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March 2006

Technical Report

MSR-TR-2006-26

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

http://www.research.microsoft.com

1The conference version of the paper appeared at IEEE INFOCOM 2005, Miami, FL, March 2005, under the title “Perfect Simulation
and Stationarity of a Class of Mobility Models”.

2Author affiliations: Jean-Yves Le Boudec, EPFL, CH-1015, Lausanne, Switzerland, Email: jean-yves.leboudec@epfl.ch; Milan Vojnović,
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Abstract– We define “random trip", a generic mobility

model for random, independent node motions, which contains

as special cases: the random waypoint on convex or non

convex domains, random walk on torus, billiards, city section,

space graph, intercity and other models. We show that, for

this model, a necessary and sufficient condition for a time-

stationary regime to exist is that the mean trip duration

(sampled at trip endpoints) is finite. When this holds, we

show that the distribution of node mobility state converges

to the time-stationary distribution, starting from origin of

an arbitrary trip. For the special case of random waypoint,

we provide for the first time a proof and a sufficient and

necessary condition of the existence of a stationary regime,

thus closing a long standing issue. We show that random

walk on torus and billiards belong to the random trip class

of models, and establish that the time-limit distribution of

node location for these two models is uniform, for any initial

distribution, even in cases where the speed vector does not

have circular symmetry. Using Palm calculus, we establish

properties of time-stationary regime, when the condition for

its existence holds. We provide an algorithm to sample the

simulation state from a time-stationary distribution at time

0 (“perfect simulation”), without computing geometric con-

stants. For random waypoint on the sphere, random walk on

torus and billiards, we show that, in the time-stationary regime,

the node location is uniform. Our perfect sampling algorithm

is implemented to use with ns-2, and is available to download

from http://ica1www.epfl.ch/RandomTrip.

I. INTRODUCTION

R
ANDOM mobility models have been used extensively

to evaluate performance of networking systems in both

mathematical analysis and simulation based studies. The goal

of our work is twofold: (i) provide a class of “stable” mobility

models that is rich enough to accommodate a large variety of

examples and (ii) provide an algorithm to run “perfect simu-

lation” of these models. Both goals are motivated by recent

findings about the random waypoint; this is an apparently

simple model that fits in our framework, the simulation of

which was reported to pose a surprising number of challenges,

such as speed decay, a change in the distribution of location

and speed as the simulation progresses [26], [18], [24], [12].

A. Random Trip Model

We define “random trip”, a model of random, independent

node movements. Such independent node movements are

entirely defined by specifying random process of movement

for a single node. The model does not directly accommodate

group mobility models, which are left for further study. The

random trip model is defined by a set of “stability” conditions

for a node movement. These conditions guarantee existence

of a time-stationary regime of node mobility state or its non

existence. They also guarantee convergence of node mobility

state to a time-stationary regime, whenever one exists, starting

a node movement from origin of a trip. The reported ob-

servations for random waypoint such as that speed vanishes

to 0 as simulation progresses (“considered harmful” [25])

are in fact all related to the set of problems on stability of

random processes that include finding conditions for existence

of a stationary regime or its non existence. Stability problems

also include finding conditions under which convergence to a

stationary regime is guaranteed, whenever there exists one.

These conditions are important to alleviate non desirable

situations such as the reported vanishing of node numerical

speed to 0.

In the absence of established properties of real mobility

patterns, it is not yet clear today what the requirements on

mobility models should be [10]. The random trip model is

a broad class of independent node movements that can be

appropriately parameterised to synthesise an a priori assumed

mobile behaviour.

B. Random Trip Examples

We show in Section III that many examples of random

mobility models used in practise are random trip models.

Our catalogue includes examples such as classical random

waypoint, city driving models (“space graph” [14], “city

section” or “hierarchical random waypoint” [6]), circulation

models (“random waypoint on sphere”), or the special purpose

“fish in a bowl” and “Swiss flag”. These are all accommodated

by the “restricted random waypoint” introduced in Section III-

D. These examples illustrate well the geometric diversity of

mobility domains: for models such as “Swiss flag” we have

a non convex area on a plane; for models such as “space

graph” or “city-section”, a concatenation of line segments that

represent streets; for “random waypoint on sphere”, a surface

in a three dimensional space.

In some cases, it is desirable to assume that in steady-

state, node location is uniformly distributed on a domain.

This is provided by “random walk on torus” and “billiards”,

which are defined by “bending” the paths of node movement

with wrapping and billiards-like reflections, respectively, in a

rectangular area on a plane. “Random waypoint on a sphere”

is another such example, embedded in three dimensions.

C. Perfect Simulation

Like many simulation models, when the condition for

stability is satisfied, simulation runs go through a transient

period and converge to the stationary regime. It is important to

remove the transients for performing meaningful comparisons

of, for example, different mobility regimes. A standard method

for avoiding such a bias is to (i) make sure the used model

has a stationary regime and (ii) remove the beginning of

all simulation runs in the hope that long runs converge to

stationary regime.

However, as we show now, the length of transients may

be prohibitively long for even simple mobility models. Our

example is the space graph explained in Figure 2. There are

a little less than 5000 possible paths; in Figure 2 we show

the distribution of the path used by the mobile at time t,

given that initially a path is selected uniformly among all

possible paths (i.e. the mobile is initially placed at a random

vertex (uniformly) and the trip destination vertex is also drawn

uniformly at random on the set of the vertices). This was
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Fig. 1. Mobility on a “Space Graph” as introduced by Jardosh et al [14].
A mobile initiates a trip from a vertex and moves along a shortest-path to a
randomly chosen destination vertex. This model is discussed in Section III-
D.2. The alternative, called city section (Section III-C.2), chooses the trip
end-points on any point of the domain defined by the line segments of the
graph edges. The spatial graph is either generated synthetically (e.g. [14] or
constructed from real-world street maps. The numeric speeds can be assigned
to the edges of a graph.

obtained analytically (details are in Appendix M). Figure 2

illustrates that the transient period may be long compared to

typical simulation lengths (for example 900 sec in [9]).

A major difficulty with transient removal is to know when

the transient ends; if it may be long, as we illustrated, con-

siderable care should be used. An alternative, called “perfect

simulation", is to sample the initial simulation state from

the stationary regime. For most models this is hard to do,

but, as we show, this is quite easy (from an implementation

viewpoint) for the random trip model. Perfect simulation for

the random waypoint was advocated and solved by Navidi

and Camp in [22] who also give the stationary distribution

(assuming location and speed are independent in the station-

ary regime, an issue later resolved in [16] using the Palm

techniques in this paper).

D. The Palm Calculus Framework

The derivations in [22] involve long and sophisticated

computations. We use a different approach, based on Palm

calculus, a set of formulae that relate time averages to event

averages. Palm calculus is now well established, but not widely

used or even known in applied areas. For a quick overview of

Palm calculus, see [17]; for a full fledged theory, see [3]. This

framework allows us to generalise the results in [22] to the

broad class of restricted random waypoint models, and obtain

a sampling algorithm that, for complicated, non convex areas,

does not require a priori computation of geometric integrals.

More fundamentally, the Palm calculus framework allows us

derive simple sampling algorithms for the generic random trip

model—a task that may be formidable without this tool.
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Fig. 2. The probability distribution of the path at time t for a mobile on the
space graph in Figure 1. The node numerical speed is fixed to 1.25 m/s. The
space graph spans a 1 km ×1 km area. The initial path is chosen uniformly
among all possible paths. x-axis: path index, ordered by path length; y-axis:
probability that this path is used at time t for t = 50,100,300,500,1000,2000
seconds of simulated time. Horizontal solid line: initial distribution; other
solid line: the time-stationary distribution. The transient lasts for a long time.

E. Summary of Main Contributions

Our main contributions are summarised as follows:

• We provide “random trip model”, a generic mobility

model with a framework for analysis.

• We identify a necessary and sufficient condition for

existence of a time stationary regime for random trip model.

This appears to be a new result even for the classical random

waypoint, and fully explains the reported “harmfulness” [25].

• We show that random trip models feature convergence in

distribution of node mobility state to a time-stationary regime,

from origin of an arbitrary trip.

• In particular, we prove that a node location for “random

walk on torus” and “billiards” at trip transition instants con-

verges to the uniform distribution on a rectangular area, from

any initial distribution. For the “random walk on torus” model,

the result requires a mild assumption on the distribution of the

node speed vector (essentially, that it has a density) whereas

previous results in [21] required the circular symmetry (speed

vector is isotropic). For the “billiards” model, we require

that the speed vector has a completely symmetric distribution

(Section III-G), which means that it goes up or down [resp.

left or right] with equal probability. This is also a weaker

assumption than the circular symmetry required in [21].

• We show that for three examples (random walk on torus,

billiards, random waypoint on sphere) the node location is

uniform in steady-state. For the random walk on torus, the

steady state is essentially the same as the naive initialisation

(with uniform node placement) and there is no speed decay.

In contrast, there is speed decay for random waypoint on a

sphere.

• We provide an algorithm to initialise node mobility state

so that the distribution of the node state is time-stationary

throughout a simulation (“perfect simulation”).

• The perfect sampling algorithm (i) accommodates ran-
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dom waypoint models on non convex areas and (ii) avoids

computation of geometric integrals when they are difficult to

compute.

F. Organisation of the Paper

The random trip model is defined in Section II, along

with a notation list. Section III provides a broad catalogue

of random mobility models and shows that all are random

trip models. In particular, that section contains convergence

results for “random walk on torus” and “billiards” random

trip models. The main result on stability is the necessary and

sufficient condition for existence and uniqueness of a time-

stationary regime, and convergence to this regime, whenever

it exists, is given in Section IV. In Section V we give a

generic representation of the time stationary distribution of

any random trip model that satisfies the stability condition.

In Section VI we derive an efficient sampling algorithm for

perfect simulation for the sub-family of models that can be

represented as restricted random waypoint. In Section VII we

show that, for random waypoint on sphere, random walk on

torus and billiards, the time-stationary distribution of node

location is uniform, i.e. the distribution bias for location does

not exist for these models. In Section VIII we discuss related

work. Section IX provides concluding remarks. Most of the

proofs are deferred to the Appendix, and are in some cases

only briefly hinted in the main text.

II. THE RANDOM TRIP MODEL DEFINITION

The random trip mobility model is defined by the following

framework.

A. Trip, Phase, Path

1) Domain: The domain A is a subset of R
d , for some

integer d ≥ 1.

2) Phase: I is a set of phases on R
m, for some integer

m ≥ 1. A phase describes some state of the mobile, specific to

the model. For example, it may indicate whether the mobile

moves or pauses at a given time.

3) Path: P is a set of paths on A . A path is a continuous

mapping from [0,1] to A that has a continuous derivative

except maybe at a finite number of points (this is necessary

to define the speed).

For p ∈ P , p(0) is the origin of p, p(1) is its destination,

and p(u) is the point on p attained when a fraction u ∈ [0,1]
of the path is traversed.

4) Trip: A trip is specified by a path Pn and a duration Sn.

The position X(t) of the mobile at time t is defined iteratively

as follows. There is a set Tn ∈ R
+, n ∈ Z+ of transition

instants, such that T0 ≤ 0 < T1 < T2 < .... At time Tn, a phase

In ∈ I , a path Pn ∈ P and a trip duration Sn ∈ R+ are drawn

according to some specified trip selection rule, specific to the

model. The next transition instant is Tn+1 = Tn + Sn and the

position of the mobile is

X(t) = Pn

(

t −Tn

Sn

)

for Tn ≤ t ≤ Tn+1.

The trip selection rule is constrained to choose a path Pn

such that Pn(0) = Pn−1(1). Further, we assume that, with prob-

ability 1, the duration of the trip Sn is positive (instantaneous

transitions are not allowed).

Following a customary convention, whenever we consider a

stationary realisation of node mobility, we extend the transition

instants Tn to the entire line R, and enumerate them as . . . <
T−1 < T0 ≤ 0 < T1 < .. .. In these cases, 0 is an arbitrary time.

5) Default Initialisation Rule: At time t = 0, a phase,

path, position on the path, and remaining time until the next

transition are drawn according to some specified initialisation

rule. We define as a default initialisation rule that which

takes time 0 as the first transition instant (T0 = 0), and

selects a phase, path and trip duration according to the trip

selection rule. The default initialisation rule has been used in

simulations of many random mobility models (e.g. classical

random waypoint).

We introduce additional assumptions. Some of the assump-

tions are either trivial to verify or always hold in real world,

while some are crucial to guarantee stability of the random

trip model and may not be always trivial to verify. This is

discussed more concretely in Section II-D. In any case, the

following assumptions accommodate a broad class of random

mobility models.

B. Conditions on Phase and Path

(H1) Y ≡ (Yn)
+∞
n=0 with Yn := (In,Pn) defined as a couple of

phase and path is a Markov chain on I ×P .

