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THE RANK O F  DEMAND SYSTEMS: THEORY AND 

NONPARAMETRIC ESTIMATION' 


Gorman's (1981) concept of Engel curve "rank" is extended to apply to any demand 
system. Rank is shown to have implications for specification, separability, and aggregation 
of demands. A simple nonparametric test of rank using Engel curve data is described and 
applied to U.S. and U.K. consumer survey data. The test employs a new general method 
for testing the rank of estimated matrices. The results are used to assess theoretical and 
empirical aggregation error in representative consumer models, and to explain a repre- 
sentative consumer paradox. 

KEYWORDS:Rank, Engel curves, demand systems, aggregation, separability, represen- 
tative consumer, Gaussian elimination, nonparametric tests. 

1. INTRODUCTION 

DEFINETHE RANK M of any demand system to be the maximum dimension of 
the function space spanned by the Engel curves of the demand system. This 
definition of rank extends the definitions of rank in Gorman (1981) and Lewbel 
(1989a) to encompass all demand systems. This paper describes a simple 
nonparametric procedure for estimating the rank of observed demands using 
ordinary survey data, without price variation. The technique first uses budget 
share and total expenditure data to construct a matrix Y having the property 
that the rank of the expected value of 'I3 equals M, then a test for the rank of 
any estimated matrix is applied. This test is described in the Appendix. 

Many known theoretical results concerning aggregation, separability, and 
functional structure of demands will be shown to be implications of rank. The 
definition and nonparametric test of rank described in this paper provide a way 
of simultaneously unifying and empirically applying a largely theoretical litera- 
ture on aggregation and functional form specification. 

The nonparametric rank test will be illustrated with an application to U.S. 
and U.K. data. The results will be used to investigate the paradox of why 
representative consumer models fit aggregate consumption data reasonably well, 
even though empirical Engel curves do not possess the linearity that standard 
aggregation theory says is required for a good fit. This includes a theoretical and 
empirical analysis of the size of aggregation errors in representative consumer 
specifications. 

The rank test is a prespecification test, providing information about the 
degree of separability, aggregate structure, and cost function structure that are 
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would like to thank Jerry Hausman and Gregory Leonard for providing U.S. data, Richard Blundell, 
Paul Baker, the U.K. Department of Employment, and the Institute for Fiscal Studies for providing 
U.K. data, and Leonard Gill, Thomas Stoker, Jerry Hausman, Dale Jorgenson, Terence Gorman, 
Richard Blundell. Angus Deaton, Robert Porter. participants of Harvard-MIT, Econometric Soci- 
ety, and other seminars, and two anonymous referees for many helpful comments and suggestions. 
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consistent with a given data set. It is standard practice to assume separability, 
aggregability, and a parametric or semiparametric functional form before doing 
any empirical analysis. The rank test thus provides information on precisely 
these aspects of demands that are either weakly tested or not tested in most 
empirical demand analyses. 

Very little empirical work on rank exists. EIausman, Newey, and Powell (1988) 
estimate rank within the context of polynomial Engel curves, though they 
examine a few other related functional forms as well. Using U.S. consumer 
expenditure survey data, they find evidence for a rank of three. Although 
Leser's (1963) examination of different parametric Engel curve models is often 
cited to rationalize Engel curves that are linear in log income (a rank two 
specification), Leser in fact found a significantly better fit by regressing budget 
shares on more functions of income, which is indicative of a rank greater than 
two. Hardle and Jerison (1986) obtain kernel estimates of Engel curves and 
derive some rank implications of their results. 

While this paper exclusively analyzes consumer demand, all the techniques 
described here could be applied to factor demands in a production context. The 
results would provide information on the empirical reasonableness of industry 
aggregate models, and of common assumptions about the separability of factors. 

2. THE THEORY OF RANK CONDITIONS 

Let z = C(u, R) be the log of the cost function describing any demand system 
for N goods, where u is utility, R is the N vector of the log of prices of goods, x 
is total expenditures (income or cost for short), and z = In x is log income. All 
that is being analyzed is the allocation of consumption expenditures within a 
period, so I will follow the common practice of using the term income to refer to 
x, even though formally x is total consumption expenditures. Let w = d(z, R)  
be the N vector of budget shares derived from the cost function C. Standard 
cost function continuity and differentiability is assumed. Let l ( R )  denote the 
space spanned by d(z, R)  for a given R over all real z. Define the rank of the 
demand system local to R to be rank[l(R)], and define the (global) rank M of 
the demand system by 

(2.1) M = sup {rank [ l (  R ) ]  I R  real) 

By the definition of rank, 

M 

(2.2) wi=d i ( z ,  R )  = C a,,(R)g,(z, R )  ( i =  1, ...,N ) ,  
m =1 

or w = a(R)g(z, R), where a(R) is an N by M matrix that is rank M for some 
R,  and the M vector g(z, R)  is a basis for l (R).  Note that all the budget shares 
are linear in the same M functions g(z, R). By construction, any system d can 
be written in the form of equation (2.2) with M ,< N, and by definition, the rank 
of d is the minimum M for which (2.2) can be satisfied for all R and z. The 
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space spanned by g includes the constant function, because budget shares sum 
to one. 

For a given price regime R*,  budget share Engel curves are 
M 

(2.3) wi = A,,G,(z) ( i =  1,...,N ) ,  
m = l  

or simply w =A G ( z ) ,  where A,[ =a m i ( R Y )and G,(z) =g,(z, R*).  These 
Engel curves are linear in M functions of income, though the precise form of 
the income functions G typically depends on the prevailing price regime R*.  
Note rank(A) = rank[l(R*)]. 

