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A b s t r a c t .  It has been established that  certain trilinear froms of 
three perspective views give rise to a tensor of 27 intrinsic coeffi- 
cients [8]. Further investigations have shown the existence of quad- 
linear forms across four views with the negative result that  further 
views would not add any new constraints [3, 12, 5]. We show in this 
paper first, general results on any number of views. Rather than 
seeking new constraints (which we know now is not possible) we 
seek connections across trilinear tensors of triplets of views. Two 
main results are shown: (i) trilinear tensors across m > 3 views 
are embedded in a low dimensional linear subspace, (ii) given two 
views, all the induced homography matrices are embedded in a 
four-dimensional linear subspace. The two results, separately and 
combined, offer new possibilities of handling the consistency across 
multiple views in a linear manner (via factorization), some of which 
are further detailed in this paper. 
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1 I n t r o d u c t i o n  

The algebraic and geometric relations across multiple perspective views is a 
recent and growing interest which is relevant to a number of topics including (i) 
issues of 3D reconstruction from 2D data, (ii) representations of visual scenes 
from video data, (iii) image synthesis and animation, and (iv) visual recognition 
and indexing: 

Typical to these topics is the question about the limitations and possibilities 
of going from two-dimensional (2D) measurements of point matches (correspon- 
dences) across two or more views to properties of the three-dimensional (3D) 
object or scene. Since the relationship between the 3D world and the 2D im- 
age space combines together 3D shape parameters, camera viewing parameters 
and 2D image measurements, the question of limitations and possibilities, in its 
widest scope, is about (i) 2D constraints across multiple views (matching con- 
straints), (ii) characterizations of the space of all images of a particular object 
(indexing functions). In other words, one seeks to best represent, in terms of 
efficiency, compactness, flexibility and scope of use, two kinds of manifolds: (i) 
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the manifold of image and viewing parameters (invariance to shape), and (ii) the 
manifold of image and object parameters (invariance to viewing parameters). 

It has been established that  certain trilinear forms of three perspective views 
give rise to a tensor of 27 intrinsic coefficients [8]. Further work on the properties 
of the "trilinear tensor" with relevancy to 3D reconstruction was described in 
[10, 4]. Other investigations have established the existence of quadlinear forms 
(with total of 81 coefficients) across four views with the negative result that  
further views would not add any new constraints [3, 12, 5]. Also, adopting the 
representation put forward by [3], dual trilinear tensors were established by 
[2, 13].. 

In this paper we extend the investigation to any number m > 3 views. There 
are two motivations to this work. First, is the practical aspect - -  if any additional 
view over the fourth view is redundant, what is the best and most efficient way 
of capturing that  redundancy (in a linear manner)? Second, the existence of the 
quad-linearities is somewhat unsettling because the number of coefficients has 
risen from 27 to 81, whereas a view adds only 12 parameters. In other words, the 
quad-linearities may be too redundant a representation of the constraints over 
four views. 

Our line of approach is to investigate the space of all trilinear tensors and 
~.o look for rank deficiencies in that  space. Any finding of that  sort is extremely 
useful because it readily allows a statistical way of putting together many views, 
simply by means of factorization. Moreover, a finding of that  nature promises 
progress on the task of novel-view synthesis from model images ("image-based 
rendering") because a rank deficiency implies that  trilinear tensors are related 
together by linear combinations - -  which is a necessary property for synthesizing 
tensors from a number of model tensors. 

Two main results are shown: (i) trilinear tensors across m > 3 views are em- 
bedded in a low dimensional linear subspace, (ii) given two views, all the induced 
homography matrices are embedded in a four-dimensional linear subspace. The 
two results, separately and combined, offer new possibilities of handling multiple 
views in a linear manner (via factorization), some of which are further detailed 
in this paper. 