(H2) The chain Y is Harris recurrent [19, Section III.9]: There

exists a set R ∈ I ×P , a probability measure ϕ with support

on I ×P , a number β ∈ (0,1), and an integer n0 ≥ 1 such that

the following two conditions hold

(i) IPy(Yn ∈ R for some n ≥ 1) = 1 for all y ∈ I ×P

(ii) IPy(Yn0
∈ B)≥ β ·ϕ(B) for all y ∈ R and any measur-

able B in I ×P .

Here we use the notation IPy(·) = IP(·|Y0 = y), y ∈ I ×P .

Condition i implies that R is a recurrent set of the chain.

Condition ii says that R is a “regeneration set” in the sense

that the conditional probability that the chain hits a set B, after

n0 transitions from y ∈ R, is ϕ(B) with probability β, where

ϕ(·) is independent of y.

Condition H2 ensures the chain Y has a unique stationary

measure (up to a multiplicative constant) π0 defined by

π0(A) =
∫

I×P
P(y,A)π0(dy) (1)

where P(y,A) := IP(Y1 ∈ A|Y0 = y) is the transition semigroup

of the chain.

(H3) The chain Y is positive Harris recurrent, i.e. H2 holds

and the number of transitions between successive visits to the

set R has a finite expectation.

Condition H3 implies the invariant measure π0 is such that

π0(I ×P ) < +∞, so that it can be normalised to a probability

distribution.

C. Conditions on Trip Duration

(H4) Three hypotheses:

3



(i) The distribution of a trip duration Sn, given the phase In

and path Pn, is independent of any other past and n. Formally,

we have

IP(Sn ≤ s|Yn = y,Yn−1,Sn−1, . . .)

= IP(Sn ≤ s|Yn = y) := F(y,s), for all n ∈ Z.

We assume that for all y ∈ I ×P , F(y,s) is a non defective

probability distribution, that is lims→+∞ F(y,s) = 1, for all y ∈
I ×P . Note that in general the trip duration Sn is dependent

on the path Pn.

(ii) Each trip takes a strictly positive time, i.e.

IP(Sn > 0|Yn = y) = 1, all n ≥ 1 and π0 almost all y.

This condition is always true in reality.

(iii) The Markov renewal process (Yn,Sn)
∞
n=0 is non arith-

metic, i.e. there exists no d ≥ 0 and some “shift” function

g : I ×P → [0,d) such that given Y0 = y, S0 takes values on

the set g(y)+dZ+, for π0 almost all y.

This assumption is automatically true if there is a subset

Y 0 ∈ I ×P of strictly positive π0 probability such that, given

Yn ∈ Y 0, the distribution of Sn has a density, i.e. F(y,s) =∫ s
0 f (y, t)dt, for some function f (·), and y ∈ Y 0.

Condition H4.iii is needed to state the convergence in

distribution to a time-stationary distribution as specified in

Theorem 6–item ii, for sample paths initialised at t = 0 as

specified by the default initialisation rule (see item 5 in

Section II-A)1

D. How to Verify the Conditions in Practise?

Condition H1 is a structural assumption on the trip selection

over time and is easy to verify; the same holds for H4.i and

H4.ii.

Condition H4.iii is true as soon as the trip duration has a

density, for a non negligible subset of paths and phases. In

practise, trip durations either have a density or are mixtures

of constants. It is sufficient that, for some (non negligible)

subset of path and phase conditions, the trip duration has a

density. For example, H4.iii is true for a model with pauses if

either the pause duration, or the (non pause) trip duration has

a density.

Conditions H2 and H3 are stronger. They essentially say that

the Markov chain of system states, sampled at trip endpoints,

is stable, in a strong sense. The technical difficulty here is

that, for many examples, we have a Markov chain on a

non countable state space, for which stability conditions are

mathematically complicated. However, it helps to think that

for random trip with a countable state space I ×P , conditions

H2 and H3 simply mean positive recurrence. For a finite state

space, they even more simply mean that the state space is

connected.

We next show that conditions H1-H4 are verified by many

random mobility models.

1Condition H4.iii is not needed for existence and uniqueness of a time
stationary distribution (Theorem 6–item i, Section IV) and one can indeed
construct time-stationary sample paths of mobility when H4.iii does not hold
by appropriate initialisation.

Notation Used in Section II

• A ⊂ R
d : model domain, connected and bounded

• d(m,n) length of shortest path in A from m ∈ A to n ∈ A ; if A is convex
d(m,n) = ‖m−n‖
• Tn: nth transition time, at which a new trip is defined
• In ∈ I ,Mn ∈A ,Pn ∈P ,Sn ∈ (0,∞): phase, starting point, path, trip duration
for the trip indexed by n. The first trip has index n = 0.
• I(t)∈ I ,M(t) ∈ A ,P(t)∈ P ,S(t)∈ (0,∞),X(t)∈ A : phase, starting point,
path, trip duration for the trip used by mobile at time t, location at time t.
X(Tn) = Mn and if Tn ≤ t < Tn+1 then I(t) = In, M(t) = Mn and S(t) = Sn.
• U(t) ∈ [0,1]: fraction of the current trip that was already traversed. Thus
U(t)S(t) is the time elapsed on the current trip and the location of the
mobile at time t is X(t) = p(U(t)), with p = P(t). We assume that the
trip is done at a speed proportional to the default speed of the path, i.e. if

Tn ≤ t < Tn+1 then U(t) = t−Tn
Tn+1−Tn

= t−Tn
Sn

• It follows that the speed vector of the mobile at a time t that is not an

end of trip is ~V (t) = 1
S(t)

∂
∂u

p(U(t)), with p = P(t) and the numerical speed

is V (t) =
∥

∥

∥

~V (t)
∥

∥

∥
.

• For some random variable Z, IE0(Z) is the “Palm expectation", which can
be interpreted as the expectation, conditional to the event that a transition
occurs at time 0, when the system has a stationary regime. IE0 denotes
the event average viewpoint [4], [17]. For example IE0(S0) = IE0(S(0)) is
the average trip duration; in contrast, when the system has reached steady-
state, IE(S(0)) = IE(S(t)) is the average duration of a trip, seen from an
observer who samples the system at an arbitrary point in time. Both are
usually different because the observer is more likely to sample a large trip
duration.
• In order to simplify notation and at no expense of ambiguity, for a right-
continuous process X(t), t ∈R, and appropriately defined function f (·), we
write IE( f (X0)) for the Palm expectation IE0( f (X(0))); here Xn := X(Tn)
with Tn a trip transition instant.
• We say a property holds for π0 almost all y, if it holds for all y ∈ I ×P ,
but maybe not for some y that lies in a set of zero π0 measure.

III. EXAMPLES

We give a non exhaustive catalogue of example random

mobility models and show they are all random trip models.

A. Classical Random Waypoint With Pauses

This is the classical random waypoint model. A is assumed

to be convex (A is a rectangle or a disk in [12], [10]). Paths are

straight line segments: p(u) = (1−u)m0 +um1 for the segment

with endpoints m0 and m1. Pauses are special cases of paths,

when endpoints are equal: p(u) = m0. There are two phases

I = {pause,move}. At a transition instant, the trip selection

rule alternates the phase from pause to move or vice versa.

If the new phase is pause, the trip duration Sn is drawn from

the distribution F0
pause(s); the path Pn is a pause at the current

point. If the new phase is move, the trip selection rules picks

a point Mn+1 at random uniformly in A , and a numerical

speed Vn according to the density f 0
V (v). A classical choice

(uniform speed) is f 0
V (v) = 1

vmax−vmin
1{vmin<v<vmax}. The trip

duration is then Sn =
‖Mn+1−Mn‖

Vn
and the path Pn is the segment

[Mn,Mn+1]. The default initialisation rule starts the model at

the beginning of a pause, at a location uniformly chosen in A .

Theorem 1: The random waypoint with pauses is a random

trip model.

Proof. H1 and H4 obviously hold. By Theorem 2 shown

next it is sufficient to consider the model without pauses. The

driving chain is now Yn = (Pn) = (Mn,Mn+1) and is indeed

Markov. Take as recurrent set R := A2 so that condition H2.i

obviously holds. The paths are selected such that Pn and Pm

are independent for |n−m| ≥ 2. It follows that for any n0 ≥ 2

and any y ∈ R,
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Fig. 3. Random Waypoint on a non convex domain (Swiss Flag). A trip is the
shortest path inside the domain from a waypoint Mn to the next. Waypoints
Mn are drawn uniformly in the domain. In figure, the shortest path Mn,Mn+1

has two segments, with a breakpoint at K; the shortest paths Mn−1,Mn and
Mn−2,Mn−1 have one segment each. M(t) is the current position.

IPy(Yn0
∈ A1 ×A2) = Unif(A1)Unif(A2)

where Unif is the uniform distribution on A , defined by

Unif(A) =
∫

A dx/
∫

A dx. This shows that H2.ii holds with

ϕ = Unif⊗Unif (product measure) and any β ∈ (0,1). The

recurrent set R is visited at each transition, so H3 is indeed

true.

✷

This model is well known; its stationary properties are studied

in [24], [12], [16]. However, even for this simple model our

framework provides two new results: the proof of existence

of a stationary regime, and a sampling algorithm for the

stationary distribution over general areas that does not require

the computation of geometric integrals.

B. Adding Pauses to a Model

Assume we have a random trip model M with phases In

and paths Pn. We can add pauses to this model and obtain a

new model M ′ as follows. At the end of the nth trip, a pause

time S′n is drawn at random, depending only (possibly) on the

current trip and phase. This means that the pause duration at

the end of the nth trip, conditional on all past, depends only

on Pn and In.

In M ′ we have phases I′n and paths P′
n given by (for all

k ∈ N):
{

I′2k = (move, Ik), I′2k+1 = (pause, Ik)
P′

2k = Pk, P′
2k+1 = constant(Mk+1)

(2)

where constant(m) is the path that remains entirely at point M

(i.e. constant(m)(u) = m for 0 ≤ u ≤ 1).

Theorem 2: If M is a random trip model , then M ′ is also

a random trip model.

Proof. It is straightforward to show that assumptions H1

and H4 hold. We now show H2.i. Let R be a regeneration set

for model M , which by hypothesis exists. Let

R′ = {move,pause}×R

Let Zn ∈ {move,pause} be the sequence that alternates be-

tween move and pause, and indicates whether the nth trip

is a pause or not. The driving chain in model M ′ is Y ′
n. If

Z0 = move (this is implicitly assumed in Equation (2)) then

Y ′
2k = (move, Ik,Pk) and thus

IP(move,i,p)

(

Y ′
n ∈ R′ for some n

)

≥ IP(move,i,p)

(

Y ′
2k ∈ R′ for some k

)

= IP(i,p) (Yk ∈ R for some k) = 1

and similarly

IP(pause,i,p)

(

Y ′
n ∈ R′ for some n

)

≥ IP(pause,i,p)

(

Y ′
2k+1 ∈ R′ for some k

)

= IP(i,p) (Yk ∈ R for some k) = 1

which shows H2.i.

To show H2.ii, let n0,β,ϕ be such that IP(i,p)(Yn0
∈ B) ≥

β · ϕ(B) for all y ∈ R and any measurable B in I × P .

Define the probability measure on {move,pause}× I ×P by

ϕ′({move}×B) = ϕ(B) and ϕ′({pause}×B) = 0. We have,

for B′ = {move}×B:

IP(move,i,p)

(

Y ′
2n0

∈ B′
)

= IP(i,p) (Yn0
∈ B) ≥ βϕ(B) = βϕ′(B′)

and for B′ = {pause}×B:

IP(move,i,p)

(

Y ′
2n0

∈ B′
)

= 0 = βϕ′(B′)

which shows H2.ii. ✷

C. Random Waypoint on General Connected Domain

This is a variant of the classical random waypoint (Exam-

ple III-A), where we relax the assumption that A is convex,

but assume that A is a connected domain over which a uniform

distribution is well defined. For two points m,n in A , we call

d(m,n) the distance from m to n in A , i.e. the minimum length

of a path entirely inside A that connects m and n. P is the set

of shortest paths between endpoints. The trip selection rule

picks a new endpoint uniformly in A , and the next path is

the shortest path to this endpoint. If there are several shortest

paths, one of them is randomly chosen according to some

probability distribution on the set of shortest paths. The set of

phases is I = {pause,move}. This model fits in our framework

for the same reasons as the former example.

1) Swiss Flag: The model is random waypoint on particular

non-convex domain defined by the cross section as in Figure 3.

2) City Section: This is a special case of random waypoint

on a non convex domain. The domain is the union of the

segments defined by the edges of the space graph (e.g.

Figure 1). Arbitrary numeric speeds can be assigned to edges

of the graph. The “distance” from one location to another is

the travel time.

