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ABSTRACT
The Rao-Nam scheme is discussed and generalized to Fq. It is shown

that the scheme is insecure against a chosen—plaintext attack for
practical code lengths. Based on observations an impraved scheme is
given, which is not vulnerable to the chosen-plaintext attacks as

described.

1 INTRODUCTION

In 1978 McEliece [1] proposed a public-key cryptosystem based on the
theory of linear algebraic codes. His scheme was a natural consequence
of a paper by Berlekamp, McEliece and van Tilborg [2] in which it was
proved that the general decoding problem for linear codes is
NP-complete. The McEliece scheme is based on a class of Goppa-codes,
which is an extension of the well-known class of BCH-codes. Since
there exists fast decoding algorithms for these codes, data rates of 1
Mbits/s [1]J[3]J[4] can be obtained. Adams and Meijer [3] and Jorissen
[4] computed the optimal values for the parameters of the McEliece
system. The optimal values improves the cryptanalytic complexity and

information rate of the system. Moreover Adams and Meijer showed that
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the existence of more than one trapdoor in the McEliece scheme is

unlikely.

It is a well-known fact that public—-key cryptosystems can be used as
private-key cryptosystems. Therefore throughoﬁt the years Jordan [51,
Rao and Nam [&] proposed to modify the McEliece scheme in order to use
it in a classical way. Rao and Nam's aim was to increase the
information rate and speed by keeping the generator matrix secret and
by using simple error—-correcting codes. They modified the McEliece
scheme and used the error-correcting properties of the code to
determine pre—-defined error patterns. The error patterns used in the

Rao-Nam scheme have an averade Hamming weight of half the code length.

Rao and Mam [6] claimed that the determination of the encipher matrix
in the modified scheme from a chosen—plaintext attack has a work
factor of at least T = Q(nzk). Based on the given attack it is
suggested in their conclusion that the Rao-Nam scheme for private—key
cryptosystems requires only simple codes such as Hamming codes with

minimum distance 3 and 4 and is even computationally secure for small

ka50.

However as will be shown in this paper their exists better attacks
from which one can conclude that the Rao-Nam scheme is insecure
against a chosen—plaintext attack for practical code lengths. Based on
observations we will give an improved scheme which is not wvulnerable
to the chosen—plaintext attacks as described.

In section 2 we will describe the Rao-Mam scheme for the general case
Fq. In section 3 the basic facts about the attack are given. In
section 4 Hin's attack on the Rao~Nam scheme with adjacent errors is
discussed. The generalized attack by Struik is described in section 5.
A ciphertext—only attack, which makes use of an estimated encipher
matrix obtained from a chosen—plaintext attack, is given in section 6.
In section 7 an improved scheme is given. Finally in section 8 the

results obtained are discussed and caonclusions are drawn.

2. THE GENERALIZED SCHEME

The Rao—-Nam scheme as described in [6] is a binary scheme. Therefore
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we shall first generalize this scheme to Fq. For g = 2 the original

Rao-Nam scheme is obtained.

Let G denote a (kun) generator matrix for an [n,;k,d]}-code ¢ over Fq
with minimum distance d, dimension k and pari{y check matrix H. The
encryption matrix E is combinatorically equivalent to the generator

matrix G and is constructed as follows:

E = SGP,
where
S is a (kxk) non—singular matrix over F_ and

F is an (nxn) permutation matrix over Fq.

A message m € (LFq)k is encrypted into the ciphertext ¢ € (Fq) as

follows:

€ = mE + zP = (m8G + z)P,
where
z € (I}'q)n is an error vector with an average Hamming

weight W, (z) = 351 n .

The matrices S, P and G form the secret key.

The choice af the error vector z is to prevent a chosen—plaintext
attack by majority voting for each position of a row of the encipher
matrix E in the McEliece scheme. If the error vectors have an average

Hamming weight ﬂ%l n the probability of estimating the correct matrix

E is on average less than q_nk. Dbviously unique decoding is not
possible without modifying the original scheme. Therefore Rao and Nam
proposed two methods to realize unique decoding fér which we have

generalized the second method only.

