

however, applying th is d istribution to the discriminant analysis problem 

in a manner analogous to Geisser (1967) does not promise to be a stra ight­

forward matter. /



Considering f i r s t  the two-group case, the jo in t posterior density 

o f the parameters p2, Z*1, < and T, given the training sample 

Ys i =1,2} , may be written:

rbpPg.E"’ .e.T"') -  f f r s i i i , ) P ( ^  ,«2| 5 , r ' 1) pce'1 ,e.T) (6.4.14)

Where, 2 n-

j  j  expM(»i-E)' T"'(ur 5)}

jand

h fte r  some sim plification, and assuming that = n2 = n, this becomes:

! '
jH tiv y2,£"‘1,6 , r ' ,|TS)* |5 |'HN-P-1) | t |H P -1) eXp { - | T r r -1 A2)
I :!
\  2 ; ' ,

*  exp {-^ % [n(x^

i '  (6.4.15)

where,.

N = 2n \

We may sim plify the exponent in (6,4,15) by using the following identity 

given 6y Box and Tiao (1973) in the ir appendix A7.1:

(x-»)' A(x-a)+{x-b)' E(x-b)«(x-c)' (AtB)(x-p)+(a-b)1 (A '^B "1) " ' (a-b)
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where,

. .'X, a and b are p-tbmenstonal vectors, A and B are (p x p) 

symniGtric nonsingular matrices 

and c = (A + B)-1 (Aa+Bb)

This f in a lly  yields the following expression fo r the jo in t posterior 

density o f y-,, n2, £ and T-5:

c, r ' ) .

x exp { - J  Tr K ' 1 Az t(nE‘ 1 + r 1 )  -  c , ) ( l i ,  -  c , ) '

(6 .4 .1 6 )

where ci  = (ns'1 ^  T"1) ' 1^ ' 1 + T” 1 g) 1 -  1,2

For the general k-group case (6.4,16) becomes, assuming =n, V 1 =1

P(«r . . . , i-V  f ' . e ,  r ’ ) « |E|-H N-P-1)|T |-MI=-P-1)

X exp { -  j  T r t l" , A2+ (M '’ + r 1) j  

♦ (n '1s+T)“ 1(A ,+ k (x ^ - 6 ) ( x ^ - 5) ' } ] )  (6.4,17)

wherj,

Cj is  the same as In (6.4.16)

p
 ̂ - c? . q



Expressions (6.^..16) or (6.4.17) should therefore be used instead 

o f (6.4.12) as starting point fo r the Semi-Bayesian analysis under the 

random effects model.

Comparing these expressions, i t  is  apparent that the Semi-Bayeslan 

analysis under the random .Wects model w ill be considerably more d i f f i ­

cu lt then under the fixed effects model, and we w ill therefore not pro­

ceed any further with i t  is  th is thesis.

Nevertheless, this promises to be an interesting direction fo r 

research, especially i f  i t  is  applied to the classification rule based 

on the modified discriminant function (6.4. 8) derived in Sub-section

6.4.1 using the Empirical Bayes approach.

Finally i t  is  interesting to note that the approach, o f Chapter 3 

and 4 is the classical analogue, under the random effects model, of 

Geisser's Semi-Bayesian approach to the analysis o f the properties o f the 

classical rules o f discriminant analysis.
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Appendix 6.1 Derivation o f the r th moment of the d istribution

The density function o f X ~ can be written in the following form 

(see, fo r  example QR. Rao, 1965):

f),(x) = expC-^x} 9y+2j'x  ̂ (A6.1.1)

where gw2j(x )  is  the density o f the central d istribution. Therefore,

E[Xr ]  = exp(-y } 1 (A6.1.?)

by the uniform convergence of the in fin ite  series in (A6.1.1). Now, i t  

is  well known that

fo r r  > -H v*2 j) and is not defined otherwise. Substituting (A6.1.3) into 

(A6.1.2) yields:

EC*''] .  2 W - W  1 ^  W.1 .*)

where X ~

Appendix 6.2

Derivation of the computational formulae fo r

*2(1-.*) "  i i ,  j l ,  lx1 i;x1 .) ( r . l )  W .Z A )

and

-  " j ,  " l . T . - ' I r . l )  W
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where the subscript (r,JL) denotes that observation from the r th 

population has been replaced by x. The computational formulae derive 

immediately from the foTIowing two general results:

Let be replaced by x in the sample {x^> i  = Then:

( i ) x = x + —̂ ^ .1 (A6.2.3)

(x~x,)2
( i t )  SS(J) ■ SS -  (Xj-X )* + (x-% ) ' --------------------------------- (A6.2.4)

1 8

SS -

and the subscript ( j )  has tiie same meaning as above.



Applying (AG.2£) and (A6.2.4) to Ag(r,l) yields:

A2 ( r . t i  "  f I ,  ,1 , |xu " xi . , !  ' j i / V V . ’ l r . t )  
i^ r

"  j ,  j i  *  j ,  " V l - S . ) ' -  ' " - V

"  j ,  '

(AG.2.5)

Coi.sidering A*^r ^ j ,  note that, from (A6.2.3),
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Therefore, applying(A6.2.4) to (A6.2.2), with n replaced by 

by , x by x , Xj by xp and x by xr  + —^  gives:

' -  C r . - ' . . ) '  + (*r.+ - r

Appendix 6.3 

Evaluating:

I  = |  j  ITI S|l!4,Z )M p H j i (lir F ,)'T 'l (|l1-E))clF,dT

T is a (pxp) symmetric matrix 

and 5 is a pxl vector.

