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Introduction

Let X be a smooth, projective curve of genus g and let L be a line bundle on X.
Consider the product X×X with the projections p1,p2 to the factors and the nat-
ural morphism p to the symmetric product X(2). One has p∗(p∗

1L ⊗ p∗
2L) =

L+ ⊕ L−, where L± denotes the invariant and anti-invariant line bundles with re-
spect to the involution (x, y) 	→ (y, x). One has H 0(L+) ∼= Sym2 H 0(L) and
H 0(L−) ∼= ∧2H 0(L). Restriction to the diagonal of X(2) gives rise to the maps

µL,1 : Sym2 H 0(L) → H 0(L⊗2) and wL,1 : ∧2H 0(L) → H 0(L⊗2 ⊗KX),

where KX is the canonical bundle of X. Both maps have a well-known geometric
meaning. The former is given by considering the mapφL : X → P

r := P(H 0(L))∗
defined by the complete linear series determined by L and by pulling forms of de-
gree 2 in P

r back to X. The latter is given by considering the composition γ of
φL with the Gauss map of X to the Grassmannian of lines G(1, r) and by pulling
forms of degree 1 in P(

r+1
2 )−1 back to X via γ.

The maps µL,1 and wL,1 are the first instances of two hierarchies of maps µL,k

and wL,k , which are defined for all positive integers k and are called by some
authors higher Gaussian maps of X. They are inductively defined by iterated re-
strictions to the diagonal of X(2). Precisely, for all k ≥ 2 one has

µL,k : ker(µL,k−1) → H 0(L⊗2 ⊗K
⊗2(k−1)
X ),

wL,k : ker(wL,k−1) → H 0(L⊗2 ⊗K
⊗(2k−1)
X ).

These maps are particularly interesting when L ∼= KX, in which case we will
simply denote them as µk and wk. They are both defined at a general point of the
moduli space of curves Mg , and it is natural to suppose that they have some mod-
ular meaning. Indeed, µ1 is the codifferential, at the point corresponding to X, of
the Torelli map τ : Mg → Ag , and Noether’s theorem says that µ1 is surjective if
and only if X is nonhyperelliptic.

The map w1 is called the Wahl map, and it is related to important deformation
and extendability properties of the canonical image of the curve (cf. [BMé; W]).
Because of this, it has been studied by various authors—too many to be quoted
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here. One the most interesting results concerning the Wahl map is perhaps a theo-
rem first proved by Ciliberto, Harris, and Miranda [CiHM] to the effect that w1 is
surjective, as expected, for a general curve of genus g = 10 and g ≥ 12. Moreover,
this map is injective, as expected, for a general curve of genus g ≤ 8 (cf. [CiM1]).
Unexpectedly, however, the Wahl map is not of maximal rank for a general curve
of genus g = 9,11.

In general, all maps µk and wk are supposed to be meaningful in the geometry
of curves, especially of curves with general moduli. Here we will look in particu-
lar at the map µ2 : I2(KX) → H 0(X,K⊗4

X ), where I2(KX) is the vector space of
forms of degree 2 vanishing on the canonical model of X. From now on we will
simply denote this map by µ, and we will call it the second Gaussian map of X.
This map was first considered by Green and Griffiths (see [Gr]), and its impor-
tance stems from its relation to the second fundamental form of the moduli space
of curves Mg embedded in Ag via the Torelli map (cf. [CF1; CF2; CPT]).

Despite the unexpected behavior of the Wahl map for genus g = 9,11, a reason-
able working hypothesis is that the second Gaussian map µ should be of maximal
rank for a general curve of any genus g. A dimension count shows that this is
equivalent to saying that µ should be injective for a general curve of genus g ≤ 17
and surjective if g ≥ 18. So far, the best result in this direction has been proved
by Colombo and Frediani in [CF3], where—by studying hyperplane sections of
high genera of K3 surfaces—they show that µ is surjective for a general curve of
genus g > 152. For other interesting results concerning µ, see also [CF2; CFPa].

In this paper, we prove the maximal rank property for every genus.

Theorem 1. The second Gaussian map µ : I2(KX) → H 0(X,K⊗4
X ) for X a

general curve of any genus g has maximal rank ; namely, it is injective for g ≤ 17
and surjective for g ≥ 18.

As shown in [CPT], the map µ has a lifting ρ : I2(KX) → Sym2(H 0(K⊗2
X )),

which is the datum of the second fundamental form of the Torelli embedding at
the point corresponding to X in the nonhyperelliptic case. As proved in [CF2,
Cor. 3.4], ρ is injective for all nonhyperelliptic curves X. Our result shows that if
X is general then the image of ρ is transversal to the kernel of the multiplication
map Sym2(H 0(K⊗2

X )) → H 0(K⊗4
X ).