D. Restricted Random Waypoint

This model was originally introduced by Blažević et al [6]

in a special form described in Figure 4, in order to model

intercity examples. We define it more generally as follows.

5



Mn

A1

A2 A3

A4

Rn=2

Rn+2=0

A

Fig. 4. A restricted random waypoint on a plane with four squares as
subdomains. This model was introduced in [6] to simulate a wide-area routing
protocol. It was used as an idealised view of four towns represented by
squares. A mobile moves according to random waypoint within a square for
a random number of visits and then picks a point uniformly at random in
another randomly chosen square as a destination. The figure shows a sample
path of the mobile movement. The speed on the trip is chosen according to
a distribution that depends on the origin and destination squares.

The trip endpoints are selected on a finite set of subdomains

Ai ∈ R
d , i ∈ L . The domain A is a convex closure of the

subdomains Ai, i ∈ L . The trip selection rule is described

as follows. To simplify, we first consider a node movement

with no pauses. Suppose the node starts from a point Mn

chosen uniformly at random on a subdomain i. The node picks

the number of trips r to undergo with trip endpoints in the

subdomain i from a distribution Fi(·). The next subdomain is

drawn from the distribution Q(i, ·). At each trip transition, the

node decrements r by 1, as long as r > 0, else it sets r to

a random sample from the distribution Fj(·). Then, if r = 0,

the current subdomain is set to j and the next subdomain to a

sample from Q( j, ·). The trip destination is chosen uniformly

at random on Ai if r > 0, else uniformly at random on A j.

This process repeats. The model is extended to accommodate

pauses in a straightforward manner by inserting pauses at the

trip transition instants.

The phase is In = (i, j,r,φ), where i and j are respectively,

the current and next subdomain, r is the number of trips with

both endpoints in the subdomain i, and φ ∈ {move,pause}.

Given a phase In =(i, j,r,move), the path Pn is the line segment

[Mn,Mn+1], with Mn uniformly distributed on Ai and Mn+1

uniformly distributed on Ai or A j, for r > 0 and r = 0,

respectively.

Theorem 3: Assume that (i) Q is an irreducible transition

matrix, and (ii) the number of trips within a subdomain has

a finite expectation, i.e. ∑∞
n=0(1−Fi(n)) < +∞, for all i ∈ L .

Then, the restricted random waypoint is a random trip model.

Proof (given in Appendix) derives from known ergodicity

results for Markov chains on countable state spaces.

Fig. 5. Fish in a bowl is a restricted random waypoint. A is the volume of
the sphere comprised between two horizontal planes. Waypoints are on the
boundary A1 of A .

In addition to the model in Figure 4, we give two particular

examples of the restricted random waypoint model.

1) Fish in a Bowl: The model is restricted random waypoint

on the domain defined by the volume of the bowl, as in

Figure 5. The waypoints are restricted to the subset A1 of

the domain A , where A1 is the set of the points on the bowl’s

surface (see Figure 5). The set of phases is I = {pause,move}.

2) Space Graph: We defined this model in Section I. It is

a special case of restricted random waypoint with A = the

space graph and A1 = the set of vertices. Note that it differs

from the City Section in that the waypoints are restricted to

be vertices. The set of phases is I = {pause,move}.

Note that all models III-A to III-D.2 and III-E are special

cases of the restricted random waypoint, with L = 1, r = 0,

and A1 = A for examples III-A to III-C.2, A a strict subset of

A for examples III-D.1 and III-D.2. Note that the subdomains

Aℓ may be convex as in Figure 4 or not as in Figure 5.

E. Random Waypoint on Sphere

Here A is the unit sphere of R
3. P is the set of shortest

paths plus pauses. The shortest path between two points is the

shortest of the arcs on the great circle that contains the two

points. If the two points are on the same great circle diameter,

the two arcs have same length (this occurs with probability 0).

The trip transition rule picks a path endpoint uniformly on the

sphere, and the path is the shortest path to it (if there are two,

one is chosen with probability 0.5). The set of phases is I =
{pause,move}. The numerical speed is chosen independently.

Initially, a point is chosen uniformly.

This model is in fact a special case of the random waypoint

on a connected, non convex domain. However, we mention

it separately as it enjoys special properties (the stationary

location is uniform, unlike for the random waypoint models

described earlier).

F. Random Walk on Torus

This model is called a random waypoint on a torus in [18].

It is used primarily because of its simplicity: unlike for the

random waypoint, the distribution of location and speed at a

random instant are the same as at a transition instant, as we

show later.
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Fig. 6. Random waypoint on a sphere.

The domain A is the rectangle [0,a1]× [0,a2]. Paths are

wrapped segments, defined as follows. The trip selection rule

chooses a speed vector ~Vn and a trip duration Sn independently,

according to some fixed distributions. Choosing a speed vector
~Vn is the same as choosing a direction of movement and a

numerical speed. The mobile moves from the endpoint Mn

in the direction and at the numeric speed given by the speed

vector. When it hits the boundary of A , say for example at a

location (x0,a2), it is wrapped to the other side, to location

(x0,0), from where it continues the trip (Figure 7). Let w :

R
2 → A be the wrapping function:

(

x

y

)

7→ w

(

x

y

)

=

(

x mod a1

y mod a2

)

. (3)

The path Pn (if not a pause) is defined by (Mn, ~Vn,Sn), such

that Pn(u) = w
(

Mn +uSn
~Vn

)

. Note that wrapping does not

modify the speed vector (Figure 7). After a trip, a pause time

is drawn independent of all past from some fixed distribution.

Initially, the first endpoint is chosen in A according to some

arbitrary distribution. As we see later, the distribution of end-

point tends to uniform distribution (when sampled at transition

instants).

For a1 = a2 = 1, and if there are no pauses, the sequence

M0, ...,Mn, ... is a random walk on the torus, in the sense that

Mn = M0 ⊕~U0 ⊕~U1 ⊕·· ·⊕~Un−1 where ⊕ is addition modulo

1 (componentwise) and ~Un ≡ Sn
~Vn. This is why this mobility

model is itself called random walk.

Assumptions H1 and H4 are obviously satisfied by the

random walk, with set of phases I = {pause,move}. The other

assumptions of the random trip model are satisfied modulo

some mild assumption on distributions:

Theorem 4: Assume that the distribution of the speed vector
~Vn chosen by the trip selection rule has a density (with respect

to the Lebesgue measure in R
2). Further assume that either

the distribution of trip durations or distribution of pause times

have a density. The random walk on torus satisfies the random

trip assumptions.

Remark. Note that we do not assume any form of symmetry

for the direction of the speed vector, contrary to [21].

The proof is based on a sequence of lemmas that are

displayed in the rest of this subsection. The first lemma

characterises the node location at trip end points.

Lemma 1: In the random walk without pause, the sequence

M0, ...,Mn, ... is a Harris recurrent Markov chain, with sta-

tionary distribution uniform on A .

The asserted convergence is proved by using Erdös-Turán-

Koksma inequality [20, Theorem 1.21], which yields the

following result:

Lemma 2: For any m ∈ A ,

lim
n→+∞

sup
B

|µ∗n
m (B)−Unif(B)| = 0 (4)

where the supremum is over all product intervals in A and

µ∗n
m is the conditional distribution of Mn given M0 = m.

In order to apply the Erdös-Turán-Koksma inequality, we

need the following auxiliary result.

Lemma 3: Let X be a real random variable that is non-

lattice. For h ∈ Z, h 6= 0:
∣

∣

∣
IE
(

e2iπhX
)∣

∣

∣
< 1 (5)

Proof. We apply the Cauchy Schwartz [13, Section 6.5–

p.132] inequality to the complex valued random variables

e2iπhX and 1. We have
∣

∣

∣IE
(

e2iπhX
)∣

∣

∣

2

≤ IE
(

|e2iπhX |2
)

= 1 (6)

and equality implies that e2iπhX = c a.s. for some constant

c ∈ C, and X has to be lattice. ✷

G. Billiards

This is similar to example III-F, but with billiards-like

reflections instead of wrapping (Figure 7). The definition is

identical to example III-F, with the wrapping function replaced

by the billiards reflection function b : R
2 → A , defined by

(

x

y

)

7→ b

(

x

y

)

=





a1 b1

(

x
a1

)

a2 b1

(

y
a2

)





where b1 : R → [0,1] is the 2-periodic function defined by

b1(x) = |x|, for −1 ≤ x ≤ 1.

Unlike the wrapping function, the billiards reflection may alter

the speed vector (Figure 7). Therefore we make a difference

between the unreflected speed vector ~Wn and the instant speed

vector ~V (t) at time t. In the model without pause, the sequence

of node locations M0,M1, . . . is a Markov chain, defined by

Mn+1 = b(Mn +~Un), n ≥ 0,

where ~Un := Sn
~Wn is the driving sequence of i.i.d. random vari-

ables. The path Pn (if not a pause) is defined by (Mn, ~Wn,Sn),

such that Pn(u) = b
(

Mn +uSn
~Wn

)

.

The billiards is similar to the random walk on torus, but is

not quite as simple (Mn is not a random walk). We need to

impose that the speed vector has equal probability of going

up or down [resp. left or right].

Definition 1: We say that a random vector (X ,Y ) has a

completely symmetric distribution iff (−X ,Y ) and (X ,−Y )
have the same distribution as (X ,Y ).

7



M
n
 

M
n+1

 

V
n
 

a
1

a
2

o o 

S
n
 

M
n
 

W
n
 

M
n+1

 

a
1

a
2

o 

o 

S
n
 

V(t) 

Fig. 7. Definition of random walk on torus (left) and billiards (right).

This is true for example if the direction of ~W is uniformly

chosen on the unit circle, or if the two coordinates of ~W are

independent and have even distributions. With this assumption,

we have a similar result as for the random walk:

Theorem 5: Assume that the distribution of the speed vector
~Wn chosen by the trip selection rule has a density (with respect

to the Lebesgue measure in R
2) and is completely symmetric.

Further assume that either the distribution of the trip durations

or distribution of pause times have a density. The billiards

satisfies the random trip assumptions.

Remark. Note that we need the complete symmetry of

the speed vector for Lemma 4 to hold. Consider as counter-

example a speed vector with density supported by the set

[0,0.1a1]×R, i.e. it always goes to the right, by a little amount.

After a few iterations, the sequence Mn is always in the set

[0.9a1,a1]× [0,a2], i.e. in a band on the right of the domain.

So it cannot converge to a uniform distribution.

Proof. The proof is similar to that of Theorem 4, with

Lemma 1 replaced by Lemma 4. ✷

The theorem derives from a main lemma asserted here:

Lemma 4: In the billiards without pause (with the assump-

tions of Theorem 5), the sequence M0, . . . ,Mn, . . . is a Harris

recurrent Markov chain, with stationary distribution uniform

on A .

The proof in Appendixis by a pathwise reduction to a

random walk on torus. Two auxiliary results are used in

showing Lemma 4, which we present in the the rest of this

section. First define, for any m ∈R
2 (possibly outside the area

A) the linear mapping Jm that maps the non-reflected speed

vector ~w to the speed vector ~v at the reflected location b(m)
(Jm is the differential of b(·) at point m) – see Appendix for

details.

Lemma 5: For any non random point m ∈ A and vector

~v ∈ R
2: b(m+~v) = b(b(m)+ Jm (~v)).

Proof. It is enough to show the lemma in dimension 1. In

this case, the result to prove is

b1(x+ v) = b1

(

b1(x)+(−1)⌊x⌋v
)

for any x,v ∈R. Both sides of the equation are 2-periodic in x,

thus we can restrict to the cases −1 ≤ x < 0 and 0 ≤ x < 1. In

the former case, the equation is trivial. In the latter, it becomes

b1(x+v) = b1(−x−v), which is true because b1(·) is even. ✷

Lemma 6: For any m ∈ R
2:

b(m) = b(w2(m))

Proof. Each coordinate of b(·) is 2-periodic and the the

wrapping w2(·) is a translation by integer multiples of 2. ✷

IV. TIME STATIONARITY AND CONVERGENCE

The state of a mobile node at time t is described by the

continuous-time Markov process

Φ(t) := (Y (t),S(t),S−(t)),

which takes values on the state space I ×P ×R
2
+. Here S(t)

is the duration of the trip at time t and S−(t) is the elapsed

time on the trip at time t. The random trip model definitions

introduced in Section II imply Φ is a Markov renewal process.

The following is the main stability result:

Theorem 6: For the random trip model specified by H1–H4

in Section II:

(i) There exists a time-stationary distribution π for Φ if

and only if IE0(S0) is finite. Whenever π exists, it is

unique and given by:

π(B) =
IE0
(∫ T1

0 1Φ(s)∈Bds
)

IE0(S0)
, B ∈ I ×P ×R

2
+.