)■

(A6.2.6)

(AG.3.1)
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= + kR-y jT 'c e -u  ) (AS.3,2)

and

.Substituting (A6.3.2) into (AS.3,1) yrelds:

1 -  |  iT j"1^ 2 ^expC-iTrtT-1 A ^ j |  |T\ " ‘T" 1 dgdT

(A6.3.3)

Since the integrand of the inner integral in  (A6.3.3) is proportional 

to the multivariate normal density function, we have that:

I « I |T| i  expHTr(T ,y }d T .  (AG.3.4)

The integrand in (A6.3.4) is  proportional to the density function 

of the Inverted Wishart Distribution {see, fo r example Press, 1972), 

the constant of proportionality being

1 r



1 -  c " ' « IS J  itk+ ,Z  P 2) (A6.3.6)

Appendix 6.4 

Evaluating

a‘  t i t ’ c

X - i f fc( t j2+nT2 }  2 e x p t - ^ ( y . - C ) 2 >dC drad |jd a 2

(A6.4.1)

The exponent in  the Integrand in (A6.4.1)can be written:

Wiere x t is  defined in (6.1.15) 

k

Using the result given by Box and Tiao (1073) in the ir equation (A1.1.5), 

Vi



the exponent becomes

k
'HAP ,o! + h ]* " t )  l ( P r c i )2 + ) 2)^ (A 6.4.2)

'O t   ̂ 1=1 lo*+n’i 2-'

and x is defined in (6.1.9).

Interchanging the order of integration, and using the above Vesult, we 

get:

to= 2 (o ! t n t ! )
(o2"H1TZ)

-Sv2

l i

dtid5do2dT£

" 1  I  ”
(02+hT: ex p C -M ~  + — ■— }dazdT2 

'‘O2 oa+nT2-'
(A6.4.3)



I f  we now make the transformation:

M y
i(N tv ,-k ) 4  p  -M v.tk-V , 4

e kp {-|— } j  z *  esp£-| “ Jdzdj/. (A6.4.4)

Denoting the inner integral in  {A6.4.4) bj/ I j  and making the transfor­

mation:

* ;  i A*/z

w ith Jacobi an J = ^A /̂w2 , I ]  becomes:

0

where r x(n) denotes the incomplete gamma function. 

Hence,,,

°  W

F ina lly, making the transformation:

(ASp.S)
/
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with Jacobi an J = iA^/z2, we get:

ft* 2( i(» 2tk-3))z'
|{N+v^-k-2)- l

x e x p {-z > d z

(A6.4.7)

where z has a ganrnia d istribution with parameter KN+v^k-Z).

Appendix 6.5 FÔ TRAtl Subroutine fo r computing the Hypergeometric and 

"  Confluent Hypergeometric Functions.

StBPO UTIN F H yP tiF N (A ,fl,C .X ,N M A X ,E fiR C R ,H Y P FN >  j
C SU8B0UT1NR TO COMPUTE HYP6R6ECKETRIC FUNCTIONS F ( A ,9 ;C :X )  AND 
C CONFLUENT HYPERGFCMETRIC FUNCTIONS M (A ;C :X ) .  ;
C THF PARAA’ FTEHS ARB? I
C A .B .C .X  ARE INPUT VALUES BEF tNBO IN F tA .B S C S X ) . B = - t  FOR M (A iC IX ) .  
c  NMAX = MAXIMUM NO. 0= TERMS TO HE CALCULATED (IN P U T S .
C ERROR = MAXIMUM VALUE OF LAST TERM (IN P U T S . ./■ . I

■' C HYPFN s FUNCTION VALUE (O U TPU T). !

REAL* 3  A , H ,C .X ,E ftFO H .H Y PFN  
H BAL*3 T5w M .5U M .AJ 
TFRM s i *
SUMsTEPM
IF (R  *L E . 0 . )  60  TO 2 
DO 1 J= t.N M A X

)»<n + A j~ U  ) / ( A J * (  C vA J-1  , ) I*XTERM ■= TFPM *(A+A.
SUM = SUM + TFRM 

1 IF {TER M  ,L T .  ERROR) GO TO A
1 CONTINUE

2 ' CONTINUE 
DO 3 J=1.NM AX

TERM s T E r tM * (A * A J -1 . ) / ( A J * ( C F A J - l .  I >*
SUM a SUM + TERM
rM T F n M  * L T .  ERROR) GC TO 4

I



with Jacobian 0 * JAg/z2, we get:

A* z(i(-V k -3 ))z  1

x exp{-z}dz 

At z( i ( v2tlc' 3) (AC <.7)

where z has a gamma distribution with parameter |(N+v^-k-2).

Appendix 6,5 FORTRAN Subroutine fo r computing the Hypergeometric and 

Confluent Hypergeometric Functions.

<JC0POUTIMF H Y P G P N tA .fltC iX .N P A X .E P R C R .H Y P FN ) j
SURROUTINF. TO COMPUTE HYPERGEC^F TR IC  FUNCTIONS > (A ,B ? C iX >  AND 
CONFLUENT HYPFRGFCMFTRtC FUNCTIONS M IA 5 C J X ).

I ” I , C * X AAREC IN P U r6 VALUE& CEFINEO IN F t A . B iC I X ) .  B = - l  FOR M {A 5 C !X ).|  
NMAX = MAXIMUM NO, CF TERMS TO liE  CALCULATE) ( IN P U T ).
FRROP a MAXIMUM VALUE OF LAST TERM (IN P U T );* i
HVPFN a FUNCTION VALUE (O U TPU T),

PEAL * 8  A ,,B , C , X , ERROR, HVPFN 
HEALAA TEAM.SUM,AU

SUMaTEPM
IF ( B  ,L E .  0 . )  60  TO 2 
00  1 J = 1 »NMAX

TERM = TiTPM*< A + A U -I ,  ) «< (E it'A j.-U  ) /  ( A J * (  C t A J - 1 « ) ) *X 
SUM = SUM + TFRM 
1F(TEAM  ,L T .  ERROR) GO TO 6 

1 : CONTINUE1

2 CONTINUE
0 0  3 J= I,N M A X

TERM = T E R M P lA fA J -S . ) / ( A U * fC  + A J - ) .  ) ) * X  
SUM = SUM + TERM |
IF (TFR M  ,L T .  ERROR) GC TO 4

3 CONTINUE
*  HVPFN a SUM

S B " " *  I
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Chapter 7 A Practical Application

In tiiis  chapter the theory developed in the thesis is applied to the 

s tra ti graphic problem in gold mining mentioned in Chapter 1. Given a 

tra in ing sample from each o f fifteen  s tra ta , we w ill f i r s t  evaluate the expec­

ted performance of classical discriminant analysis applied to this situa­

tion and then we w ill use the classical and Predictive Bayesian approaches 

to c lassify two observations o f unknown orig in into one o f the strata.