The proof of Theorem 1 is by degeneration to a reducible nodal curve for which
the limit of µ, described in Section 1, has maximal rank. The theorem then fol-
lows by upper semicontinuity. We do not use graph curves here (i.e., the curves
exploited in [CiHM]) because for them the limit of µ is more difficult to under-
stand. We used instead a general binary curve—in other words, a stable curve of
genus g consisting of two rational components meeting at g + 1 points that are
general on both components. For such a curve C we explicitly write down the
ideal I2(KC) in Section 2. In Section 3 we describe the second Gaussian map for
C modulo torsion, and in Section 4 we deal with the torsion part. By direct com-
putations performed with Maple (the script is presented and commented in the
Appendix), we verify the injectivity for a general binary curve of genus g ≤ 17
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and the surjectivity for g = 18. Finally, in Section 5, we proceed by induction on
g to complete the argument for g ≥ 19.

The behavior of µ, and its connection with the curvature of Mg in Ag , indi-
cates possible relations of the surjectivity of µ with the Kodaira dimension of Mg

being nonnegative. This, we think, would be a great subject for future research.
Also interesting is the study of the Gaussian maps µk ,wk for higher values of k.
The maps µk are related to higher fundamental forms of the Torelli immersion of
Mg in Ag at a nonhyperelliptic point. Are these maps also of maximal rank for a
general curve?

In this paper we work over the complex field and use standard notation in alge-
braic geometry. In particular, if X is a Gorenstein curve, then �1

X will denote its
sheaf of Kähler differentials and KX will denote its dualizing sheaf or canonical
bundle, or a canonical divisor. In general, we will indifferently use sheaf, bundle,
or divisor notation. We will often write H i(L) instead of H i(X, L) for cohomol-
ogy spaces.

Acknowledgments. The second author wishes to thank G. P. Pirola for sug-
gesting the problem solved in this paper as well as G. P. Pirola and P. Frediani for
discussions on this subject.

1. The Second Gaussian Map for a Stable Curve

Let X be a stable curve of genus g. We will denote by I2(KX) the vector space of
forms of degree 2 vanishing on the canonical model ofX. IfX is smooth, then the
second Gaussian map µ : I2(KX) → H 0(X,K⊗4

X ) is locally defined as follows.
Fix a basis {ωi} ofH 0(KX), and write it in a local coordinate z asωi = fi(z) dz.

Let Q ∈ I2(KX) with Q = ∑
i,j sij ωi ⊗ ωj , where the matrix (sij ) is symmetric.

Since
∑

i,j sijfifj ≡ 0, one has
∑

i,j sijf
′
i fj ≡ 0. The local expression of µ(Q)

is then (cf., e.g., [CF2])

µ(Q) =
∑
i,j

sijf
′′
i fj (dz)

4 = −
∑
i,j

sijf
′
i f

′
j (dz)

4. (1)

If X is nodal, one can similarly define the second Gaussian map

µ : I2(KX) → H 0(X, Sym2(�1
X)⊗K⊗2

X ),

which is locally defined in a similar way as in (1). Precisely, let {ωi} be a basis
of H 0(KX). In local coordinates we can write ωi = fiξ, where fi is a regular
function and ξ is a local generator of the canonical bundle KX. Then µ is locally
defined by

µ(Q) = −
∑
i,j

sij dfi dfj ξ
⊗2. (2)

Given a flat degeneration over a disc of a general curve to a stable curve X, the
second Gaussian map for X is the flat limit of the second Gaussian map for the
general curve.
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It is useful to describe in some detail the space H 0(X, Sym2(�1
X)⊗K⊗2

X ). We
first remark that Sym2(�1

X) has torsionT supported at the nodes ofX. Hence there
is a short exact sequence

0 → T → Sym2(�1
X) → FX → 0,

where FX is a nonlocally free, rank-1, torsion-free sheaf on X.

Lemma 2. (a) For every node p of X, Tp is a 3-dimensional vector space; if the
local equation ofX around p is xy = 0, then Tp is spanned by dx dy, x dx dy, and
y dx dy.

(b) If Xi are the irreducible components of the normalization π : X̃ → X of X,
then

FX
∼=

⊕
i

π∗K⊗2
Xi
.

Proof. Since y dx = −x dy, a local section of Sym2(�1
X) around a node xy = 0

can be uniquely written as f(x) (dx)2 +g(x, y) dx dy+h(y) (dy)2, where g(x, y)
is linear. Then (a) is a local computation and (b) follows from (a).

As a consequence, since KX|Xi = KXi (Di) for Di the divisor of nodes on Xi, it
follows that

H 0(X, Sym2(�1
X)⊗K⊗2

X ) ∼= T ⊕
⊕
i

H 0(Xi,K
⊗4
Xi

(2Di)); (3)

here T ∼= C
3δ, with δ the number of nodes of X.