(ii-a) If IE0(S0) is finite, then from π0 almost any trip

initiated at time 0, Φ(t) converges in distribution to

π, as t → +∞.

(ii-b) Else, if IE0(S0) = +∞, then

lim
t→+∞

IPy(Φ(t) ∈ A) → 0,
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for any set A in I ×P ×R
2
+ such that

IE0

(∫ T1

0
1Φ(s)∈Ads

)

< +∞.

Comment 1. The convergence result ii follows from the

Markov renewal theorem [1]. We note that the result holds

under assumption that the driving chain Y is only Harris

recurrent, not necessarily positive Harris recurrent. If the

driving chain Y is null-recurrent, i.e. the mean number of

transitions between successive visits to regeneration sets is

infinite, then it still may be that IE0(S0) is finite and that

the asserted limit hold. Similar convergence results are known

for a positive Harris recurrent Markov process in continuous

time, under a condition on the distribution of the regeneration

epochs. See for instance [2, Proposition 3.8] for a convergence

in total variation.

Comment 2. The item ii-b formalises the reported "harm-

fulness" of the random waypoint. It says that for a random trip

model, if the mean trip duration IE0(S0) is infinite, then the

process Φ is in fact null-recurrent. The asserted convergence

to 0 was originally found for node numeric speed [25].

Comment 3. The conditions introduced in [7] are sufficient

conditions for H1-H3 to hold. Condition H4.iii is new and is

needed for the asserted convergence in item ii, not for item i.

Corollary 1: For examples III-A to III-E, there is a sta-

tionary regime if and only if the pause time and inverse

speed (sampled at a transition) have a finite expectation.

For examples III-F and III-G the condition is that the pause

time and trip duration (sampled at a transition) have a finite

expectation.

V. TIME-STATIONARY DISTRIBUTIONS

For a perfect simulation, all we need is to sample from the

time stationary distribution of the process state. The state of

the process is the phase I(t), the path P(t), the trip duration

S(t) and where on trip U(t). In this section we give a simple

representation of the time stationary distribution of this process

state for any random trip model. In the next sections we will

apply it to the various examples introduced earlier.

Our representation relates this distribution to the stationary

distribution π0 of the Markov chain Yn = (In,Pn) of phase

and path sampled at transition instants, and to the mean trip

duration τ̄(y) :=
∫ +∞

0 sF(y,ds) given that the phase and path

is y.

Theorem 7: Assume the condition for existence and unique-

ness of a stationary distribution in Section IV of Part I is

satisfied. The time stationary distribution of the process state

at an arbitrary time t is given by the following.

1) Phase and Path: Let Y (t) = (I(t),P(t)).

dIP(Y (t) = y) =
τ̄(y)∫

Y τ̄(x)π0(dx)
π0(dy).

2) Trip duration, given phase and path:

dIP(S(t) = s|Y (t) = y) =
s

τ̄(y)
F(y,ds).

3) Fraction of time elapsed on the trip: U(t) is independent

of (I(t),P(t),S(t)) and is uniform on [0,1].

Notation Used in Section VI

• Q(i, j): probability that next subdomain is A j given current subdomain

is Ai. q0 is the unique stationary probability of Q given by q0Q = q0.
• For r ∈ N+, Fi(r) is the probability that the number of consecutive trips
within subdomain Ai is smaller or equal r, with r ≥ 0. R̄i = ∑r≥0 F̄i(r),
with F̄i(r) = 1−Fi(r), is the expected number of consecutive trips within
subdomain Ai.
• ∆̄i, j is the average distance in A for two points chosen uniformly in Ai

and A j . ∆i, j is an upper bound on the distance in A between two points
in Ai and A j .

• f 0
V |ℓ(v) is the Palm (= at a transition instant) distribution of speed, given

that phase is ℓ = (i, j,r,move); ωi, j = IE0
(

1
V0
|In = (i, j,r,move)

)

is the event

average of the inverse of the speed chosen for a trip from subdomain Ai to
A j . We have ωi, j =

∫ ∞
0

1
v

fV |i, j,r,move(v)dv, assumed to be independent of r.

• F0
S|ℓ(s) is the Palm (= at a transition instant) distribution of pause time,

given that phase is ℓ = (i, j,r,pause); τi, j = IE0 (S0|I0 = (i, j,r,pause)) is
the expected pause time of a pause, given that origin and destination
subdomains are Ai to A j . We have τi, j =

∫ ∞
0 sF0

S|i, j,r,pause
(ds), assumed to

be independent of r.

Note that the factor
∫

Y τ̄(y)π0(dy) in the denominator of

item 1 is the mean trip duration, and the stability condition in

Part I, Section IV is precisely that it is finite.

Special Case: Independent Pauses. In many examples with

pauses, the set of phases is reduced to {pause,move}, the

model alternates between these two, and π0(I0 = i) = 0.5 for

i = pause or move. Define τ̄pause [resp. τ̄move] as the mean

pause duration (sampled at trip endpoints) [resp. mean trip

duration for a trip that is not a pause]. It follows from item 1

that
IP(I(t) = pause) =

τ̄pause

τ̄pause + τ̄move

and IP(I(t) = move) = 1− IP(I(t) = pause).

VI. APPLICATION TO EXAMPLES A TO D

In all of this section, we assume that the condition for

stationarity in Part I is satisfied. We focus on restricted random

waypoint on general connected area, since examples A to D

are special cases of it.

A. Time Stationary Distributions

A direct application of Theorem 7 gives the time stationary

distribution of the process. Due to its description complexity,

we give it in three pieces, in the following theorems. Special

notation local to this section is given below.

The first theorem generalises known statements for the clas-

sical random waypoint (Example A) [25], [24]. It relates the

time average speed to the distribution of the speed selected at

a waypoint, and contains an exact representation of the time

stationary distribution of location.

Theorem 8: Under the time stationary distribution, condi-

tional to phase I(t) = ℓ = (i, j,r,move):

1) The numerical speed is independent of the path and the

instantaneous location of the mobile at time t. Its density

is

fℓ(v) = Cℓ
1

v
f 0
V |ℓ(v)

where f 0
V |ℓ(v) is the density of the numerical speed

sampled at a transition instant and Cℓ is a normalising

constant.
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2) The path endpoints (P(t)(0),P(t)(1)) have a joint den-

sity over Ai ×A j given by

dIP(P(t)(0) = m0,P(t)(1) = m1|I(t) = ℓ)

= Ki, j,rd(m0,m1)

where Ki, j,r are normalising constants and d(·) is the

distance in A .

3) The distribution of X(t), given P(t)(0) = p and

P(t)(1) = n, is uniform on the segment [p,n].

Proof. Apply Theorem 7 to obtain the joint distribution

of the path, location and speed V (t), by noting that V (t) =
d(P(t)(0),P(t)(1))/S(t). ✷

Comment 1. As we show later, there is no need to know the

value of the constants Ki, j,r to use the theorem in a simulation.2

Comment 2. The distribution of path endpoints P(t)(0) and

P(t)(1) is not uniform, and the two endpoints are correlated

(they tend to be far apart), contrary to what happens when

sampled at transition instants. This was found already for

Example A in [22].

Comment 3. One can use Theorem 8 to derive an explicit

representation of the density of location X(t) sampled at an

arbitrary instant; for example [17] gives a closed form for the

density Example A (random waypoint). However, the explicit

formula is quite complicated, and is not helpful for perfect

simulation. Indeed, we need to sample not only the location,

but jointly location and trip, and this is readily done with

Theorem 8, as we show next.

Comment 4. The relation between time stationary and

event stationary distribution of speed is sometimes interpreted

as “speed decay" since it is more likely to produce low speed

values than the density f 0
ℓ (v). If one desires a uniform speed

distribution in time average, then the density of speed at

transition instants should be f 0
ℓ (v) = K′

ℓv1{vmin<v<vmax}. Note

that such a speed distribution satisfies the stability condition

in Section IV even if vmin = 0.

Theorem 9: Under the time stationary distribution, condi-

tional to phase I(t) = ℓ = (i, j,r,pause):

1) The location X(t) and the time R(t) until end of pause

are independent.

2) X(t) is uniform in Ai.

3) R(t) has density

fℓ(r) =
1

τ̄ℓ

F̄0
S|ℓ(s)

where F̄0
S|ℓ(s) = 1−F0

S|ℓ(s) is the complementary distri-

bution of pause time, given the phase is ℓ.

Proof. Similar to (but simpler than) Theorem 8. ✷

2However, in the special case of convex domains where d(m,n) is the
usual Euclidean distance, it is worth noting that there are known formulae:

K−1
i, j,r = vol(Ai)vol(A j)∆̄i, j , for r > 0, and else K−1

i, j,r = vol(Ai)
2∆̄i,i, where

vol(Ai) is the area or volume of Ai (in square or cubic meters) and ∆̄i, j is the
average distance in A between two points drawn uniformly in Ai and A j . For

r = 0 and Ai = a square of a size a, K−1
i, j,0 ≈ 0.5214a5; for a disk of radius

a, K−1
i, j,0 ≈ 0.9054π2a5 [12]. For an arbitrary case, it is generally not possible

to obtain either vol(Ai) or ∆̄i, j in a closed form, but K−1
i, j,r can be estimated

directly by Monte Carlo simulation.

If ∆̄ is known

q0 = τpause/(τpause +ω∆̄)
Draw U1 ∼U(0,1)
if U1 ≤ q0 I(t) = pause

else

I(t) = move

do

Draw M0 ∼ Unif(A1),M1 ∼ Unif(A1)
Draw U2 ∼ Unif(0,∆)

until U2 < d(M0,M1)

else (i.e. ∆̄ is not known)

q0 = τpause/(τpause +ω∆)
do forever

Draw U1 ∼U(0,1)
if U1 ≤ q0 I(t) = pause; leave

else

Draw M0 ∼ Unif(A1),M1 ∼ Unif(A1)
Draw U2 ∼ Unif(0,∆)
if U2 < d(M0,M1)
I(t) = move; leave

end do

Fig. 8. Sampling algorithm for restricted random waypoint with L = 1,
supporting both cases where the average distance between points in A1 is
known or not. The general case L > 1 is given in Appendix. τpause is the

average pause time, ∆̄ the average distance in A between two points in A1,
∆ an upper bound on the distance in A between two points in A1 and ω =
IE0(1/V0|I0 = move).

We next show the time-stationary distribution for phase,

but only for the special case L = 1, i.e. one sub-domain. The

general case for arbitrary L bears some notational complexity

and is for this reason deferred to Appendix.

Theorem 10: The time stationary distribution π(ℓ) to be in

phase ℓ is

π(pause) =
τpause

τpause + ∆̄ω

and π(move) = 1−π(pause), where τpause is the average pause

time, ∆̄ the average distance in A between two points in A1,

and

ω = IE0

(

1

V0

| I0 = move

)

is the event average of the inverse of the speed.

As with Theorem 8, we show later that we do not need to

know ∆̄ to use this theorem for sampling.

B. Perfect Simulation Without Computing Geometric Integrals

A straightforward application of the previous section poses

the problem of how to sample m0,m1 from the density in Theo-

rem 8. Further, in order to sample the phase in Theorem 10 one

needs to compute the geometric integrals ∆̄i, j; for simple cases

(L = 1 and A1 is a rectangle or disk) there exist closed forms,

as mentioned in Comment 1 after Theorem 8. Otherwise, one

needs to compute them offline by Monte Carlo simulation. For

some cases, this is time consuming (see analysis in Appendix).

There is generally more efficient procedure, which avoids

computing the geometric integrals when they are not known,

10



as we show now. The solution of these two problems is based

on the following lemma.

1) Rejection Sampling Lemma: Let (J,Y ) be a random

vector, where J is in a discrete set J and Y ∈ R
d . Assume

that IP(J = j) = λµ( j)ω j and the distribution of Y conditional

to J = j has a density
f j(y)
ω j

The problem is to sample from

(J,Y ) without having to compute the normalising constants of

the densities ω j for all j.

Assume we know factorisations of the form f j(y) =
k j(y)g j(y) where g j(y) is a probability density, i.e.

∫
g j(y)dy =

1, or in other words there is no normalising constant to

compute for g j(y). Assume also that we know upper bounds

κ j such that 0 ≤ k j(y) ≤ κ j.

Lemma 7: Let ν be the probability on J defined by: if ω j

is known ν( j) = αµ( j)ω j else ν( j) = αµ( j)κ j, where α is a

normalising constant, defined by the condition ∑ j ν( j) = 1.