A fter f i r s t  transforming the data in the training sample to re­

move an unwanted d ilu tion e ffect, the data is  tested fo r multivariate 

normality and homoscedasticity. Using the methods described in Chapter 5, 

tests are performed to establish whether any o f the eigenvalues {X^} of 

Tzf^ are zero, and then estimates of the A. are obtained. These estimates 

are used to estimate the d istribution o f 6 ^  and 6^(x) given in Chapter 3, 

as well as to evaluate the expected probabilities of correct- and mis- 

classifica tion under classical discriminant analysis, given in Chapter 4.

F inally, using the Predictive Bayesian approach, two observations 

of unknown orig in are each classified into one o f a subset of the strata 

in the training sample. In th is case i t  is  possible to make direct com­

parisons with the results when using the Predictive Bayesian approach 

under the fixed effects tnor -1, as well as with those when using the classi­

cal approach. This illus tra tes  the effect that the differences in  the 

assumptions underlying these models have on the performance of discrimi­

nant analysis in practice,

7.1 A Problem in Stratigraphy

As mentioned in Chapter 1, this study arose out of the problem of 

f it t in g  a particular band of rock encountered in a gold mine into the 

sedimentary succession o f the area. As the trace' element geochemistry 

of each rock band can reasonably be described by a random effects model,
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i t  seems an appropriate area fo r application o f the theory developed in 

%his thesis.

The concentration o f trace elements in rock samples were measured 

by means of Instrumental Neutron Activation Analysis, a technique that 

allows accurate chemical analyses to  be made down tr, very low concentra­

tions. A p ilo t study was undertaken to assess the fe a s ib ility  in  general 

-terms C|f using geochemical data to relocate the pay' band. Five samples Were 

taken from each o f 15 bands, and 12 trace elements were n,easured on each 

sample. For the reasons given in Hawkins and Rasmussen (1973), a Iqg 

transformation was applied to  the data.

A complicating factor in  the analysis is the presence o f unknown 

but varying amounts o f s ilic a  in the samples which tends to  give a pro­

portional decrease in the concentrations of the trace elements. This 

gives rise to an additive "d ilu tion  effect"or "growth a ffect" correspon­

ding to each sample when using the transformed data.

The problem o f s ta tis tic a l inference, with particular reference to 

canonical variate analysis, on multivariate data in the presence of 

additive growth effects has been studied by Gower (1576), and an interes­

ting application to a problem in Palaeontology has been given by Reymsnt 

and Banfield (1976). Gower (1976) considers the case where a p-dimen- 

sional observation x is contaminated by m (<p) additive growth e ffects, 

each of which may be represented by a (pxl) growth vector whose elements 

are the relative responses of the corresponding elements Of x to the un­

observable growth e ffect, Gower (1976) uses the fact that i f  K is  the 

(pxm) matrix whose columns are these growth vectors, then the symmetric 

idempotent matrix

<? » I  -  KOCk T V  (7.1.1)
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projects x on to  the space orthogonal to.K so that the projected value 

1s free from these growth effects. Therefore, i f

y * Qx (7.1.2)

then y is  free from growth effects. Furthermore, i f  the sample space 

of x has rank r  (sp) then y occupies a sample space o f rank r-r(K ).

In the context of the present example, i t  is clear that the growth

effect in  the rock samples due to d ilu tion  by unknown quantities of

s ilica  is  the same fo r a ll of the log trace element concentrations, so

that i t  can be represented by the single p-dlmensicmal vector

K = (1 ,1 . . . ,) '.  , (7.1.3)

Therefore, in the present situation

0 - 1 - I e 17.1.4)

where E is ti.a pxp matrix whose elements are a ll unity, so that the trans­

formed variable becomes

y ■ Qx ■ ( I  -  1  E)x

1 " -

■■Xj -  , i  = l , . . . , p  (7.1.5)

where x̂  and y , are the i th elements o f x and y , respectively. So, to

remove the d ilu tion  e ffect from each observation we make the (in tu itive ly  

reasonable).transformation o f subtracting the average of a ll p log trace 

element concentration values in the sample front each t^ese p values'in 

turn. This w ill clearly reduce the dimensionality of the sample space 

to p-1 (assuming that'the original data are of fu l l rank)and the easiest
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way to handle th is is to drop ontr or more variables from the analysis. 

Because of the finding in Chapter 5 that the number of popula­

tions in the tra in ing sample should be as large as possible, relative 

to the dimension p o f the data vectors, fo r reliable estimation o f the 

eigenvalues {X^) o f TS- "1, i t  was decided to base the discriminant analyr 

sis on a subset of four o f the twelve trace elements. The following 

trace elements were chosen, primarily because of the fact that, out o f 

the twelve, the ir marginal distributions most closely f it te d  the normal: 

T. Cobalt (Co)

2. Iron (R»)

3. Hafnium (Hf)

4. Gold (Au)

The data on these four elements (a fte r log transformation and re­

moval o f d ilu tion  effect) are given in Table 7.1.1 below, and in Tables 

7.1.2, 7.1.3 and 7.1.4, respectively, the ir mean vectors, within groups 

and between groups covariance matrices are given.

' ' Table 7 .M

The Trace Element Data (a fte r log transformation and removal of

dilu tio n  e ffect.)

Population
1

2 .

