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1 Introduction

The interchange process is defined on a finite graph. With any edge is associated
the transposition of its endvertices. The outcomes of the interchange process consist
of sequences of random transpositions and the main questions of interest deal with the
cycle structure of the random permutation that is obtained as the composition of these
transpositions. As the number of random transpositions increases, a phase transition
may occur that is indicated by the emergence of cycles of diverging lengths involving a
positive density of vertices.

The most relevant graphs are regular graphs with an underlying “geometric structure”
like a finite cubic box in Zd with edges between nearest neighbours. But the problem of
proving the emergence of long cycles is out of reach for now and recent studies have
been devoted to simpler graphs such as trees [4, 12] and complete graphs [13, 5, 6].
(Note also the intriguing identities of Alon and Kozma based on the group structure
of permutations [3].) The motivation for the present article is to move away from the
complete graph towards Zd. We consider the hypercube {0, 1}n in the large n limit and
establish the occurrence of a phase transition demonstrated by the emergence of cycles
larger than 2

(

1
2�")n. Our proof combines the recent method of Berestycki [5], which was

used for the complete graph but is valid more generally, with an estimate of the rate of
splittings that involves the isoperimetric inequality for hypercubes.

Besides its interest in probability theory, the random interchange process appears in
studies of quantum spin systems [14], see also [11] for a review. Cycle lengths and cycle
correlations give information on the magnetic properties of the spin systems. The setting
is a bit different, though. First, the number of transpositions is not a fixed parameter,
but a Poisson random variable. Second, there is an additional weight of the form ✓

#cycles
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The random interchange process on the hypercube

with ✓ = 2 in the case of the spin 1

2

quantum Heisenberg model. The first feature is not a
serious obstacle, but the second feature turns out to be delicate. Notice that Björnberg
recently obtained results about the occurrence of macroscopic cycles on the complete
graph in the case ✓ > 1 [7, 8]. Correspondence between random transpositions and
quantum models when ✓ = 3, 4, ..., and with a more general class of random loop models,
can be found in [1, 15]. We expect that our hypercube results can be extended to these
situations as well, but it may turn out not to be entirely straightforward.

2 Setting and results

Let Gn = (Qn, En) be a graph whose N = 2

n vertices form a hypercube Qn =

{0, 1}n with edges joining nearest-neighbours—pairs of vertices that differ in exactly one
coordinate, En = {{x, y} : x, y 2 Qn, |x� y|

1

= 1}, |En| = Nn
2

.
Let ⌦n be the set of infinite sequences of edges in En. For t 2 N by Fn,t we denote

the �-algebra generated by the first t elements of the sequence. Further, for t 2 N we
use ⌦n,t to denote the set of sequences of t edges e = (e

1

, . . . , et), where es 2 En for all
s = 1, . . . , t. The �-algebra Fn,t will be identified with the total �-algebra over ⌦n,t. For
an event A 2 Fn,t we set

Pn(A) = |A|
�

2

Nn

�t
,

i.e. edges are chosen independently and uniformly from En.
Using ⌧e to denote the transposition of the two endvertices of an edge e 2 En, we can

view the sequence e 2 ⌦n,t as a series of random interchanges generating a random
permutation �t = ⌧et � ⌧et�1 � · · · � ⌧e1 on Qn. For any ` 2 N, let Vt(`) be the random set
of vertices that belong to permutation cycles of lengths greater than ` in �t.

We start with the straightforward observation that only small cycles occur in �t when
t is small. It is based on the fact that the random interchange model possesses a natural
percolation structure when viewing any edge contained in e as opened. The probability
that a particular edge remains closed by the time t is

�
1 � 1

Nn/2

�t
. Since the set of

vertices of any cycle must be contained in a single percolation cluster, only small cycles
occur when percolation clusters are small.

Theorem 2.1. Let c < 1/2 and ✏ > 0. Then there exists n
0

such that

Pn(|Vt(n)| = 0) > 1� ✏

�3/2

for all t  cN , all  � 2 ln 2

(1�2c)2 , and all n > n

0

.

