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THE RANDOM VIBRATIONS OF A STRING*
BY

M. R. SPIEGEL
Rensselaer Polytechnic Institute

1. Introduction. In the theory of linear electrical networks one encounters systems of
equations having the form

n n

23 (Likq'k' + Rikq'k + Gikqk) = Eik , j = 1, • • • , n (1)
k = 1 A: = l

where the qk represent charges, Lik inductances, Rik resistances, Gik reciprocals of
capacitance, the Ejk are random e.m.f's**, and primes denote differentiations with
respect to time.

The theory of such systems of equations, quite carefully examined during the war
years in applications to noise in electrical networks, turns out also to be applicable to
the various mechanical systems—in particular, it is applicable to the system of a vibrating
string with fixed end points. A general theory for the system of equations (1) has been
developed by Uhlenbeck and Wang [2], Some of the results which we shall obtain in
this article have been derived without making use of the general theory. We shall make
comparison with these results and in addition we shall derive several more results.
The results of Uhlenbeck and certain of his co-authors [1, 5], have been derived directly
from the differential equation of motion for the string. In order to apply the general
theory to the vibrating string, it is necessary to discretize the string. We therefore
assume that the stringf is made up of n + 2 particles, (2 fixed, n vibrating) of equal
mass m harmonically bound together by means of massless springs. Furthermore let us
assume that this system of particles has random forces acting on it and that as a result
the system vibrates, the vibration taking place in a plane. As a last assumption we
suppose that the vibration takes place in a viscous medium so that each of the particles
undergoes a damped vibration.

When we have obtained our results for the discretized system, we can derive the
results for the case of a continuous string by a limiting procedure, namely that of letting
n the number of vibrating particles go to infinity while the total mass and length of
the system remains constant.

In this article we shall derive the following:
1) the characteristic function of the sum of the squares of the deviations of the dis-

placement of the particles from their given initial positions—also the corresponding
characteristic function for the continuous string,

*Received April 23, 1951. This article represents part of a thesis submitted in partial fulfillment of
the requirements for the degree of Doctor of Philosophy at Cornell University. The author wishes to
acknowledge here his indebtedness to Professor Mark Kac of Cornell University who supervised the work.

**The word random used here in a heuristic sense obviously needs more careful definition and
interpretation. A more precise investigation than can be given here is found in an article by Uhlenbeck
and Wang (see [2]).

fWe adhere to the assumptions made in the usual derivation of the differential equation of the string,
i.e. small vibrations, constant tension throughout, etc.
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2) the mean square deviation of the displacements of the n particles from some given
initial distribution and the corresponding mean square deviation for the string,

3) the mean square deviation of a single particle of the system given that initially
it had a certain displacement 0, and the corresponding limiting case.

2. Certain preliminary considerations. Let the displacement of the /c-th particle of
the system be denoted by yk . Let Fk{t) denote the random force acting on the /c-th
particle. By a simple application of Newton's law of mechanics we have the result

my'k' + Ky'k - ^ (yk+1 - 2yk + yk^) = Fk(t), (2)

where K is a quantity dependent on the damping and t is the tension in the springs
connecting the particles. The tension is assumed to be constant at all times. The quantity
d is the distance between particles, also assumed constant.

In order to prepare ourselves for the limiting case of the string, it will be necessary
to define a density i± in such a way that nd = m. Assuming the case of n + 2 particles
(n vibrating, 2 fixed) it is easy to see that the following relations will hold

L Md = ——, m = ——r, (3)n + 1 n + 1

m MM = 1 = L''

where M is the total mass of the system and L is the total length for the limiting case
of the string. Both M and L are given constants. Also, let K = Bd where B is a constant
dependent on the magnitude of the damping which is dependent on the viscosity of the
medium in which vibration is taking place.