Method 1. Use g=2 and i adjacent errors (ATE} for z.
An ATE is a vector of length n with i adjacent errors, i.e. an ATE

consists of n—i O°'s and i consecutive 1°'s.

Method 2. Use a pre—defined set of error vectors (syndrome-error
table).
A pre—-defined set of error vectors, consisting of one vector from each

coset of the standard array decoding table can be used for z. Each
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coset has a distinct syndrome. Therefore, we can select any set of
vectors consisting of one from each of the qﬂ_k cosets. This set of

pre—defined errors is part of the secret key.

It is important to note that due to the restricted set of error
patterns the system is not optimally secure against a chosen—-plaintext
attack based on majority voting. For example, if majority voting is
used in the Rao-Nam scheme using method 1, then one can use a majority
vote with context. Since the number of different error patterns used
is just a fraction of the possible number of error patterns we are

always better off.

Decryption is straightforward. An enciphered message m is decrypted by
the following steps.

1) Calculate c’ = QPT = mS6 + z .
2) Determine g‘ = g'HT and obtain the error pattern z € (Fq)n.
As result c” = g — z = mSG is obtained.

3) Calculate m = c"(S6) ", in which (s6) R is a right inverse of

the matrix (S6). The result is the plaintext m.

In the attacks to be described we make use of an equivalent decoding
algorithm. The decryption matrix D is HP, since EDT = (SBP)(HF’)T = O.
Note that S is used before the coding process, therefore S has no
impact on the error correction. The decoding algorithm 1is now as

follows.

1) Determine g* = QDT and abtain the permuted error pattern zP € Fqn.
As result ¢ = ¢ - zP = mE is obtained.
2) Calculate m = ng_R, in which E_R is a right inverse of the matrix

E. The result is the plaintext m.

3. WEAKNESSES oF Rao-NamM ScHEME

The three attacks which will be described make use of the same

weaknesses of the Rao—Nam scheme.

The first weakness is the low number of different syndromes, which 1is

for the proposed Hamming code using ATE's at most n, and for the
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syndrome—error table qn_k. If the number of different error patterns

1 =
=T +.. + 1) = 6(N lag
N) times to obtain all error patterns. Observe that the minimum

is N, then one has to encipher on average N(% +

distance of the [n,k,d]~code € plays at this moment no role.

. -k
Let R = be the information rate. The number of cosets is N = qn =

i-R
qn( )_

Jx

Consequently in the Rao—-Nam scheme there exists a trade—off
between information rate and security. For a high information rate R

and a large number of cosets N the code length n will be impractical.

The second weakness is due to the leakage of information about the
permutation matrix P if ATE's are used. An ATE and its one position
shifted ATE {(which is an ATE also) differ on exactly two places. After
the permutation they still differ on two places. Since we know the

structure of the original ATE we can estimate the permutation matrix.

The third weakness is the possibility of estimating the rows of the
encipher matrix E=SGP by means of constructing unit vectors u, =
0..010..0, i.e. the all zero vector with a 1 added on the i-th
position). Therefore as suggested in [?] the linear transformation S

should be replaced by a non—-linear transformation.

4 Avtack BY HiN

In Hin [7] an attack on the Rao—Nam scheme using ATE's is described.
As ATE's have a fixed and known structure, his approach makes use of
the leakage of information about the permutation matrix P. In addition
it is necessary that the permutation matrix P must transform an ATE

into a non-ATE. We will describe his attack for non—cyclic ATE s anly.