£o Fe Hf Au
0.3868 0.0534 -0.0981 -1.1539
0.5065 0.3371 f ' , -0.3136 -0.3335
0.4081 0.1967 - -0.7308 -0.3231
0.3210 0.1054 -0.4605 -0.5441

-0.2393 -0.1483 -0.2902 -0.9580

0 4265 0.3744 -0.0853 0.0657
0.4008 0.3604 -0.1572 0.0465
0.4735 0.2852 -0.5006 0.2523

-0.3862 0.2177 -0.4931 1 .0496
0.0569 0.2095 -0.1794 -0.0990



Table 7,1.1 continued

Population Co £e Hf
3 -0.1660 0.1619 0.0849 -0.2998

0.3160 0.3020 -0.0110 0.0073
0.1448 0.1550 0.0443 -0.0790
0.1572 0.1438 0.0974 -0.3205

-0.1533 0.3062 0.0462 . -0.6277

4 0.6285 0.5011 -0.1421 0.2181
0.3091 0.3204 -0.4308 0.1654
0.2866 0.2446 -0.5342 0.4794
0.3784 0.1976 -0.5416 0.3688
0.2984 0.2540 -0.2706 j 0.3448

5 0.5217 -0.0967 -1.0894 : 0.2355
0.5099 -0.0581 -1.0972 i 0.0230
0.5490 0.0535 -1 .2592 l 0,7496
0.2981 -0.0871 0.0159 I -0.1717
0.3222 0.1997 0.0222 , , i -0.0271

6 0.3330 0.0663 -1.1813 I: 0.5933
0.6624 0.4103 -0.4863 ? -0.1420
0,5272 0.0614 -0.4651 f -0.3413
0.1279 -0.0432 -0,1307 : -0.9191
0.3033 0.1018 -1.2192 ; -0.7926

7 0.4148 0.5829 -0.3087 i -0.0125
0.8251 0.8348 -0.5070 • 0.8449
0.4799 0.4441 -0.6221 0,5807

- 0.2183 0.3549 -0.2613 j: 0.4129
0.5873 0.7194 -0.4033 1 0.8994

a -0.2589 -0.0187 0,1143 -0.3241
-0.2274 -0.0381 0.0655 -0.2860
0.0087 -0.0215 0.0426 -0.3333
0.0340 -0.0688 0.1452 -0.6939

-0.1673 -0.0867 0.1976 -0.9541

9 -0.0765 -0.0008 -0.7813 -0.4238
-0.0739 -0.0392 -0.0604 -0.6489
0.2947 -0.0156 -0.0310 -0.2426
0.4301 0.3128 -0.0601 -0.2107

-0.1776 -0.0629 -0.0250 -0.4863

v/'iO 0.5880 0.6608 -1.2298 0.4444
0.5295 0.4700 -0.3861 0.8966
0.4256 0.4546 -0.4285 0.3291

-0.1759 0.1368 -0.5196 -0.0553
0.2849 0.4989 -0.3323 0.0128
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Table 7.1.1 continued

Population Co £e Hf Au
n 0.4872 0.6116 -0.5951 0.2322

-0.0089 0.5342 -0.4469 1.2533
0.5219 0.6603 -0.4632 0.3363

-0.0709 0.2994 -0.7964 0.8250
0.0478 0.2138 .-0,1079 -0.1087

12 0.1739 0.0751 0.1398 -0.3471
0.0322 -0.1939 0.1968 -0.4244

-0.6402 -0.5064 0.1750 -0.3985
-0.4637 -0.4060 0.1644 -0.9229
0.4625 0.2718 0.0311 0.0873

13 -0.3224 0.0470 0.0641 -1.0616
-0.5506 -0.1525 0.0243 -1.0777
-0.5330 -0.3666 0.0121 -0.1080
-0.3700 -0.2176 0.1564 -1.0220
-o .a m -0.3491 0.0350 -0.4336

14 -0.1766 -0.2141 0.1451 " -1.0812
-0.4704 -0.3250 -0.1079 0.8878
-0.4110 -0.2990 0.0718 0.6778
-0.5465 -0.2368 0.0851 -0.9229
-0.3710 -0.3077 0,0623 -0.3984

15 0.2866 -0.0016 0.3986 -0.2626
0.3875 0.1105 0.2587 -0.3552
0.3904 0.1987 0.3219 -1.0482
0.3823 0.1131 0.3753 -1.0876
0.2989 -0.1169 0.6885 -0.5389

Table 7;1.2 

Mean Vectors

p g y lsyp m a w M
i 0.2764 0.1089 -0.3787 -0.6625
2 0.1941 0 .2 *5 -0.2831 0.2630
3 0.0598 0.2’(38 0.0523 -0.2639
4 0.3802 0.3036 -5.3839 0.3153
5 0.4402 0.0023 -tf.6815 0.0419
6 0.3908 0,1193 -01.6965 -0.3203
7 0.5051 0.5872 - 0 .# 5 0.545T

, 8 -0.1210 -0.0468 0.lti32 ,,-0.5183
9 , 0.0754 0.0389 -0 .1^6 -0.4U25

10 0.3304 0.4242 -0.5792' 0.3255
V 0,1954 0.4639 -0.4819 0.5076
2 -0.0671 -0,1519 0.1414 -0.4011

13 f: -0.4175 -0.2078 0,0584 ••0.7406
> 14 :/ -0.3951 -0.2765 0,0513 -0.1674

15 0.3491 0,9608 0.3886 -0.6585
Overall 0.1464 0.1286 -0.2194 -0.1424



Table 7.7.3

Within Groups Covariance Matrix (Degrees of Freedom 60)

Co Fe Hf Au
Co 0.0584 0.0281 -0.0061' 0.0122
Fe 0.0281 0.0257 -0.0016 0.0086
Hf -0.0061 -0.0016 0.0759 -0.0384
Au 0.0122 0.0086 •-0.0384 0.1866

Table 7:1,4

Between Groups tovariance Matrix (Degrees of Freedom U)

Co fe Hf Au
Co 0.4167 0.2654 -0.2990 0.3089
Fe 0.2654 0.3177 -0.2296 0.4297
Hf -0.2990 -0.2296 0.5614 -0.4433
Au 0.3089 0.4297 -0.4433 0.9784

The data was tested fo r  multivariate normality and homoscedasticity 

using the test o f Hawkins (1978) based on the N ■ j  n̂  sample-based 

Mahalanobls distances o f each observation from its  group mean:

'?' d |(x ^ )  = j  * I f - . - . n ^  1=1....,k  (7.1.6V-

where S is the pooled covariance matrix computed from a ll k groups. 