With the use of these relations (2) becomes

Ijdyl' + Bdy'k - ^ (yk+1 - 2yk + yk-x) = Fk(t). (4)

This equation is of the form (1) if the following relations hold:

Ljk bjkiidj It j k 8jkBd,
(5)

Gn = 2r , = Gj(j-i) — r ,

where 5ik is the Ivronecker delta, equal to one if j = k and zero otherwise, and r2 = r/d.
From physical considerations it is evident that the quantity B = j$/n where 8 is

the actual damping coefficient for the medium in which vibration is taking place.
As Uhlenbeck and Wang [1] have pointed out in their discussion of the system (1)

the 2n variables [gx(0, 5a(0> * * • > <7»(0> ffxCO) ?2(t), • • • , ?»(0] or in our case the collection
[2/i(0> " • > VrSi)', y'i{i), ■ • • , y'M will form a 2n-dimensional Markoff process governed
by the Fokker-Planck or generalized diffusion equation

where P is the probability density associated with the distribution of the quantities
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[Xi , x2 , • • • , x2„] Here x, , x2 , ■ • • , x2n are the 2n variables describing the collection
[2/i(0 j * * • ) VniO; , y'„(t)]. As derived in the article

2 n

Aj = aikxk , (7)
fc = l

where the aik are the elements obtained from the matrix

0 I
A = '

-L~XG -L~lR.

and the Djk are obtained from the matrix*
"0 0

D =
0 2kTL~1RL~1

(8)

(9)

In the matrices (8) and (9), L, R and G are themselves matrices consisting of the
elements Ljk . Rjk and Gik first encountered in the system of equations (1) and which
for our purposes may be defined by (5).

In order to solve the Fokker-Planck equation it turns out to be convenient to make
the linear transformation

2 n

Zj = s cikxk , (10)
Jfc-l

and it then follows that (6) becomes

V \ 1 I V1 d*P /,«
dt ~ S ' dz,(z, ) + 2 ,£ ffik dz, dzk' (11)

where the ajk are obtained from the matrix CDC~, C being the matrix which diagonalizes
the matrix A and which thereby yields the eigenvalues X,- (j = 1, 2, • • • , 2n).

It is easy to show that the eigenvalues satisfy the determinantal equation

Q P 0 •••0 0

P Q P ■■■ 0 0

0 P Q ••• 0 0
0, (12)

0 0 0 P Q

Q = X + „ + ,xd' P = „d
If we denote the determinant (12) by An we may show that the following difference
equation is satisfied

*Here k is Boltzmann's constant and T is the temperature of the medium in which the vibration is
taking place.
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An = QAn_, - P2An_2 (13)
subject to the boundary conditions A0 = 1, Ax = Q. Solving the difference equation
by the usual methods we obtain

_ 1 rfQ + (Q2 - 4py/2\"+' _ !q - (Q2 - 4P2)'/2\"+1]A" ~ (Q2 - 4P2)1/2 LI 2 J I 2 J J U '

yielding the evaluation of the determinant (12).
Upon finding the conditions under which An = 0, we obtain the equation

2 , B\ , 2r 2r rriTX2 + — + =j = cos ~^r, (15)n nd nd n + 1
and so the 2n eigenvalues X,- are given by

X= "i±[i?~^(n+1)2sin22^l (16)

The evaluation of the matrix C which diagonalizes A is a little too long to present here
but it is straight-forward. It turns out that the matrix C is given by*

Cp(m> , k = (X,,., + /3) sin

kmir
('P(m) ) n + k SHI n + 1

k = 1, •• • , n,

' m = I, • • • , n, (17)

p(m) = 1, • • • , 2n.

