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S U M M AR Y

Combinations of bedding- or lithology-induced azimuthal isotropy, with an axis of

symmetry perpendicular to the bedding plane, and crack-induced extensive-

dilatancy anisotropy (EDA), with a horizontal axis of symmetry, are believed to be

common in sedimentary basins, and cause the widely observed phenomenon of

shear-wave splitting. Combinations of two such transversely isotropic forms of

anisotropy with orthogonal axes of cylindrical symmetry lead to orthorhombic

symmetry. This has two major effects: (1) the polarizations of the faster split shear

waves may no longer be parallel to the strike of the cracks, or fractures, even for

near-vertical propagation; and (2) such orthorhombic symmetry systems necessarily

have a number of directions, called shear-wave point singularities, where shear

waves display disturbed or anomalous behaviour, again possibly in near-vertical

directions. Unless these effects are correctly identified, they could be interpreted

mistakenly for the effects of structural irregularities or discontinuities. In contrast,

recognition of the 3-D geometry of this behaviour places comparatively tight

constraints on possible combinations of anisotropy in the rockmass. In order to give

some understanding of the geometry of these phenomena, this paper presents 3-D

patterns of the behaviour of shear-wave splitting that have been computed for a

range of combinations of crack- and bedding-induced anisotropy.

Key words: anisotropy, exploration seismology, modelling, sedimentary basins,

shear waves.

1 INTRODUCTION

Many sedimentary basins are generally assumed azimuthally
isotropic having transverse isotropy (hexagonal symmetry),
with a vertical axis of cylindrical symmetry, so that P-wave
velocities may be substantially greater in horizontal than
vertical directions. There appear to be two main causes of
such azimuthal isotropy: propagation through fine-layering
(Riznichenko  1949; Postma 1955; Backus  1962; and many
papers by Leven, Helbig and their colleagues), and the
lithologic anisotropy of mineral grains in rocks such as
shales (Kaarsberg 1968; Robertson & Corrigan 1983;
Peacock & Crampin  1985). Both sources of azimuthal
isotropy give rise to very similar 3-D patterns of velocity
variations and for convenience we call this phenomenon
periodic thin-layer anisotropy, or PTL anisotropy. Since
there are algebraic formulations for deriving the elastic
constants of fine-layer anisotropy (Postma  1955),  we model
both forms of azimuthal isotropy with these formulae.

The presence of PTL anisotropy, recognized from P-wave

velocities, also implies shear-wave splitting (birefringence).
Because of the vertical symmetry axis, the shear waves
would split strictly into SH- and SV-wave polarizations.
Although this shear-wave phenomenon has been recognized

occasionally in the past (Jolly 1956),  the phenomenon has
played little part in exploration seismology. However, the
assumption of such azimuthal isotropy is implicit in many
determinations of abnormal moveout velocities.

Since three-component recording at high digital sampling
rates has become more readily available in the last few
years, it has been observed that almost all shear waves
propagating through the uppermost 10 to 20 km of the
Earth’s crust (Crampin  1987),  including sedimentary basins
(Willis et al. 1986),  display shear-wave splitting. The
observed azimuthal variations in behaviour are diagnostic of
some form of azimuthal anisotropy (Crampin  1987). The
behaviour of the shear waves suggests that almost all rocks
in the Earth’s crust are pervaded by distributions of
stress-aligned fluid-filled cracks, microcracks, and preferen-
tially oriented pore-space, known as extensive-dilatancy
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anisotropy,  or EDA (Crampin, Evans & Atkinson 1984;
Crampin  1985, 1987). EDA  cracks, like hydraulic fractures,
are expected to be aligned perpendicular to the minimum
compressional stress. Below the near-surface stress ano-
malies (Crampin  1990),  the minimum stress is usually
horizontal. This means that EDA cracks can be expected to

be aligned vertically, striking parallel to the maximum
horizontal compressional stress so that the axis of symmetry
is also horizontal (Crampin  1987).

In sedimentary basins, the azimuthal isotropy of fine
layering and lithology combines with the anisotropy due to
the aligned EDA cracks and leads to orthorhombic
anisotropic symmetry with three mutually perpendicular
symmetry planes [Bush & Crampin  1987, 1991 (this issue);
Crampin  19881.  In a detailed analysis of shear-wave splitting
in a multi-offset vertical seismic profile (VSP) study of the
Paris Basin (Bush & Crampin  1987, 1991; Bush 1990),  it was
found that the azimuthal variations of synthetic seismograms
and synthetic polarization diagrams could not match
observed seismograms and polarization diagrams unless
both PTL and EDA anisotropy were included. The
prevalence of EDA and PTL anisotropy, identified
separately, suggests that combinations of EDA and PTL
anisotropy are common in many sedimentary basins.

In this paper, we use theoretical models to describe the
effects on the 3-D geometry of a range of possible
combinations of EDA and PTL anisotropy in order to assist
in interpreting the behaviour of shear waves in sedimentary
basins. Such combinations lead to complicated shear-wave
behaviour in directions near point singularities (Crampin
1991a,  this issue), which could lead to misinterpretation
unless correctly identified. In contrast, correct identification
of the directions of singularities places valuable constraints
on the internal structure of the rockmass. This paper is
intended to help in recognizing such patterns of behaviour.