Hawkins (1978) shows that under the null hypothesis the s ta tis tic

1j P((n1-l)(N -k)-n i d |(x1 j)} 

follows an F-distribution with p and N-k-p degrees o f freedom, so that i f

denotes the ta i l area o f under th is d istribution then is  d is tr i­

buted exactly as a uniform variate over the range (0 ,1 ) .  Departures from 

either normality or homoscedasticity w il l cause departures of the



from the uniform d istribution , and Hawkins therefore uses the Anderson- 

Darling te s t-s ta tis tic  computed from tipe n. erder-titatistics o f the 

A .j in group i  to test fo r either of these types'"of departur<l in ,tha 

i**1 population, fo r 5=1 to k. Furtnemore, s p litt in g  the W, Into com­

ponents allows fo r heteroscedasticity and non-normality to  be tested 

separately. F inally, Hawkins uses a simulation experiment to show that, 

although asymptotic results are used at a few points in his theory, his 

te t t  may nevertheless be used fo r sample sizes as small as 5, as long 

as M is  su ffic ien tly  large.

Applying the abovementioned test to the data in th is example reveals 

moderate departures from homoscedasticity in populations 4,5,6 and 8 

(5 and 6 having larger, and the other two smaller covariance matrices than 

the average) and also that population 4 has a s lig h tly  ligh te r-ta iled  

d istribution than the normal. However, because these departures are 

fa ir ly  minor, and.^t as not to reduce the number of populations in the 

tra in ing sample, i t  was decided not to remove these populations from the 

example.

As mentioned in Chapter 5, the f i r s t  step in applying th is  data to 

the random effects model in discriminant analysis is to test the hypothesis 

Hq ; T = 0, for i f  i t - I s  accepted then there is  no point in continuing 

with the analysis. Using the subroutine CANON described e arlie r, the 

eigenvalues {g ,} of were computed. These are given in Table 7.1.5, 

together with the two test s ta tis tics  T̂  and Tg defined in (5.2.3) and 

(5.2.4), respectively.
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Table 7.1.5 

The eigenvalues of A^Aj1

h  92 S3 84
74.2183 35.5174 13.&757 /! 7.1659

4
T7 = ^  log(li-g.) = 12.6614 

4
T2 = j  g. = 129.9673

From (5.2.5) we hav--. that under the null hypothesis has approxi­

mately a x j ^  d istribution $here m-j = v2 + U vvP""i) and and are 

the between groups and within groups degrees of freedom, respectively. 

Since m̂T-, = 816.7 and pv̂  = 56, Hg is rejected resoundingly. : ' '

In order to test whether any o f the-R,,} = eigs TE- "* are zero, we 

f i r s t  consider the sub-hypothesis; = 0. Our two test-s ta tis -

tic s  fo r testing are:

Tn  = Log<l+g4) = 2.0987 

and T2i = g^ = 7.1559

(See (5.2.11) and {5.2.12)).

Using T ^ ,  we have from (5.2.13) that under Hoi>n,n Tl l  h5s approximately 

a Xf distribution 

' where f  =^|'4-3)(14-3) « 11̂

and =6 0 +  K14-5} + I

AUsing the estimators o f the given below in the exp/fessllon for 

' yields value = 65.01, whence m^T^ = 136.4 which again is highly

significant. So we conclude that a ll the X̂  are greater than zero..



Our’ next step is to estimate the X.. Using the techniques de­

scribed in Chapter 5, the five  estimators to  y ^  of the eigen­

values {y.j} pf » (E+nTjE""1 were computed. Unfortunately the

"unrestricted" and "restricted" maximum marginal likelihood estimators 

V-4) and y(^) both failed to give meaningful results, so the approximate 

maxtkim marginal likelihood estimator y (2) { y ^  was identical to y ^ )  

was used to compute X from the relationship

= "1) i  = 1 . ,p .

These estimates are given in Table 7,1.6. The estimation procedure was 

then repeated with variable 3 (Hafnium) dropped from the sample, re­

ducing the number o f variables to 3. In th is case a ll five  estimators 

gave meaningful results, so that x could be obtained from These

estimates are also given in Table 7.1.6.

Table 7.1.6

Estimates o f i, and & v'

p = 4 variables (Co, fe, Hf, Au)
~m  1 1 3  4

17.3176 8.2874 3.0510 1.6697

% (^(and y(3)) .14.^64 8.6950 3.3602 2.5431

y (4  ̂ and y ^  failed to give meaningful results

X (from y ^ ^ )  2.7573 1.5390 0.4720 0.3086



p = 3 variables (Co, Fe, Au)

; d ) 16.2545 6.2701 1.7935

14.7184 6.7841 2.2072
;(4 i 14.2456 6.9484 %.2390
;(» ) 13.9191 6.6518 EJZG'i

X (from X<5)) 2.5838 1.1304 0.^52

Using the given in Table 7.1.6, the estimated distribution of 

the Mahabanobis distance

6i j '

betwelin tw.o randomly selected populations, derived yn Chapter 3, and 

that of the Mahabanobis distance

6^(x) =

of a random observation x e ttj i  *  j ,  were computed using the ^

subroutines given in Chapter 3 .,!i'v  t .ible 7.1.7 values of the d istribution 

functions o f 6 ^  and S’-^ x ) are giviin a^1 selected points, separately fo r 

the four- and three variable cases. In addition, d istribution function 

values fo r 6?(x), when y-are given a t the same points fo r coflparis^’i.
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Table 7.1.7

Estimated D istribution Functions o f 6^,6? x ) | x  e 7Tj an

5?(x)jx 6

p = 4 variables (Co. Fe Hf, Au)