THEOREM1: A demand system has rank M i f  and only if M is the smallest 
integer such that the cost function is of the form 

(2 .4 )  C ( u , R )  = H ( u , @ , ( R ) , . . . , O , ( R ) )  

for some functions O , ,  . . . ,O M ,  and H .  

PROOF: To see that equation (2.4) implies rank M ,  apply Shepard's Lemma 
to Equation (2.4) to obtain 

Let g, for m = 1,.. . ,M be given by 

where u ( z ,  R )  is the indirect utility function of these demands ( u  is the inverse 
function of C with respect to u ) ,  and let ami for m = 1 , . ..,M and i = 1, . . . ,N 
be given by 

(2.7) a,,(R) =de,(R)/dRi .  

Substituting equations (2.7) and (2.6) into (2.5) yields equation (2.2). 
Now assume demands given by equation (2.2). To show that rank M implies 

equation (2.4), we must find M functions O,(R),.. . ,B,(R) such that dC/dR is 
collinear with d[O,(R),. . . ,O,(R)]/dR for all R .  By Shepard's Lemma 

M 

(2.8) d C ( u ,  R ) / d R i  = C a m i ( R ) f , ( u ,  R )  
m = l  

where for m = 1,.. .,M, f ,  is defined by 

(2.9) f,(u, R )  = g , [ C ( u ,  R ) ,  R l .  

Choose utility levels u, ,  . . .,u ,  such that the matrix with elements given by 
f,(u,, R )  for m = 1,.. . ,M and h = 1 , . . . ,M is nonsingular at some value of R 
for which the local rank is M. Some such set of utility levels must exist, or else 
the space spanned by f ,  and hence the space spanned by g, can be spanned 

mailto:=H(u,@,(R),..
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with fewer than M functions, which contradicts the assumption that the rank is 
M. (Note that z = C(U, R) is monotonic in u.) 

Define Orn(R) for m = 1, . . . ,M by 

(2.10) Om(R)= C(urn,  R ) .  

By equations (2.8) and (2.10), we have for m = 1 , .. . ,M and i = 1:. ..,N that 

For each i from 1 to N, stack equation (2.11) for m = 1, .. . ,M and solve for the 
vector (ali(R), . ..,aMi(R)) in terms of the vector (dO,(R)/dR,, .. . ,dOM(R)/dRi) 
by inverting the matrix of functions frn(uA, R). Substitute the result into equa- 
tion (2.8) to get 

for some functions hm(u, R), m = 1, . . . ,M. This shows that dC/dR and 
d[O1(R),. . .,OM(R)]/dR have the necessary collinearity to ensure the existence 
of a function H satisfying equation (2.4). Q.E.D. 

Theorem 1 says that rank M demands have cost functions that can be written 
in terms of M price indices, O,,. . . ,OM. Since cost functions are linearly 
homogeneous in prices, by the proof of Theorem 1 each function Orn(R) equals 
the log of a homogeneous of degree one function of prices, and so can be 
interpreted as the expenditures on some composite commodity produced under 
constant returns. The function H is then interpretable as the log cost function 
for the composite commodities (the budget share of each composite commodity 
m is given by dH/dOm), though in general H need not satisfy concavity 
conditions in terms of these composites. 

3. IMPLICATIONS O F  RANK 

This section describes many implications of rank. 
1. A demand system has rank M = 1 if and only if the demands are homo- 

thetic, that is, budget shares independent of the level of income. If demands are 
of rank one, then by equation (2.3) the Engel curves in any price regime are 
wi =AliGl(z) .  Because budget shares sum to one for all z ,  we require that 
G,(z) not depend on z. 

2. A demand system has rank M = 2 if and only if the demands are general- 
ized linear (GL; see Muellbauer (1975)), since the definition of GL  requires that 
C(u, R)  = H(u,  O,(R), O,(R)). Also, ths indirect subutility functions in Gorman 
polar form !see Gorman (1959)) demand systems have rank M = 2. By defini- 
tion, Gorman polar form indirect subutility functions are h*(a(R) +P(R)x) ,  
which only depend on two functions of prices. 
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GL is a necessary and sufficient condition for aggregate demands to resemble 
representative agent models in certain ways (see Muellbauer (1975)), and is 
necessary for aggregate demands to exhibit the weak axiom of revealed prefer- 
ence (see Freixas and Mas-Colell (1987), who refer to GL  as the "no torsion" 
condition). The popular AIDS, translog, and linear expenditure systems are all 
rank two models. More generally, rank two demands include the PIGL (includ- 
ing quasihomothetic), PIGLOG (see Muellbauer (1975)) and fractional demand 
systems (Lewbel (1987a)). See also Lewbel (1987b, 1990). Virtually all these 
classes of demands have been proposed in part because of their exact aggrega- 
tion or representative agent properties. 

3. Consider the "exactly aggregable" class of demands 

for some functions bki(R) and G,*. (Studies of exactly aggregable demands 
include Muellbauer (1975), (1976), Lau (1977a, 1977b), Jorgenson, Lau, and 
Stoker (1982), Lewbel (1987b, 1988), and Gorman (1981).) Let b(R) be the N 
by K matrix of functions bki(R). Gorman (1981) proved that for all equation 
(3.1) demands, the maximum possible rank of b(R) is three. This implies that 
M < 3, because we may define a(R) as a matrix whose columns form a basis for 
the columns of b(R), and write equation (3.1) in (2.2) form with gm(R, z )  = 

CkK_lbzm(R)G*(~)for some functions b&. An example of a rank three class of 
demands that is not in equation (3.1) form, but is still convenient for aggrega- 
tion, is given in Lewbel (1989d). 