2 Prel iminaries  A b o u t  the Trilinear Tensor 

Let P be a point in 3D projective space projecting onto p,p',p" three views 
t,, W', r  represented by the two dimensional projective space. The relationship 
between the 3D and the 2D spaces is represented by the 3 x 4 matrices, [I, 0], 
[.4, v'] and [B, v"], i.e., 

p = [I, O]P 

p' ~ [A, v']P 

p " "~ [B, v"]P 

We may adopt the convention that p = (x,y,  1) T, p' = (x ' ,y ' ,  1) T and p" = 
(x", y", 1) T, and therefore P = Ix, y, 1, p]. The coordinates (x, y), (x'y~), (x", y") 
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are matching points (with respect to sorne arbitrary image origin - -  say the 
geometric center of each image plane). The 3 x 3 matrices A and B are 2D 
collineations (homography matrices) from r to r and r  respectively, induced 
by the plane p = 0. The vectors v ~ and v" are the epipolar points (the projection 
of the first camera center onto views r and r  respectively). The trilinear 
tensor is an array of 27 entries: 

c~i k = v 'kb~ - v ' ' j  aki. i , j , k  = 1,2,3 (1) 

where superscripts denote contravariant indices (representing points in the 2D 
plane, like v ~) and subscripts denote covariant indices (representing lines in the 
2D plane, like the rows of A). Thus, a/k is the element of the k ' th row and i ' th 
column of A, and v 'k is the k ' th element of V. The tensor a~i k forms the set of 
coefficients of certain trilinear forms that  vanish on any corresponding triplet 
p.  p ' .  p "  and which have the following form: let s~ be the matrix, 

S 

.~ " "  be the matrix, and. similarh,, let. ~j 

" = 1 - y - J  

Then. the tensorial equations are: 

81 m i j k  7 3 p o~ = 0, (2) 

with the standard summation convention that  an index that  appears as a sub- 
script, and superscript is summed over (known as a contraction). For further 
details on this derivation, see Appendix A. Hence, we have four trilinear equa- 
tions (note t h a t / ,  m = 1, 2). In more explicit form, these functions (referred to 
as "trilinearities") are: 

x "  - + , flp, _ = o ,  
y l l  1 3  i t t  t 3 3  i s 3 2  i 1 2 _ i  

a i p - y  x o q  p + x a  i p - - o q  p = 0 ,  
ZIIQ?~3p, I I I  33 i I 31 i Ot21pi 

- z  y a  i p -{ '-yot i p - = 0 ,  
,, 23 i ,, ,0t33 i +  ylot~2pi 22_i 

Y ~  P - Y  Y i P - a  i p = 0 .  

Since every corresponding triplet p, pt, p ,  contributes four linearly indepen- 
dent equations, then seven corresponding points across the three views uniquely 
deterlmne (up to scale) the tensor a~/ . More details and applications can be 
found in [8, 9]. Also worth noting is tha t  these trilinear equations are an exten- 
sion of the three equations derived by [11] under the context of unifying line and 
point geometry. 

Furthermore, for any arbitrary (covariant) vector pj = (Pl,P2,Ps), the ma- 
trix f ) j o  ijk (recall the summation convention, i.e., pj~i 'k = p l o t  l k  + p20t 2k Jr 



199 

p3o 3~', which is a matrix) is not just  any matrix,  it is a 2D homography (a 2D 
collineation) from image 1 to image 2 via some plane, whose parameters are 
determined by pj (the vector pj is in direction of the normal to the plane in a 
coordinate system whose origin is the first camera center and its axes are aligned 
with the axes of the th i rd  camera coordinate system). Therefore, if we take pj 
to be (1,0, 0), (0, 1, 0) and (0, 0, 1), we obtain three homography matrices, which 
we will denote by El ,  E2, Es, respectively. In other words, the elements of the 
tensor a~/"k are rearranged to comprise three matrices El ,  E2, Es (El  - - a  ilk, for 
example). For example, the "fundamental" matr ix  F between r and r  can be 
linearly determined from the tensor by: EjTF + FTEj -- 0, which yields 18 
linear equations of rank 8 for F. More details can be found in [10]. 

3 T e n s o r s  a n d  R a n k  12  

Consider the following arrangement: we are given views r r ...era+.% m _> 1. 
For each (ordered) triplet of views there exists a unique trilinear tensor. Consider 
~,~ triplets of views each containing r162 i.e., the triplets < r162162  >, i = 
3 ..... m + 2. Consider each of the tensors as a vector of 27 components and 
concatenate all these vectors as columns of a 27 • m matrix.  The question is 
what is the rank of this matr ix  when 7n > 27 ? Clearly, if the rank is smaller 
than 27 we obtain a line of attack on the task of put t ing together many views. 
The lnotivation for considering this arrangement is tha t  a view adds only 12 
parameters (up to scale). It may be the case that  the redundancy of representing 
an additional view with 27 numbers (a colulnn vector in the 27 • m matrix), 
instead of 12, comes to bear only at a non-linear level - -  in which case it will 
not affect the rank of the system above. Therefore, a rank deficiency implies an 
important  property of a collection of tensors. 