Distribution Function Val
Value of. the
random variable

S i
5 ^ ( x ) |x  e ffj 6 ^ { x } ]x  6

1 .031 .012 .045
2 .098 .043 .144
3 .177 .085 „Z64
5 .335 .189 .496
7 .470 .298 .677

10 .626 .450 .845
15 .789 .646 .960
20 .880 .776 .990
25 .931 .858 .998
30 .960 .910 1.000
40 .986 .963 1.000
50 .995 .985 1.000

p = 3 variables (Co, Fe Au)

Distribution Function Val
Value o f the
random variable

&
6 ^ (X )|X  G Tlj e;(x)|x e

1 .089 .044 j i i "
2 .202 .111 .279
3 ,305 .184 .428
5 .474 .326 .657
7 .600 ,449 .802

10 .731 .596 .917
15 .858 .760 .981
20 .923 .856 .996
a .957 ,913 .999
30 .976 ,947 1.000
40 .992 ’3979 1.000
60 .997 .992 1.000

The expected probabilities of nrbclassiflcation indicate.how well 

classical discriminant analysis Is lik e ly  to perform when applied to 

the problem of f i t t in g  a particular rock band ii'j'to the sedimentary 

succession of the area, on the basis the concentrations o f the four 

(or three) tiace elements in a rock sample from that band. These were
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computed ff'om the formulae derived in Chapter 4, using the subroutine 

PROBS fo r the "optimum" probabilities, where the parameters in the linear 

discriminant function are assumed to be known andClassification rule " 

(2.1.3) is used, and subroutine PR0BS1 fo r the c<:se where the sample- 

based classifica tion rule (2.1,19) is used. Table 7.1.8 gives tl,e two- 

population probabilities o f misclassificatfon as well as the lower and 

approximate upper bounds fo r the probabilities of correct classification 

fo r the 5- population case, fo r  both situations where the population- 

based and sample-based classification rules are used.

In the situation where i t  is  possible to make more than one observa­

tion on the unknown population (as in the case in our stratigraphic pro­

blem) i t  is  well known that a rb itra r ily  good classification may be 

achieved by increasing the number o f Independent observations from the 

unknown population and basing the classification on the ir mean. I t  is  

a t r iv ia l matter to show that the situation where the mean of m observa­

tions is used fo r classifying the unknown population is  exactly equiva­

lent, under the random effects model, to that kTien the eigenvalues {%,.} 

are a ll multiplied by m and a singlfe observation Is used fo r  c lassifica­

tion, As an illu s tra tio n  o f this,the expected probabilities corresponding 

to the situation where the c lassification is based on m = 2 observations 

from the unknown population are also given in Table 7.1.8.

I
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. .. Table 7^1.8

Expected Probabilities o f Correct- and MiscJassificatfon 

p = 4 variables (Co, Fe, Hf, Au)

Probability of mis- Probability o f correct c la ss ifi-  
classification with cation with k°5 populations

P « rw .t .r , -------
•Lower Bound Approx. upper Bound

One observation .1069 .5724" .BiO'd....
from unknov/n pop. .

Two observations .0555 .7780 .8930
from unknown pop.

Unknown Parameters (degrees of freedom - 60)

One observation .1173 .5307 .8039
from unknown pop.

Two observations .0616 .7534 .8808
from unknown pop.

p = 3 variables (Co, Fe, Au)

Probability o f Lower bound to Probability
MisclassjTfication o f correct classification
with two popula- with k-5 populations

Known Parameters

One observation .1429 .4282
• from unknown pop.

Two observations .0860 .6561
from unknown pop.

Unknown Parameters (Degrees o f freedom = 60)

One observation
from unknown pop. .1518 .3929

Two observations
from unknown pop. .0915 .6341

Note that, since p is  odd, the upper bound to the probability of correct 

classification cannot be computed.
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We now tu'-n to the Predictive Bayesian approach. Because of our 

in a b ility , at present, the compute the predictive densities under the 

random effects model in the multivariate case, (see sub-section 6 .2.1) 

we w il l consider classifying two observations o f unknown origin using 

only the trace element Cobalt (Co). The concentration  o f Cobalt in 

each o f the two unknowns, a fte r log transformation and removal of d ilu ­

tion e ffec t, are given below:

Unknown 1 : 0.2854

Unknown 2 i  -0.4075

The predictive densities under the random effects model, given by 

(6.1.17), were computed using the subroutine HYPGFN and are given in 

Table 7.1.9 fo r each o f the fifteen  populations and both unknowns. For 

comparison, the corresponding predictive densities under the fixed effects 

motiel, given by (2.2.6), as well as the sample-based Mahalanobis distances 

between each o f the two ynknowns and each o f the fifteen  populations, are 

also given in Table 7.1.9.
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Table 7,1.9

Predictive densities o f the two unknowns under the random effects 

and fixed effects models, as well as the corresponding Mahalafiobis 

distances, using one variable (Co) only.

Population

Predictive Densities

Random Effects 
Model

0844 
0947 
0598 
0810 
0876 
0793 
0681 
037)
0883 
0822 
0978 
0388 
0068 
0093

Fixed Effects 
Model

0677
0294
0693
0943
0900
0391
0032
0038
0929

Mahalanobis 
Distances 

,0.0017 
0.1461 

.. 0.8800 
0.1506 
0.4049 
0.1863 
0.8187 ; 
2.8426 
0.7630 
0.0331 
0.1419 
2.1401 
8.4861 
7.9550 
0.0673

0161
0232
0648
0068
0056
0056
0025
1294
0522
0090
0232
1190
2623
2709
0094

.0109

.0219

.0580

.0041
.0022
.0037
.0011
.1506
.0524
.0066

a ;
.0055

8.0108 
6.1979 
3.7388 

10.6259 
12.3063 
10.9124 
14.2623 
1.4059 
3.9928 
9.3248 
6.2250 
1.9847 
0.0017 
0.0026 
9.8043

The posterior probabilities of each of the populations are computed 

from the predictive densities in Table 7.1.9 by multiplying them by 

the ir respective prior probabilities. For example, suppose that unknown 1
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is  equally lik e ly  to have come from one of the f i r s t  five  populations 

and from none o f the others. Using the classical approach one would 

unhesitatingly classify i t  into population 1. On the other hand, a l­

though population 1 has marginally the highest posterior probability 

under the fixed effect model, population 2 has marginally the highest 

probability under the random effects model. In practice, using the Pre­

d ictive Bayesian approach under either o f the fixed effects or random 

effects models, one would consider Unknown 1 to be unclassifiable. The 

divergence between the classical and predictive Bayesian approaches ob­

served hero is in line  with the findings of Aitchison, Habbema and Kay 

(1977) whose general conclusion is that the classical (or "estimative") 

approach tends to  give too optim istic a picture o f the re lia b il ity  of 

sample-based discrimination procedures.