2. Canonical Binary Curves

Let [x1, . . . , xg] be homogenous coordinates in P
g−1, g ≥ 3. Let ph = [0, . . . , 0,1,

0, . . . , 0], with 1 at the hth place, 1 ≤ h ≤ g, be the coordinate points and let u =
[1,1, . . . ,1] be the unit point. Take two distinct rational normal curves C1,C2 in
P
g−1 passing through ph, 1 ≤ h ≤ g, and u. Then C1 and C2 intersect transver-

sally at these g + 1 points and have no further intersection.
We may and will assume that Ck , k = 1, 2, is the closure of the image of the

map fk given by

t 	→ fk(t) =
[

1

t − αk,1
,

1

t − αk,2
, . . . ,

1

t − αk,g

]
, (4)

where αk,i ∈ C for k = 1, 2 and i = 1, . . . , g. In particular, fk(αk,h) = ph, h =
1, . . . , g, and fk(∞) = u. For our purposes, the αk,i will be general in C. Actually,
we will often consider them as indeterminates on C.

The curve C = C1 ∪ C2 is the limit of a general canonical curve X ⊂ P
g−1 of

genus g, and C is canonical, too; that is, OC(1) ∼= KC. The curve C is usually
called a canonical binary curve.
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We sketch the proof of the following proposition, which is more than we need.
Indeed, we will need only the quadratic normality of a general canonical binary
curve C, which can be directly proved (see Remarks 4 and 8).

Proposition 3. A canonical binary curve C = C1 ∪ C2 is projectively normal.

Proof. The assertion is trivial for g = 3, which is the minimum allowed value of
g. So we may assume g ≥ 4. By Theorem 1.2 in [S], it suffices to show that there
are g − 2 smooth points of C spanning a P

g−3 that meets C scheme-theoretically
at these g − 2 points only. Choose g − 2 general points on C1 and let ' ∼= P

g−3

be their span, which meets C1 transversally at these points. We claim that ' does
not meet C2. Otherwise, choose g − 4 general points on C1 and project C down
to P

3 from their span. The image of C1 is a rational normal cubic (1, whereas
C2 projects birationally (cf. [CaCi]) to a nondegenerate rational curve (2 of de-
gree > 3; hence (1 and (2 are distinct. Moreover, the general secant line to (1

would meet (2, which is impossible by the trisecant lemma (see the focal proof
in [ChCi]).

Remark 4. The only information that we will need from Proposition 3 is that C
is quadratically normal, which is equivalent to

dim(I2(KC)) =
(
g − 2

2

)
.

The simple argument in the proof of Proposition 3 relies on Schreyer’s result,
which requires a careful analysis following the classical approach of Petri. The
same result would follow by proving that the general hyperplane section of C ver-
ifies the general position theorem (see [ACGH, p. 109]). This may be proved with
the same argument as before, but we do not dwell on that here.

In case C is a general binary curve, it is quite simple to prove that C is quadrat-
ically normal. One way is to remark that the general trigonal binary curve is
quadratically normal. For example, if g = 2h, embed F0 in P

g−1 via the linear
system of curves of type (1,h− 1). The general trigonal binary curve is the union
of the images of a general curve of type (1,h) and of a general curve of type (2, 1).
The case g odd is similar and is left to the reader.

We are now interested in explicitly describing the vector space I2(KC) of degree-
2 forms vanishing on C (i.e., the domain of the map µ for C). The analysis we
shall make provides another proof that the general binary curve C is quadratically
normal.

For k = 1, 2, set

Ak(t) =
g∏
i=1

(t − αk,i ). (5)

For each h = 0, . . . , g, the coefficients ck,h of tg−h in Ak(t) are, up to sign, the
elementary symmetric functions
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ck,0 = 1, ck,h = (−1)h
∑

1≤i1<i2<···<ih≤g
αk,i1αk,i2 · · · αk,ih .

Note that the index h is the degree of ck,h as a polynomial in the αk,i .
Fix k ∈ {1, 2}. Since Ck passes through the coordinate points, the equation of a

quadric Q ⊂ P
g−1 containing Ck has the form∑

1≤i<j≤g
sij xi xj = 0 (6)

with the conditions

Pk(t) :=
∑

1≤i<j≤g

Ak(t)

(t − αk,i )(t − αk,j )
sij =

g−2∑
n=0

Pk,nt
n ≡ 0,

wherePk(t) is a polynomial in t of degree g−2 whose coefficients are linear poly-
nomials Pk,n(sij ) in the sij , n = 0, . . . , g − 2. By expanding the product Ak(t),
one sees that the coefficients pk,h;i,j of sij in Pk,g−2−h, h = 0, . . . , g − 2, are

pk,0;i,j = 1, pk,1;i,j = −
∑
i1 �=i,j

αk,i1,

pk,h;i,j = (−1)h
∑

i1<i2<···<ih
all�=i,j

αk,i1αk,i2 · · · αk,ih , 2 ≤ h ≤ g − 2,
(7)

namely, the elementary symmetric functions (removing the i and j terms) up to
sign. Again the index h coincides with the degree of pk,h;i,j as a homogeneous
polynomial in the αk,i .

Consider also the polynomials

Qk,n(sij ) :=
∑

1≤i<j≤g

( g−2−n∑
m=0

αmk,iα
g−2−n−m

k,j

)
sij , n = 0, . . . , g − 2,

and let qk,h;i,j = ∑h
m=0 α

m
k,iα

h−m
k,j be the coefficient of sij in Qk,g−2−h, h =

0, . . . , g − 2. In this case, too, the index h coincides with the degree of qk,h;i,j as
a homogeneous polynomial in the αk,i .