The following algorithm draws a sample from (J,Y ):

do forever

draw j with probability ν( j)
if ω j is known

draw y from the density f j(y)/ω j;leave

else

draw y from the density g j(y)
draw U ∼ Unif(0,κ j)

if U ≤
k j(y)

κ j
leave

end do

Comment. The lemma follows by the structure of the

distribution of J and conditional density of Y . The structure is:

IP(J = j) is proportional to ω j, while the conditional density

of Y , given J = j, is inversely proportional to ω j. By this

structure, twisting the original distribution of J and conditional

density of Y , by replacing ω j with κ j, indeed results in the

original joint density of (J,Y ). The lemma is a general result.

However, it may be helpful to note that the general form was

suggested by particular distributions in Theorem 7. Therein,

phase I(t) acts the role of J, while (P(t),S(t),U(t)) acts the

role of Y .

2) The Sampling Method: The following theorem gives

the sampling method. The details for the general case have

some description complexity, and is for this reason deferred

to Appendix. We show all details here for the case L = 1.

Theorem 11: (Perfect Simulation of Restricted Random

Waypoint) The following algorithm draws a sample of

the time stationary state of the restricted random waypoint:

1) Sample a phase I(t) = ℓ = (i, j,r,φ) from the

algorithm in Figure 8 (simple case) or in Ap-

pendix (general case).

2) If φ = pause

• Sample a time τ from the distribution with

density fℓ(τ) = F̄0
S|ℓ(τ)/τ̄ℓ.

• Sample a point M uniformly in Ai.

• Start the simulation in pause phase at lo-

cation M and schedule the end of pause at

τ.

3) If φ = move

• Sample a speed v from the distribution with

density proportional to 1
v

f 0
V |ℓ(v).

• Set M0,M1 to the value returned by the

algorithm in Figure 8 (simple case) or in

Appendix (general case).

• Sample u uniformly in (0,1).
• Start the simulation in move phase, with

initial position (1− u)M0 + uM1, next trip

endpoint = M1, and speed = v.

Note that the algorithm in Figure 8 solves both problems

mentioned in the introduction of this section.

If ∆̄ is known with little computational cost (i.e. when A is

a rectangle or a disk) it is always preferable to use the former

case (“∆̄ is known"). Else there are two options: (i) compute

∆̄ offline by Monte-Carlo simulation and use the case ∆̄ is

known", or (ii) use the case (“∆̄ is not known"). Apart from

unusually long simulation campaigns with the same model, the

optimal choice, in terms of number of operations is to use the

latter case (see Appendix). Furthermore, using the latter case

simplifies the overall simulation code development. Figure 9

illustrates the sampling method on some examples from Part I.

Proof. First note (Theorem 8) that we need only to

consider path and location. Then apply Theorems 8, 9 and

10. When ∆̄i, j is known, we solve the first problem of

sampling m0,m1 from the density in Theorem 8 by applying

Lemma 7 with J = {1}, y = (m0,m1), ω1 = ∆̄i, j, f1(m0,m1) =
d(m0,m1)UnifAi

(m0)UnifA j
(m1), κ1 = ∆i, j. The second prob-

lem (∆̄i, j not known) is solved by setting J = I and ωℓ = τ̄ℓ.

✷

VII. APPLICATION TO EXAMPLES E TO G

These are the examples where the distribution of location at

an arbitrary point in time is uniform. In all of this section, we

assume that the condition for existence of the time-stationary

distribution (Theorem 6) is satisfied.

A. Random Waypoint on Sphere

This model is a special case of restricted random waypoint

over a non convex area, with L = 1 and A1 = A . Thus all

findings of Section VI apply, in particular, the time stationary

speed is independent of location and is given by Theorem 8.

Theorem 12: For the random waypoint on the sphere, the

time stationary distribution of the mobile location is uniform.

Proof. Apply Theorem 8. The distribution of X(t) is

invariant under any rotation of the sphere around an axis that
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Fig. 9. Perfect sampling of node position from time-stationary distribution for examples introduced in Section III: Swiss Flag (1000 samples), Fish in a
Bowl (5000 samples), Four Town restricted random waypoint (5000 samples) and Space Graph (10000 samples). Densities are not uniform, with bias towards
central areas and interior corner points.

contains the centre of the sphere, and any distribution that has

such an invariance property must be uniform. ✷

Note that, with the same argument, we can show that, given we

are in a move phase, the time stationary distribution of each

path endpoint (previous and next) separately is also uniform,

but the two endpoints are correlated (it is more likely that they

are far apart). This is because, from Theorem 8, a typical path

seen in time average is drawn with a probability proportional

to its length. This implies that, though the time stationary

distribution of points is uniform, it is not sufficient for perfect

simulation to draw an initial position uniformly on the sphere

and start as if it would be a path endpoint (we need in addition

to sample a path and where on path according to Theorem 8).

B. Random Walk on Torus

Let F0
pause(t) [resp. F0

move(t)] be the distribution of the pause

[resp. move] duration, sampled at a transition time. Both

distributions are model parameters. Also let τ̄pause, τ̄move be

the corresponding expected values (thus for example τ̄pause =
IE0(S0|I0 = pause) =

∫ ∞
0 tF0

pause(dt)). Finally, let f 0
~V
(~v) be the

density of the distribution of the speed vector (sampled at trip

endpoints).

Theorem 13: For the random walk on torus, under the time

stationary distribution:

1) The process state at time t is fully described by the phase

I(t), the location X(t), the speed vector ~V (t) (=~0 if

I(t) = pause) and the residual time until end of trip R(t).
2) The location X(t) is uniformly distributed.

3) IP(I(t) = pause) = 1− IP(I(t) = move) =
τ̄pause

τ̄pause+τ̄move
.

4) Conditional I(t) = pause:

• The residual pause duration R(t) has density

fpause(r) = F̄0
pause(s)/τ̄pause;

• X(t) and R(t) are independent.

5) Conditional to I(t) = move:

• ~V (t) has density f 0
~V
(~v);

• The residual trip duration R(t) has density

fmove(r) = F̄0
move(s)/τ̄move;

• X(t),~V (t) and R(t) are independent.

Lemma 8: Let X be a random point, uniformly distributed

in A = [0,a1]× [0,a2]× ...[0,ad ]. For any non random vector

~v ∈ R
d , the distribution of w(X +~v) is also uniform in A .

Perfect Simulation of the random walk on torus. It

follows immediately and, contrary to random waypoint on

sphere, it is very simple. Pick a phase in proportion to the

average time spent in the phase. Pick a point and, for the

12



move phase, a speed vector as if at a transition point, and pick

a remaining trip duration according to the general formula for

the density of the residual time until next transition, in any

stationary system. Also, there is no speed decay [26] as with

random waypoint on a sphere.

C. Billiards

There is a similar result for the billiards, but its proof if more

elaborate. We assume that the speed vector has a completely

symmetric distribution, as defined in Section III-G of Part I

(i.e. there is equal probability of going left or right [resp. up

or down]). We continue with the same notation, in particular,

the state of the simulation at time t is given by the phase I(t),
the location X(t), the speed vector ~V (t) (=~0 if I(t) = pause)

and the residual time until end of trip R(t).
Note that now there is a difference. The instant speed ~V (t)

is, in general, not constant during an entire trip and may differ

from the unreflected speed ~Wn chosen at the beginning of the

trip (as it gets reflected at the boundary of A). Let f 0
~W

(~w) be

the density of the distribution of the non reflected speed vector

(sampled at trip endpoints).

Theorem 14: For the random walk with reflection, the same

holds as in Theorem 13 after replacing the first bullet of item

5 by

• ~V (t) has density f 0
~W

(~v).

The following lemma is used in the proof of Theorem 14;

it says that, at the end of a trip that starts from a uniform

point M and a completely symmetric initial speed vector ~W ,

the reflected destination point M′ and speed vector ~W ′ are

independent and have same distribution as initially.

Lemma 9: Let M be a random point, uniformly distributed

in A . Let ~W be a random vector in R
2 independent of M

and with completely symmetric distribution. Let α ∈ R be a

constant. Define M′ = b
(

M +α~W
)

and ~W ′ = J
M+α~W

(

~W
)

.

(M′, ~W ′) has the same joint distribution as (M, ~W ).
Remark. It is important to use the instant speed vector ~V (t)

and not the unreflected speed vector ~W (t) when describing the

simulation state: indeed the description by phase I(t), location

X(t), unreflected speed vector ~W (t) (=~0 if I(t) = pause) and

residual time until end of trip R(t) is not sufficient to continue

the simulation (one needs to remember which reflection was

applied to the speed vector) and is thus not Markov.

Also note that, in time stationary averages, the location X(t)
and the unreflected speed vector ~W (t) are not independent.

For example, given that the unreflected speed vector is ~W (t) =
(0.5a1,0) and the trip duration is S(t) = 1, it is more likely that

X(t) is in the second right half of the rectangle. In contrast,

X(t) and the instant speed vector ~V (t) are independent, as

shown by the theorem.

Perfect simulation of the billiards. It is similar to the

random walk on torus.

VIII. RELATED WORK

For a survey of existing mobility models, see the work by

Camp, Boleng, and Davies [10] and the references therein.

Bettstetter, Harnstein, and Pérez-Costa [12] studied the time-

stationary distribution of a node location for classical random-

waypoint model. They observed that the time-stationary node

location is non-uniform and it has more mass in the center

of a rectangle. A similar problem has been further studied

by Bettstetter, Resta, and Santi [5]. A closed-form expression

for the time-stationary density of a node location is obtained

only for random-waypoint on a one-dimensional interval; for

two dimensions only approximations are obtained. Note that

in Theorem 8, we do have an exact representation of the

distribution of node location as a marginal of a distribution

with a known density. Neither [12] nor [5] consider how to

run perfect simulations.

It is the original finding of Yoon, Liu, and Noble [25] that

the default setting of the classical random-waypoint exhibits

speed decay with time. The default random-waypoint assumes

the event-stationary distribution of the speed to be uniform

on an interval (0,vmax]. The authors found that if a node is

initialized such that origin is a waypoint, the expected speed

decreases with time to 0. This in fact is fully explained by the

infinite expected trip duration as sampled at trip transitions,

which implies the random process of mobility state is null-

recurrent; see Section IV. In a subsequent work [26], the

same authors advocate to run “sound” mobility models by

initializing a simulation by drawing a sample of the speed

from its time-stationary distribution. We remark that this is

only a partial solution as speed is only a component of node

mobility state. For this reason, the authors in [26] do not

completely solve the problem of perfect simulation. Another

related work is that of Lin, Noubir, and Rajaraman [18] that

studies a class of mobility models where travel distance and

travel speed between transition points can be modeled as a

renewal process. The renewal assumption was also made in

[25], [26]. We note that this assumption is not verified with

mobility models such as classical random-waypoint on any

non-isotropic domain, such as a rectangle, for example. The

renewal assumption has been made to make use of a “cycle”

formula from the theory of renewal random processes. From

Palm calculus, we know that the “cycle” formula is in fact

Palm inversion formula, which we used extensively throughout

the paper, and that applies more generally to stationary random

processes; this renders the renewal assumption unnecessary.

Perhaps the work closest to ours is that of Navidi, Camp,

and Bauer in [24], [22]. As discussed in Section I-D, we

provide a systematic framework that allows to formally prove

some of the implicit statements in [22] and generalize to a

broader class. Further, our perfect sampling algorithm differs

in that it works even when geometric constants are not a

priori known. In [21], Nain, Towsley, Liu and Liu consider the

random walk on torus and billiards models (which they call

“random direction”), assuming the speed vectors are isotropic.

They find that the stationary regime has uniform distribution,

and advocate that this provides an interesting bias-free model.

There are other well established techniques for performing

perfect simulation. The method in [23] applies to a large class

of Markov chains on which some partial ordering can be

defined, and uses coupling from the past (sample trajectories

starting in the past at different initial conditions). The tech-
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nique presented in this paper is much simpler, as, unlike in

the case of [23], we can obtain an explicit representation of

the stationary distribution.

IX. CONCLUSION

The random trip model provides a framework to analyse and

simulate stable mobility models that are guaranteed to have a

unique time-stationary distribution. Moreover, conditions are

provided that guarantee convergence in distribution to a time-

stationary distribution, from origin of an arbitrary trip. It is

showed that many known random mobility models are random

trip models.

For stable random trip models, if initial node mobility state

is not sampled from the time-stationary distribution, the node

mobility state distribution converges to the time-stationary

distribution. The rate of this convergence depends on the

geometry of the mobility domain and specifics of the trip

selection. In order to alleviate this initial transience altogether,

we provide a perfect sampling algorithm to initialise node

mobility state to a sample from the time-stationary distribution,

so that a node movement is a time-stationary realisation.

The web page "random trip model":

• http://ica1wwww.epfl.ch/RandomTrip

provides a repository of random trip models and a free to

download perfect sampling software to use in simulations.
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APPENDIX

A. Proof of Theorem 3

By Theorem 2, it suffices to consider a model with no

pauses. In ≡ (Kn,Ln,Rn) is indeed a Markov chain on a

countable state space given by I =
⋃

(i, j)∈L2
{i}× { j}× Ri,

with L2 = {(i, j) ∈ L2 : Q(i, j) > 0}. Here Ri = Z+, if there

exists no finite ri such that Fi(ri) = 1, else Ri = {0,1, . . . ,ri}.