Proof. In view of the above mentioned percolation interpretation of the random in-
terchange model, the claim follows from the fact that the percolation model on the
hypercube graph Qn is subcritical for p = 2c/n with c < 1/2 and the size of the largest
cluster is of the order n (see [2]). The value p = 2c/n corresponds to t = cN implying

that the probability of any particular edge to be open is 1�
�
1� 2

Nn

�cN ⇠ 2c
n . The claim

of the theorem follows from [9, Theorem 9]. In particular, the last displayed inequality in
its proof can be reinterpreted as a claim that

En(|Vt(n)|)  ✏(n)

�3/2 (2.1)

with ✏(n) ! 0 as n ! 1 whenever  >

2 ln 2

(1�2c)2 .

Our main result addresses the emergence of long cycles for large times, t > N/2. We
expect that cycles of order N occur for all large times; here we prove a weaker claim:
cycles larger than N

1
2�" occur for a “majority of large times”.
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The random interchange process on the hypercube

Theorem 2.2. Let c >

1

2

and let (�n) be a sequence of positive numbers such that
�nn/ log n ! 1 as n ! 1. Then there exist ⌘(c) > 0 and n

0

such that for all n > n

0

, all
T > cN , and all a > 0, we have

1

�nT

b(1+�n)TcX

t=T+1

En

⇣ |Vt(N
a
)|

N

⌘
� ⌘(c)� a.

For c > 1, we can take ⌘(c) =

1

2

(1� 1

c ).

Let us observe that the highest achievable value of the exponent a is just below 1/2;
this can be accomplished only with c becoming large. But we expect that the size of the
long cycles is of order N . In fact, one can formulate a precise conjecture, namely that
the joint distribution of the lengths of long cycles is Poisson-Dirichlet. This was proved
in the complete graph [13], and advocated in Zd with d � 3 [11].

The proof of Theorem 2.2 can be found in Section 3.4; it is based on a series of
lemmas obtained in the next section.

We can choose �n ⌘ � > 0, rather than a sequence that tends to 0. In this case,
Theorem 2.2 takes a simpler form, which perhaps expresses the statement ‘long cycles
are likely’ more directly.

Corollary 2.3. Let a 2 (0, 1/2), � > 0, and ✏

1

2 (0,

1

2

� a). Then there exists c > 1 and
✏

2

> 0 such that for n large enough we have

1

�T

b(1+�)TcX

t=T+1

Pn

⇣ |Vt(N
a
)|

N

� ✏

1

⌘
� ✏

2

for all T > cN .

Proof. This follows from Theorem 2.2 and Markov’s inequality. Namely,

Pn

⇣ |Vt(N
a
)|

N

� ✏

1

⌘
= 1� Pn

⇣
1� |Vt(N

a
)|

N

� 1� ✏

1

⌘

� 1� 1

1� ✏

1

En

⇣
1� |Vt(N

a
)|

N

⌘

� 1� 1� ⌘(c) + a

1� ✏

1

.

(2.2)

This is positive for ✏
1

< ⌘(c)� a.

3 Occurrence of long cycles

3.1 Number of cycles vs number of clusters

Cycle structure and percolation properties are intimately related, and we will rely on
Berestycki’s key observation that the number of cycles remains close to the number of
clusters [5]. Let Nt denote the random variable for the number of cycles of the random
permutation �t at time t, and e

Nt the number of clusters of the underlying percolation
model. Notice that Nt � e

Nt.
Let us consider the possible outcomes when a new random transposition arrives at

time t. There are three possibilities; the endpoints of a new edge et are either both in
the same cycle of �t�1

(and thus also in the same cluster), or in the same cluster but in
different cycles, or in different clusters. Correspondingly, we are distinguishing three
events:

• St, a splitting of a cycle where Nt = Nt�1

+ 1 and e
Nt =

e
Nt�1

. Indeed, a splitting of
any cycle necessarily occurs within the same percolation cluster.
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The random interchange process on the hypercube

• Mt, a merging of two cycles within the same cluster: Nt = Nt�1

� 1 and e
Nt =

e
Nt�1

.

• f
Mt, a merging of two cycles in distinct clusters: Nt = Nt�1

� 1 and e
Nt =

e
Nt�1

� 1.