Remark 5. The coefficient qk,h;i,j of sij in Qk,g−2−h can be recursively com-
puted by

qk,0;i,j = 1, qk,1;i,j = αk,i + αk,j ,

qk,h;i,j = qk,1;i,j qk,h−1;i,j − αk,iαk,j qk,h−2;i,j , 2 ≤ h ≤ g − 2.

Note that all the monomials αmk,j α
h−m
k,i , m = 0, . . . ,h—in particular, αhk,i and

αk,j α
h−1
k,i —appear in qk,h;i,j with coefficient 1. Note also the recursive formula

qk,h;i,j = αiqk,h−1;i,j + αhj , 1 ≤ h ≤ g − 2. (8)

We will need the following lemma.
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Lemma 6. Fix k ∈ {1, 2}. For each n = 0, . . . , g − 2, one has

Pk,n =
g−2−n∑
m=0

ck,mQk,n+m. (9)

In particular, the linear system

Pk,n(sij ) = 0, n = 0, . . . , g − 2, (10)

in the sij is equivalent to the linear system

Qk,n(sij ) = 0, n = 0, . . . , g − 2. (11)

Proof. One has Pk,g−2 = Qk,g−2 and Pk,g−3 = Qk,g−3 + ck,1Qk,g−2. Now we
proceed by induction. Equation (9) is equivalent to

pk,h;i,j =
h∑
l=0

ck,lqk,h−l;i,j for h = 0, . . . , g − 2. (12)

For h = 0,1, (12) clearly holds. Since the index k is fixed, we omit it. For 2 ≤
h ≤ g − 2, one has

ph;i,j − chq0;i,j = (αi + αj )ph−1;i,j − αiαjph−2;i,j

= ch−1q1;i,j +
h−2∑
l=0

cl(qh−l−1;i,j q1;i,j − αiαjqh−l−2;i,j )

=
h−1∑
l=0

clqh−l;i,j ,

where the second equality follows by induction. This expression proves (12) and
therefore (9). Since ck,0 = 1, the base change matrix between the Qk,n and the
Pk,n is unipotent triangular; hence it is invertible. The equivalence between (10)
and (11) follows.

Next we can give the announced description of I2(KC).

Proposition 7. Let g ≥ 3. For a general choice of αk,i, 1 ≤ k ≤ 2, 1 ≤ i ≤ g,
one has that :

(a) the linear system (11) has maximal rank g − 1; and
(b) the linear system

Q1,0(sij ) = · · · = Q1,g−2(sij ) = Q2,0(sij ) = · · · = Q2,g−3(sij ) = 0 (13)

has maximal rank 2g − 3.

Proof. (a) Since the index k is fixed, we drop it here. Let us consider the matrix

U := U(α1, . . . ,αg) = (qh;i,j )0≤h≤g−2,1≤i<j≤g
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of size (g − 1) × (
g
2

)
, where the pairs (i, j) are lexicographically ordered. We

have to prove that there is a minor of U of order g − 1 that is not identically zero.
We show this for the minor D := D(α1, . . . ,αg) determined by the first g −1 col-
umns, indexed by (1, i) with 2 ≤ i ≤ g. This is true if g = 3, so we proceed by
induction on g. Look at D as a polynomial in αg: it has degree g− 2 and the coef-
ficient of αg−2

g is D(α1, . . . ,αg−1) (cf. Remark 5), which is nonzero by induction.
This proves the assertion.

Equivalently, by subtracting from each row the previous one multiplied by α1

and using (8) (cf. Remark 5), one sees that D is the Vandermonde determinant
V(α2, . . . ,αg) = ∏

2≤i<j≤g(αj − αi) of α2, . . . ,αg.
(b) We use the same idea as in the proof of (a). Form a matrix

Z := Z(αk,i )1≤k≤2,1≤i<j≤g

of size (2g − 3)× (
g
2

)
by concatenating vertically U (for k = 1) and the matrix

W :=W(α2,1, . . . ,α2,g) = (q2,h;i,j )1≤h≤g−2,1≤i<j≤g.

It suffices to prove that the minor M := M(αk,i )1≤k≤2,1≤i<j≤g of Z determined
by the first 2g − 3 columns, indexed by (1, i), (2, j) with 2 ≤ i ≤ g and 3 ≤
j ≤ g, is not identically zero as a polynomial in the αk,i . This is clearly true
for g = 3, so we proceed by induction on g. Look at M as a polynomial in α1,g

and α2,g: one sees that the monomial αg−2
1,g α

g−3
2,g appears in M with the coefficient

(α2,2 − α2,1)M(αk,i )1≤k≤2,1≤i<j≤g−1, which is nonzero by induction; this proves
the assertion.

Equivalently, looking at M as a polynomial in α1,1, one sees that the coeffi-
cient of the monomial αg−2

1,1 is the product of two Vandermonde determinants:
V(α2,2, . . . ,α2,g)V(α1,3, . . . ,α1,g).