After obtaining the matrix C, a simple evaluation of CDC~, where D is given in (9),
yields the <rik of the Fokker-Planck equation (11). This evaluation gives

2kT& (-A . to?7t . mlcir \ .....ov* = —j ( 2^ sm —f—r sm ——- I, (18)lid \^i n + 1 n + 1/'

where <rjk = (ri+ifc if j is odd and ajk = <rjk+1 if k is odd. Evaluation of the sum in (18)
shows that the crik are given by the elements in

0 0 ••• 0

0 0 ••• 0

0 0 a a • • • 0

(19)

0 0 • • • a a

0 0 • • • a a

where a = nTfi(n + Yf/y.L.
*The significance of the bracket in is that corresponding to the value 1 for m we have P(,._) equal

to 1 and also 2, corresponding to m = 2 we have p<m) equal to 3 and also 4 etc.
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The transformed Fokker-Planck equation (11) has for its solution a 2n-dimensional
Gaussian distribution with the average values

Zj = 6,o exp (X,Z) (20)

and covariance

((z,- - z,)(zk - zk))Average = [1 - exp {(X,- + Xt)<}] (21)
Aj ■+" Afc

where bt0 are the initial values of the z, .
3. The characteristic function. Using the results obtained thus far we may now

write the probability density function for the system of the n vibrating particles using
a well-known result from the theory of multivariate Gaussian distributions. The prob-
ability density has the form

P(zi ,z2, , z2n) = Rn exp j-| Bjk(Zj - z,){zk - z*)j, (22)

where the Bik and Rn are constants determined from (20) and (21), and the values of
X are determined from (16).

We are now ready to obtain the characteristic function of the sum

n XT E (*,• - s,)2, (23)
~r 1 j = i

i.e. the characteristic function of the normalized* sum of the squares of the deviations
of the displacements from some arbitrary initial values. This characteristic function,
once we have obtained it, will at least in principle, enable us to obtain the characteristic
function of

Y fL [X(x, t) - S(x)f dx (24)
-L/ Jo

which is the corresponding limiting case of the finite sum (23). Once we have this we
are theoretically able, by means of the Fourier Inversion Theorem of Probability, to
obtain

Pr|| [X(x, t) - S(x)f dx < (25)

that is the probability that the mean square deviation of the string from a given initial
distribution be less than some given quantity e.

The required characteristic function is defined by

m -/-••• Lr■exp [tT+T S - s'r

~ \ Z B,k(z, - z,){zk - zk)] dV

(26)

*This normalization is necessary if our results for the limiting ease of the continuous string are to be
meaningful.
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where the integration element dV = dz, • • • dz2n . If the integration in (26) is performed,
we obtain the result

exp 2iH E UlVk n ^ , (27)
where

and

U,

Here, for example,

= --T~r X (xm — «») sin (28)
n + 1 n^i n + 1

Vk — [1 f2*-l,2ifc] (29)

p 4 i^{Bn + 2 B,2 + -B22} /o^x
12 (X, - X2)2(n + 1)2CB„B22 - B\2) W

with similar definitions for P3i , and in general for P2k-\.2k ■ The Bik are the coefficients
in the probability density. If we make use of the values of Bjk in terms of the means
and covariances (20) and (21) we may write the P's in convenient form as

P = 41±_12 (X» - X2): ['(e"-' - e*")2 dt (31)
«>o

with similar definitions for P2k-i,« •
It can be shown rigorously that the characteristic function (26) has a limit as n —> <=°

and that the value of this limit is

exp

= I [L U(x, t) - S(x)] sin ~ dx (33)

2if £ ulvA] fl vk (32)
k-1 J) k-1

where

uk

and
n co

lim n Vk = n Vt (34)
n-* 00 A = 1 k~\

The details of the limiting procedure are not as obvious as they might appear on
first sight since the quantity n occurs in each term of the series and products of (27).

4. Derivation of averages. In this section we shall be interested in obtaining certain
averages indicating the behavior of our system of n harmonically bound particles. Once
we have the averaged behavior of the finite number of particles, it is but a single step
to the case of the average properties of the string.