4. Consider demands in the "deflated income" class 

for some functions b,,(R), G,*, and O*(R). These demands are analogous to 
those of equation (3.11, the only difference being that (3.2) demands are linear 
in functions of deflated income x/a(R) instead of nominal income x (here 
z -O*(R) = In[x/a(R)]). The usefulness of deflated income models is that they 
permit far more general Engel curves than equation (3.1) type demands, yet can 
still be exactly aggregated across agents using data on the distribution of 
deflated income instead of nominal income. Lewbel (1989a) proved that for all 
demands in the form of equation (3.2), the maximum rank of b(R) is four. By 
the reasoning of point 3 above, M ,< 4. 

5. When preferences are identical across agents, the results of Stoker (1984) 
imply that aggregate demands in an economy depend on M statistics of the 
income distribution of agents if and only if demands are in the form of equation 
(2.21, and aggregate demands satisfy generalized Slutsky symmetry (see Diewert 
(1977)) if and only if demands are in the form of equation (2.2) with M < N. Of 
course, equation (2.2) is equivalent to rank equaling M. 
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In general, the above results show that the lower the rank, the greater is the 
degree of utility related structure possessed by aggregate demands. It is there- 
fore important to know the rank of demands to specify aggregate demand 
equations appropriately. 

Now consider the implications of rank for utility production models and 
separability. Household production models either directly posit cost functions of 
the form 

for some L, or assume that direct utility can be written in terms of L 
homogeneous functions of goods, from which equation (3.3) follows directly. 
Here L is the number of "produced" intermediate goods from which agents 
derive utility, and which are in turn constructed from the raw, purchased goods. 

Demands that are homothetically separable (either weakly or strongly) into L 
groups of goods also have cost functions given by equation (3.3), where in this 
case the price vector of purchased goods is partitioned among the 4 functions. 

Cost functions in the form of equation (3.3) may also arise from household 
welfare functions, in which 4, is the cost of attaining a given level of utility for 
household member i, and H is dual to a welfare function that combines the 
utility of each household member. 

Since the rank M is the minimum number of price indices in terms of which 
cost functions can be written, M cannot exceed L. Therefore, rank places a 
lower bound on the degree of separability and household production function 
structure. 

Rank has additional implications that are summarized elsewhere. For exam- 
ple, implications of rank for welfare comparisons and equivalence scales are 
described in Lewbel (1991, 1989e). Many popular functional forms for directly 
additive utility functions are low rank (see Lewbel (1989~)). Finally, in demands 
for risky assets, the degree of portfolio separation (also called mutual fund 
separation, e.g., Cass and Stiglitz (1970)) equals the rank of the demand system, 
and in fact the definition of mutual fund separation is almost synonymous with 
rank (see Lewbel (1989b)). For example, the mean-variance utility functions 
used to derive the standard Sharpe-Lintner Capital Asset Pricing Model are 
rank two. 

3.  ESTIMATING THE RANK OF ENGEL CURVES: THEORY 

Let t = 1, .. . ,T index agents observed in a single price regime. Assume for 
now that agents have identical preferences, up to a noise component. (This 
assumption will be relaxed later.) In matrix form, equation (2.3) with an error 
added is 
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where e, is an N vector of mean zero errors that are assumed to be indepen- 
dent of z. No distributional assumptions concerning e will be made except that 
e ' ~= 0 (where ' denotes transpose and L is the N vector of ones), which is 
required for W'L = 1. In particular, no restrictions are placed on the rank of 
E(eel) except for those implied by e i  = 0. 

Without functional form assumptions G(z)  is unknown. The structure of 
equation (4.1) therefore resembles that of factor analysis, where G is the set of 
unknown factors that "explain" w, and the rank M equals the unknown number 
of factors. Unfortunately, factor analysis requires restrictions on E(eet) that are 
unreasonable to impose on equation (4.1). In particular, the usual factor 
analysis assumption that E(eel) be diagonal cannot hold in equation (4.11, 
because e ' ~  = 0 requires the existence of nonzero covariances. Therefore, tests 
for the number of factors in factor analysis (e.g., the likelihood ratio test 
described by Lawley and Maxwell (1971)) cannot be used to identify M. 

To estimate M nonparametrically, the unique structure of the present appli- 
cation can be exploited. In particular, the information that the "factors" G(z)  
are all functions of z can be used. Let Q(z)  be a vector of N or more functions 
having finite means. Postmultiply equation (4.1) by Q(z,)' to get 

Denote expected value across agents by E, and let Y= E[wQ(z)'], which is 
assumed to exist. Now, E[eQ(z)'] = 0 because e is independent of z.  Therefore, 
Y=AE[G(z)Q(z)'], so rank ( Y )=M, unless by coincidence some component of 
G is orthogonal to all the elements of Q, or the price regime locally has rank 
less than M. Either case would then yield rankiY) <M. 

Let ?=C,[w,Q(z,)']/T. By ordinary central limit theorems (assuming the 
existence of some moments), ? is a consistent and "root-T" asymptotically 
normal estimate of the corresponding population cross product matrix Y. If G 
were known, equation (4.2) would yield an instrumental variables estimate of A. 
Here G and A are unknown and not estimated. Instead, we estimate rank(Y) 
to obtain an estimate of rank( A). 