Remark 8. The solutions of the linear system (11), as well as those of (10), give
us the quadrics containing the rational normal curve Ck , whereas the solutions of
(13) give us the quadrics in I2(KC) for the binary curve C = C1 ∪ C2.

3. Binary Curves: The Second Gaussian Map
Modulo Torsion

Let C = C1 ∪ C2 be a general binary curve. In this section we will consider the
composition ν of the second Gaussian map for C with the projection to the non-
torsion part of H 0(C, Sym2(�1

C) ⊗ K⊗2
C ) (cf. (3) in Section 1). Specifically, for

k = 1, 2, we will look at the map

νk : I2(KC) → H 0(Ck ,K
⊗4
Ck
(2Dk)),

where Dk is a divisor of degree g + 1 on Ck; therefore, ν = ν1 ⊕ ν2 and

H 0(Ck ,K
⊗4
Ck
(2Dk)) ∼= H 0(P1, OP1(2g − 6)).
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The map νk can be explicitly written down by taking into account (2) and the
description of the ideal I2(KC) (see Section 2). Precisely, let Q ∈ I2(KC) be of
the form (6), where the sij are solutions of (13). Then

νk(Q) =
∑

1≤i<j≤g

1

(t − αk,i )2(t − αk,j )2
sij (dt)

4 ∈H 0(Ck ,K
⊗4
Ck
(2Dk)).

To look at this as a section of H 0(P1, OP1(2g − 6)), we multiply by A2
k(t). Then

νk(Q) =
∑

1≤i<j≤g

A2
k(t)

(t − αk,i )2(t − αk,j )2
sij =: Rk(t) (14)

is a polynomial in t whose apparent degree is 2g − 4. However, its coefficient of
degree 2g− 4 is Pk,g−2 and the one of degree 2g− 5 is proportional to Pk,g−3, so
they vanish and Rk(t) has actual degree 2g − 6.

Using this explicit description (14) of ν, we asked Maple to compute its rank for
low values of g (see the Appendix for the Maple script). The result is as follows.

Proposition 9. The map ν has maximal rank for g ≤ 18; in other words, ν is
injective for g ≤ 10 and is surjective for 11 ≤ g ≤ 18.

Corollary 10. The second Gaussian map µ is injective for the general curve
of genus g ≤ 10.

4. Binary Curves: The Torsion

Let C = C1 ∪C2 be a general binary curve as in Section 2. In (4) we may replace
fk , 1 ≤ k ≤ 2, with

Ak(t)fk(t) = [φk,1(t), . . . ,φk,g(t)], φk,i(t) = Ak(t)

(t − αk,i )
. (15)

Now we consider the restriction τ of the second Gaussian map for C to ker(ν),
which lands in the torsion part T of H 0(C, Sym2(�1

C)⊗K⊗2
C ) (cf. (3)). Once we

take Lemma 2(a) into account, a direct computation shows that the composition
of τ with the projection on the torsion part Tph at the coordinate point ph is as
follows: if Q∈ ker(ν) is of the form (6), then Q is mapped to

dx dy
∑
i �=j

sij φ
′
1,i(α1,h)φ

′
2,j(α2,h)+ 2x dx dy

∑
i �=j

sij φ
′′
1,i(α1,h)φ

′
2,j(α2,h)

+ 2y dx dy
∑
i �=j

sij φ
′
1,i(α1,h)φ

′′
2,j(α2,h), (16)

where sji = sij and where x and y are local coordinates around ph such that
C1 : y = 0 and C2 : x = 0. The description of the torsion at the unitary point u is
similar. Replace fk by the parameterization 1

t
fk

(
1
t

)
. Again a direct computation

shows that the composition of τ with the projection on Tu is
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Q 	→ dx dy
∑
i �=j

sij α1,iα2,j + 2x dx dy
∑
i �=j

sij α
2
1,iα2,j

+ 2y dx dy
∑
i �=j

sij α1,iα
2
2,j , (17)

where sji = sij and where x and y are local coordinates around u such that
C1 : y = 0 and C2 : x = 0.

Consider the following commutative diagram with exact rows.

0 �� T �� H 0(C, Sym2(�1
C)⊗K⊗2

C ) �� �� H 0(C1,K⊗2
C1
(2))⊕H 0(C2,K⊗2

C1
(2)) ∼= H 0(FC)

0 �� ker(ν)

τ

��

�� I2(KC)

µ

��

ν

�����������������������

(18)

We asked Maple to compute the rank of the map τ for11 ≤ g ≤ 18 (see the script in
the Appendix). Taking into account diagram (18), we obtain the following results.

Proposition 11. Let C be a general binary curve of genus g. Then the maps τ
and µ have maximal rank for g ≤ 18: they are injective for g ≤ 17 and surjective
for g = 18.

Corollary 12. The map µ is injective for the general curve of genus g ≤ 17
and is surjective for g = 18.