2 FORMULATIONS

PTL anisotropy is modelled by the formulations of Postma
(1955),  which are valid for layer thicknesses less than about
half a wavelength. The elastic constants of the five PTL
structures investigated by this paper are given in Table 1.
They are identified by the percentage of differential
shear-wave velocity anisotropy. We have used a range from
2 to 36 per cent, which, in the absence of published data, we
believe is broad enough to include all likely situations. The
effects of PTL anisotropy are similar to those of any
azimuthal isotropy, so that the examples in Table 1 cover a

Table 1. Elastic constants of PTL anisotropy (in lop9 MPa), where

Cij&f for i, j, k, I = 1, 2, 3, are elements of the elastic tensor (see
Crampin 1981),  and density is 2.6 g cmp3.  The labels (a) to (e) in
Figs 4 to 11 refer to the particular degree of velocity anisotropy

listed below.

Percentage

anisotropy

CII1I 4333 5122 C3311 ‘2323

= C2222 = ‘2233 = Cl313

(a) 2% 41.378 39.690 15.808 15.186 12.418

(h) 6% 36.556 32.400 13.806 12.400 10.251

’CC) 12% 32.272 24.835 11.907 9.509 7.949

Cd) 22% 28.576 17.369 10.156 6.644 5.631

(e) 36% 25.553 10.530 8.652 4.030 3.450

wide range of possible lithology- and bedding-induced
anisotropy.

Uniform distributions of EDA  cracks are modelled by the
formulations of Hudson (1980,1981),  as adapted by
Crampin  (1984),  where the crack density CD and aspect
ratio AR are defined as CD = Na3v  and AR = d/a, where N
is the number of cracks of radius a and thickness d in
volume v. A convenient way to visualize this relationship is
to note that for thin (low aspect-ratio) cracks, CD x 100 is
approximately the percentage of differential shear-wave
velocity anisotropy (Crampin  1989). The combinations of
EDA and PTL anisotropies are derived by simulating cracks
in rocks with PTL anisotropy by the techniques of Hudson
(1986). These various formulations are difficult to calibrate
physically, and perhaps the best indications that they are
approximately correct are the remarkably good match of
synthetic to observed particle motions in Bush & Crampin
(1991).

The Hudson formulations are thought to be good
approximations for crack densities less than about CD = 0.1
(Crampin  1984). Here, we use the Hudson formulations for
crack densities CD I 0.2. We would expect the true velocity
variations for such crack densities to display similar 3-D
patterns of behaviour to the modelled values, although the
numerical values might be different. These various
formulations are valid for calculating the properties of
seismic waves with wavelengths greater than the layer
thicknesses, and greater than the crack dimensions, along
ray paths longer than the seismic wavelengths.

3 SHEAR WAVES IN ANISOTROPIC
SOLIDS

In anisotropic solids there are three body waves propagating
in every direction of phase velocity, a quasi-P-wave, qP,
with approximately longitudinal particle motion, and two
quasi-shear waves, the faster qS1,  and the slower qS2,  with
approximately transverse polarizations. These three waves,
in general, have different velocities and mutually perpen-

dicular polarizations with respect to directions of phase

propagation. However, in anisotropic solids, the velocity of
the energy along a seismic ray, at the group velocity,
deviates from the phase velocity both in magnitude and
direction, so that the polarizations of the three body waves
propagating along the same ray paths may deviate
significantly from being mutually orthogonal (Crampin

1981).
It is the difference in velocity and polarization of the two

quasi-shear waves that causes the phenomenon of
shear-wave splitting, which is the most diagnostic feature of
wave propagation in a cracked or anisotropic solid (Crampin
1978, 1981). An incident shear wave propagating through an
anisotropic solid, in general, splits into two or more phases
with different polarizations and different velocities, which
are fixed for the particular ray path through the particular
anisotropic symmetry. These fixed parameters insert
characteristic signatures into the 3-D particle motion, which
vary with the direction and length of the ray path through
the solid. Rays of split shear waves generally propagate (at
the group velocity) with such regular behaviour that the
polarization of the shear wave and the amount of differential
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Figure 3. Projections of (a) phase- and (b) group-velocity surfaces over a quarter of a hemisphere of directions in the material of Fig. 2(c) with the slower (blue) and faster (red) shear-wave
surfaces superimposed. Lines of azimuth and incidence angle on all surfaces are drawn for a 2” grid of phase-velocity directions. Point singularities (marked by black dots, and large open circles

for phase and group velocity, respectively) occur where the two phase-velocity surfaces touch. Thin sections around the x-z plane, viewed tangentially, show variation of the two group-velocity
sheets for PTL anisotropy of: (c) 2 per cent; (d) 12 per cent, as in Fig. 2(a); and (e) 36 per cent, each pervaded by the same EDA cracks as used in Fig. 2(b).
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d

Point Singulari

symmetry axis in hexagonal symmetry [shown in Fig. l(a)],
and may occur occasionally in other anisotropic symmetries.
Fig. l(c) shows a point singularity, where the two
shear-wave surfaces touch in isolated directions at the

vertices of convex and concave cones on the shear-wave
velocity surfaces.