The problem has been reduced to estimating rank(Y) given 9, but this is 
difficult. For any finite T, rank(Y) will generally equal N, since it includes the 
error cdmponent. The obvious approach is to estimate sample eigenvalues and 
their asymptotic distribution, the estimate of rank being the number of eigenval- 
ues of Y that are significantly different from zero. Unfortunately, the asymptotic 
variances of eigenvalues depends in a nontrivial way on rank(Y) itself, and on 
the unknown multiple eigenvalue structure of Y (see, e.g., Anderson (1963) and 
Magnus (1984)). Also, eigenvalues can be complex valued, which is a nuisance, 
and eigenvalues are highly nonlinear functions of the data, which can cause 
computational problems. 

The alternative strategy proposed here is to consider the Gaussian elimina- 
tion based LDU decomposition. The rank of any matrix equals the number of 
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nonzero elements of the diagonal matrix D in this decomposition. Here again 
the asymptotic distribution of D will depend on rank(Y), but the explicit 
calculation of the distribution for alternative possible ranks is rendered tractable 
by the fact that, unlike eigenvalues, D is a simple function of Y. This is true 
even when Y is nonsquare and asymmetric. 

Gill and Lewbel (1988) derive an explicit expression for the asymptotic 
covariance matrix of D for arbitrary random matrices, and use it to construct a 
chi-squared test of the hypothesis that sets of elements of D are zero, which is 
identical to a test of rank. This test is summarized in the Appendix. 

5. HETEROGENEITY OF PREFERENCES 

The nonparametric rank estimator described in Section 4 assumed agents 
have identical preferences up to an additive error. However, the procedure 
remains consistent with heterogeneous preferences, as long as each agent's 
Engel curves span the same space l (R)  and the distribution of preferences is 
independent of the distribution of income (total expenditures). The first as-
sumption requires that all agents have budget shares that are linear in the same 
functions of income, as is almost always assumed in practice. In contrast, the 
second assumption is not likely to hold for all agents (e.g., preferences and 
income may both be related to household size). However, it is not an unreason- 
able assumption to make about collections of households that are broadly 
similar demographically, especially if demands for consumption goods are 
assumed to be separable from the labor-leisure choice. 

To see why the rank test remains consistent under these assumptions, observe 
that if preferences vary across households while l (R)  does not, then equatlon 
(4.1) is replaced by w, =A,G(z,) + e,,. If the distribution of A aanw awnfs ix 
independent of z,, then Y =E[wQ(zY] =AE[G(z)Q(zI1], where now A =E[A,]. 
Since each A,  has full column rank M, rank(A) =M unless there is a 
coincidence across preferences that makes rank(A) <M. As before, rank(Y) is 
a lower bound for M, and will typically equal M. 

Instead of controlling for preference heterogeneity by selecting samples for 
which the above assumptions may reasonably hold, one could instead define an 
extended notion of rank as the dimension of the space spanned by demands as 
functions of demographic attributes as well as income. This "extended" rank of 
demands equals the number of aggregate statistics, or indices, in the classes of 
demands analyzed by Lau (1982) and Section 1 of Jorgenson, Lau, and Stoker 
(1982), and is relevant to Hardle and Jerison (1988). Stoker's (1984) theorem 
can be expressed as, "aggregate demands have generalized Slutsky symmetry of 
order M if and only if agents' demands have extended rank M." The usefulness 
of this extended notion of rank is limited by the fact that none of the other 
attributes of rank described in Section 3 carry over to extended rank, and 
because extended rank will often equal N. For example, any demand system 
having unrestricted Barten style commodity specific equivalence scales will have 
extended rank equal to N. 
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6. ESTIMATING THE RANK OF ENGEL CURVES: EMPIRICAL RESULTS 

The nonparametric rank estimation method described in the previous sections 
was applied to individual household expenditures data from the 1970 to 1984 
United Kingdom Department of Employment Family Expenditure Surveys 
(FES) and the 1982 United States Bureau of Labor Statistics Consumer Expen- 
diture Survey (CES). 

Since the rank estimator applies to cross section data (with no price variation), 
the FES data were analyzed separately for each year from 1970 to 1984. To 
minimize income correlated demographic variation, the selection criteria were: 
married couples with two children, head of household working full time, and no 
relevant variables missing. The resulting sample sizes range from 216 to 340 
households per year. Total consumption expenditures of the households were 
divided into eight groups of goods: food (including alcohol and tobacco), 
housing, fuel and light, durables, clothing, transportation and vehicles, services, 
and other. 

For the larger U.S. CES, the data analyzed were from the first quarter of 
1982, with the selection criteria being married couples, age of head between 30 
and 60 years old, nominal annual income between $2000 and $55000, and no 
relevant variables missing. A total of 881 households met these criteria. In the 
U.S. data, total consumption expenditures of the selected households were 
divided into the seven groups: food, clothing, recreation, furnishings, health 
care, transportation, and other. 

In both data sets total expenditures x equal the sum of expenditures in the 
groups of goods. Budget shares w are group expenditures divided by x. 

By definition, the budget share for each group of goods is the sum of the 
budget shares of each raw good comprising the group. Thus the rows of A in 
the "grouped goods" model are sums of rows in the underlying model of 
individual goods. This summing may result in an underestimate of the true rank, 
since the rank of A in the grouped goods model is at most equal to the rank of 
the corresponding matrix of Engel curves for the raw goods. The rank of A will 
not be reduced if demands happen to be separable in the chosen groups. 

