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Liapounoff, in 1940, proved that the range of a countably additive

bounded measure with values in a finite dimensional vector space is

compact and, in the nonatomic case, is convex. Later, in 1945,

Liapounoff showed, by counterexample, that neither the convexity

nor compactness need hold in the infinite dimensional case. The next

step was taken by Halmos who in 1948 gave simplified proofs of

Liapounoff's results for the finite dimensional case. In 1951, Blackwell

[l] considered the case of a measure represented by a finite dimen-

sional vector integral and obtained results similar to those of Lia-

pounoff for these measures. Various versions of Liapounoff's theorem

appeared in the 1950's and 1960's, and in 1966, Lindenstrauss [8]

gave a very elegant short proof of Liapounoff's earlier result. Finally,

in 1968, Olech [9] considered the case of an unbounded measure with

range in a finite dimensional vector space. The purpose of this note

is to demonstrate that the closure of the range of a measure of

bounded variation with values in a Banach space, which is either a

reflexive space or a separable dual space, is compact and, in the non-

atomic case, is convex.

To this end, let ii be a point set and 2 be a o--field of subsets of fi.

If f is a Banach space, then an f-valued measure is a countably addi-

tive function F defined on 2 with values in r. F is of bounded varia-

tion if

var(F)(n) =sup£ll P(£„)|| < oo

where the supremum is taken over all  partitions t= {p„}B=1C2

consisting of a finite collection of disjoint sets in 2 whose union is 12.

A set P£2 is an atom of F if F(E) ^0 and £'£2, E'EE imply

F(E') = 0 or F(E') = F(E). F is nonatomic if F has no atoms.

The following theorem is the main result of this note.

Theorem 1. Let %be a Banach space which is either a reflexive space

or a separable dual space. If F: 2—>j is a measure of bounded variation,

then the range of F is a precompact set in the norm topology of f. More-

over, if F is nonatomic, then the closure of the range of F is compact and

convex.
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Proof. Let F and r be as in the hypothesis, and for ££2, let p(E)

be the variation of F restricted to E. (I.e., p(E) 9^S is the variation

of the set function F • E(.) = F(E(~\ •) on 2.) Then according to

Dinculeanu [2, p. 41], p is a countably additive nonnegative finite

measure on 2. Clearly F is absolutely continuous with respect to p..

Hence, in the case f is reflexive or in the case r. is a separable dual

space, Phillips' generalization of the Radon-Nikodym theorem [10,

p. 30] or the Dunford and Pettis theorem [4, Theorem 2.1.4], re-

spectively, guarantee the existence of a ju-measurable r-valued func-

tion fEL\p, r) (i.e., /n||/||a><°°) such that F(E)=fEfdp for all
££2.

Next, select a sequence of simple functions {/„} in L1(p, r) con-

verging to/ in Ll(p, r) norm and define T and Tn, w= 1, 2, • ■ • , for

gEL-bi, C) (C = scalar field of r) by T(g)=fagfdp and Tn(g)
=/a gfndp respectively. Then T and Tn are evidently linear and by

the Holder inequality,

II   fgfd»nf\g\\\f\\dp!i\\gU\fU,

are bounded. In addition the last computation shows that, in the

uniform operator topology, lim„ || Tn — T\\ S=limn fa \\f—/n||rf/* = 0.

Now, note that the range of each Tn is finite dimensional since each

/„ is a simple function. Therefore each Tn is compact, and hence, by

the above, T: L°°(p, C)—>% is a compact operator. Moreover, since

{xb: ££2} is contained in the unit ball of Lx(p, C), it follows from

the compactness of T that

{F(E): E E 2} = if fdp: E £ si   = {T(Xe), E £ s]

is a norm precompact set in f. This proves the first assertion.

To prove the second statement, assume that F is nonatomic.

Clearly p, as defined above, is also nonatomic. Now, if ir— {En} is a

partition and/, is the simple function defined by

f  fdp
f' = 2-, —77T.— XEn,

r        p(En)

(0/0) =0 and Fr is the indefinite integral of fr, i.e., for ££2,

/ fd,X

Fr(E) = Z-^M(£nn£),
r     p(En)
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then by [3, Theorem III.2.15] and [3, Theorem IV.8.18],

lim var(P - FT) = lim f \\f - fj\dp = 0,

where the limit is taken in the Moore-Smith sense after the collection

of all partitions is directed by the partial ordering of refinement.

Next note that each of the f-valued measures FT has its values in

a finite dimensional subspace of r. Also, since p. is nonatomic, it fol-

lows easily that each FT is nonatomic and hence by Liapounoff's

theorem [5] has a convex range. Now let x, y belong to the closure

of the range of F, a and /3 be nonnegative numbers with a+fi = 1, and

€>0 be given. Select Ex and £2£2 such that ||x-F(£i)|j <e/2 and

||y — P(£2)|| <e/2. Then choose a partition t0 subject to the conditions

that
tto ^ {Pi - E2,E2 - Ex,Exr\E2,Q - (Pi W E2)}

and that var(P— £*„) <«/2. It is not difficult to see that

F*.(Ei) =  f  fdp = F(Ei),       i= 1,2, ••■
J Ei

Moreover, since the range of Fr„ is convex, there exists a set £o£2

such that Fri>(Eo)=aFTO(Ex)+l3F„0(E2)=aF(Ex)+PF(E2). Com-

bining these relationships, one has

\\ax + 0y- F(Eo)\\

= \\ax + 0y- (aF(Ex)) + P(F(E2)) + P.0(£„) - P(£0)[|

^ a\\x - F(Ex)\\ + $\\y - F(E2)\\ + ||P,0(£0) - F(£,)||

< at/2 + /3(/2 + e/2 = e,

since a+/3=l and ||pTO(£0)-P(£o)|| ^var(PT0-P)<€/2. Thus the

closure of the range F is convex.    Q.E.D.