Shear-wave singularities do not cause anomalies ‘in plane
wave propagation (at the phase velocity), and kiss and line
singularities cause only minor disturbance to rays of shear
waves travelling at the group velocity. The deviation of
phase and group velocity is usually greatest when the
phase-velocity surface has rapid variations of polarization

e

Pull-Apart Remnant of

Figure 1. Schematic illustration of the three types of shear-wave

singularities, where the two shear-wave phase-velocity surfaces

touch. (a) Line singularity, where the two velocity surfaces may be

considered as intersecting. This is only possible in systems of

hexagonal symmetry (transverse isotropy), where the line

singularity is a concentric circle about the symmetry axis. (b) Kiss

singularity, where the two surfaces touch tangentially. Kiss
singularities always occur in directions of symmetry axes in
hexagonal symmetry; as illustrated in (a), above. (c) Point

singularity, where the two surfaces touch at the vertices of (usually

very shallow) convex and concave projections from the inner and
outer surfaces, respectively. (d) Schematic illustration of the
intersection of two phase-velocity surfaces in a line singularity in a
hexagonal symmetry system. (e) Illustration of the pull-apart

remnant of a line singularity when the hexagonal symmetry is

perturbed. Point singularities are shown at both ends of the
pull-apart remnant of the line singularity.

of group velocities, even though the intersection of the two
phase-velocity surfaces and the intersection of the two
group-velocity surfaces are in slightly different directions.

direction and has high curvature. Line and kiss singularities
are not associated with rapid variations of polarization, and
usually do not cause particular anomalies in the behaviour

shear-wave anisotropy can often be used to estimate the
orientation and degree of anisotropy along the ray path.

singularities, and there are three distinct types: line, kiss,

and point singularity.

In anisotropic solids, the phase and group velocities for
each body wave generally diverge in both magnitude and

Although the representation of

direction, so that there are two velocity surfaces for each
wave-type. Velocity surfaces, or sheets, are the locus of
points reached in a given time by body waves radiating from
a point source. It can be demonstrated (Crampin 1981) that
the phase-velocity surfaces of the two split shear waves are
analytically continuous and must necessarily touch in at least
two directions, called singularities. Shear-wave surfaces in

most anisotropic solids have many more than two

However, phase-velocity surfaces near point singularities
show rapid variations of polarizations and high curvature in
sections of the phase-velocity surfaces. Consequently, the
group velocities near point singularities may display
considerable deviations from the directions and polariza-
tions of the phase velocity. This means that the behaviour of
shear waves along seismic rays passing near point
singularities is sensitive to very small changes in direction of
propagation (Crampin  1991a). This is important, since it
implies that point singularities are sensitive to small changes
to the internal structure of the rockmass. We shall
demonstrate in the following discussion that when there is

strong PTL anisotropy combined with weak EDA
anisotropy there may be point singularities near to vertical
directions. This anomalous behaviour associated with such
singularities could be comparatively common in sedimentary
basins.

The direction of a point singularity in the phase-velocity
surface transforms to an approximately elliptical shape in
the group-velocity surface, not necessarily flat, and not
necessarily centred about the direction of the singularity in
the phase velocity surface. This elliptical shape creates a

‘hole’ in the outer (faster) group-velocity surface, qS1,  and
the edge of an almost flat ‘lid’ on the inner (slower) surface,
qS2, that fits exactly into the ‘hole’ (Crampin  & Yedlin
1981; Crampin  1981, 1991a).

singularities in phase-velocity surfaces is comparatively

simple (Fig. l), singularities may cause anomalous
3.2 Pull-apart remnants of line singularities

behaviour of waves propagating at the group velocity
solid angle of directions about the singular direction.

In sedimentary basins, if significant PTL anisotropy is
present, there would be strong line singularities. A
schematic illustration of the intersection of the two
phase-velocity sheets in a line singularity is shown in Fig.
l(d). The appearance of a line singularity in group-velocity

3.1 Shear-wave point singularities

Figure 1 is a schematic illustration of two shear-wave sheets would be similar, but is usually in a slightly different
phase-velocity surfaces showing the three types of possible direction from the equivalent phase-velocity singularity.
singularity (Crampin  & Yedlin 1981; Crampin  1989). Fig. Although the behaviour of shear waves near line
l(a) shows a line singularity, where the velocity surfaces singularities is regular, any small perturbation due to EDA

for a

may be considered as intersecting. Line singularities can
only occur in systems with hexagonal symmetry, where they
are circular, concentric with the symmetry axis. Fig. l(b)
shows a kiss singularity, where the two surfaces touch
tangentially. Kiss singularities always occur along the

anisotropy, for example, leads to the two phase-velocity
surfaces at the line singularity pulling apart, -and touching
only a number of point singularities, as in Fig. l(e). There is
high curvature of the phase-velocity surfaces and rapid
variations of polarizations near such pull-apart remnants of
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line singularities, and the behaviour of ray paths may show
pronounced irregularities (Crampin  1991a).

3.3 Equal-area projections

The behaviour of combinations of PTL and EDA anisotropy
is illustrated in Fig. 2. Equal-area projections (polar maps)
of the variation of the polarization of the faster split shear

wave over hemispheres of directions are presented for (a) 12
per cent PTL anisotropy, (b) 5 per cent EDA anisotropy,
and (c) the combination of (a) and (b). Details of the
construction of equal-area projections, and the geometrical
relationships between the various displays in this paper are
given in the Appendix. The projection of PTL anisotropy,
with a vertical symmetry axis, has rotational symmetry
about the vertical z-axis in the centre of the projection. The
line singularity (between the arrowheads) marks a
pronounced change of about 90” in the polarizations of the
leading split shear wave. For directions of propagation
within the solid angle bounded by the line singularity, the
leading shear wave has radial polarization (W-wave),
whereas outside the line singularity, it has SH polarization.
The projection of EDA anisotropy, with a horizontal
symmetry axis, has the polarizations of the leading split
shear waves parallel to the strike of the cracks (in the y-z
plane) in a broad band across the centre of the projection.
The broad band is bounded by line singularities (again
indicated by arrowheads).