Let # denote the ordered set {i11i...10..0, 011...10..0, ..) of all
possible ATE's. The unkown set of permuted ATE's is indicated by P
Let »°
An ATE and its one position shifted ATE {(which is an ATE also) differ

be the set of all possible encipherments of the message m=0.

on exactly two places. If the ATE's are distinct and not succesive,

then they differ on more than two places. This also holds after

permutation and consequently the set > can be ordered in the same
N

way as P. Hence from the ordered set P the permutation matrix P is

constructed.
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Next an ordered set J“U is obtained by enciphering the unit vector u.
at least N times until all possible error patterns have been appeared,
with 1<i<k. The elements in #% are arranged in such a way that the
same permutation matrix P is obtained. The x-th elements of each of
the sets in ?‘m, .‘Pm, .‘Pm, “any P pos;-.ess the same error
patterns since the sets are ordened in a unique way. Next, with 1=isk,

take the first element in o and subtract it from the first element

in Y, i.e.: (u;E + 2zP) -~ zP = u.E = e, which is the i~th row g, of
E. In this way the encipher matrix E = (QI, g: s meees g:) is
constructed. Finally the decipher matrix D, the matrix E—1 are

calculated and the syndrome—error table is constructed. In this way an

{equivalent) decoding algorithm is obtained and the scheme is broken.

SUMMARY
1. Encipher the message m = 0 as long as all the N error patterns have

not yet appeared.

2. Order the (permuted) error patterns and obtain %, Construct -the

permutation matrix P.

3. Repeat step 1 for m = u. with 1<i<k and cbtain the set Y, The
elements in 2 are ordened according permutation matrix P. Take the
first element in % and subtract it from the first element in »
to aobtain the i-th row e, of the encipher matrix.

4. Construct the encipher matrix E = (gI, g;, cemas gl)T . calculate
the decipher matrix D, the matrix E_1 and construct the syndrome—-error
table.

Costs
kKE8(N log N) encipherments on average,
k0(n log N) operations for ordening,

where

N = n—i+l for a non—-cyclic code.

Remark. The assumption that messages of the kind m=0 and m=y, are not

allowed to obtain an increased security [&6, p. 401 is merely outward
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seeming. In the above attack it is not necessary to use the messages
m=0 and m=y . . One can take an arbitrary message m. The unit vector u,
can be constructed by choosing a message m, such that m.=m + Y, - The
additional costs involved are k times a k—d;mensional vector addition

over Fq which can be neglected.

5. ATTAack BY STRUIK

Hin's attack is based on the imposed structure on the error patterns.
Struik’'s [8] generalized version of Hin's attack does not assume any
structure about the error patterns and is also applicable to the

generalized Rao-Nam scheme as outlined in section 2.

An error pattern z is randomly selected from the set 2 = {g(j)}j_1

which contains N different error patterns. After encipherment the

(j’P}Fi - From
= .

the set Z we can define a set zk of error pattern differences v;“m

error pattern is permuted; the set £P is defined as {z

{”—gm and in the same way the set 22 = {g(i"j)P}_’.‘1 can be
L=

obtained. A guessed error pattern is denoted by £ and the difference

Z“m = g“Lg?t Because there are N distinct error patterns, there

are N distinct permuted error patterns. For an arbitrary message m

there are N distinct encipherments g”) = mE+£pP possible, which

will be denoted by the set 8 = {gqﬁqN{ For the construction of a
j=

unit vector u, we choose a message m, such that m, = m+y, . The set of

encipherments of message m, is denoted by Si.

The attack can now be described as follows. Encipher an arbitrary

message m until all the N different cryptograms g“i ng .. éfN)
are obtained. Construct with the N different encipherments a directed
labeled graph F=(8,2§). The vertices are ;“3 g?f . ,g“” and the
edge from vertex éi) to vertex ép has label ;“$P. The relation
follows from c‘‘’—c = (mE+zF) - (mE+z%F) = z'“PP. In the
binary case (g=2) it follows that gmpP = EQMP. Subsequently

construct the automorphism group Aut(lh), i.e. all the permutations on

% which leave all the labels ;amP invariant.