The following corollary is clear.

Corollary 2. Under the same hypothesis, if the range of F is closed,

then it is norm compact. If F is nonatomic and its range is closed, then

its range is compact and convex.

Neither the theorem nor its corollary have immediate improve-

ments. Below are two examples, the first indicates that if the hypoth-

esis on £ is weakened, the conclusion of Theorem 1 fails, and the

second, which is due to Liapounoff, shows that a measure may satisfy

the hypothesis of Theorem 1 and fail to have a compact or convex

range.
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First, let fi= [0, l], 2 be the Borel tr-field of subsets of 2 and X be

Lebesgue measure on 2. Define F: 2—tL1^, 2, p) by £(£) = xe, where

Xe is the characteristic or indicator function of ££2. Clearly F is

nonatomic, and since ||£(£)|| =||x«|| = X(£), £is evidently countably

additive and of bounded variation. It will now be shown that the

closure of the range of F is neither compact nor convex. To show the

range of F is not precompact, consider the Borel sets

2Cm-l)

Em =     U    Emn,       m = 1, 2, • • •
n=l

where Em„ is the closed interval [2(n — l)/2m, (2n — l)/2m] for n

= 1, 2, • • • , 2(m_1). A brief computation yields ||xs; — Xej\\ =1/4 for

i^j. Thus {xe„} = { F(Em)} is a sequence in the range of F with no

convergent subsequence; i.e., the range of F is not precompact.

To show that the closure of the range of F is not convex, note that

the function

1/2x0 = l/2x*. + l/2xs2

where £i= [0, 1/2] and £2= [1/2, l] is a convex combination of

members of the range of F. But, if ££2 is arbitrary

\\F(E) - l/2xi,|| = ||x* - l/2xo|| = 1/2X(0 - E) + 1/2\(E) = 1/2.

Thus the closure of the range of F is not convex.

Remark. It is noted here that in view of Theorem 1, this example

provides another proof of the fact that the separable space Lx(fi, 2, p)

is not a dual space. Also this example provides a simple set function

F absolutely continuous with respect to X but which has no Radon-

Nikodjmi derivative with respect to X. To see this, note that if £ were

an integral with respect to X then the proof of Theorem 1 would show

that the range of F were compact.

Finally the example constructed by Liapounoff in [6] will be given

with a minor modification to show that even if a vector measure F

satisfies the hypothesis of Theorem 1, then its range need not be

compact or convex. It is given here for completeness and because of

the one small modification. Let [0, 27r] =0, 2 be the Borel o--field of

subsets of fi, and X be Lebesgue measure on 2. Let {$n}n-o be a com-

plete orthogonal set in L2(\, C) such that each \pi assumes only the

values +1 and — 1 and such that d/0 = +1 while f02r \pnd\ = 0 for

re>0.1 Defining /„ on 2 by

1 Any normalized Haar basis will suffice.
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/„(£) = 2-" f ((1 + fn)/2)d\,       E E 2
J E

and P: £->P by

F(E) = (Io(E),Ix(E),- ■ -,/„(£),- • •),

one finds ||p(£)||r° = 2 X(£) so shat Pis of bounded variation. Clearly

P is nonatomic; therefore since F has its values in the reflexive space

I2 Theorem 1 guarantees the closure of the range of F is compact and

convex. Now consider P(fl) = (27r, t/2, t/4, ■ • ■ , x/2n, • • • ) and

suppose there exists an ££2 such that F(E) = F(Q)/2. Then t = I0(E)

= Je d\ = \(E) and for n>0

7r/2"+1 = /„(£) = 2- f ((1 + +n)/2)d\

= \(Er\U„)/2"

where £/B={s£[0, 27r]: ipn(s) = +1}. It follows immediately from

this and the facts that X(17B) =X(£) =7r that X(£Pi 7J„) =X(£- £/B)

= \(Un-E)=\(-E-Un)=T/2 for all w>0. Now define co on « by

co(x) = +1 for xEE, u(x) = — 1 for x££. Then /q' \poojd\ = T — 7r = 0,

and for w>0

f    ^BcorfX = \(Un Pi £) + A(- Z7B - £)
•^ o

- X(£ - Un) ~ X(£ - Un) = 0.

This contradicts the fact that {$n} was complete in L2(\, C) and

shows two things: first, that even under the hypothesis of Theorem 1,

such a measure P need not have a convex range and second, that in

view of Corollary 2 that the range of such a measure need not be

closed. Thus Theorem 1 cannot be improved under the current

hypothesis.

It would be interesting to remove the restrictions imposed by

Theorem 1 on the range space j. If % is allowed to be a general

Banach space and F is an f-valued measure of bounded variation,

then one can assert that the range of F is precompact and that, in

the nonatomic case the closure of the range of F is convex if, as the

proof of Theorem 1 shows, F has the representation F(E)=fEfdu,

£G2 for some measure p, and some measurable/ with fa ||/[|dju< oo.

However, this restriction appears, to the author, to be too severe for

a general result.
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