The line singularities disappear in the combination of
EDA and PTL anisotropy in Fig. 2(c). However, the
pull-apart remnants of the line singularities are still marked
by changes in shear-wave polarization. There are also a
number of point singularities (marked by black dots) along
the traces of the pull-apart remnants of line singularities.
These will lead to anomalies in the shear-wave amplitudes,

a PTL b EDA c EDA+ PTL

PTL = 12% AR = 0.05

CD = 0.05

Figure 2. Equal-area projections (polar maps) of the horizontal
polarizations of the faster split shear wave over a hemisphere of

phase-velocity directions showing the combination of PTL and

EDA anisotropy. The projections show: (a) transverse isotropy in
sedimentary basins (PTL anisotropy) with a vertical symmetry axis,

and with 12 per cent differential shear-wave anisotropy; (b)

transverse isotropy caused by aligned inclusions (EDA anisotropy)
with a symmetry axis along the x-axis, with crack density 0.05, and
aspect ratio 0.05 (l/20), leading to 5 per cent differential

shear-wave anisotropy; and (c) combination of PTL and EDA
anisotropy, from (a) and (b), above, yielding orthorhombic

symmetry. (Velocity surfaces and equal-area projections are

illustrated in Figs 3 and 8c, respectively, below.) Open circles mark
the directions of kiss singularities, arrows mark the directions of line

singularities, and solid circles indicate the directions of point
singularities. The inner circle marks the theoretical edge of the

shear-wave window, where shear waves are undistorted at the free

surface (Evans 1984; Booth & Crampin  1985).

polarizations, and time delays (Crampin  1991a). Such
anomalies have been identified in multi-offset VSPs  in the
field (Bush 1990; Bush & Crampin  1987, 1991; Crampin

1988).
The inner circle marks the edge of the shear-wave window

at the free surface (Evans 1984; Booth & Crampin  1985).
Observations of shear waves at the free surface suffer severe
distortions if the angle of incidence is greater than the
critical angle arcsin (V,/V,).  This angle is about 35” for
plane waves incident at the surface of a half-space having a
Poisson’s ratio of 0.25 (V,/V,  = 1.73). The effective angle in
the field may be considerably larger because of the upward
curvature of the rays through near-surface low-velocity
layers.

near line and3.4 Phase- and group-velocity
point singularities

Phase-velocity surfaces may be comparatively simple, but
group-velocity surfaces of shear waves in anisotropic solids
may show great complexity in amplitude and polarization. It
is well known that group-velocity surfaces of shear waves in
anisotropic solids may display cusps, in directions where the
curvature of the phase-velocity surface is sufficiently large
(Musgrave 1970). Less well recognized is that even for
comparatively weak anisotropy, shear-wave group-velocity
surfaces in directions near point singularities may display
great complexity so that rays of shear waves passing close to
point singularities may show cuspoidal behaviour of
amplitudes and polarizations (Crampin  1981,199la).

Quarter hemisphere projections of phase- and group-
velocity surfaces for equal grids of phase-velocity directions
for the combined PTL and EDA anisotropy of Fig. 2(c) are
shown in Fig. 3. This figure can be compared with schematic
phase-velocity surfaces in Fig. 1. The phase-velocity surfaces
in Fig. 3(a) of the faster (in red) and slower (in blue) split
shear waves vary smoothly. The important features are the
very shallow convex and concave cones whose vertices touch
in the directions of point singularities (marked by black

dots).
The lines traced out on the group-velocity surfaces by the

regular grid of phase-velocity directions in Fig. 3(b) display
much more complexity. The most prominent features are
the cuspoidal fins and ridges, following the traces of the
pull-apart remnants of line singularities. The direction of the
point singularity in the phase-velocity surface transforms to
an approximately elliptical ‘hole’ in the faster (red) split
shear-wave surface. This ‘hole’ fits exactly a thin, almost flat,
cuspoidal ‘lid’ on the slower (blue) split shear-wave surface
(Crampin  1981, 1991a). Thus, the isolated direction of a
point singularity on the phase-velocity surface transforms to
an elliptical solid angle in the group-velocity surface, which
is indicated approximately by an open circle. Because of the
great sensitivity of the group-velocity deviations to small
changes in phase-velocity directions, calculations of the
exact outlines of these solid angles in the group-velocity
surfaces would take substantial computing time without
adding significant geophysical insight.

The lines in Fig. 3(b) represent deviations of direction on
smooth group-velocity surfaces, not distortions to the
topography of the surface. The interlocking of the phase-
and group-velocity surfaces is illustrated in Fig. 3(c). It
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Figure 4. Polar equal-area projections over a hemisphere of directions of the behaviour of phase and group velocities in combinations of a

fixed EDA anisotropy in the range of PTL structures in Table 1. The EDA cracks have crack density CD = 0.01 and aspect ratio AR = 0.001

and are aligned parallel to the y-z plane. The first two columns show variations referred to phase-velocity directions: left-hand
side-horizontal polarizations of the faster split shear wave; and right-hand side-contoured time delays between the split shear waves
normalized to a 1 km path length. The second two columns show similar variations referred to group-velocity (ray path) directions. Scale, in
tenths of seconds, marked on cross-sections of the contours to the left of the contour plots.
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Fig. 4.
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Figure 6. Similar projections to those in Fig. 4, but for EDA cracks with crack density CD = 0.1 and aspect ratio AR = 0.001. Notation as in
Fig. 4.
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Figure 7. Similar projections to those in Fig. 4, but for EDA
Fie. 4.

cracks with crack density CD = 0.2 and aspect ratio AR = 0.001. Notation as in
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shows a projection from the same view point as the quarter
hemispheres in Fig. 3(b) of a f6” cross-section about the
x-z plane. The section is smooth, with the highest curvature
in the region of the incipient conventional cusp midway
between the complications introduced by the point
singularities. Fig. 3(d) shows a similar section for the same
crack density, but weaker PTL anisotropy. The two surfaces
are seen to meet very smoothly. Fig. 3(e) shows a similar
section for stronger PTL anisotropy, with a cross-section of
a pronounced cuspoidal fin.