We arrange each tensor as a 27 colunm vector as follows: 

El = a'~ ~) 
E2 o~ k 
E3 o '3k 

where Ej (a 3 x 3 matrix) is arranged column-wise as a 9 vector. To simplify 
notation of indices, let [Bi, v (i)] denote the camera transformation matrices for 
view 't~3, ..., and [,4, v'] the camera transformation matr ix  for view r In the 
next formula, A, Bi, v', v I,i) all appear as column vectors: A is a arranged as a 
9-vector column wise,, i.e., (a~, a2 ,1 a3 ,1 a~, ..., a33), and likewise B/T. It is simply a 
mat ter  of observation to verify that. the following holds: 
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1 2 •  

Thus, we have proved the following theorem: 

T h e o r e m  1 ( R a n k  12) All trilinear tensors live in a manifold of 7926. The 
space of all Irilinear tensors with two of the views fixed, is a 12'th dimensional 
li~ear s't~b-space of Tr ~'7. 

From the factorization principle above we see that  each additional view adds, 
linearly, only 12 pa.rameters - -  as expected. Moreover, these 12 parameters con- 
stitute the camera transformation matr ix  associated with the new view. Next we 
show that  the linear subspace of all tensors with two views fixed is closed, i.e., 
any linear combination of such tensors produces an admissible tensor describing 
the configuration of the two fixed cameras and some third camera position. 

T h e o r e m  2 The linear snbspace containing tensors of views < r 1 6 2 1 6 2  >, for 
all views ~,, is closed. 

The proof is detailed in Appendix B. In particular, consider the two tensors 
< ~:~1, ~".,, "~'i > and < r r r > as two points on the (non-linear) manifold 
of all tensors; the inifinite line passing through the two points lives inside the 
manifold - -  which implies that  the manifold is decomposed into ruled surfaces. 
Tiffs property is the basis for novel-view synthesis which we will touch upon 
later in the paper. 

4 C o l l i n e a t i o n s  a n d  R a n k  4 

Consider a similar exercise done with homography matrices between two fixed 
views. Given some plane in space projecting onto views r and r  the corre- 
sponding image points are mapped to each other by a collineation (homography 
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matrix) ,  Ap -~ p~ for all matching pairs p, p'. Since the homography  mat r ix  A 
depends on the orientation and location of the planar object,  we obtain  a family 
of homography matrices when we consider all possible planes, I t  is also known, 
that  given a homography m a t r i x  A of some plane, then all other homography  
matrices can be described by, 

)~A + Vt  n T . 

Consider homography matrices At,  A2, ..., A~ each as a column vector in a 
9•  matr ix.  We ask again, what  is the rank of the system? I t  would be convenient 
if it were 4, because each additional homography mat r ix  represents a plane, and 
a plane is determined by 4 parameters .  Let Ai = AiA + v'ni'r. The following can 
be verified by inspection: 

I] [ i [vilE00 = ~ I A ' " ~ , A  + v ~ 0 n l - ' - n k  

3 •  

9 x k  9 •  0 V t 9 •  

= A 0 v' 0 nl nk 

4 •  

0 0 v ~ 9x4 

We have thus proven the following result: 

T h e o r e m  3 ( C o l l i n e a t i o n s ,  R a n k  4) The space of all homography matrices 
b~twe~n two fixed views is embedded in a ~ dimensional linear subspace of 7 )s.  

5 Te n sor s  a n d  R a n k  4 

We recall from Section 2 tha t  the tensor a~/"k can be contracted into three ho- 
mography matrices, associated with three distinct planes, between r and r 
Hence, consider the same situation as before where we have the tensors of the 
triplets < r r r >,  i = 3, ..., m + 2 .  But  now, instead of arranging each tensor 
as a 27 column vector, we arrange it in a 9 x 3 block, where each column is the 
honmgraphy jk ai , j = 1,2,3.  We obtain a 9 x 3m matr ix ,  

M =  ~ k ~  

9 x 3 m  

From Theorem 3 we know that  its rank must  be 4. Therefore, we have the 
following result: 
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T h e o r e m  4 (Tensors  and  R a n k  4) The space of all trilinear tensors with 
tu,o of the views fixed can be decomposed into three separate linear subspaces, 
each of dimension ~, of T~ 2r. 