Conditional on all observed past for transitions k ≤ n, includ-

ing phase In and path Pn = (Mn,Mn+1), the distribution of

(In+1,Pn+1), depends only on (In,Pn), thus Yn = (In,Pn) is a

Markov chain. This shows that H1 holds. Condition H4 indeed

holds by the model definition. We next show that H2 holds.

Note that the prevailing model permits us to verify H2 by

essentially considering only the Markov chain In, which takes

values on a countable state space, and thus standard stability

results can be employed.

Condition H2.i holds for a recurrent set R = (i, j,r)×A2,

where (i, j,r) is any fixed element of I . Indeed, first note that

In is an irreducible Markov chain, which follows from the

assumed irreducibility of the transition matrix Q that specifies

the Markov walk on the subdomains. Define the function V :

I → R as V ((i, j,r)) = r, for (i, j,r) ∈ I and let H be a set

given by H := L2 ×{0}. It holds that for any (i, j,0) ∈ H

IE(V (I1)|I0 = (i, j,0)) = IE(R1|I0 = j) < +∞,
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and, for any (i, j,r) ∈| H,

IE(V (I1)|I0 = (i, j,r))−V (i, j,r) = −1 < 0.

The former relation is by hypothesis of the theorem and latter

by the fact that Rn+1 = Rn −1, whenever Rn > 0. By Foster’s

theorem [8, Theorem 1.1–Chapter 5], this implies In is a

positive recurrent chain and thus H2.i is true by taking any

subset of I as a recurrent set.

We next show that H2.ii holds as well. First, we assume that

Ri is finite for all i ∈ L and then later remove this assumption.

Note that for any n ≥ 2 and any y ∈ I ×P

IPy(In = (i, j,r),Pn ∈ A1 ×A2)

=

{

Unifi(A1)Unif j(A2)IPy(In = (i, j,0)) r = 0,
Unifi(A1)Unifi(A2)IPy(In = (i, j,r)) r > 0.

where Unifi(·) is uniform distribution on a subdomain i ∈ L .

It follows that it is sufficient to verify H2.ii for In. We

already noted that In is positive recurrent and thus has a

unique invariant probability distribution π0
I . Assume first that

In is aperiodic. The Markov chain In is ergodic and thus the

following result holds [8, Theorem 2.1–Chapter 4]:

lim
n→+∞ ∑

v∈I

|puv(n)−π0
I (v)| = 0, all u ∈ I ,

where puv(n) is the probability of the transition from a state

u to a state v in n transitions. This implies that for any ε > 0

there exists n0 ≥ 1 such that for all n ≥ n0,

puv(n) ≥ π0
I (v)− ε.

It thus follows that in H2.ii we can define the probability

measure ϕ(B) = (π0
I (B)−ε)/(1−ε), B ∈ I , and β = 1−ε with

any fixed ε ∈ (mine∈I π0
I (e),1). Finally, assume In is periodic.

As all the states in I communicate, In is periodic with a period

d > 1 common to all the states. Define the regeneration set to

be a cycle class R of I . Then, H2.ii follows similarly as in

the aperiodic case, but using instead this convergence result

[8, Theorem 2.3–Chapter 4]:

lim
n→+∞ ∑

i∈R

|puv(nd)−dπ0
I (v)| = 0, all u ∈ R.

This allows us to identify a probability measure ϕ(·) in H2.ii

that puts all mass on R, i.e. ϕ(R) = 1. As an aside remark, note

that we already chosen a regeneration set as a cycle class for

a special periodic Markov chain of phases of classical random

waypoint with pauses in the proof of Theorem 2.

To complete the proof that H2.ii is verified, it is left to

consider the case: Ri = Z+, for some i ∈ L . This case is

considered separately as in the case when I is countable and

infinite, mine∈I π0
I (e) = 0, the above proof cannot be taken

verbatim, but with only a few slight modifications. The little

technical difficulty is resolved next for In aperiodic; it follows

similarly for the periodic case. We let J = {(i, j,r) ∈ I : r ≤
r0}, for a finite integer r0 ≥ 0 such that mine∈J π0

I (e) > 0. Then,

define ϕ(B) = (π0
I (B)−ε)/(π0

I (J )−ε) for B∈ J and ϕ(B) = 0,

for B ∈ I/J , and β = π0
I (J )− ε. We can now indeed choose

ε ∈ (mine∈J π0
I (e),π0

I (J )).
Condition H3 indeed holds for a recurrent set R = {e}×A2,

e ∈ I , by positive recurrence of the chain In.
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Fig. 10. The tessellation used for random walk on torus. Rα = [0,α]× [0,α] is
the chosen recurrent set. The bounding rectangles are the sets Bi j , the interior
ones (i.e. minus the shaded areas) are Bα

i j .

B. Proof of Theorem 4

H1 and H4 are obviously satisfied (the non lattice condition

H4.iii follows from the assumption that either the distribution

of the trip durations or distribution of pause times have a

density). To show H2, by Theorem 2 we can restrict to the

random walk without pauses.

In this case we have Yn = (Mn,~Vn,Sn). We can use Lemma 1.

Let R0 be a recurrent set for the chain Mn, and let R = R0×R
3
+.

H2.i holds because

IPy(Yn ∈ R) = IPy(Mn ∈ R0) = IP(Mn ∈ R0|M0 = m) = 1 (7)

where y = (m,~v,s).
Since Mn is Harris recurrent there exists some positive

integer n0, β0 ∈ (0,1) and a probability φ0 on A such that for

any measurable subset of A and any initial position m ∈ A :

IP(Mn0
∈ B|M0 = m) ≥ β0φ0(B).

Let f 0
~V
(v) be the density of the speed vector and F0

S (s)

distribution of the trip duration. Since Sn and ~Vn are drawn

independently of the past and Mn, we have, for any y ∈ R:

IPy((Mn0
∈ B,~Vn0

∈ B1,Sn0
∈ B2)

= IP(Mn0
∈ B|M0 = m)ψ1(B1)ψ2(B2)

≥ β0φ(B)ψ1(B1)ψ2(B2)

where ψ(B1) =
∫

B1
f 0
~V
(v)dv and ψ2(B2) =

∫
B2

F0
S (ds). This

shows that H2.ii holds for any measurable set of the form

B×B1 ×B2. It follows that H2.ii is also true for any union of

disjoint sets of this form, and thus for any measurable set.

C. Proof of Lemma 1

We give the proof for a1 = a2 = 1. The sequence Mn is a

random walk on the torus, which can be viewed as the set
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[0,1)× [0,1) endowed with componentwise addition modulo

1. This is a compact group, and, in general, a random walk

on a compact group converges to a uniform distribution.

More specifically, the assumption that the speed vector has

a density implies that b(~Vn) also has one with respect to

the uniform measure on the torus, and by [15, Section 5.2],

this implies that the distribution of Mn converges weakly to

uniform distribution on the torus.

We now show Harris recurrence, i.e. that conditions H2.i

and H2.ii hold for the chain Mn. We take as recurrence set a

small neighbourhood of the origin Rα := [0,α]× [0,α], where

α will be fixed later.

We first show that H2.i holds for any choice of α ∈ (0,1).
By the uniform convergence (Lemma 2), we have that for any

ε > 0, there exists d ≥ 1 such that

IPm(Mn ∈ B) ≤ Unif(B)+ ε, all n ≥ d, (8)

for all product of intervals B in A and all m ∈ A . Now, fix

ε ∈ (0,α2) and d such that (8) holds. Consider the sampled

chain Mnd , n = 0,1, . . .. Note

IPm(M2d ∈| Rα,Md ∈| Rα)

=
∫

A\Rα
IPy(Md ∈| Rα)IPm(Md ∈ dy)

≤ (Unif(A \Rα)+ ε)IPm(Md ∈| Rα)

≤ (Unif(A \Rα)+ ε)2

≤ (1−α2 + ε)2.

Following the same argument, we have

IPm

(

∩k
n=1(Mnd ∈| Rα)

)

≤ (1−α2 + ε)k. (9)

Now, the left-hand side of H2.i reads as

IPm (∪∞
n=1Mn ∈ R) = 1− lim

k→+∞
IP
(

∩k
n=1(Mn ∈| Rα)

)

≥ 1− lim
k→+∞

IP
(

∩k
n=1(Mnd ∈| Rα)

)

≥ 1− lim
k→+∞

(1−α2 + ε)k

= 1

where we used (9) and the fact that we chosen ε > 0 such that

1−α2 + ε < 1. As we arbitrarily fixed α ∈ (0,1), this shows

that H2.i holds for any α ∈ (0,1).

We next show that H2.ii holds for n0 = 1 and for some

appropriate choice of α ∈ (0,1). It is sufficient to prove H2.ii

for B equal to a box of the form [x1,y1]× [x2,y2], (with x1 < y1

and x2 < y2) since any measurable set can be approximated,

up to a 0 measure set, by a disjoint union of such boxes.

Define Bα as the set derived from B by removal of an upper

and right band of width α:

Bα = B∩ ([0,y1 −α]× [0,y2 −α]) .

Note that Bα is non empty if α < |y1 − x1| or α < |y2 − x2|.

Also define, for i, j ∈Z: Bi, j = B+(i, j) and Bα
i, j = Bα +(i, j)

(Figure 10). We have

IPm(M1 ∈ B) = IPm(w(m+~V1) ∈ B)

= IPm(m+~V1 ∈ ∪i, jBi, j)

= ∑
i, j

IPm(m+~V1 ∈ Bi j)

≥ ∑
i, j

IP0(~V1 ∈ Bα
i j)

= IP0(~V1 ∈ ∪i, jB
α
i j) := gα(B).

Thus, in H2.ii, we can set β = gα([0,1)× [0,1)) and ϕα(B) =
gα(B)/β, provided that gα([0,1)× [0,1)) > 0. But this indeed

holds for some α∈ (0,1) as follows from limn→+∞ gαn([0,1)×
[0,1)) = 1, where αn is any sequence decreasing to 0.

We are left only to verify the condition H3. But this follows

from (9) that says the number of transitions between successive

visits to the recurrent set Rα is stochastically smaller than

(finite integer) d times a geometric random variable with a

fixed parameter in (0,1).

D. Proof of Lemma 2

We use Erdös-Turán-Koksma inequality [20, Theorem 1.21],

which says that for any positive integer H, any probability

distribution µ on the torus, and any product of intervals B we

have

|µ(B)−Unif(B)|

≤
(

3
2

)2
(

2
H+1

+∑0<max(h1,h2)≤H
|µ̂(h1,h2)|
R(h1,h2)

)

(10)

where h1,h2 are integers, R(h1,h2) = max(1,h1)max(1,h2)
and µ̂(h1,h2) are the Fourier coefficients of µ:

µ̂(h1,h2) :=

∫
[0,1)×[0,1)

e−2iπ(h1x1+h2x2)dµ(x1,x2). (11)

We apply Equation (10) to µ = µ∗n
m and obtain

e−2iπ〈(h1,h2),Mn〉 = e
−2iπ

〈

(h1,h2),b(M0+∑n−1
j=0

~V j)
〉

= e
−2iπ

〈

(h1,h2),M0+∑n−1
j=0

~V j

〉

where the last equality is because h1,h2 are integers (〈·, ·〉 is

the scalar product). Thus

µ̂∗n
m (h1,h2) := IEm(e−2iπ〈(h1,h2),Mn〉)

= e−2iπ〈(h1,h2),m〉IEm

(

Πn−1
j=0e−2iπ〈(h1,h2),~V j〉

)

= e−2iπ〈(h1,h2),m〉Πn−1
j=0IEm

(

e−2iπ〈(h1,h2),~V j〉
)

where IEm denotes the conditional expectation given that

M0 = m. Thus

|µ̂∗n
m (h1,h2)| ≤ | f̂~V (h1,h2)|

n (12)

where f̂~V (h1,h2) are the Fourier coefficients of the distribution

of the speed vector.

Now ~Vn has a density thus if (h1,h2) 6= (0,0), the scalar

product
〈

(h1,h2), ~Vn

〉

also has a density, and is thus non-

lattice. By Lemma 3:

| f̂~V (h1,h2)| < 1 for (h1,h2) 6= (0,0). (13)
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M’’1

0 1 2

1

2

Fig. 11. Random walk M′′
n on [0,2)× [0,2) associated with billiards Mn on

[0,1)× [0,1).