Since point singularities occur where the two phase-
velocity surfaces touch, plane waves propagating at the
phase velocity (as in Fig. 3a) display small time delays
between the split shear waves when the propagation
direction is close to a singularity. In contrast, the
group-velocity sections in Figs 3(c), (d), and (e) show that
the delay between the group velocities does not tend to zero
near singularities, but is always a significant proportion of
the maximum difference between the group velocities of the
two split shear waves (Crampin  1991a).  This means that
even for comparatively weak anisotropy, rays of shear waves
may still display irregular behaviour with significant time

delays when propagating near point singularities.
Figures 4 to 11 show the various 3-D patterns of

behaviour for several combinations of EDA and PTL. When
there is low EDA anisotropy and high PTL anisotropy
[diagrams (d) and (e) in Figs 4 to 71, the directions of point
singularities may be close to vertical incidence. It is
important to recognize that such singularities can exist and
to understand their effects on shear waves, so that anomalies
in the propagation of shear waves through homogeneous
uniform anisotropic rocks are not mistakenly attributed to
non-existent structural inhomogeneities.

4 BEHAVIOUR OF COMBINATIONS OF
PTL AND EDA  ANISOTROPY

The following paragraphs discuss the effects of varying PTL
anisotropy, EDA crack density, and aspect ratio. These can
best be illustrated by the variation in positions of the point
singularities.

4.1 Equal-area projections

Figures 4 to 7 show equal-area projections of a hemisphere
of directions for the polarizations of the leading split shear
waves and normalized contoured time delays between the
split shear waves for a range of possible combinations of
PTL and EDA anisotropies. Each figure shows a particular
EDA crack type, specified by crack density and crack aspect
ratio for five PTL anisotropies, increasing from the top of
the page. The elastic constants for the five PTL anisotropies
were computed using the formulations of Postma (1955)
leading to differential shear-wave velocity anisotropies of 2,
6, 12, 22 and 36 per cent. These five materials are listed in
Table 1. Liquid-filled vertical EDA cracks striking parallel
to the y-axis were simulated in the PTL anisotropies using
the formulations of Hudson (1980, 1981, 1986),  where the
z-axis is assumed vertical. The liquid in the fluid-filled
inclusions modelled in these diagrams has the elastic
properties of water at surface temperatures and pressures.

The formulations for calculating elastic constants have been
incorporated into an anisotropic modelling package (Taylor
1987). This package was used to compute the elastic
constants, to plot the polar projections shown in Figs 4 to 9,
and to plot the velocity variations in mutually orthogonal
symmetry planes shown in Fig. 11.

Point singularities in phase-velocity surfaces are seen to
be in isolated directions (again marked by black dots), but
in group-velocity surfaces they are cones of directions whose
approximate positions are marked by circles. The reason for
the irregularities in the contoured group-velocity time delays
are explained in the Appendix.

Figures 4 to 7 show the five PTL structures pervaded by
thin cracks, with aspect ratio AR = 0.001 (l/1000), and four
crack densities of CD = 0.01, 0.05, 0.1, and 0.2. This is
equivalent to differential shear-wave anisotropies due to the

cracks of 1, 5, 10, and 20 per cent. Figs 8 and 9 show the five
PTL anisotropies pervaded by cracks with the (typical) crack
density of CD = 0.05 and aspect ratios of AR = 0.05 (l/20),
and 0.2 (l/5),  respectively.

Variations of PTL anisotropy

As an illustrative example, we take Fig. 5, which shows
EDA cracks with crack density CD = 0.05 (5 per cent
differential shear-wave velocity anisotropy) and aspect ratio
AZ? = 0.001 pervading five different PTL anisotropies. In the
36 per cent PTL anisotropy in Fig. 5(e), the characteristic
kiss singularities of pure PTL anisotropy, in the direction of
the z-axis [representing the vertical direction, as in Fig.

2(41, are seen to become point singularities. These
singularities will move away from vertical along the y = 0
plane towards the x-direction progressively for increasing
ratios of crack density to PTL anisotropies. Similarly, each
line singularity, that would encircle the z-axis in the pure
PTL anisotropy (Fig. 2a) is now a pull-apart remnant of a
line singularity with eight point singularities in each
hemisphere.

The 2 per cent PTL anisotropy in Fig. 5(a) shows a similar
pattern of point singularities and pull-apart remnants of line
singularities, except that instead of encircling the z-axis
(vertical direction), they now tend to encircle the x-axis.
Similarly the vertical kiss singularity has become two point
singularities which are now nearly 30” from vertical.

The intermediate PTL values (Fig. 5b-d) show various
stages in the progression of point singularities on remnants
of pull-apart line singularities moving from encircling the
x-axis to encircling the z-axis. As the PTL anisotropy
increases, the point singularities in the x-y plane coalesce
and then separate and move towards the z-axis in the y-z
plane. Other singularities tend to move slowly to take up the
characteristic positions of a pure PTL system as shown in
Fig. 2(a). Plots of normalized contoured delays indicate that
due to the dominance of the PTL anisotropy, as PTL
anisotropy increases the time delay between the two split
shear waves increases.