Also, let It = St [Mt be the event where the endpoints of the edge et belong to the same
cluster. Notice that f

Mt = I

c

t . Obviously, the three events above are mutually disjoint and
cover all outcomes,

⌦n,t = St [Mt [ f
Mt. (3.1)

Notice that

Nt � e
Nt =

tX

i=1

(1Si � 1Mi). (3.2)

A key in the proof of Theorem 2.2 is the isoperimetric inequality of the hypercube Qn.
Namely, for any set A ⇢ Qn, the number |E(A)| of edges of Gn whose both end-vertices
are in A is

|E(A)|  1

2

|A| log |A|. (3.3)

Here (and elsewere in this paper) log is always meant as the logarithm of base 2. See
[10] for the proof of the bound in this form. It implies a lower bound on the number
|E(A|Ac

)| of edges connecting A with its complement Ac

= Qn \A, namely

|E(A|Ac

)| � |A|(n� log |A|). (3.4)

We are not referring to this inequality in this article, but we found it useful in discussions.
Theorem 2.2 would follow from the following lemma once its assumption is proven.

Lemma 3.1. Assume that Pn(St) � � with � 2 (0, 1). Then

En

⇣ |Vt(N
a
)|

N

⌘
� �� a

1� a

for any a 2 (0,�).

Proof. Let Ct�1

denote the set of cycles at time t� 1. Since the total number of edges is
Nn/2, and at most 1

2

P
C2Ct�1

|C| log |C| edges cause a splitting, we have

Pn(St|Ct�1

)  1

Nn

X

C2Ct�1

|C| log |C|. (3.5)

It follows that

�  Pn(St) = En(Pn(St|Ct�1

))

 1

Nn

En

⇣ X

C2Ct�1

|C| log |C|
⌘

=

1

Nn

En

⇣ X

C2Ct�1:|C|Na

|C| log |C|
⌘
+

1

Nn

En

⇣ X

C2Ct�1:|C|>Na

|C| log |C|
⌘

 a

N

En

⇣ X

C2Ct�1:|C|Na

|C|
⌘
+

1

N

En

⇣ X

C2Ct�1:|C|>Na

|C|
⌘
.

(3.6)

Using
P

C2Ct�1
|C| = N and

P
C2Ct�1:|C|>Na |C| = |Vt(N

a
)|, we get the lemma.

What remains to be done is to establish a lower bound on the probability for an edge
to connect vertices within a cycle and thus splitting it. We will get it by combining lower
bounds on the probability Pn(It) for an edge to connect vertices within one cluster and
on the rate Pn(St)/Pn(It) for those actually connecting vertices within a cycle.
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The random interchange process on the hypercube

As it turns out, we can verify the latter lower bound only in a mean sense, averaging
over an interval [T, T + L] where T is large. The ratio L/T can be chosen to vanish but
not too fast. We will use the following corollary, whose proof is essentially a verbatim
repetition of the proof above.

Corollary 3.2. Assume that for some T, L 2 N, and � 2 (0, 1), we have

1

L

T+LX

t=T+1

Pn(St) � �.

Then

1

L

T+LX

t=T+1

En

⇣ |Vt(N
a
)|

N

⌘
� �� a

1� a

for any a 2 (0,�).

3.2 Lower bound on the probability of It

Here we show that, if the time is large enough, there is a positive probability that the
vertices of a random edge belong to the same cluster. Equivalently, we need an upper
bound on the probability of the event f

Mt = I

c

t that two clusters are merging. The first
lemma applies to c >

1

2

; the second lemma is restricted to c > 1 but it gives an explicit
bound. Let ˜

Vt denote the largest percolation cluster after t random transpositions.

Lemma 3.3. Assume that En(| ˜Vt|) > c

0

N for some constant c
0

> 0. Then there exists
c

0
> 0 such that

Pn(It) > c

0
c

0

(1� o(1)).

Proof. It is based on [2, Remark 2], which states that there exist " > 0 and c

0
> 0 such

that

Pn(|Wt| > N �N

1�"
) = 1� o(1), (3.7)

where Wt is the set of vertices which have at least c

0
n neighbours in ˜

Vt. By only
considering edges within the largest cluster, we obtain

Pn(It) �
c

0

N

En(| ˜Vt \Wt|). (3.8)

Using | ˜Vt \Wt| � | ˜Vt|� |W c

t |, the lemma follows.

