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Abstract

We show that the number of points with pairwise different sets of neighbors in a graph
is O(2r/2) where r is the rank of the adjacency matrix. We also give an example that
achieves this bound.

1 Introduction

It was conjectured in 1976 by C. van Nuffelen [vN] that the chromatic number of any graph

with at least one edge does not exceed the rank of its adjacency matrix. Interest in this

conjecture was increased substantially when it was re-discovered, independently, by a com-

puter (Fajtlowicz 1988 [F]), and, perhaps even more significantly, when its connection to a

fundamental problem in the theory of communication complexity was observed (see, e.g., [L]).

The first counterexample to van Nuffelen’s conjecture was obtained in 1989 by Alon and

Seymour [A-S]. They constructed a graph with chromatic number 32 and with an adjacency

matrix of rank 29. In 1992 Razborov showed that the gap between the chromatic number and

the rank of the adjacency matrix was superlinear [R]. In 1993 Raz and Spieker [R-S] proved

that the chromatic number was not bounded by any polynomial in the rank. The best result

known so far is due to Nisan and Wigderson [N-W]. It gives (if translated to these terms)

an infinite family of graphs with rank r and with the chromatic number χ = 2Ω(log r)α
where

α = log3 6 > 1.

In this paper we investigate the upper bound on the number of points of a graph in terms

of the rank, r, of its adjacency matrix. Such a bound exists as soon as we make the assumption

that the graph has no twin points, i.e., non-adjacent points with the same neighborhood. In

this case, it is trivial to prove that the number of points is at most 2r. We improve this trivial

upper bound to O(2r/2), and show that this new bound is best possible.

Clearly, this gives an upper bound on the chromatic number as well. Using Ramsey’s

Theorem this bound can be improved by a factor of 1
r (we are grateful to the referee for

this remark). Recently, an upper bound of O((1.36...)r) has been proved [K]. We conjecture,
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however, that the chromatic number is bounded by a subexponential function of the rank.

2 The Upper Bound

Let G be a graph on n vertices, and M , its adjacency matrix. Denote r = rk (M). Two

vertices u and v of G are called twins if their sets of neighbors coincide:

Γ(u) = Γ(v).

(In particular, twins are non-adjacent.) In M twins correspond to identical rows (and columns).

Hence deleting or adding a twin point does not change either the rank or the chromatic number

of a graph. Therefore assume throughout this section that G has no twins. We first state and

prove the following easy

Lemma Let H be a largest subgraph of G of a smaller rank, rk (H) < r. Denote t = |H|.

Then

(a) no two columns of M coincide on more than t positions;

(b) H does not have triplets;

(c) if H has twins, its rank is exactly r − 2.

Proof To see (a) suppose that some two columns, i and j, of M coincide on (at least) t + 1

positions, say positions 1 through t + 1. Then the first t + 1 rows of M form a submatrix

whose right null-space is strictly larger than that of M , for in particular it contains the vector

(0, . . . , 0,
i
1, 0, . . . , 0,

j
−1, 0, . . . , 0).

Consequently, the subgraph of G spanned by {v1, ..., vt+1} has rank smaller than r, a contra-

diction with the maximality of t. To see (b) and (c), consider the graph spanned by H and

u, where u is some vertex of G − H, and the corresponding adjacency matrix, N . Observe

that N is of rank r (by the maximality of H) and (hence) it is twin-free. Since deleting a row

from a 0-1 matrix without twin columns cannot produce three or more identical columns, (b)

follows. Since deleting from N the row that corresponds to u produces twin columns, this row

is not in the linear span of the rest of the rows of N , and thus deleting such a row lowers the

rank (by 1). Similarly, deleting the corresponding column from the submatrix just obtained

(of a symmetric N) lowers the rank by another 1, and (c) follows. 2

Theorem Let G be a twin-free graph on n vertices, r the rank of its adjacency matrix. Then

n = O(2r/2).
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Proof Let H denote a largest subgraph of G of a smaller rank, rk(H) < r. Let t = |H|.

Case 1 t ≤ 3n/4.

Along with M , consider the matrix M ′ obtained from M by replacing all 0’s by −1’s. In

other words, M ′ = 2M − J where J denotes the all-1 matrix of the appropriate size. Clearly,

|rk(M ′) − rk(M)| ≤ 1. One can look at the columns of M ′ as vectors of euclidean length
√

n in the (at most) (r + 1)-dimensional space. Every two of them, say u and v, agree on

at most t positions (part (a) of the lemma), and disagree on at least n − t positions. Hence

u · v ≤ t− (n− t) = 2t− n. Consequently, the cosine of the angle between u and v is at most

(2t−n)/n ≤ 1/2 (since t ≤ 3n/4), and so the angle between them is at least 60o. But now we

can reduce our problem to the problem of packing unit vectors in IRr+1 on the r-dimensional

unit sphere Sr in such a way that the angle between any two of them is at least ϕ = 60o. The

upper bound on the number of vectors packed in this fashion is given by

(1− cos ϕ)−r/22−r(0.099+o(1)) as r →∞,

for all ϕ ≤ ϕ∗ = 62.9974... (this result is due to Kabatjanskĭı and Levenštein [K-L], see also

[G-W], p.825). Taking ϕ = 60o we obtain un upper bound of O(2r/2), as required. This settles

Case 1.