5. The Induction Step

In this section we prove our main result—namely, the surjectivity of the second
Gaussian map µ for the general curve of genus ≥ 18.

Let C ⊂ P
g−1 be a nodal canonical curve and let p ∈C be a node. Let C̃ → C

be the partial normalization of C at p, and let p1,p2 ∈ C̃ be the points over p.
Note that the projection from p maps C to the canonical model of C̃ in P

g−2; we
will assume that this induces an isomorphism of C̃ to its canonical model. Con-
sider the following diagrams.

0 �� H 0(FC̃ ) ↪ �� H 0(FC) �� �� O2p1 ⊕ O2p2

0 �� I2(KC̃) ↪ ��

ν̃

��

I2(KC)

ν

��

χ

����������

0 �� T̃ ↪ �� T �� �� Tp

0 �� ker(ν̃) ↪ ��

τ̃

��

ker(ν)

τ

��

τp

��������

(19)

Here T̃ is the torsion subsheaf of Sym2(�1
C̃
), ν, τ are the maps of diagram (18)

for the curve C, and ν̃, τ̃ are the corresponding ones for C̃. The diagrams (19) are
commutative and the horizontal sequences are exact, so the next lemma is clear.

Lemma 13. If ν̃ and χ (resp., τ̃ and τp) are surjective, then ν (resp., τ) is also
surjective.

We apply this lemma to prove our next theorem.
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Theorem 14. If C = C1 ∪C2 is a general binary curve of genus g ≥ 18, then µ
is surjective for C.

Proof. The case g = 18 has already been addressed by direct computation (cf.
Proposition 11). We therefore proceed by induction on g: the commutativity of di-
agram (18) and Lemma 13 show that it is enough to prove the surjectivity of χ and
τp, where p is a node of C. We will do this for p = u the unitary point.

In this situation, the map ν is the one ν1 ⊕ ν2 considered in Section 3. Hence
χ = χ1 ⊕ χ2, where χk is the composition of νk with the restriction to O2pk , k =
1, 2. In local coordinates, χk(Q) is the pair formed by the constant term and the
coefficient of the degree-1 term of the Taylor expansion around p of the polyno-
mial νk(Q). In Section 3 we computed νk using a local coordinate t on Ck. In this
coordinate, the point p = [1, . . . ,1] corresponds to t = ∞. So if Q ∈ I2(KC) is
of the form (6), with the sij satisfying (13), then χk(Q) is the pair of coefficients
of the highest degrees 2g − 6 and 2g − 7 of the polynomial νk(Q)—that is, of
the polynomial Rk(t) given in (14). We denote these coefficients by Rk,2g−6 and
Rk,2g−7, which are linear polynomials in the sij . We will now compute them.

We fix the index k and then omit it. By expanding A2 in (14), one sees that the
coefficient of sij in R2g−6 is

4p2;i,j +
∑
i1 �=i,j

α2
i1

= 4p2;i,j + n2 − (α2
i + α2

j ),

where n2 = ∑g

m=1 α
2
m is independent of i, j and p2;i,j is the coefficient of sij in

Pk,g−4 (cf. (7)). By (10), this means that

R2g−6 = 4Pg−4 + n2Pg−2 −
∑
i<j

(α2
i + α2

j )sij = −
∑
i<j

(α2
i + α2

j )sij .

Similarly, one sees that the coefficient of si,j in R2g−7 is twice

4p3;i,j −
∑
i1 �=i2

both �=i,j

α2
i1
αi2 = 4p3;i,j −n3 +n2p1;i,j −c1(α

2
i +α2

j )−(α3
i +α3

j )−q3;i,j ,

where n3 = −∑g

m=1 α
3
m is independent of i, j. Therefore, taking into account (10)

and (11), one has

R2g−7 = −2c1R2g−6 − 2
∑
i<j

(α3
i + α3

j )sij .

Form the matrix Y := Y(αk,i )1≤k≤2,1≤i<j≤g of size (2g + 1) × (
g
2

)
obtained

by concatenating vertically the matrix Z in the proof of Proposition 7(b) and the
matrix of size 4 × (

g
2

)
whose rows are (αhk,i + αhk,j )1≤i<j≤g with 1 ≤ k ≤ 2 and

2 ≤ h ≤ 3. In order to prove that χ is surjective, we must first prove that there
is a minor of order 2g + 1 of Y that is not identically zero. We will do this for
the minor N := N(αk,i )1≤k≤2,1≤i<j≤g determined by the first 2g + 1 columns in-
dexed by (1, i), (2, j), and (3, <), where 2 ≤ i ≤ g, 3 ≤ j ≤ g, and 4 ≤ < ≤ 7.
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This minor is nonzero for g = 7, which we verified using Maple (see the script
in the Appendix). Then we proceed by induction on g and assume g ≥ 8. The
argument here is the same as the one in the proof of Proposition 7(b). Look at
N as a polynomial in α1,g and α2,g: the monomial αg−2

1,g α
g−3
2,g appears in N with

coefficient (α2,2 − α2,1)N(αk,i )1≤k≤2,1≤i<j≤g−1; this coefficient is nonzero by in-
duction, proving that χ is surjective.