We can now use Equations (10), (12) and (13) to Equa-

tion (4). Indeed, fix some arbitrary ε > 0, and fix some H

such that
(

3
2

)2 2
H+1

< ε/2. The summation in Equation (10) is

finite, thus by Equation (13) it goes to 0 as n grows to infinity.

Thus, for n large enough, it is smaller than ε/2. This shows

that there is some n1 (independent of m and I) such that for

n ≥ n1 , the right-hand side in Equation (10) is less than ε.

E. Proof of Lemma 4

It suffices to consider a1 = a2 = 1. The lemma relies on a

reduction to a random walk, with wrapping. First define, for

any location (x0,y0) ∈ R
2 the (linear) operator J(x0,y0) by

J(x0,y0)(x,y) = ((−1)⌊x0⌋x,(−1)⌊y0⌋y). (14)

The linear operator Jm expresses exactly the transformation on

the unwrapped speed vector (Figure 7), i.e.

~Vn+1 = J
Mn+Sn~Wn

(

~Wn

)

.

We now associate to the sequence Mn two sequences M′
n

(non reflected) defined by

M′
0 = M0 M′

n+1 = M′
n + JM′

n

(

~Un

)

(15)

and M′′
n (wrapped modulo 2) defined by

M′′
n = w2(M

′
n) (16)

where w2(·) is the wrapping mapping defined by (3) with a1 =
a2 = 2 (Figure 11).

We now show by induction on n ∈ N that b(M′
n) = Mn for

all n, i.e. M′
n is the unreflected version of Mn. This is true by

definition for n = 0. Assume it holds for n. By application of

Lemma 5 to m = M′
n and ~v = JM′

n

(

~Un

)

we obtain

b(M′
n+1) = b

(

Mn + JM′
n

(

JM′
n

(

~Un

)))

= b
(

Mn +~Un

)

= Mn+1

(17)

where we have used the fact that Jm is its own inverse.

It follows now from and by Lemma 6 that

b(M′′
n ) = Mn all n ∈ Z+, (18)

i.e. the billiards Mn is derived from the wrapped sequence M′′
n

by reflection.

Now we show that M′′
n is a random walk on the torus

with a1 = a2 = 2, as defined in Section III-F. It follows from

Equations (15) and (16) that

M′′
n+1 = M0 ⊕~U ′′

0 ⊕·· ·⊕~U ′′
n

where here ⊕ is addition modulo 2 and ~U ′′
n = JM′

n
(~Un). In

general, we do not have a random walk (with independent

increments) due to the dependence of ~U ′′
n on M′

n (M′
n is a

Markov chain). However, in our particular setting we do,

because we assume the distribution of the speed vector (thus

of ~Un) is completely symmetric. Indeed, for any non random

point m, Jm(~Un) has the same distribution as ~Un. It follows that

for any point M, JM(~Un) is independent of M and in particular,

JM′
n
(~Un) is independent of M′

n and thus ~U ′′
n is independent of

(M′′
k )n

k=0.

By Lemma 2 we can now conclude that M′′
n uniformly

converges to the uniform distribution on [0,2)× [0,2), where

“uniformly” is in the sense of Lemma 2. Now for any

measurable part B ⊂ [0,1)× [0,1) and for any initial value

m ∈ [0,1)× [0,1):

IPm(Mn ∈ B) = ∑
i, j∈{0,1}

IPm(M′′
n ∈ B′′

i, j) (19)

where
B′′

i, j = J(i, j)(B)+(i, j). (20)

(J is defined in Equation (14), see Figure 12.) The uniform

convergence of M′′
n to the uniform distribution, in the sense of

Lemma 2, follows immediately. So do the proofs of H2.i and

H2.ii, using a similar reasoning as in Lemma 1.

0 1 2

2

B = B’’ 0,0
B’’ 1,0

B’’ 1,1
B’’ 0,1

1

Fig. 12. Mapping from random walk to billiards.

F. Proof of Theorem 6

Item i. Conditions H1-H3 define the driving chain of phase

and path Y to be positive Harris recurrent so that there exists

a unique stationary distribution π0 for the driving chain that is

a solution of (1). Combined with H4.i, we have that (Sn)
∞
n=0

can be defined as a Palm stationary sequence by letting π0 be

the distribution of Y0. We now appeal to the conditions of the

Slivnyak’s inverse construction [4]: (S.i) 0 < IE0(T1) < +∞,
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(S.ii) IP0(T1 > 0) = 1, and (S.iii) IE0(N(0, t]) < +∞, for all

t ≤ t0 and some t0 > 0. Here N(0, t] is the number of trip

transitions that fall in the interval (0, t]. S.ii is true by the

model (H4.ii), which also implies IE0(T1) > 0 in S.i. The rest

of S.i is hypothesis of the result. Condition S.iii follows from

H4.iii. Indeed,

IE0(N(0, t]) =
∞

∑
n=1

IP0(Tn ≤ t)

≤ eut
∞

∑
n=1

IE0(e−uTn), any u > 0, (21)

where the last inequality is Chernoff inequality. Define the

function m(u,x) = IE0(e−uT1 |Y0 = x), u > 0, x ∈ I × P . By

definition of trip durations (H4.i):

IE0(e−uTn) =
∫

I×P
· · ·

∫
I×P

m(u,x)m(u,y1) · · ·m(u,yn−1)

·π0(x)P(x,dy1)P(y1,dy2) · · ·P(yn−1,dyn).

Recall that P(·, ·) is the transition semigroup of the chain Y

as introduced in Equation (1).

Now, from H4.iii, we have that m(u,y) < 1 for any u > 0 and

π0 almost any y. It thus follows that there exists ε > 0 such

that IE0(e−uTn) < (1− ε)n, and in view of (21), this implies

S.iii holds.

The existence of a time-stationary distribution π follows by

the Palm inversion formula [4]:

IE( f (Φ(0))) =
1

IE0(S0)
IE0

(∫ T1

0
f (Φ(s))ds

)

, (22)

by taking f (x) = 1x∈B, B ∈ I ×P ×R
2
+. Recall that here we

admit the convention under which 0 is an arbitrary time. The

Palm inversion also implies uniqueness of π and the asserted

expression.

Item ii-a. In view of a convergence result in [1], it suffices

to show that for π0 almost any y ∈ I ×P and any bounded

function g : I ×P × [0,+∞)2 →R
+, the following limit holds:

lim
t→+∞

IEy

(

g(Y (t),S−(t),S+(t))
)

(23)

= λ
∫

y∈I×P

∫
[0,∞)

∫
[0,s)

g(y,u,s−u)duF(y,ds)π0(dy),

where 1/λ :=
∫

y∈I×P

∫
[0,+∞) F(y,ds)π0(y). Recall that S(t) =

Sn, Tn ≤ t < Tn+1 is the trip duration of the trip on-going at

time t and S−(t) = t −S(t) is the time elapsed on the trip at

time t. The notation S+(t) := S(t)− S−(t) denotes the time

until the next trip transition instant as seen at time t.

In order to show that the distribution of Φ converges to the

asserted limit, it suffices to show that (23) holds for functions

g(·) of the form g(y,u,v) = 1y∈A1u>u0
1v>v0

, for u0,v0 ≥ 0 and

A a product of intervals in I ×P .

It follows from [1, Corollary 1] that the limit (23) holds if

both of the two following conditions hold:

(C.i) f (y, ·) is continuous almost everywhere, for any y ∈
I ×P that does not lie in a set of zero π0 measure,

(C.ii)
∫

I×P ∑n∈Z supnd≤s<(n+1)d | f (y,s)|π0(y) < +∞, for

some d > 0,

where f (y,s) := IEy(g(y,s,T1 − s)1T1>s).

First, we check C.i for g(y,u,v) = 1y∈A1u>u0
1v>v0

. We have

f (y,s) = 1y∈A1s>u0
IPy(T1 > s+ v0),

which for any fixed y∈ I ×P is almost everywhere continuous

with s.

Second we check C.ii for g(·) a bounded function. We have

that there exists K < +∞ such that | f (y,s)| ≤ KIPy(T1 > s).
It is readily seen that K ∑∞

n=0 IPy(T1 > nd) upper bounds the

left-hand side in the inequality C.ii. Further,

∞

∑
n=0

IPy(T1 > nd) ≤
∞

∑
n=0

∫
[nd,(n+1)d)

IPy(T1 > s)ds

=
∫

[0,+∞)
IPy(T1 > s)ds = 1/λ.

Hence, C.ii is implied by the boundedness of g(·) and finite-

ness of 1/λ.

Item ii-b follows from (23).

G. Proof of Theorem 7

We use the inversion formula of Palm calculus [3]. Let λ be

the intensity of the point process Tn, i.e. the average number

of trip origins per time unit. For any bounded, non random,

function φ of the process state:

IE(φ(Y (t),S(t),U(t))) = λIE0

(∫ S0

0
φ(Y0,S0,

τ
S0

)dτ
)

= λIE0

(

S0

∫ 1

0
φ(Y0,S0,u)du

)

(24)

where the latter is by the change of variable τ = S0u in the

integral. First take φ(y,s,u) = 1 and obtain

λ =
1∫

Y τ̄(y)π0(dy)
.

Second, take φ(y,s,u) = ψ(y) in Equation (24) and obtain

IE(ψ(Y (t))) = λIE0 (S0ψ(Y0)) = λ
∫

Y
τ̄(y)π0(dy)

which shows item 1. Now take φ(y,s) = ψ(y,s) and obtain

IE(ψ(Y (t),S(t))) = λIE0 (S0ψ(Y0,S0))

= λ
∫

Y

∫ +∞

0
sψ(y,s)F(y,ds)π0(dy)

which shows item 2. Last, take φ(y,s,u) = ψ(y,s)ξ(u) and

obtain

IE(ψ(Y (t),S(t))ξ(U(t)))

= λIE0

(

S0ψ(Y0,S0)
∫ 1

0
ξ(u)du

)

= λ
(∫ 1

0
ξ(u)du

)

IE0 (S0ψ(Y0,S0)) .

This factorization shows that U(t) on one hand, (Y (t),S(t))
on the other, are mutually independent ([16, Lemma in Ap-

pendix]). Further, let ψ(·) = 1 and obtain that the distribution

of U(t) is uniform on [0,1], which ends the proof of item 3.
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H. Proof of Lemma 7

Let Ik be the phase drawn at the k iteration of the loop

and T be the number of iterations when we exit the loop

(if ever). Assume first that ωi is unknown for all i. We have

IP(T = k) = q1(1−q1)
k−1 with

q1 = ∑
i

∫
Rd

ki(y)

κi

gi(y)dy = ∑
i

ν(i)
ωi

κi

= α∑
i

µ(i)ωi.

Note that 0 < q1 ≤ 1 thus the loop terminates with probability

1. IT is the value of i when we exit the loop and

IP(IT = i) = ∑k≥1 IP(IT = i and T = k|T ≥ k)(1−q1)
k−1

= ∑k≥1 ν(i)ωi
κi

(1−q1)
k−1 = ν(i)ωi

κi

1
q1

= µ(i)ωi

∑ j µ( j)ω j

which shows the result in this case. Second, consider some i

for which ωi is known. Let gi = fi/ωi, ki(y) = ωi and κi = ωi.

When I = i is drawn, it is kept with probability 1. Thus the

case ωi is known, is a special case of the previous one.

I. Proof of Theorem 13

Item 1 follows from the fact that the speed vector is not

altered by wrapping. Item 3 directly follows from Theorem 7

and the discussion after it. We now show item 5. Recall P(t)(0)
is the start position of the current path. By Theorem 7, the

time stationary joint density of P(t)(0) = m,~V (t) =~v,S(t) = s,

conditional to a move phase is s
τ̄move

f 0
~V
(~v) f 0

move(s)Unif(m),

where Unif(·) is the uniform density on A . Now X(t) =
w(Mn +U(t)Sn

~Vn), Tn ≤ t < Tn+1, and R(t) = (1−U(t))S(t),
where w(·) is the wrapping function defined in Part I, Sec-

tion III-F. Take any three bounded functions φ,ψ,ξ. Now

apply Theorem 7:

IE
(

φ(X(t))ψ(~V (t))ξ(R(t))|I(t) = move
)

(25)

=
∫ 1

0

∫
R+

∫
R2

(∫
A

φ(w(m+us~v))π0(dm)

)

·

· ψ(~v)ξ(us)
s

τ̄move

f 0
~V
(~v)F0

move(ds)d~vdu

=
∫ 1

0

∫
R+

∫
R2

(∫
A

φ(w(m+us~v))Unif(dm)

)

·

· ψ(~v)ξ(us)
s

τ̄move

f 0
~V
(~v)F0

move(ds)d~v.du

The last equality is because by Lemma 1 in Part I, the

stationary distribution of trip endpoint, sampled at an arbitrary

endpoint, is uniform. Now by Lemma 8∫
A

φ(w(m+us~v))Unif(dm) =
∫

A
φ(m)Unif(dm)

thus

(25) =

∫
A

φ(m)Unif(dm)·

·
∫

R2
ψ(~v) f 0

~V
(~v)d~v

∫ 1

0

∫ ∞

0

s

τ̄move

ξ(us)F0
move(ds)du

=
∫

A
φ(m)Unif(dm) ·

·
∫

R2
ψ(~v) f 0

~V
(~v)d~v

∫ ∞

0
ξ(r)F0

move(dr)

where the last equality is by the change of variable (s,u) to

(r,s). with r = us This shows item 5. Item 4 is analog.