The "instrument" list Q consists of the functions 1, x, 2 ,  x2,  z2 ,  1/x, 1/x2, 
and xz, where z =In x. The error in the rank estimation procedure is mini- 
mized if Q contains the actual G functions, so the above list was chosen to 
include the functions of income contained in coinmonly used Engel curve 
specifications. Each element of Q was divided by its mean in each sample, to 
ensure that Y was not ill conditioned as a result of the enormous range of 
magnitudes in the functions comprising Q. 

By the results in Section 4 and 5, ~ a n k ( ~ ( ? ) )  ,< M, and typically will equal 
M. Table 1 gives estimated pivots (diagonal elements of D in the LDU 
decomposition) of ? for the CES and for each year of the FES. Table I1 
summarizes the results of applying the LDU rank test to the estimated pivots. 

For a few of the years of FES data, the results in Table I1 are ambiguous 
about whether the rank is two, three, or four. However, the U.S. data and 
eleven out of fifteen years of the U.K. data show a less than 1% probability that 
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TABLE I 

ESTIMATEDPIVOTS 

DATA d ,  d2 d3 d4 d~ 

CES '82 
FES '70 

'71 
'72 
'73 
'74 
'75 
'76 
'77 
'78 
'79 
'80 
'81 
'82 
'83 
'84 

Each row shows the five largest pivots, in descending order, for the U.S. 
CES data and each year of the U.K. FES data described In the text. A11 
remaining pivots were zero to at least three decimal places. 

TABLE I1 

LDU RANKTEST CHI-SOUARED STATISTICS 

DATA r =  1 r - 2  r = 3  r = 4  

CES 	 '82 
FES 	 '70 


'71 

'72 

'73 

'74 

'75 

'76 

'77 

'78 

'79 

'80 

'8 1 

'82 

'83 

'84 


Each row shows LDU rank test ,y2 statistics for the U.S. 
CES and each year of the U.K. FES data. In each column r 
denotes the rank being tested. The test is that all except the r 
largest pivots are zero, so each test 1s consistent only against 
alternatives that the rank is greater than r. The degrees of 
freedom of the statistics are 7 - r for the CES and 8 - r for 
the FES data. For every r > 4 in every year, the test statistics 
were zero to five or more decimal places. 
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FIGURE1.-Scatter plot of 1977 FES housing share vs. log income 

all but two pivots are zero ( x 2  statistic greater than 17 in r = 2 column) and a 
greater than 99% probability that all but three pivots are zero ( x 2  statistic less 
than .5 in r = 3 column). These results indicate, with high precision, a rank of 
three. The rank tests are sequential within each sample, and the test for each r 
is only consistent against greater values of r, but the magnitudes of the X 2  

statistics drop dramatically from r = 2 to r = 3. Therefore, any sensible proce- 
dure for adjusting the size or significance levels of the tests to account for their 
sequential nature would not change the conclusion that rank(Y) = 3, and hence 
that M is probably three but possibly higher. 

Two caveats are necessary. First, no adjustments for savings and depreciation 
have been made for the inclusions of durables and semidurables. Second, the 
results reported are only for the two selected demographic groups, and it is 
possible that the rank for other households may be different. 

7. THE STRUCTURE OF ENGEL CURVES 

This section uses both rank and kernel regressions to further analyze the 
structure of Engel curves. Begin with an illustrative example. Figure 1 shows a 
scatter plot of the budget share wi for housing as a function of z (log total 
expenditures) for 1977, the middle year of the FES sample. Figure 2 shows a 
kernel regression of this data. The kernel is biquartic, with a bandwidth of 1.5. 
Given some smoothness assumptions, this kernel regression consistently esti- 
mates the true Engel curve, whatever the actual functional form is (see, e.g., 
Prakasa Rao (1983)). The striking feature of Figure 2 is that wi is close to linear 
in 2 ,  except at the lowest and highest expenditure level households. An OLS 
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FIGURE2.-Kernel regression of 1977 FES housing share vs. log income. 

regression of wi on powers of z gives similar results. If budget shares for the 
nonextreme households are actually linear in z ,  then for these households the 
derivative dwi/dz should equal the coefficient of z in an OLS regression of wi 
on z .  Using kernel regressions, the average derivative of wi with respect to z 
can be estimated nonparametrically with an accuracy that improves with sample 
size at a parametric root-T rate (see Hardle and Stoker (1989), and Stoker 
(1990)). Table 111 shows that average derivative estimates are in fact quite close 
to OLS slopes for all the budget shares in 1977 when households in the top and 

TABLE 111 
1977"TRIMMEDDATA" ENGEL CURVE OLS 

AND KERNELAVERAGEDERIVATIVES 

Average OLS Average OLS 
Derivative Slope Derivative Slope 

Food - .0320 - .0334 Clothing .0199 ,0162 
(.0068) (.0061) (.0050) (.0045) 

Housing - ,0243 - ,0223 Transport .0220 .0235 
(.0063) (.0052) (.0065) (.0066) 

Fuel - .0145 - ,0144 Other goods .0057 .0044 
(.0020) (.0021) (.0035) (.0032) 

Durables .0157 .0202 Services .0076 .0061 
(.0046) (.0048) (.0049) (.0042) 