We choose a message m, = m+u_.. Again we encipher until all the N
different cryptograms g;p are obtained. Subsequently the graph

Fi=(ai,2i) is constructed. Select at random one automorphism ¢ from
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the automorphism group Aut(C). The mapping induced by ¢ from ri on I
gives N cryptograms gi‘ﬂ _fa, ,Q;N) synchronized in aA certain
way with gm, g‘z’. .. ,g‘m. Calculate c_:‘;“—gm = (QiE‘F;;”P) -
(mE+z¥P) = e . +z“"P. With probability faut(r) |7t the row g, will
be correctly estimated as there exists an automorphism ¢ for which
E‘Ln: 0. The correctness of a row can not be verified independently

from the other rows. On average we

can expect that the cryptanalyst

has to construct |Aut(F)[k encipher matrices E before the correct one

is obtained,
construct the syndrome—-error table

{equivalent) decoding algorithm is

SUMHMARY
1. Encipher a message m until all
@ Ny

€, eeee 5 & are obtained.
2. Construct the directed complete
group Aut(l').

3. For 1=%i<k, choose a message m,

&
for m = m, and construct Fi=(8i, A).

4. For 1=<i<k select at random a automorphism ¢ from the

calculate the decipher

such that m, = mfgi. Repeat

~ ~aq

D, the

. [¢3] (£}
via ¢ P-mE = ;JP. In

matrix E and

this

matrix

way an

obtained.

(£ 8]
cryptograms ¢,

the N different
graph F=(8,2§) and the automorphism

step 1

automorphism

group Aut('). Map Fi on I’ according ¢ and calculate §i =g;E-

5. Construct the encipher matrix E
the decipher matrix B, the matrix
table and verify the solution.
the steps 4 and 5.

Costs

Preliminary wmork

If the solution is not correct,

_ AT AT ~T. T
= (El; g?’ Ek) 3

E—1 construct

calculate

the syndrome—error

repeat

k@(M Log N) encipherments on average,
J((k+|Aut(T) |} n [log 9])) bits of memory,
2(nN[log q]) bits of temporal memory space,

O(an2 log N) operations.

Calculation of encipher matrix
o(kn [Log g]) bits,
D(kn]Aut(F)]k) operations.
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Validation costs are neglected.

From the costs it appears that the number of possible automorphisms
lAut(F)| is a measure of the computational strength of the
(generalized) Rao—MNam scheme. In the wu?st case situation where
]Aut(r)l = N, the costs of this attack is the same as those of the

attack described by Rao and Nam. There exist

k(n—k+1)
q

combination of error patterns each chosen from a distinct coset such
that the upper bound

jaut(ry| = q" K

is reached. From this result it follows that +the probability of
selecting the right combination randomly that 1lesads to the maximum
number of automorphisms is approximately q_kN. For this reason the
function that determines this set of error patterns must be highly

structured and is also part of the secret key.

In the Rao—Nam scheme using ATE's the number of automorphisms ¢ from

the group Aut(r') if N>2 is given by:

n
|Aut(F)| =2 , iff the ATE's are cyclic and have Hamming weight 51
lAut(F)‘ =1, else.

If |Aut(r)| = 1 then the automorphism is: ¢(z) = z and,

if |Aut(T)| = 2 then we have also ¢(z) = z + 1 .

We can conclude that the Rao-Nam scheme is insecure against a
chosen—plaintext attack in many cases. Only if the value |Aut(r)[ is
large this attack wil not work. In the next section an attack is given

which is efficient when the number of automorphisms IAut(F)I is large.

Remark. In theory this attack can be applied to the McEliece scheme
too. In this case the order of the automorphism group is one and
contains the identity automorphism only. However the N possible error

patterns is astronomically large. Therefore this attack fails due to
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the large amount of preliminary work involved.

6. EXTENDED ATTACK BY STRUIK

In the following attack an estimated generator matrix is used to
perform a ciphertext-only attack. The attack can be divided into two
parts. The first part is based on the chosen-plaintext attack to
obtain an estimated generator matrix E. The second part is a
ciphertext-only attack from which the unkown message @ is quessed.
With this attack we do not obtain the correct generator matrix,

however we do obtain the unknown message.