It is interesting to note that for these comparatively small
aspect ratios, the combinations of EDA and PTL anisotropy

still preserve the same number of point singularities. The
only case where this does not occur is shown in Fig. 9(a).
This is almost certainly because the singularities are so close
and the separation between the two velocity surfaces is so
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small that the missing singularities have not been
computationally resolved. Separating the distinct point

singularities would require more detailed investigations,
which have not yet been carried out. Certainly, at larger
aspect ratios the line singularity moves towards the kiss
singularity at the end of the symmetry axis (Crampin  1991b)
and the numbers of point singularities decrease.

Variations of EDA  crack density

The effects of variations of EDA crack density at a constant
aspect ratio can be seen by comparing Figs 4 to 7. We see
that where the EDA anisotropy is weakest in Fig. 4, only a
small amount of PTL anisotropy is sufficient to severely
distort the characteristic pattern of EDA anisotropy. The
general pattern of point singularities is partially controlled
by the ratio of PTL to EDA anisotropy. Thus, for the thin
EDA cracks in Figs 4 to 7, the point singularity
progressively moves away from the y-axis for 2, 6, 12 and 22
per cent PTL anisotropy. The approximate ratios for these
figures are 2, 1.2, 1.2, and 1.1, respectively. Similar to the
case of increasing PTL anisotropy, increasing EDA
anisotropy generally lengthens the time delay between the
two split shear waves.

Variations of EDA  crack aspect ratio

The effects of varying the EDA aspect ratio with constant
crack density can be seen by comparing Figs 5, 8 and 9,
which have the same PTL and EDA anisotropies, but aspect
ratios of AR =O.OOl  (l/1000), 0.05 (l/20),  and 0.2 (l/5),
respectively. The largest change in the direction of point
singularities between these figures is for singularities that do
not fall on symmetry planes. For an aspect ratio of 0.001
there is a singularity in approximately the x = y = z
direction. With increasing aspect ratio, the singularity moves

towards the x-axis. Other singularities show only small
variations in their positions despite comparatively large
changes in aspect ratio. Similar behaviour is evident when
comparing changes in aspect ratio at other crack densities
(not shown).

For PTL anisotropy of less than about 12 per cent, the
most prominent effect of the change of aspect ratio is to
broaden the width of the band of large time delays in the
contour plots-this is most clearly seen in the sections to the
left of each contour plot. Such changes alter the time delays
selectively in the 3-D pattern of variations. These variations
are claimed to have been identified before and after
earthquakes (Crampin  et al. 1990; Booth et al. 1990),  when
appropriate recording directions were available to show such
changes. The changes in aspect ratio were interpreted as
caused by stress-induced ‘bowing’ of thin EDA cracks [see
comments by Aster, Shearer & Berger (1990),  and reply by
Crampin  et al. (1991)].  These earthquakes did not originate
in sedimentary basins and there was no PTL anisotropy
present.

4.2 Quarter hemisphere grids of velocity surfaces

Phase- and group-velocity surfaces in a quarter hemisphere
of directions are shown in Fig. 10 for the five PTL structures
in Table 1 pervaded by thin parallel vertical cracks with

crack density CD = 0.5 and aspect ratio AR = 0.001. These

figures may give a more easily visualized 3-D picture of the
phenomena in the equal-area polar projections. For
example, note how the point singularities on the

phase-velocity surfaces are at the vertices of (shallow)
convex cones on the inner (slower) surfaces, qS2, and
concave cones on the outer (faster) surfaces, qS1.  These
diagrams also convey the complex behaviour near point
singularities, and near pull-apart remnants of line
singularities, when there is strong differential shear-wave

anisotropy.
Figures covering a wide range of parameters have been

calculated. These quarter hemisphere grids are a valuable
aid to physical intuition but are difficult to use for
quantitative measurements, hence, only a small selection of
the calculated structures are shown. The effects of varying
PTL anisotropy and EDA crack parameters are discussed in

the following paragraphs.

Variations of PTL anisotropy

The phase-velocity surfaces in Fig. 10 show how the
direction of the point singularity on the n-y plane moves
first towards the y-axis and then towards the z-axis on the
y-z plane as the ratio of PTL to EDA anisotropy increases.
The two point singularities on the z-x plane (perpendicular
to the crack strike) close together while migrating towards
the z-axis. The group-velocity sheets show increasing
complexity with the formation of cusps as the PTL: EDA
anisotropy ratio increases. The major complexity is near the
cuspoidal fin associated with the pull-apart remnant of the
line singularity of the PTL anisotropy. This can lead to
severe irregularities at higher PTL anisotropies. At the top
of Fig. 10 there are also small cuspoidal fins associated with
the pull-apart remnant of the line singularity of the EDA

anisotropy.

Variations of EDA  crack density

Similar effects can be seen as EDA crack densities increase
(not shown). The two singularities on the Z-X plane and the
off-symmetry singularity near the x = y = z direction move
progressively towards the x-axis as the degree of EDA
anisotropy increases. At the same time the singularity which
is initially located on the y-z plane tends towards the y-axis
and onto the x-y plane as the degree of EDA anisotropy
increases. The speed of this movement is greatest for low
PTL anisotropy. As with an increase in PTL anisotropy, the
group-velocity sheets are severely distorted by an increase in
the EDA crack density.

Variations of EDA  crack aspect ratio

Calculations (not shown) demonstrate that the effect of
changing the crack aspect ratio (at a given EDA and PTL
anisotropy) is principally confined to the off-symmetry point
singularity which moves towards the Z-X plane as the aspect
ratio increases.