This table gives estimates of the derivative of budget shares with respect to z,based 
on 1977 FES data where the highest 5% and lowest 5% expenditure households are 
omitted. Average derivatives are kernel based "indirect slope" estimates (see Stoker 
(1990)). OLS estimates are the estimated slope coefficients in an OLS regression of the 
budget share on z.Standard errors are in parentheses. 
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TABLE IV 
"TRIMMEDDATA"LDU RANKTEST CHI-SQUARED STATISTICS 

DATA r = l  r = ?  r = 3  

FES '70 69.892 20.832 0.001 
'71 309.173 0.052 0.000 
'72 547.963 1.174 0.000 
'73 281.660 1.607 0.001 
'74 115.245 0.136 0.001 
'75 263.763 1.022 0.016 
'76 61.490 2.890 0.001 
'77 125.010 0.067 0.000 
'78 188.125 1.464 0.002 
'79 97.041 0.178 0.002 
'80 248.386 0.590 0.004 
'81 258.635 3.002 0.000 
'82 780.245 1.024 0.006 
'83 285.336 6.533 0.030 
'84 659.701 14.868 0.002 

Each row shows LDU rank test statistics for each year of the FES data 
where the h~ghest 5% and lowest 5% expenditure households in each year are 
omitted. r denotes the rank tested. The test is that all except the r largest 
pivots are zero, so each test is consistent only against alternatives that the rank 
is greater than r. The degrees of freedom of the statist~cs are 8 - r. For every 
r > 3 in every year, the test statistics were zero to over four decimal places. 

bottom five percent of x values are omitted, formally confirming the near 
linearity apparent in Figure 2. 

Demands having budget shares linear in z are called PIGLOG (see 
Muellbauer (1976)), and are rank two. While the tails of kernel regressions are 
often imprecisely estimated, the previous finding that rank equals three implies 
that the nonlinearities in the tails are significant. The kernel based results 
suggest that demands are rank two when the lowest and highest expenditure 
level households are dropped from the sample. 

To check this, in each year the households in the top and bottom five percent 
of the expenditure distribution were dropped from the sample, and the rank 
tests were computed for the remaining ninety percent. The results, reported in 
Table IV, show that in almost all the years the rank drops to two in this 
"trimmed" sample. 

These results suggest that for most households demands are reasonably 
modeled as rank two in general and PIGLOG in particular, but that a more 
complicated (i.e., rank three) model is required when households with very low 
or high expenditures are included in the sample. 

8. EXPLAINING A REPRESENTATIVE CONSUMER PARADOX 

An empirical paradox is that estimated aggregate macroeconomic demands 
resemble those of a utility maximizing representative consumer, yet cross 
sectional Engel curves are nonlinear in x. Standard aggregation theory says that 
Engel curves must be quasihomothetic (i.e., linear in x)  for aggregate demands 
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to match those of a utility maximizing consumer (see, e.g., Gorman (1953)). The 
size of the aggregation error in representative consumer models is important, 
because most empirical analyses of aggregate demands assume a representative 
consumer, and a great deal of theoretical work in economics assumes a repre- 
sentative consumer for tractability. 

Some aggregate empirical studies (e.g., Gallant (19811, and Christensen, 
Jorgenson, and Lau (1975)) reject representative consumer attributes like homo- 
geneity and Slutsky symmetry, although the rejections are not as economically 
significant as would be expected from aggregation theory. In contrast, the 
nonparametric methods employed by Varian (1983), Manser and McDonald 
(1988), and Diewert and Parkan (1978) do not reject the restrictions implied by 
a utility maximizing representative consumer. 

The rank three results obtained above are consistent with many other 
empirical studies which find that, cross-sectionally, Engel curves are far from 
quasihomothetic (i.e., linear in x). Even when low and high expenditure 
consumers are dropped, budget shares are approximately PIGLOG (i.e., linear 
in z ,  not x). 

Let x,, equal household h's total consumption expenditures at time t, R, be 
the vector of log prices at time t, and w,, be the household h budget shares. 
PIGLOG demands are defined as w,, = a(R,) + b(R,)ln x,,, for N vector 
valued functions a and b. 

LEMMA:If PIGLOG demands w = a( R) + b( R) In x satisfy the equality con- 
straints implied by utility maximization (adding up, homogeneity, and Slutsky 
symmetry), then w = a(R) + b(R)(k + In x )  also satisfies these constraints for any 
constant k. 

PROOF:w = a( R) + b(R) In x possesses Slutsky symmetry if and only if w = 

[dA(R)/dR] + [dB(R)/dR][A(R) + In x]  for differentiable scalar valued func- 
tions A(R) and B(R) (see Muellbauer (1976)). Letting AG(R) = k +A(R) then 
shows that w = a(R) +b(R)(k + In x)  also satisfies symmetry. The proofs of 
homogeneity and adding up are analogous. Q.E.D. 

Results very similar to Lemma 1 were exploited by Deaton and Muellbauer 
(1980) in their rationalization of the aggregate AIDS model, which is PIGLOG. 

Let XI =Eh(x,,), and W, =Eh(w,,xh,)/X,, where the operator E, denotes 
averaging across households. X I  is average (per household) total expenditures 
in the economy and W, is the vector of aggregate budget shares in the economy. 
Define X," by In X," =Eh(x,, In xh,)/X, - k for some constant k. Implicitly, 
X,* is a function of k. Summing PIGLOG demands weighted by x,,/X, over 
households h gives 

(8.1) W, = a (R , )  + b(R , ) (k  + In X,") 
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The rank and Kernel results from the previous section indicate that the 
majority of households have approximately PIGLOG preferences. If the prcs- 
ence of relatively few nonPIGLOG households is swamped by the majority, 
aggregate demands will roughly satisfy equation (8.1). 