This also shows that, conditional to the phase I(t) being ei-

ther move or pause, the location X(t) is uniformly distributed.

Item 2 follows immediately.

J. Proof of Lemma 8

First we prove the lemma for d = 1. It is sufficient to

consider a1 = 1. We have

X ′ = X + v mod 1. (26)

Since X ′ is limited to the interval [0,1], its distribution is

entirely defined by its Fourier coefficients for n ∈ Z: c′n =

IE
(

e2iπnX ′
)

. By Equation (26) c′n = e2iπnvcn, where cn is the nth

Fourier coefficient of the distribution of X . Now X is uniform

over [0,a] thus cn = 0 for n 6= 0 and c0 = 1. It follows that

c′n = cn for all n.

Now back to the general case, we have shown that all coor-

dinates are uniformly distributed. Further, they are independent

because X is uniform and ~v is constant.

K. Proof of Theorem 14

Item 1 follows from Lemma 5, which says that, in order

to continue a path from an intermediate point m it is not

needed to know the unreflected speed vector, the instant speed

is enough. The rest follows from Theorem 7 and Lemma 9,

in a similar way as for Theorem 13. More precisely, with the

same notation as in the proof of Theorem 13, we have (recall

that we defined, in Part I, proof of Lemma 4, for any location

m ∈ R
2 the (linear) operator Jm as the one that transforms the

unreflected speed vector into the true speed vector, when m is

the hypothetical location if there would be no reflection):

IE
(

φ(X(t))ψ(~V (t))ξ(R(t))|I(t) = move
)

(27)

=
∫ 1

0

∫
R+

h(s,u)ξ(us)
s

τ̄move

F0
move(ds)du

where

h(s,u) :=∫
R2

∫
A

ψ(Jm+su~v(~v))φ(b(m+us~v)) f 0
~V
(~v)π0(dm)d~v

=
∫

R2

∫
A

ψ(Jm+su~v(~v))φ(b(m+us~v)) f 0
~V
(~v)Unif(dm)d~v

where the latter equality is by Part I, Lemma 4. Now we apply

Lemma 9 to h(s,u) with α = su, M = the location of the mobile

at beginning of trip (which is uniform under the stationary

distribution) and ~W = the unreflected speed vector for this

trip. We have, with the notation of the lemma

h(s,u) = IE
(

φ(M′)ψ(~W ′)
)

and thus

h(s,u) = IE
(

φ(M)ψ(~W )
)

=
∫

R2

∫
A

ψ(~v)φ(m) f 0
~V
(~v)Unif(dm)d~v.

Combine this with Equation (27) and obtain the rest of the

theorem.
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L. Proof of Lemma 9

It is sufficient to consider the case a1 = a2 = 1. Since Jm is

a linear operator, it is also sufficient to consider the case α =
1. The mapping that transforms (M = (x,y), ~W = (u,v)) into

(M′ = (x′,y′), ~W ′ = (u′,v′)) is such that x = ε1(x
′−u′)+ 2n1,

y = ε2(y
′ − v′) + 2n2, u = ε1u′ and v = ε2v′, where ε1,ε2 ∈

{−1,1} and n1,n2 ∈ Z. It is differentiable almost everywhere

and its Jacobian is 1. Thus, the joint density of (M′, ~W ′) is

f
M′,~W ′(x

′,y′,u′,v′)

= ∑
ε1,ε2∈{−1,1},n1,n2∈Z

f~W (ε1u′,ε2v′) · 1ε1(x′−u′)+2n1∈(0,1)

· 1ε2(y′−v′)+2n2∈(0,1).

Since f~W is completely symmetric:

= f~W (u′,v′) ·

· ∑
ε1,ε2∈{−1,1},n1,n2∈Z

1ε1(x′−u′)+2n1∈(0,1)1ε2(y′−v′)+2n2∈(0,1)

=

(

∑
ε1∈{−1,1},n1∈Z

1ε1(x′−u′)+2n1∈(0,1)

)

·

·

(

∑
ε2∈{−1,1},n2∈Z

1ε2(y′−v′)+2n2∈(0,1)

)

.

Now for any x ∈ R\Z:

∑
ε1∈{−1,1},n1∈Z

1{ε1x+2n1∈(0,1)} = 1.

It follows that for all u′,v′ and x′,y′ ∈ (0,1) except on a set

of zero mass:

f
M′,~W ′(x

′,y′,u′,v′) = f~W (u′,v′) = f
M,~W (x′,y′,u′,v′).

M. Evaluation of Transient Path Distribution

In this section we describe the computation of the transient

path distribution in the example in Figure 2. The model is

a restricted random waypoint described as follows. The set

of subdomains is finite with a subdomain Ai defined as the

location of a vertex i ∈ L . The set of paths is finite and a path

is specified by the indexes of the origin and destination vertex

i and j. To simplify, we consider a model with no pauses. Our

objective is to compute the distribution of the path P(t) at time

t ≥ 0 with t = 0 taken as origin of a trip, i.e. T0 = 0. We are

thus interested in IP0(P(t) = i), t ≥ 0, i ∈ L . We can compute

this transient distribution as (Pn,Tn) by using Markov renewal

property as follows: for each i ∈ L ,

IP0(P(t) = j|P0 = i)

= IP0(P(t) = j,T1 > t|P0 = i)+

+ ∑
k∈I

∫ t

0
Q(i,k)Fi(k,ds)IP0(P(t − s) = k|P0 = k)(28)

where Fi( j,s) := IP0(P1 = j,T1 ≤ s|P0 = i). From [11, Propo-

sition 4.9, Chapter 10, Section 4], we have

lim
t↑∞

IP0(P(t) = j|P0 = i)

= λ ∑
k∈L

q0(k)
∫ ∞

0
IP0(P(s) = j,T1 > s|P0 = k)ds

= λ ∑
k∈L

q0(k)IE0

(∫ ∞

0
1P(s)= j1T1>sds|P0 = k

)

= λ ∑
k∈L

q0(k)IE0

(∫ T1

0
1P(s)= jds|P0 = k

)

where λ = 1/∑k∈L q0(k)IE0(T1|P0 = k). Indeed, the right-hand

side in the last equality is precisely what would be given by

Palm inversion formula for the time-stationary distribution of

path. The above result shows convergence with time to the

time-stationary distribution of path, from initial path chosen

arbitrarily on the set of paths.

The system of equations (28) is known as Markov re-

newal equations and can be, in principle, routinely solved

numerically. In the example, we assume each path takes a

fixed integer number of time units, so for a path (i, j) ∈ L2,

Fi( j,ds) = δτ j
(s), for some fixed integer τ j > 0, where δτ j

(·)
is a Dirac function. In this case, (28) boils down to the system

of difference equations:

p(i, j, t) = g(i, j, t)+ ∑
k∈L

Q(i,k)h(k, t)p(k, j, t−τ j), t = 1,2, . . .

where we define p(i, j, t) := IP0(P(t) = j|P(0) = i), g(i, j, t) =
1τi>t,i= j and h(k, t) = 1t≥τk

, i, j,k ∈ L . The numerical results

in Figure 2 are obtained from the last difference equations.

N. Perfect Sampling for Restricted Random Waypoint

The theorem generalises Theorem 10 in Section VI, to any

number L of sub-domains Ai, i ∈ L .

Theorem 15: The time stationary distribution π of the phase

I(t) = (i, j,r,φ) is

π(i, j,r,φ) = λq0(i)Q(i, j)×

×







F̄i(r−1)(R̄i +1)τi, j r ≥ 0,φ = pause

∆̄i, jωi, j r = 0,φ = move

F̄i(r−1)R̄i∆̄i,iωi,i r > 0,φ = move

where λ is a normalising constant, defined by the above

equation and ∑i π(i) = 1, F̄i(r) = 1−Fi(r) and R̄i = ∑r≥0 F̄i(r)
is the expected number of trips within a subdomain i ∈ L .

Proof. By substitution in the balance equations, we can

verify that the event-stationary distribution of the phase In is

given by
{

π0(i, j,r,pause) = π0(i, j,r,move)
π0(i, j,r,move) = αq0(i)Q(i, j)F̄i(r−1), r ≥ 0

(29)

with α a normalising constant. The rest follows from Theo-

rem 7. ✷

The perfect sampling algorithm generalising that in Figure 8

to arbitrary number of subdomains is displayed in Figure 13.
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• L0 = is the set of (i, j) for which ∆̄i, j is known. Define

Ki, j = ∆̄i, j, for (i, j) ∈ L0 and otherwise Ki, j = ∆i, j.

• The following three distributions are used:






Ep(i, j) = q0(i)Q(i, j)(R̄i +1)τi, j/ep

Em,0(i, j) = q0(i)Q(i, j)Ki, jωi, j/em,0

Em,1(i, j) = q0(i)Q(i, j)Ki,iR̄iωi,i/em,1

where ep,em,0,em,1 are normalising constants.

do forever

Draw U1 ∼U(0,1)
if U1 ≤

ep

ep+em,0+em,1
// decide φ(t) = pause

Draw (i, j) from the distribution Ep(i, j)

Draw r ∈ Z+ with probability
Fi(r−1)

R̄i+1

I(t) = (i, j,r,pause); leave

else // try φ(t) = move

// first sample i, j

if U1 ≤
em,0

em,0+em,1

Draw (i, j) from the distribution Em,0(i, j); r = 0

Set O := Ai, D := A j, ∆ := ∆i j

else

Draw (i, j) from the distribution Em,1(i, j)

Draw r ∈ Z+ with probability
Fi(r−1)

R̄i+1

Set O := Ai, D := Ai, ∆ := ∆ii

if (i, j) ∈ L0

I(t) = (i, j,r,move)
do

Draw M0 ∼ Unif(O),M1 ∼ Unif(D)
Draw U2 ∼ Unif(0,∆)

until U2 < d(M0,M1)
leave

else // (i, j) ∈| L0

Draw M0 ∼ Unif(O),M1 ∼ Unif(D)
Draw U2 ∼ Unif(0,∆)
if U2 < d(M0,M1)

I(t) = (i, j,r,move); leave

end do

Fig. 13. Sampling algorithm for restricted random waypoint with an arbitrary
value of L, supporting both cases where the average distance between Ai and
A j is known or not.

O. Details of Perfect Sampling for Restricted Random Way-

point

Complexity. We compare the complexity of the two

branches of the algorithm in numbers of calls to the random

number generator. Let a be the number of such calls required

to simulate one sample (M0,M1) uniformly in the A1 plus one

(a = 5 for a rectangle or a disk, usually more for non convex

domains). By an analysis similar to the proof of Lemma 7,

we find, for the former case C1 = α+∆a
α+∆̄ and for the latter

C2 = ∆−∆̄
α+∆̄ (1+a)+ α+(1+a)∆

α+∆ , with α = τpause/ω.

We always have C2 > C1; thus if ∆̄ is known with little

computational cost, it is always preferable to use the former

case (“∆̄ is known"). In contrast, if ∆̄ is not known, there are

two options: (i) compute ∆̄ offline by Monte-Carlo simulation

and use the former case (“∆̄ is known"), or (ii) use the latter

case (“∆̄ is not known"). The optimal choice depends on

the number N of mobiles that need to be initialised by the

sampling procedure (N includes the number of replications of

the simulation). Clearly, since C2 > C1, as N goes to ∞, and

since the cost of the Monte Carlo simulation is incurred only

once for all simulation runs, there is a breakpoint N0 such that

for N ≤ N0 it is optimal to use the first option, and vice versa.

The complexity of Monte Carlo to compute ∆̄ with 99.99%

confidence interval and a relative accuracy of 1− ε is of the

order of a(6 σ
∆̄ε )

2, where σ2 is the variance of the distance

between two points in A1. σ depends on the regularity of the

domain A . For restricted random waypoint or city graph, it is

large compared to the mean value. For more regular areas, a

crude approximation of σ is ∆− ∆̄. Comparing C2/C1 to this

complexity, we find that N0 is of the order of 10 to 1000 times
1
ε2 . In practise, ε = 10−4 and thus N0 is of the order of 109 to

1011 for L = 1, which is probably larger than the number of

simulation runs performed in a campaign by several orders of

magnitude. Thus, it should generally be much more efficient

to consider the second option.
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