4.3 Velocity variations in symmetry planes

Figure 11 shows the phase- and group-velocity variations for
a quadrant of directions of quasi-shear-wave propagation in
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Figure 8. Similar projections to those in Fig. 4, but for EDA cracks with crack density CD = 0.05 and aspect ratio AR = 0.05. Notation as in
Fig. 4.
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Figure 9. Similar projections to those in Fig. 4, but for EDA cracks with crack density CD = 0.05 and aspect ratio AR = 0.2. Notation as in
Fig. 4.
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Figure 10. Projections of phase velocity (first two columns) and group velocity (second two columns) of the slower, qS2, and faster, qS1,  split

shear-wave surfaces for a grid of phase-velocity directions over a quarter of a hemisphere of directions in the PTL structures in Table 1
pervaded by parallel EDA cracks, crack density CD = 0.05 and aspect ratio AR = 0.001. Notation as in Fig. 3.

the three mutually orthogonal symmetry planes, x-y, y-z,
and z--x,  in the range of structures in Fig. 5 (CD = 0.05 and
AR = 0.001). A change in notation is necessary because
quasi-shear-waves in symmetry planes are polarized either
(P)arallel  or at (R)ight angles to the plane, so it is
convenient to call these waves qSP and qSR, respectively
(Crampin  1989),  irrespective of whether they are first (qS1)
or second arrivals (qS2). The qSP-wave  has an approxim-
ately cos 48 and the qSR-wave  a cos 28 variation with
direction in symmetry planes (Crampin  1981). The
quadrants (Fig. 11) are displayed as rectangular plots so that
the cos 28 and cos 48 variations can be easily recognized.

Point singularities occurring in the phase-velocity lines are
marked with solid circles. Point singularities in the
group-velocity section of the plots have not been marked to
prevent masking features of the group-velocity behaviour.

For weak PTL and EDA anisotropy, the group-velocity
point singularities are centred approximately about the same
directions as phase-velocity singularities. As the degree of

PTL anisotropy increases, the group-velocity point sin-

gularities can be seen to move significantly away from the
positions of the phase-velocity point singularities and form
part of the characteristic cusp caused by the high curvature
of the qSP (cos 49) phase-velocity variation.

Examination of Fig. 11 shows that group-velocity
behaviour is complex when the PTL anisotropy is strong (22
to 36 per cent). The cusp in the Z-X plane of Fig. 11(e),
located between 30” and 55”,  is caused by the curvature of
the qSP phase-velocity surface, and overlaps with the
cuspoidal lid associated with the point singularity (marked
by the nearly horizontal dashed line between 30” and 67”).
Edges of both cuspoidal features nearly coincide at the 30”
direction. This figure, like many of the diagrams in Fig. 5,
shows that the effects of point singularities may extend for
many degrees (in this case about 17”) around the direction
of the point singularity. In a previous study using a much
simpler cuspoidal lid (Crampin  1991a),  the unexpected
behaviour of the synthetic seismograms suggested that shear

waves near such features have very irregular behaviour.
Individual trends in the behaviour of point singularities in
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Fig. 10. The y-z plane is parallel to the strike of the EDA cracks and the z--x plane perpendicular. The solid lines are phase velocity, and the

dot-dash lines are the group velocity joined to the appropriate phase-velocity value every 10”. The waves are the two quasi-shear waves, qSP

and qSR, polarized (P)arallel and at (R)ight angles to the symmetry planes. The point singularities are marked by black dots. (Note that in

some planes, the anisotropy is so weak that the phase- and group-velocity lines are almost indistinguishable.)

the qSl- and qS2-waves  for variations in PTL and EDA

anisotropy are not discussed in detail as similar discussions
presented for the velocity sheets can also be applied to these
plots. However, the variation of qSl-  and qS2-waves  are
discussed below.

partially determined by the particular choice of PTL

structures, although the general patterns are probably
widely applicable.

Variations of EDA  crack density

Variations of velocities for changing crack densities are not
shown, but numerical calculations suggest that the effects of

Variations of PTL anisotropy

Increasing PTL anisotropy causes an overall reduction in the
velocities of the qSP-, and qSZ?-waves,  with both waves
showing the greatest reduction in velocity in directions
towards the vertical z-axis. Separation of the phase- and

group-velocity sheets becomes more pronounced with
increased PTL anisotropy, and the group velocity develops
characteristic high-curvature cusps. These phenomena are

increasing crack density are very similar to those of

‘increasing PTL anisotropy.

Variations of EDA  crack aspect ratio

Numerical calculations (not shown) indicate only subtle
differences in the positions of the point singularities. In
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many cases, there is only a slight movement of the
singularity in the x-y plane towards the x-axis. This is the
phenomenon that is claimed to have been observed by
Booth et al. (1990) and Crampin  et al. (1990).

5 CONCLUSIONS

The wide range of behaviour of shear waves and shear-wave
singularities for variations in what are thought to be realistic
examples of EDA and PTL anisotropy, demonstrate the
sensitivity of shear waves to the internal structure of the
rockmass. Although the behaviour of shear waves in
orthorhombic symmetry systems can be complicated, a
number of conclusions can be drawn.

(1) The most important conclusion is that the polariza-
tions of the faster split shear wave in sedimentary basins
may not be wholly parallel to the strike of the cracks within
the rockmass, even for near-vertical directions of

propagation.
(2) Another important result is that when the ratio of

EDA to PTL anisotropy is sufficiently small, point
singularities may occur for rays in directions of propagation
very close to vertical. Crampin  (1991a)  s h o w s  t h a t
shear-wave seismograms may be severely disturbed for
directions of propagation close to point singularities. If
singularities near vertical directions were not recognized,
these irregularities, which could occur in a homogeneous
horizontal plane-layered sedimentary sequence, might be

mistakenly interpreted as the result  of structural
discontinuities.