We first derive the mean square deviation of the displacement of the fc-th particle
from some initial position, that is we wish

Average {.{.Xk Xk) Average ~f" Xk (35)



1952] THE RANDOM VIBRATIONS OF A STRING 31

From (10) and (17) we may obtain

2
xk n +

With the use of (36) we obtain

xl = Yj (Br(t)Ba(t)xr0x,0 + e f'/2Br(t)xr0P.0 sin uat)
r,s = 1

(36)

and

_ J4r(n + l)2 . 2 rir _ ft
Wr ~ ' mL2 Sm In + 2 4

Similarly we may derive

t(r T sin2 kn/(n + !) (i - m
U * ;Average 4La2/3 ^ sin2 r*/(2n + 2) 1 rt

where

and

„-0<

(37)
-F XI (wr 'e 0,/2BXt)x,oPrO sin wrt + cor *co, xe eiPr0P,0 sin urt sin a J)

r,s = 1

where

5r(<) = e~fitn ^cos urt + ^-sinor<j (38)

(39)

(40)

TJ, = 2 sin 2cor< — /? cos 2o>r£ + 16a2 sin2 —^ (41)

# = ?M! a2 = ifo + i)2. (42)
V ixL

Putting (37) and (40) in (35) we obtain the result (x2)Average that is the mean square
deviation for the system of n particles.

The quantities xr0 , Pr0 represent initial values of the displacements and momenta
of the n particles respectively. We now average over a canonical ensemble of systems
having all possible initial displacements and momenta after a long time has elapsed.
The probability density P, which is a function of time, as we have found it in (21)
approaches a limiting value as t which we may call the stationary density. This
probability density is given by

R exp ^ (P20 + \i\2x2io + " • ")| (43)

Using this stationary density or as it is usually called the density corresponding to
the canonical distribution, we may examine the following question.

Given that a certain particle starts with the displacement 6 at time zero, what is
the mean square displacement of this particle after time /?
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It is seen that what we want is the evaluation

/ * • • f (*^)Average eXp (P?0 + XiX^o + ■ • ■ )j> dV

J f exp ^ (Pio + X1X2a:?o + • ■ ■)} dV
(44)

The element dV is taken to be the element of volume in phase space dPw • • * dPn0
dx10 ■ ■ • dxno . Our condition that the initial displacement be of magnitude 6 puts no
restriction on the integration over the P but does put a restriction on the integration
over the X. The restriction is that*

< 2 xro sin ^"r1 < 0 + e (45)
r = 1 n 1

We must thus evaluate

f ■■■ [ xr0x,0 exp S J2 X2,_iX2,a;?of dX1 E~* j (46)
f J exp j-j| it, X2r-iX2ra:'o| dX

where dX denotes the volume element dx 10 • • • dxn0 . To evaluate this we use a theorem
of Hadamard [6], We find the result

I+ '"i"' -1 "'Hi ^ + k IG>®}° (47)
where

and

F,-j± WC" + ») (48,
LI r = 1 A2r-lA2r

„ , ,s 6 T-l BiHB.l . 2 kn ,<?*(<) = 7 Z 7 r— sm2 ——- • (49)
L X2r_1X2ro;r n + 1

We have found the results for the system of n particles but a rigorous mathematical
discussion shows that the process of replacing each term by the limit as n —>co and
replacing the sum from 1 to n by the sum from 1 to co is justifiable. The results thus
obtained are the same as those obtained by Uhlenbeck and Van Lear [5] and Uhlenbeck
and Ornstein [1] by entirely different methods. An advantage of the approach given
here is that the results for the finite system as well as for the string are obtained.

One further simplification in the above results can be made by recognizing that
Fk in (48) can be evaluated explicitly. We note that

X2r_!X2r = 4a2 sin2 (50)

*We use this restriction rather than 8 = xr0 sin krw/in + 1) because if we use the latter (46)
becomes an indeterminate of the form 0/0. Instead we therefore use (45) and then let e —> 0.
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so that

_ 1 -A sin2 krir/(n + 1) , .
k ~ 2La2 hi sin2 r*/{2n + 2) ' ;

An evaluation of this yields

„ kin - k -f 1) ,rn.
F'= - I? (52)

Thus the first term of (47) becomes

and since

E _ Ek(n - k + 1) .
20 2L7p (53)

E = , (54)
M

we obtain in the limit as n —since k/(n + 1) = x/L the term

kLT
<55>

This appears also in the results of Uhlenbeck and Van Lear for the limiting case of the
string.
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