Remark: In [2] the authors use their Remark 2 as an indication that for t >

1

2

N the
second largest cluster is of size o(N). Actually, this has been proven in [9, Theorem 31]
where it was shown that the size of the second largest cluster is of the order at most
n/(2c� 1)

2 (we adhere here to our notation with critical c = 1/2). The claim (3.7) thus
follows immediately, combining [2, Lemma 3] — which states the same for the set of all
vertices that have at least c0n neighbours in clusters of size at least n2, with [9, Theorem
31] — which implies that this set actually coincides with Wt. (Notice that in both [2]
and [9, Theorem 31], the results are actually formulated for percolation clusters on the
hypercube with probability of an edge being occupied chosen as p = 2c/n.)

We state and prove the next lemma for the hypercube, but it actually holds for any
finite graph.

Lemma 3.4. Let t 2 N and � 2 (0, 1). Then

Pn(
f
Mt)  N/t+ t

�(1��)/2
+ exp

�
�t

�
/2

�
.
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The random interchange process on the hypercube

Proof. We recall that {Ft}t�0

denotes the filtration associated with the process of adding
edges (i.e. Ft contains information about the first t edges), and define the random
variables

pt = En(1fMt
|Ft�1

). (3.9)

Simple but crucial observations are that for any t 2 N, we have

1 � pt � pt+1

and
tX

i=1

1fMi
 N. (3.10)

Indeed, adding an edge decreases the chance of next merging and the total number of
mergings is smaller than the size of the graph. Let us define the process {Xt}t�0

by

Xt =

tX

i=1

⇣
1fMi

� pi

⌘
. (3.11)

One verifies that it is a martingale and |Xt+1

�Xt|  1. By the Azuma inequality we have
Pn

�
Xt  �t

(1+�)/2
�
 exp

�
�t

1+�
/(2t)

�
= exp

�
�t

�
/2

�
. Hence,

1� exp

�
�t

�
/2

�
 Pn

⇣ tX

i=1

�
1fMi

� pi

�
� �t

(1+�)/2
⌘

= Pn

⇣ tX

i=1

1fMi
� �t

(1+�)/2
+

tX

i=1

pi

⌘
.

(3.12)

Using (3.10) we estimate further,

1� exp

�
�t

�
/2

�
 Pn

⇣ tX

i=1

1fMi
� �t

(1+�)/2
+ tpt

⌘

 Pn

�
N + t

(1+�)/2 � tpt

�
.

(3.13)

In other words Pn(pt � N/t+ t

�(1��)/2
)  exp

�
�t

�
/2

�
. Finally,

Pn(
f
Mt) = En(1fMt

)

= En(pt)

 Pn

�
pt � N/t+ t

�(1��)/2
�
+N/t+ t

�(1��)/2

 exp

�
�t

�/2
�
+N/t+ t

�(1��)/2
.

3.3 Lower bound on the rate Pn(St)/Pn(It)

Let us begin with a bound on the probability of unfavourable splittings that result in
short cycles. We define the event Sk

t ⇢ St as those splittings that result in producing a
cycle of length less than or equal to k (or in two such cycles).

Lemma 3.5. For any n, t, k 2 N we have

Pn

�
S

k
t

�
 2 log(2k)

n

.

Proof. Given an arbitrary configuration e 2 ⌦n,t yielding a collection of cycles covering
Qn, we can find a family of sets {Ai}, Ai ⇢ Qn such that

(a) |Ai|  2k;

(b)
P

i |Ai|  2N ;

ECP 21 (2016), paper 4.
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The random interchange process on the hypercube

(c) 1Sk
t


P

i 1et2E(Ai)
, where et 2 En is the random edge at time t.