It remains to show that τp is surjective. This could be seen with a quick mon-
odromy argument, but we prefer to present an argument in the same style as the
ones made so far.

Recall that ker(ν) is defined in I2(KC) by the vanishing of the polynomials
Rk(t), k = 1, 2, whose coefficients of degree ≤ 2g− 8 are polynomials in the αk,i
of degree ≥ 4. By the description of the torsion at the unitary point given in (17),
we need to show the rank maximality of the matrix Y ′ = Y ′(αk,i )1≤k≤2,1≤i<j≤g
of size (2g + 4) × (

g
2

)
obtained by concatenating vertically the above matrix Y

and the matrix of size 3 × (
g
2

)
whose rows are (α1,iα2,j + α1,j α2,i )1≤i<j≤g ,

(α2
1,iα2,j + α2

1,j α2,i )1≤i<j≤g , and (α1,iα
2
2,j + α1,j α

2
2,i )1≤i<j≤g. We claim that

the minor N ′ = N ′(αk,i )1≤k≤2,1≤i<j≤g of Y ′ determined by the first 2g + 4
columns—indexed by (1, i), (2, j), and (3, <), where 2 ≤ i ≤ g, 3 ≤ j ≤
g, and 4 ≤ < ≤ 10—is nonzero for g ≥ 10. We verify the case g = 10
with Maple (see the script in the Appendix), and the induction is the same as
before because the monomial αg−2

1,g α
g−3
2,g appears in N ′ again with coefficient

(α2,2 − α2,1)N
′(αk,i )1≤k≤2,1≤i<j≤g−1. This concludes the proof that τp is sur-

jective and hence the proof of the theorem.

Corollary 15. The second Gaussian map µ is surjective for the general curve
of genus g ≥ 18.

Appendix: Maple Script for Computations

Listed here is the Maple script we run. We explain it afterwards, for which pur-
pose we have added line numbers at each five lines.

alpha[1]:=[3,12,21,29,37,41,43,46,54,62,65,72,81,85,89,94,97,105]:
alpha[2]:=[6,18,24,36,39,42,45,52,60,63,71,80,84,86,91,96,104,108]:
for g from 4 to 18 do
listsij:=[seq(seq(s[i,j],j=i+1..g),i=1..g)]:

5 for k from 1 to 2 do
A[k]:=mul(t-alpha[k][i],i=1..g):
R[k]:=add(add(s[i,j]*(A[k]ˆ2)/((t-alpha[k][i])ˆ2*(t-alpha[k][j])ˆ2),

j=i+1..g),i=1..g):
end do:

10 Z:=linalg[matrix]([seq([seq(seq(add(alpha[1][i]ˆm*alpha[1][j]ˆ(h-m),m=0..h),
j=i+1..g),i=1..g)],h=0..g-2),
seq([seq(seq(add(alpha[2][i]ˆm*alpha[2][j]ˆ(h-m),m=0..h),
j=i+1..g),i=1..g)],h=1..g-2)]):

Zref:=Gausselim(Z,’r0’) mod 109:
15 printf("For g=%2d, one has dim I2(K)=%3d, ",g,nops(listsij)-r0):

EqsKerNu:=[seq(seq(primpart(coeff(R[k],t,n)),n=0..2*g-6),k=1..2)]:
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K:=Gausselim(linalg[stackmatrix](Zref,
linalg[genmatrix](EqsKerNu,listsij)),’r1’) mod 109:

printf("dim Ker(nu)=%2d, corank(nu)=%d, ",nops(listsij)-r1,4*g-10-r1+r0):
20 for k from 1 to 2 do for i from 1 to g do

phi1[k,i]:=diff(A[k]/(t-alpha[k][i]),t): phi2[k,i]:=diff(phi1[k,i],t):
for h from 1 to g do

phi1e[k,i,h]:=eval(phi1[k,i],t=alpha[k][h]):
phi2e[k,i,h]:=eval(phi2[k,i],t=alpha[k][h]):

25 end do: end do: end do:
for h from 1 to g do

tors[h,1]:=add(add(s[i,j]*(phi1e[1,i,h]*phi1e[2,j,h]
+phi1e[1,j,h]*phi1e[2,i,h]),j=i+1..g),i=1..g):

tors[h,2]:=add(add(s[i,j]*(phi2e[1,i,h]*phi1e[2,j,h]
30 +phi2e[1,j,h]*phi1e[2,i,h]),j=i+1..g),i=1..g):

tors[h,3]:=add(add(s[i,j]*(phi1e[1,i,h]*phi2e[2,j,h]
+phi1e[1,j,h]*phi2e[2,i,h]),j=i+1..g),i=1..g):

end do:
tors[0,1]:=add(add(s[i,j]*(alpha[1][i]*alpha[2][j]

35 +alpha[1][j]*alpha[2][i]),j=i+1..g),i=1..g):
tors[0,2]:=add(add(s[i,j]*(alpha[1][i]ˆ2*alpha[2][j]