Four columns of M span all tensors < r r r >, for any view r Instead of 
being spanned as a 27 vector it is spanned three times each as a 9 vector. Thus, 
the new tensor is determined by 12 coefficients (of the linear combinations of 
the 4 columns). As a consequence, each additional tensor would require only 6 
matching points, instead of 7: 

Coro l la ry  1 (Tensor -and-a- th i rd)  A tensor of views < r162162 > and 
"third" of the tensor < r r r >, linearly span, with 12 coefficients, all ten- 
sors < r r r > (over all views r Each such tensor can be recovered using 
6 matching points with r and r 

We can use instead a single tensor to linearly span all tensors < r r r > 
(for all views r by recovering the fundanaental matrix F from the tensor (see 
Section 2). The homography matrix [v']~r (see [6]), where [v']x is the skew- 
symmetric matrix associated with vector products, can replace the "third" tensor 
of above (note that [v']xF is of rank 2, therefore is not linearly spanned by the 
three homography matrices provided from the tensor - -  unless the three camera 
centers are collinear). We have therefore the following result: 

Corol la ry  2 (Tensor + F) The tensor of views < r r Ca > and the epipo- 
lar constraint (matrix F and epipole v ~) together linearly span, with 12 coeffi- 
cie,ls, all other tensors < r r r > (running over all views r Each addi- 
lional view tO contributes linearly 12 parameters and its tensor with Ca, r can 
be determined linearly using 6 matching points. 

6 A p p l i c a t i o n s  a n d  E x p e r i m e n t a l  R e s u l t s  

Tim results presented in this paper have three areas of application (that have 
been identified so far). First, is the obvious application of enforcing nmnerical 
consistency across two or more tensors. This can done as follows. 

Assume we are given views r r ...r and consider the tensors of the 
triplets < r ~/'.~, r >, i = 3, ..., m+2 .  Arrange the tensors into a 9 • 3m matrix 
3I as described in the previous section. Perform an SVD and keep only the 4 
largest singular values. We have thus obtained a new matrix M that enforces the 
rank 4 constraint, which in turn, enforces the consistency across all the tensors. 
Separate the tensors of interest from ll'I (each tensor still occupies a 9 x 3 block 
of M). 

Another variant on this application is to recover the four principle compo- 
nents of M, as follows. Given M as above, perform a principle component analy- 
sis and obtain the four principle components A1 .... , A4 (each is a 9-vector). These 
vectors encode the geometry between Ca, r alone (represent four homography 
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Fig. 1. An example of image synthesis using optic-flow and a tensor. (a) (b) and (c) 
ale the original three images. (d) is a synthetic image created by the tensor of the three 
model images, tile user-specified virtual camera motion, and the (dense) correspondence 
between images (a) and (b). Note that the virtual view is significantly outside the 
viewing cone of the original model views. For more details see [1]. 

matrices).  Hence, we can use them to recover F from the (over-determined) 
linear system of 24 equations AjT F + FrAy = 0, j = 1, ...,4. 

The second area of application is in novel-view synthesis ( image-based ren- 
dering). Theorem 4 can be rewritten as follows: 

& 
= E2 

L: :::t3,J E3 
(3) 

where El ,  E.~, E3 are the three homography matrices comprising the tensor of 
views < r r r >,  A is some arbi t rary homography mat r ix  f rom r to r 
not spanned by E1,E~.,E3; the matr ix  L is a 3 • 4 mat r ix  compris ing the 12 
coefficients necessary to span a new tensor of the views < r r r > ,  for some 
view r arranged as/~1,/~2, E3 as a 3 x 9 matr ix,  i.e., each mat r ix /~ j  is a 9-vector 
arranged column-wise. Furthermore, the matr ix  L is a camera  t ransformat ion  
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matrix from 3D space to the new camera position that  produces the view r 
This result implies that  in principle we could be in a position to synthesize new 
tensors on demand (by specifying L) and from those new tensors to reproject 
views r r and create views r This idea was taken further in [1] where the 
possibility of creating synthetic movies of a 3D scene was demonstrated. Fig. 1 
shows three model views of a scene, and a new synthesized image of the scene 
created by synthesizing a new tensor from the tensor of the three model views 
and then reprojecting the two model views on the top row onto the new viewing 
position using the new synthesized tensor. Note that  the synthesized virtual view 
is significantly outside the viewing cone of the three model views, and that  no 
3D model of the scene was created in the process. For more details see [1]. 