Assuming agents maximize utility, it follows from the Lemma and equation 
(8.1) that macroeconomic demands will resemble those of a utility maximizing 
representative consumer (satisfying adding up, homogeneity, and Slutsky sym- 
metry) if the distribution of x is such that, over time, X, =X,* for any constant 
k. Using the FES data that generated Table 11, for each year t ,  X, and 
Eh(xht In x,,) were constructed as the sample average over all households h of 
x,, and x,, In x,,, respectively. For these fifteen annual observations the regres- 
sion E,(x,, In x,,)/X, = R + In X,  + e, has R~ = .9983, implying that the aver- 
age aggregation error of using X, in place of X,* is less than 0.2 percent. 

This high correlation may be due to relatively slow changes in the relative 
distribution of per capita income over time, and the possibility that life-cycle or 
permanent income style consumption smoothing results in less variation in the 
distribution of total consumption expenditures than in income. 

The empirical finding that most agents have PIGLOG demands and that the 
distribution of x across agents is such that X, =X,* for some k, combined with 
the above lemma, explains the representative consumer paradox. Taken to-
gether, these results imply that aggregate demands will resemble those of a 
PIGLOG representative consumer. Joint regularities in the functional form of 
household demands and the distribution of x overcome the standard aggrega- 
tion requirement of quasihomotheticity for generating a representative con-
sumer. 

So far I have again ignored heterogeneity of preferences, but the above 
results can be readily extended to the case where a(R) and b(R) vary across 
agents, in which case aggregate demands will contain terms like E,[a,(R,)], 
E,[b,(R,)], and possibly covariances between a, and x,, and between b, and 
X h t  In x,,. 

To check these results, estimates of a PIGLOG representative consumer 
model are compared with the estimates of a corresponding exactly aggregated 
model. Assume most households h have budget shares of the PIGLOG form 

where a, and p are vectors, 6 is a scalar, y is a symmetric matrix, L is a vector 
of ones, a i ~= 1, P'L= 0, and L'YL= 0. Note that a,  permits commodity specific 
preference heterogeneity. These budget shares are derived from the utility 
function described in Lewbel (1989f). This model is PIGLOG and is the 
simplest possible model that has both Deaton and Muellbauer's (1980) Almost 
Ideal Demand System (AIDS) and Jorgenson, Lau, and Stoker's (1982) Tran- 
scendental Logarithmic (Translog) Model nested within it as special cases. (The 
Translog corresponds to y~ = 0 and the AIDS to p = 0.) 
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TABLE V 


FES U.S. NlPA 
Model 1 ,Model 2 Model 3 Model 4 

Exact agg. Rep. con. Exact agg. Rep. con. 

Number Parameters 
Log Likelihood 
Own Price Elasts 

Group 1 
Group 2 
Group 3 

Income Elasts 
Group 1 
Group 2 
Group 3 

Models 1 and 2 use U.K. data constructed by directly adding up the FES households analyzed In 
Tables I and 11. For Models 1 and 2, the groups of commodities are: Group 1: Food, 2: Shelter, and 3: 
Other. Model 1 is exactly aggregated; Model 2 is a representative consumer. 

Models 3 and 4 use aggregate U.S. data constructed from U.S. National Income and Product 
Accounts. For Models 3 and 4, the groups of commodities are: Group 1: Energy, 2: Nondurable\, and 
3: Services. Model 3 is identical to the exactly aggregated nested model in Lewbel (1989f), except for 
the addition of a time trend. Model 4 is the representative consumer equivalent. 

Elast~cities are mean uncompensated quantity demand elasticities. 

Exactly aggregating equation (8.2) gives 

where a, is the mean in time t of a,. Table V summarizes estimates of 
equation (8.3), and for comparison gives estimates of the representative con-
sumer version of the same demands, in which the statistic In XI is used in place 
of the distribution statistic Eh(xh, In xh,)/X,. For the FES data, the distribution 
statistic Eh(xh, In xh,)/X, was constructed as described earlier. For the aggre- 
gate U.S. consumption data, this statistic was approximated using income 
quantile data. (See Lewbel (1989f) for details.) 

In models 1, 2, and 4, in Table V, a ,  is modeled as a, + a , t  for constant 
vectors a, and a,,  on the assumption that most variation in a, is demographic, 
and that changes in the distribution of demographic attributes across house- 
holds are mostly time trends (note that the FES data is already selected to be 
relatively homogeneous demographically). The time trend may also crudely 
proxy for dynamic effects. In model 3, some demographic variation is explicitly 
included in a , ,  as described in Lewbel (1989f). 

In both the constructed FES aggregates and in the U.S. national consumption 
data, the exact aggregation models are found to have similar elasticity estimates 
and better fits (higher likelihood values) than the representative consumer 
models. These aggregate results are consistent with both the theory and the 
disaggregate data rank and kernel results of the previous sections. 
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When the same exercise was performed with the ''trimmed" FES data set, in 
which the lowest and highest five percent expenditure level households were 
discarded before aggregating, the log-likelihoods were 141.66 and 141.72. As 
expected from the rank, kernel, and x distribution results, the fit of the 
aggregate PIGLOG model improved when the extreme househo!ds were 
dropped, and the difference between exact aggregation and the representative 
consumer is negligible in this case. 