(3) The combinations of EDA and PTL anisotropy which
cause the most disturbed near-vertical propagation are those
where there is weak EDA and strong PTL anisotropy.
These are exactly the combinations which are expected to be
most common in sedimentary basins. This suggests that
phenomena associated with point singularities may be quite
commonly present in shear-wave reflection profiles and
VSPs  conducted in sedimentary basins.

(4) Recognition of the directions of point singularities

places strong constraints on the relative proportions of EDA
and PTL anisotropy. Since these quantities may be
determined independently, this feature could provide
important confirmatory information about the parameters of
the rockmass.

(5) The sensitivity of shear waves is such that any changes
in the crack structure, by changes of the’ pattern of stress,
changes of pore shape, or changes of pore fluid velocity and
viscosity (not shown), are likely to produce changes in the
behaviour of shear-wave splitting. Repeated VSPs, reflec-
tion, and cross-hole surveys, should allow such temporal
changes to be recognized, and could lead to detailed
interpretation of the internal structure of the rockmass.

(6) Shear waves appear to be very sensitive to variations
of the relative proportions of EDA and PTL anisotropy.
The subtleties of shear-wave propagation near point
singularities may well be the reason for many of the
complications frequently observed in field records of shear
waves in sedimentary basins.

The final conclusion is that complicated shear-wave
behaviour observed in sedimentary basins may not
necessarily be caused by complex structure. Understanding
the phenomena may enable the complications to be

interpreted in terms of a uniform structure. The suggested
reason for the importance of such interpretations is that they
provide new detailed information about the internal stress,
crack, and pore structure of the reservoir.

In real rocks, the behaviour can be very different from
effects of the uniform models represented in this paper.
However, the most significant property of point singularities
is that the polarization of the faster split shear wave changes
by 90” either side of the singularity. This is a fundamental
property of shear-wave propagation in anisotropic solids,
and must produce significant anomalies in real structures if
there is orthorhombic symmetry. The remarkable match of
synthetic to observed shear-wave behaviour reported by
Bush & Crampin  (1991) for the Paris Basin suggests that in
some cases, at least, the geometries reported in this paper
may be very close to real data.
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APPENDIX

Geometrical relationships between various displays

Figure Al(a) shows the construction of equal-area polar
projections (polar maps) of a hemisphere of directions. Ray
directions are projected onto a horizontal plane at the same

a

plane of
projection

b azimuthal angle 4
*

angle of inclination

Figure Al. (a) Geometry of an equal-area polar projection. A
direction from a source to a point A on a hemisphere is mapped to

a point B on the plane of projection, where OA = OB =

2a sin (e/2) and the horizontal azimuth, 4, is preserved, where a is
the distance of the source from the projection plane, and 8 is the
angle of incidence. (b) Equal-area projection of directions, with

angles of incidence from 8 = 0” to 90”, and azimuths from 4 = 0” to
360”. The radii of the concentric circles follow the sin (e/2)

relationship.

azimuth, and distance 2a sin (o/2) from the centre, 0,
where 8 is the incidence angle of the ray. Fig. Al(b) shows
the map resulting from the construction in Fig. Al(a), which
has the property that equal solid angles of directions are
transformed to equal areas on the plane. The geographical
analogue is that the relative proportions of areas on the
globe and on the projection are preserved. Equal-area

projections are used to map the horizontal polarizations of
the faster split shear waves, and the contoured time delays
between the split shear waves normalized to a path length of
1 km. The equal-area projection in Fig. Al(a) is drawn for
downward propagating rays. It could have been drawn for

upward propagation, but since all the anisotropic sym-
metries used in this paper have a horizontal plane of mirror
symmetry, the projections in this
upward or downward propagation.

paper are valid for both

-The contoured time delays between phase velocity
surfaces are smooth, but that time delays between
group-velocity surfaces frequently display pronounced
irregularities. The complicated behaviour of rays propagat-
ing at the group velocity near point singularities and near
pull-apart remnants of line singularities has been discussed
previously (see Fig. 3). This is difficult to contour, and
hidden line algorithms have difficulty in coping with the
complexities. it would be possible to impose some

smoothing on the contours‘7 but such smoothing would tend
to suggest that the behaviour was simple. It is thought better

to display the irregularities, in order to indicate that these



equal-area projections are representations of very compli-
cated behaviour that cannot adequately be displayed in

these small-scale diagrams.
Figure A2 shows the geometrical relationships between

the three types of diagrams used to display shear-wave
velocities, polarizations, and time delays between the split
shear waves. Fig. A2(a)  shows the relationship between
(downward propagation) equal-area projections and the
quarter hemisphere projections of the velocity surfaces (in
this case the phase velocity of the slower split-  shear wave).
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Dots mark the positions of the point singularities in both
projections.

Figure A2(b)  shows the relationship between the quarter
hemisphere projections of the velocity surfaces and the
variations of velocity over a quadrant of directions in the
three mutually orthogonal symmetry planes. The velocities
are shown in rectangular, rather than polar, plots so that the
cos 28 and cos 48 variations can be easily distinguished.
Again point singularities are indicated by black dots.

X
(X-Y) Plane y

4.0

3 3.5

3 3.0

*r
.E

2.5

,o 2.0
ub
+ 1.5

LImiGl lLis40 15 30 45 60 75 90 0 15 30 45 60 75 90

Degrees Degrees

Figure A2. Geometrical relationship between the various diagrams used to display shear-wave velocities and polarizations: equal-area polar
map projections; velocity surfaces in quarter of a hemisphere of directions; and three mutually orthogonal symmetry planes. Dots mark the
directions of point singularities in the phase-velocity surfaces.