The picture is fa r clearer with Unknown 2. Assuming that i t  is  

equally lik e ly  to have come front one o f the last five  populations,all 

three classifica tion rules come out s tring ly  in favour o f either o f popu­

lations 13 or 14, the predictive approach under the random effects model 

giving s lig h t preference to population 14 whereas the other two marginally 

favour the former.

The reason fo r the improved re lia b il ity  of classification in the 

latter* case is quite evident under the random effects model . Since 

observation Z is  much further than observation 1 from the estimated mean 

E of the individual population me a ns o ne  would expect better c la s s if i­

cation with i t  as populations would tend to be much less clustered in its  

v ic in ity  than they would be nearer to ?.
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Cnapter & Review and Conclusions ;

In th is , the fin a l chapter, tiie theory developed In this thesis is 

reviewed, and the areas s t i l l  requiring further work,as well as the 

various possible avenues fo r future research are pointed out. F ina lly, 

some conclusions are drawn regarding the app licab ility  and usefulness u f 

th is theory to the solution o f practical problems in discriminant analysis.

Before starting the review, some comments on the practical situation 

where th is theory might be applicable, are in order. I t  i ' \  envisaged 

that the investigator w il l ,  in general, have two (possibly overlapping) 

tra in ing samples at his disposal. The f ir s t ,  more properly called an 

"estimation sample" w ill consist o f random samples from each o f a number 

o f populations, each o f them in turn being a random observation from a 

“super-population" under the random effects model. This sample w ill be 

used to estimate the parameters {A^} in the manner described in Chapter 

5, which w ill fn turn be used to estimate the distributions o f any o f 

the four distance variables discussed in Chapter 3, as well as the expect­

ed probabilities o f correct -  and misclassification under the classical 

approach, derived in Chapter 4. The second training sample, which may 

only become available at a la te r date, w il l consist o f random samples 

from each o f k-j populations (with possible overlap between i t  and the 

estimation sample -  together they make k independent samples from the 

"super-population") and one or more observations x known to have come 

from one of these populations. The objective o f the Investigator is 

to assign x to one o f these k] populations in the second sample.

Clearly, the information from the second tra in ing sample can be 

combined with that o f the f i r s t  to produce improved estimates o f the 

{A^} and o f the d istributions and expected probabilities of correct “  

and misclassification mentioned above. Under the Predictive Bayesian 

approach too, no d istinction need be made between these two samples,



except when i t  conies to the choice o f populations into which the unknown 

may be classified. The device used in Chapter 7 o f assigning zero prior 

probabilities to a ll those populations not involved in any particular 

classifica tion problem, is a convenient way o f making the abovementioned 

d istinction without formally having to distinguish between the two 

samples.

8.1 Review

Starting the review at Chapter 3, i t  is  clear that while only the 

distribution o f 6 ^  is o f d irect relevance to the evaluation o f -correct- 

and m isclassification probabilities under the random effects model, the 

distributions o f the other three quantities <S|(x), and d|(x) are o f 

in terest in that they provide further insight into the like ly  performance 

o f classical discriminant analysis under th is model. As has been seen, 

the evaluation o f the density and d istribution functions of a ll four o f 

these distance variables is  a re la tively straightforward matter on a 

computer, so that approximating them by means o f, say,.Pearson curves, Is 

not considered to be worth while.

Coming now to the evaluation o f the probabilities o f correct -  and 

misclassification considered in Chapter 4, the two - population case 

where the parameters are known has clearly been solved satis factorily  

and the probability o f mlsclasslficatlon under the random effects model 

is readily evaluated using a computer. > ijThe k-population case is s ligh t­

ly less satisfactory in that only lower and (conditional and approximate) 

upper bounds to the probability o f correct classification have been 

found, although i t  is  evident from the examples considered that these 

two bounds can be fa ir ly  close. An exact expression fo r th is probabi- . 

l i t y  w il l however only be found once the corresponding exact expression 

(4.1.24) fo r the conditional probability o f .  i-rect c lassification,
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given .6^ , is  available in a more t r 'ta b le  form. Two further pro- 

HHems requiring solution are f ir s t ly ,  tile evaluation o f the upp?r 

bound on the probability o f correct c lassification for the case where 

the number r  o f nonzero X,. is  odd, and secondly, the derivation of 

convenient computational formulae,when the are not a ll eqiial, fo r the 

coefficients a ,, defined in (4.1.39), appearing in formula (4.1.40) fo r 

the upper bound Nhen r  is  even.

ij In the situation where the sample-based'classification rule is 

usedL a ll the results derived are based on 0kamoto, s(1963) asymptotic 

exp'fa..'.-ion (2,1.26) to terms o f order n""*. Therefore, more accurate re­

sults could be obtained, at,the cost o f  considerable increase in 

complexiM-by including a ll the terms o f order n” ^ in Okamoto's expan­

sion. the k-population case exactly the same remarks hold es in 

the situation where the parameters are known.