+alpha[1][j]ˆ2*alpha[2][i]),j=i+1..g),i=1..g):
tors[0,3]:=add(add(s[i,j]*(alpha[1][i]*alpha[2][j]ˆ2

+alpha[1][j]*alpha[2][i]ˆ2),j=i+1..g),i=1..g):
40 EqsKerTau:=[seq(seq(primpart(tors[h,l]),l=1..3),h=0..g)]:

Gausselim(linalg[stackmatrix](K,linalg[genmatrix](EqsKerTau,listsij)),’r2’) mod 109:
printf("dim ker(tau)=%d, corank(tau)=%2d\n",nops(listsij)-r2,3*g+3-r2+r1):
if g=7 then

N:=linalg[det](linalg[stackmatrix](linalg[delcols](Z,16..21),
45 linalg[matrix]([seq(seq([seq(seq(alpha[k][i]ˆh+alpha[k][j]ˆh,

j=i+1..7),i=1..3)],h=2..3),k=1..2)]))):
printf("For g= 7, the minor N is congruent to %d (mod 5)\n",N mod 5):

elif g=10 then
N2:=linalg[det](linalg[stackmatrix](linalg[delcols](Z,25..45),

50 linalg[matrix]([seq(seq([seq(seq(alpha[k][i]ˆh+alpha[k][j]ˆh,
j=i+1..10),i=1..3)],h=2..3),k=1..2)]),

linalg[matrix]([[seq(seq(alpha[1][i]*alpha[2][j]
+alpha[1][j]*alpha[2][i],j=i+1..10),i=1..3)],

[seq(seq(alpha[1][i]ˆ2*alpha[2][j]
55 +alpha[1][j]ˆ2*alpha[2][i],j=i+1..10),i=1..3)],

[seq(seq(alpha[1][i]*alpha[2][j]ˆ2
+alpha[1][j]*alpha[2][i]ˆ2,j=i+1..10),i=1..3)]]))):

printf("For g=10, the minor N’ is congruent to %d (mod 23)\n",N2 mod 23):
end if:
end do:

In lines 1–2, we define the αk,i that will be used. We chose them randomly. In
line 3 we start the main loop, which runs for 4 ≤ g ≤ 18. In line 4, we collect the
unknowns {si,j}1≤i<j≤g in the list listsij: there are

(
g
2

)
of them. In lines 6–8 we

define the polynomials Ak(t) and Rk(t) (cf. (5) and (14)).
In lines 10–13 we define the matrix Z associated to the linear system (13), whose

solutions give us the quadrics in I2(KC) (cf. the proof of Proposition 7). In line 14,
Maple computes the rank r0 of Z via Gaussian elimination, calculating modulo109
to speed up computations. The resulting matrix in row echelon form is called Zref.
In line with Proposition 7(b), Maple finds r0 = 2g − 3 for each g = 4, . . . ,18. In
line 15, Maple prints out the genus g and dim(I2(KC)) = (

g
2

) − r0 = (
g−2

2

)
.
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In line 16, we collect in EqsKerNu the list of equations that determine ker(ν) (cf.
the definition (14) of ν in Section 3). In lines 17–18, Maple computes the rank r1
of the linear system EqsKerNu ∩ ker(Zref), again via Gaussian elimination mod-
ulo 109, and the resulting row echelon matrix is called K. Maple finds that r1 =(
g
2

)
for 4 ≤ g ≤ 10 and that r1 = 6g−13 for 11 ≤ g ≤ 18. Therefore, the rank of

ν is r1− r0 = (
g−2

2

)
for 4 ≤ g ≤ 10 and is 4g − 10 for 11 ≤ g ≤ 18. This proves

Proposition 9.
In line 19, Maple prints out the dimension of ker(ν) and the corank of ν; that

is, 4g − 10 − r1 + r0.
In lines 20–25, we define the first and second derivatives phi1 and phi2 of the

φk,i (cf. (15)). We then define their evaluations phi1e and phi2e at the coordinate
point ph. In lines 26–33, we use these evaluations to compute the torsion at ph,
h = 1, . . . , g (cf. (16)). In lines 34–39 we compute the torsion at the unit point u
(cf. (17)).

In lines 40 and 41, we collect in EqsKerTau the equations that determine ker(τ )
and Maple computes the rank r2 of EqsKerTau∩ ker(K) via Gaussian elimination
modulo 109 as before. Maple finds that r2 = (

g
2

)
for 4 ≤ g ≤ 17 and that r2 =

152 for g = 18. Hence the rank of τ is r2 − r1 = (g2 − 13g + 26)/2 for 11 ≤
g ≤ 17 and is 57 for g = 18. This proves Proposition 11.

In line 42, Maple prints out the the dimension of ker(τ ) and the corank of τ ;
that is, 3g + 3 − r2 + r1.

Finally, in lines 43–59, Maple computes the minors N (when g = 7) and N ′
(when g = 10), which are needed in the proof of Theorem 14, and prints out that
N mod 5 = 4 and N ′ mod 23 = 16.
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