Let C denote a constant bounding from above 2−r(0.099+o(1)) in the above formula for

ϕ = 60o. In what follows we prove the inequality n ≤ C 2r/2 − 16 by induction on r applied

to twin-free graphs. We may assume that it is satisfied for r = 2 (i.e. that C ≥ 9).

Case 2 t > 3n/4 and H does not have twins.

Then by the induction assumption applied to H, t ≤ C ·2(r−1)/2−16 and hence n < 4t/3 <

C · 2r/2 − 16, as required (note that we only need here that t > n/
√

2). This settles Case 2.

Thus for the rest of the proof assume that H has twins (cases 3 and 4 below). Let us denote

the number of twin pairs in H by p (recall that by the lemma, H does not have triplets.)

Case 3 H has twins and 2(t− p) ≥ n− 16.

One can consider a twin-free subgraph, H ′, of H on t − p points. By part (c) of the

lemma, rk (H ′) = rk (H) = r − 2. Hence by induction applied to H ′, n ≤ 2(t − p) + 16 ≤

2(C · 2(r−2)/2 − 16) + 16 = C · 2r/2 − 16 as required. This settles Case 3.

Case 4 t > 3n/4, H has p twin pairs, and 2(t− p) < n− 16. In particular,

p > t− n

2
+ 8 >

3n

4
− n

2
+ 8 >

n

4
and n− t ≥ n− 2(t− p) > 16. (∗)
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In this final case we will apply the induction argument to the induced subgraph of G spanned

by the twins of H. Let the vertices of G be arranged in the following order:

{v1, . . . , vp, v
′
1, . . . , v

′
p, v2p+1, . . . , vt, . . . , vn}

where v′i is the twin of vi, and the first t points correspond to H. For each 1 ≤ i ≤ p,

t + 1 ≤ j ≤ n there is exactly one edge between vj and {vi, vi
′} (part (a) of the lemma.) Let

{vi, v
′
i} be ordered so that (vi, vt+1) is an edge for all 1 ≤ i ≤ p.

Now note that by the maximality of H, the first t + 1 rows of M span its row-space. This

in particular means that for a given j, t+2 ≤ j ≤ n, either (vi, vj) is an edge for all 1 ≤ i ≤ p,

or (v′i, vj) is an edge for all 1 ≤ i ≤ p (depending on the sign of the coefficient of row t + 1 in

the representation of row j as a linear combination of rows 1, . . . , t+1). Let us reorder vertices

vt+1, . . . , vn so that exactly the first k of them are adjacent to vi and not to v′i, 1 ≤ i ≤ p (and

hence the other n− t− k are adjacent to vi
′ and not to vi, 1 ≤ i ≤ p).

Let A denote the subgraph spanned by {v1, . . . , vp}. We claim that A has no twins. Indeed,

if A had twins, then the corresponding columns of M would coincide on the first 2p positions,

as well as on positions t+1 through n. By part (a) of the lemma, we would have t ≥ 2p+(n−t)

or 2(t− p) ≥ n/2 which contradicts our assumption above. Thus A is twin-free.

We next claim that rk (A) ≤ r − 4. Assume otherwise. Let D1 and D2 denote the subma-

trices of M spanned by the rows {vt+1, . . . , vt+k} and {vt+k+1, . . . , vn} respectively, and the

columns {v2p+1, . . . , vn}. Observe that rk (A) + rk (Di) ≤ r, (i = 1, 2), for the ij-entries of M

are zeros if either t + 1 ≤ i ≤ t + k and 1 ≤ j ≤ p or t + k + 1 ≤ i ≤ n and p + 1 ≤ j ≤ 2p (due

to the special vertex arrangement just discussed.) Thus rk (D1), rk (D2) ≤ 3. Since neither D1

nor D2 can have twin rows (otherwise so would M), the total number of rows in D1 and D2

is at most 2 · 23 = 16. But this number is exactly n− t > 16, cf. (∗). A contradiction.

We conclude that rk (A) ≤ r − 4. Since |A| = p > n/4, by induction applied to A

n ≤ 4(C · 2r−4/2 − 16) < C · 2r/2 − 16,

as required. This concludes the proof of the theorem. 2

3 The Example

We conclude with an example of a graph on Ω(
√

2r) vertices. This construction is similar to

(but not the same as) the well-known Mycielski graph.
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Consider a twin-free graph on n vertices, of rank r. Duplicate each of its vertices. Add

another vertex and connect it by an edge to exactly one vertex of each twin pair. The graph

obtained is again twin-free, has 2n + 1 vertices, and is of rank r + 2.

Using a single point graph as the base, one concludes easily by induction on (even) r that

n = 2 ·
√

2r − 1.
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