An important piece o f research that is  s t i l l  outstanding in Chapter

5 is  to obtain unrestricted and restricted maximum marginal likelihood 

estimators o f (yj) -  Eigs {r^E*^} based on Khatri and Srivastava's (1978) 

asymptotic expansion (5.3.8) fo r  the jo in t density o f » Eigs(A^A^} 

rather than on bang's (1970) less accurate expression (5.3.5). Simula­

tion experiments on these two estimators, corresponding to those done 

in Chapter 5, w il l give an indication o f how much an improvement thqy 

are over those proposed in th is wiapter. A further area for research 

arising as a citie Issue out o f the results o f Chapter 5, is  the deriva­

tion o f a scaled F-approximation to tM  distribution u f Hotelling's T* 

fo r the case where the numerator and denominator matrices have indepen­

dent Wishart distributions but with d iffe rent parameter matrices E-| and

S. See the comments a t the end o f Sub-section 5.4.2.

o  ' ■ '■
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The treatment of the Predictive Bayesian Approach under the 

random effects model is firtrly  complete, at Tea§t for the case where 

the parameters E, 5 and T hive diffuse p rio r distributions. A great 

deficiency in th is approach is ,  however, our in a b ility  to compute the 

predictive densities in the multivariate case. Possible'approaches 

towards rectify ing th is  are, f i r s t ly ,  to t ry  and evaluate the hyper­

geometric functions o f matrix argument, appearing in the predictive 

densitites by using the programs of van der Westhuizen and Nagel (1979) 

on a very much faster computer than the University o f South A frica's

Burroughs B6800 computer. Secondly, the efficiency o f these programs 
Q

could possibly be Improved, although a reduction in computing time by 

at least a few orders o f magnitude would be required to ensure that a 

) su ffic ien t number o f terms can be computed fo r the hypergeometric func­

tions to  converge. Two promising directions fo r research do, however 

'come out o f the las t section in Chapter 6. F irs tly  there is the Empiri- 

ca) Bayss^approach to discriminant analysis under the random effects 

model; an interesting study would be to investigate the properties 

o f the proposed classification rule (6.4.8). Secondly, an investigation 

i; .-if the semi-Bayes approach under the random effects model, using the.

jiSsterior density (6.4.17) as storting point would also maxe an interes- 

. Itfng, i f  complicated, study.



6 .2  C o n tu s io n s

In th is thesis, discriminant analysis under the random effects 

model has been treated from two viewpoints. With the classical approach, 

the properties o f the classification rules have been investigated under 

th is model, whereas with the Predictive Bayesian approach new expressions 

fo r the predictive densities appropriate fo r th is model have been derived.

Considering f i r s t  the c l as; -pal approach, the assumption o f the ran- 

dm effects model has allowed expressions fo r the expected probabilities 

o f correct -  and misclassification to be derived that, depend only on the 

eigenvalues o f  T£ \  These m y  be estimated with arbitrary preci­

sion as long as training samples can be drawn from a su ffic ien t number 

.of populations. On the other hand, under the fixed effects model,■ 

whether u^ng Okomoto's (1963) expression (2.1.26) or Anderson's (1973a, 

b) expression (2.1.27) fo r the expected probability of misclassifica- 

tion with che sample-based classification rule, the value o f the Maha- 

lanobis distance sjg between the two populations is required. This has 

to be estimated using the means o f the tra in ing samples from only the 

two populations concerned, althoynh Z may be estimated using training 

samples from other populations as well. (See Lachenbruch and Mickey 

(1968) fo r an estimator o f 5 ^  that partia lly  corrects fo r the bias in



Therefore i t  would appear that as long as there are a suffic ient 

number o f populations in the training sample (relative to the number o f 

variables -  see Section 5.5) more re liab le  estimates o f the probabili­

ties  o f correct -  and m-sclassification w ill be obtained iwidef the ran­

dom effects model than under the fixed-effects model. On the other hand, 

the requirement that there should be a large number o f populations 

(re la tive  to the number o f variables) in the tra in ing sample for re lia ­

ble estimation under the random effects model, can also be considered 

to be a drawback to th is model, particularly in situations where samples 

from many populations are hard to come by.

A topic that has not been discussed in th is thesis is variable 

selection. Since under the random effects model the probabilities o f 

co rre c t -  and m isclarsification are functions only o f the eigenvalues 

{X^} o f T% ^, we would want a procedure that selects variables on the 

basis o f the values o f the X̂ « Now, i t  is  clear from (5.2.3) that the 

likelihood ra tio  s ta tis tic  fo r testing H0 : 1 = 0 , is  'a mono tonic in­

creasing function o f the eigenvalues o f and hence of the 

= { g .}. Since the are maximum likc liho v ! estimators o f the

= 1 + nX^ , we would expect that variable selection based on would 

be appropriate fo; our situation. Hawkins (1976) proposes a stepwise 

procedure based on T̂  fo r selecting variables in Multivariate finalysis 

o f Variance. Although he applies the procedure to a problem in multiple 

discriminant amlysis using the fixed effects model, i t  is,from the 

above remarks, also applicable to the random effects model.

’■ Coming now to the Predictive Bayesian approach, an immediate con­

clusion that may be drawn from the uxamples considered is that the pre­

d ictive densities (and hence posterior probabi.ities) are generally more 

conservative under the random effects model than they are under the 

fixed effects model. Therefore, i f  the predictive densities fo r the
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fixed effects model, given by (2.2.6) and (2.2.7), are computed in a 

situation where the random effects model holds,- then they w il l tend to 

give posterior probabilities that are too optim istic. On the other 

hand, i f  the random effects model is applied to data where the fixed ■ 

effects model is  more appropriate, i t  w il l give results that are too 

1'conservative.

F ina lly, a comment on trie app licab ility  o f the random effects 

model to discriminant analysis with unequal covariance matrices in 

d iffe rent populations, is  in order. Although i t  is  possible, from a 

purely mathematical viewpoint, to perform sim ilar analyses in  those 

given in th is thesis fo r the heteroscedastic s ituation, i t  is  our 

opiniop that the results would have l i t t l e  application in practice.

The reason fo r th is  is that i f  d iffe rent populations have d iffe rent 

covariance matrices then i t  is  highly unlikely, in any practical s itu ­

ation, that the ir mean vectors would come from the same d istribution.

A more lik e ly  situation would be that fo r any particular population the 

covariance matrix o f its  mean vector y would be some function o f the 

covariance matrix within that population.
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