Indeed, to each cycle of length less than or equal to 2k, we define Ai to be its support.
For a cycle of length ` > 2k, we label its vertices consecutively by natural numbers
(starting from an arbitrary one) identifying the labels j, ` + j, 2` + j, . . . , j = 1, . . . , `.
Denoting m = b`/kc, notice that mk  ` < (m+ 1)k and `+ k < (m+ 2)k < 2`. We cover
the cycle by the following collection of intervals

(1, . . . , 2k), (k + 1, . . . , 3k), . . . , ((m� 1)k + 1, . . . , (m+ 1)k), (mk + 1, . . . , `+ k)

if mk < `. In the case mk = `, the last interval is skipped and the collection ends with
((m � 1)k + 1, . . . , (m + 1)k). Clearly, the length of all intervals is either 2k or, for the
last one, `+ k �mk < 2k thus (a) holds. Further, (b) is implied by the fact that any site
of the cycle is covered exactly twice. Moreover, any pair j

1

< j

2

such that j
1

2 (1, . . . `)

and j

2

� j

1

< k is necessarily contained in at least one of above intervals. Namely, if
j

1

2 (rk + 1, . . . , (r + 1)k) (resp. j
1

2 (mk + 1, . . . , `) for the last interval if mk < `), then
j

1

, j

2

2 (rk + 1, . . . , (r + 2)k) (resp. j
1

, j

2

2 (mk + 1, . . . , `+ k)). As a result, (c) is verified
and thus we get

Pn(S
k
t ) 

X

i

Pn(et 2 E(Ai)). (3.14)

The number of edges E(Ai) induced by Ai is, according to the isoperimetric inequality
(3.3), bounded by 1

2

|Ai| log |Ai|. Given that the number of all edges in Qn is Nn
2

, we

get Pn(et 2 E(Ai))  |Ai| log |Ai|
Nn  |Ai| log(2k)Nn . Using also that

P
i |Ai|  2N , we get the

claimed bound

Pn(S
k
t ) 

X

i

|Ai|
log(2k)

Nn

 2N

log(2k)

Nn

=

2 log(2k)

n

. (3.15)

The bound from Lemma 3.5 can be used to show that the number of cycles Nt does
not depart too far from the number of clusters e

Nt.

Lemma 3.6. There exists n
1

such that for n � n

1

and any t 2 N we have

En(Nt � e
Nt)  t

3 log(4n)

n

.

Proof. Let N2n (resp. N>2n) denote the number of cycles shorter or equal to 2n (resp.
longer than 2n). Obviously Nt = N

2n
t +N

>2n
t and thus

En(Nt � e
Nt) = En(N

2n
t � e

Nt) + En(N
>2n
t )

 En

⇣ tX

i=1

1S2n
i

⌘
+ En(N

>2n
t ).

(3.16)

To bound En(N
>2n
t ), we simply use that N>2n

t  N/(2n)  t

log(2n)
n once t >

N
2 log(2n) .

On the other hand, for t  N
2 log(2n) we get En(N

>2n
t )  1/n once n is sufficiently large.

Indeed, observe that N

>2n
t  |Vt(2n)|

2n . Hence, we can use (2.1) with c = 1/ log(2n)

allowing to choose  = 2 >

2 ln 2

(1�2c)2 .
The result then follows from Lemma 3.5.

Lemma 3.7. For any T, L 2 N and any n � n

1

(with n

1

the constant from Lemma 3.6),
we have

T+LX

t=T+1

Pn(St) � 1

2

T+LX

t=T+1

Pn(It)� 3

2

T

log(4n)

n

.
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Proof. We have

T+LX

t=T+1

1St =
1

2

T+LX

t=T+1

�
1St � 1Mt

�
+

1

2

T+LX

t=T+1

�
1St + 1Mt

�

=

1

2

�
NT+L � e

NT+L �NT +

e
NT

�
+

1

2

T+LX

t=T+1

1It .

(3.17)

The claim follows by taking expectations, using that NT+L � e
NT+L � 0, and applying

Lemma 3.6 for the expectation of NT � e
NT .

3.4 Proof of Theorem 2.2

We check the condition of Corollary 3.2 with � = ⌘(c), where

⌘(c) =

(
1

2

c

0
c

0

if c 2 (

1

2

, 1],

1

2

(1� 1

c ) if c > 1.

(3.18)

By Lemma 3.7 and Lemmas 3.3 with 3.4, we have

1

L

T+LX

t=T+1

Pn(St) � 1

2

1

L

T+LX

t=T+1

Pn(It)� 3

2

T

L

log(4n)

n

� ⌘(c)� o(1) (3.19)

once we choose L = �nT with �nn/ log n ! 1. Theorem 2.2 now follows from Corol-
lary 3.2, since ⌘(c)�a

1�a > ⌘(c)� a; this actually allows to neglect the corrections o(1).
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