The third application using the "rank 4" results is in the area of image 
stabilization. In [7] it is shown that  Theorem 3 can be used as a building block 
for recovering the small-angle approximation of the rotational component of 
camera motion directly and in closed-form from a tensor of three views. The 
significance of this result is that  the translational component of camera motion 
need not be recovered in the process, and that the process is fairly robust in 
practice. 

7 S u m m a r y  

This paper has presented a new approach for investigating the inter-relationship 
among a collection Of four or more views. The approach is based on searching 
for rank deficiencies in the space of all trilinear tensors. 

We have shown that  families of trilinear tensors are embedded in a low di- 
mensional linear subspace of tensor space (the manifold where all tensors live). 
First, this result enables a factorization approach to enforce consistency among 
many views (via consistency among the tensors). We showed, for instance, that  
one can use the factorization principle to obtain the fundamental matr ix  of two 
views from any number of views. Secondly, the theorems and their corollaries 
provide a tight bound on the contribution of additional views over three views. 

We view these results as forming "building blocks" for future applications, 
not necessarily as forming an application on their own. We have pointed out two 
areas of application where these results have already proven fruitful - -  the first 
is in the area of "image-based rendering" where one is interested in synthesizing 
novel views of a 3D scene without necesserily creating a 3D model of the scene, 
and the second application is the area of video sequence stabilization. 

A D e r i v i n g  t h e  T r i l i n e a r  T e n s o r  

The trilinear equations were first derived in [8] together with the equation of  the 
tensor. The derivation presented here is more compact and more details can be 
found in [9]. 



205 

The  camera transformation between images r and r is represented by p~ 
[A, v']P where P = (z, y, 1, p ) r .  Let s~ be the matrix,  

s =  1 

It can be verified by inspection that  p' ~ [.4, vqP can be represented by the 
following two equations: 

pslk vtk i I k + p s k a i  = O. (4) 

with the standard summation convention that  an index that  appears as a 
subscript and superscript is summed over (known as a contraction). Note that  
we have two equations because l = 1, 2 is a free index. 

Similarly, the camera transformation between views r and r  is p" "~ [B, v']P. 
Likewise, let rj m be the matrix, 

And likewise, 

[~ 0 -Y" J r = 1 --x" ] 

,n .J i m j pr~-v +pr )  b~=0, (5) 
Note that  k and j are dunamy indices (are summed over) in equations 4 and 
5, respectively. We used different dummy indices because now we are about  
to eliminate p and combine the two equations together. Likewise, l, m are free 
indices, therefore in the combination they must be separate indices. We eliminate 
p and after some rearrangement and grouping we obtain: 

t ..... i ,  , k . j  _ v , , ~ a ~ )  s~Tj p~v o,: . =0,  

and the term in parenthesis is the trilinear tensor. 

B The linear subspace of tensors  is closed unde r  l inear 
combinat ions  

T h e o r e m  2: The linear subspace containing tensors of views < r162 r >, 
for all views r is closed. 

Proof. We need to show that for any views r r the linear combination of 
tensors < r162162  > and < r162162 > produces a tensor < r 1 6 2 1 6 2  > for 
some view r Let [B3; v (3)] and [B4; v (4)] be the camera t ransformation matri-  
ces associated with views r and r respectively. From Theorem 1 it is clear 
that  the linear combination will produce a tensor < r r r > where the cam- 
era transformation matr ix associated with view r is [aBa + bB4; av (3) + by (4)] 
where a, b are the coefficients of the linear combination. The subtle point in this 
argument is that  although the homography matr ix  aB3 + bB4 does not corre- 
spond to the same plane (the plane p = 0, see Section 2) associated with B3 and 
B4, it can be transformed into such a homography matr ix  by correspondingly 
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t ransforming the projective representation of the 3D scene. In other words, the 
projective representation of the scene can undergo a projective t ransformation 
(which effectively translates the scene along the optical axes of  the first view) 
which is interchangeable with the camera  motion from view to view. The in- 
terchangeability point is effectively contained in the arguments  of [3] about  the 
geometric content of each trilinearity. 
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