These analyses used budget shares, but quantities or expenditures can be 
used instead without changing the results. For example, if expenditures on each 
good are analyzed, then dividing each instrument by total expenditures will yield 
numerically identical rank results. 

9. CONCLUSIONS 

This paper showed that the concept of rank can be defined for any demand 
system, and that rank has numerous implications for separability, for functional 
form, and for aggregation across goods and across agents. A simple nonpara- 
metric technique using only total expenditure and budget share data was 
employed to estimate a matrix with the same rank as the demand system. The 
matrix rank test of Gill and Lewbel (1988) was applied to this estimated matrix 
to yield a nonparametric estimate of the rank of the demands of both U.S. and 
U.K. family expenditure survey data. 

The nonparametric demand rank test is a useful prespecification tool, be- 
cause the type of information revealed by rank (e.g., degree of separability, 
aggregate utility structure, and income flexibility) is typically assumed without 
testing in empirical demand work. 

The results strongly indicate a rank of three in both U.S. and U.K. data sets. 
When households in the tails of the total expenditures distribution were 
removed from the data, the estimated rank dropped from three to two. Combin- 
ing these rank results with kernel regressions and kernel average derivatives 
leads to the conclusion that budget shares are approximately linear in the log of 
total expenditures (PIGLOG) except for households in the tails, where signifi- 
cant nonlinearities exist. These results confirm and expand on previous para- 
metric Engel curve analyses, which found good fits with PIGLOG models but 
also found improvements with rank three specifications. 

There are several implications of these rank results. First, the popular AIDS 
and Translog models (which are PIGLOG) fit Engel curve data relatively well, 
but are inadequate for encompassing households in the tails. Second, at least 
three terms are likely to be required in semiparametric or other series expan- 
sion based models of demand (e.g., Elbadawi, Gallant, and Souza (1983) and 
Barnett and Yue (1988)). Third, the number of aggregable Engel curve models 
that possess sufficiently high rank to fit the data is relatively small (see Gorman 
(1981), and Lewbel (1989a, 1989d, 1990)). Finally, three should be a lower 
bound on the number of indirectly separable groups of goods. Most empirical 
studies assume at least three groups of goods, so this lower bound does not 
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seriously constrain current empirical practice. Formally, all these results are 
limited to the particular demographic cells that were analyzed. 

The structure of Engel curves uncovered by rank and kernel methods also 
contributed to the explanation of the paradox of a PIGLOG representative 
consumer given substantial Engel curve nonlinearities. The deviations of disag- 
gregate demands from PIGLOG behavior are concentrated in a relatively small 
number of households (i.e., those having the lowest and highest consumption 
levels). The paradox is resolved by combining this finding with regularities in the 
distribution of expenditures and properties of PIGLOG demands. 

There are many implications of these representative consumer results. First, 
representative consumer models fit well, but exact aggregation models fit better. 
Also, the representative consumer model that fits well is not homothetic, 
contradicting the typical macroeconomic representative consumer assumption. 
Second, demographic changes may cause larger aggregation errors in represen- 
tative consumer models than nonlinearities in income effects, though the bulk of 
aggregation theory has focused on the latter. Third, the representative con-
sumer's preferences differ from those of individual households. Fourth, while 
the magnitude of aggregation errors in correctly specified representative con- 
sumer models is small, in theory these errors interact with prices. This may help 
explain why representative consumer restrictions that have been statistically 
rejected with parametric models have not been rejected with alternative non- 
parametric techniques (see, e.g., Manser and McDonald (1988)). Finally, fore- 
casts based on representative consumer models will be slightly inferior to those 
based on exact aggregation models, but only if the distribution regularities 
observed in the past are maintained in the future. In particular, policy implica- 
tions drawn from representative consumer models may be badly biased if the 
contemplated policy affects the income distribution. 

Department of Economics, Brandeis University, Waltham, M A  02254, U.S.A. 

Manuscript received January, 1989; final revision receiued May, 1990. 

APPENDIX: TESTS OF RANK USING THE LDU DECOMPOSITION 

This appendix describes how to test the rank of a random matrix using the LDU (Gaussian 
elimination) decomposition. See Gill and Lewbel (1988) for details, and for applications including 
econometric identification and state space prespecification tests. 

Consider an m by p matrix Y (where rn > p )  which has rank r ,  and let ? be a "root-T" 
asymptotically normal estimate of Y based on sample size T, so vec[JT(Y - Y)] N(0,V ) ,for some 
covariance matrix V. 

There exists a unique decomposition of the form PYQ = LDU, where P and Q are permutation 
matrices, L and U' are lower triangular, D is diagonal, and the elem$?ts o f  BAdecrease in 
magnitude along the diagonal. The corresponding decomposition for Y is PYQ = LDU. Let 
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where the row partition is by r,  p; r,  and m - p  rows, and the column partition of i and d is by 
r ,  p - r,  m - p  columns, and for U is by r a n d  p ;r columns. Let d2  = Diag(D2), and let A be the 
( p  - rI2 by ( p  - r )  matrix such that vec(D2) =Ad2. Define the matrices 

I?= [ - L ~ ~ L ~ ~ i f i ~ :L;l :o], 

Under the null that rank(Y) = r,  so d ,  = 0, construct the X 2  test statistic 

Since d, = 0 is equivalent to rank(Y) < r,  this test is consistent against the alternative that 
rank(Y) > r. In empirical application the above statistic can be calculated for each possible rank. 
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