FIRST PART —~ Chosen—Plaintext Attack
The first part of the attack is the same as described in section 5. We

stop after the first estimate of the generator matrix E. The guessed

generator matrix is denoted by é, where §i = gi+£9")P. Since each
automorphism is a translation, the rows must be equal to gi = gi+xi
for a certain unkown v, € V, which is a sub-space of (Fq)n.
SECOND PART — Ciphertext—0Only Attack
Let § denote the encipherment ﬁE + 2P of the unknown message ﬁ.
C=E&c= (B~-mE + (£-2)P = @E + ZP ,
where E = ﬁ—g and E = 2~g .
Since @, = e.+v. it follows that
i i =i
-~ ~ i ~ k -~
c=mE+zP - T mv,
i=1
If the cryptanalyst knows EP - aigi then he can solve E from the
above equation. The cryptanalyst picks at random a vector w € V and
calculates:
~ ~T ~ k ~
a=c-w=mnmk+ (zP - Fmy. - uw
i=1
Suppose EP - T m.v. - w = O, then E can be solved from Eé = a. Repeat

i1
until a sensible plaintext m + E is obtained. Note that V z 3 w [ zP -

T m;!i - w =0 ]. The expected number of attempts is at most M.
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Costs
D(kan) operations,

O(kn[log gq]) bits memory space.

A refinement of this attack will be given in a paper to apear.

7. MODIFIED SCHEME

Almost all the proposed attacks on the Rao-Nam scheme are based on
estimating the rows of the encipher matrix E=SGF by constructing unit
vectors or by solving a system of linear equations. Therefore to avoid
such attacks the S—matrix should be replaced by a non—-linear function.
In general S can be replaced by a secret invertible function f which
transforms a message m € (IFq)k into a word m” € (Fq)k. As special case
this function may depend on the error vector z used too, as we can
determine z from the cryptogram in a unigque way. In this case the

following enciphering scheme is pbtained:
c = T(m,z).E + 2z,
where E = GF and f chosen such that

vz vm f Y(f(m.z),2z) = m.

. -1
The decoding algorithm is almost the same as described before if f
is used instead of S | and is as follows.
. 4 T . (]
1) Determine ¢ = cD and obtain the error pattern z e (Fq) -
As result ¢’ = ¢ — z = f{(m,=z)E is obtained.
3) Calculate m" = E‘E_R = f{m,z) , in which E_R is a right inverse
of the matrix E.
4) The final result is the plaintext m = f~1(m',g).
This scheme 1is not wvulnerable to chosen—-plaintext attacks as

described. This can be seen easily from the fact that the secret
function f can be chosen such that it does not allow construction of

unit vectors to estimate a row in the E=GPF matrix. Hence this scheme
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provides a higher security level.

8. CONCLUSION

The Rao—MNam scheme is generalized to Fq. For this general scheme 3

chosen—-plaintext attacks are discussed.

It is shown that the Rao—Mam scheme using ATE's is completely insecure
against a chosen—plaintext attack. If a pre-defined set of error
vectors 1is used then it appears that the number of possible
automorphisms |Aut(F)| is a measure for the computational strength of
the (generalized) Rao—Nam scheme. If the value |Aut(r)| is small then
the attack described in section 5 is efficient, otherwise the attack

described in section 6 will break the scheme.

We have given an improved scheme in which the linear transformation S
in the encipher matrix E=SG6F is replaced by a non—linear funtion. This
improved scheme is not vulnerable to the chosen—-plaintext attacks as

described.

ACKNOWLEDGEMENT
The authors thank J.P. Boly, P.J.M. Hin, H. Meijer and H.C.A. wvan

Tilborg for helpful conversations.

REFERENCES

1] McEliece, R.J., "A Public—-Key Cryptosystem Based On Algebraic
Coding Theory", DSN Progress Report 42-44, Pasadena.,
JFL, pp-114-116, 1978.

[2] Berlekamp, E.R., McEliece, R.J, and van Tilborg, H.C.A,
YOn the Inherent Intractability of Certain Coding Problems",
IEEE Trans. Inform. Theory. IT-24, pp.384-386, 1978.



457

[3] Adams, C, Meijer, H, "Security relating comments regarding the

McEliece Public—Key Cryptosystem, presented at crypto'87.

[41 Jorrissen, F, "A Security Evaluation of the Public—Key Cipher
System Proposed by R.J. McEliece, used as Combined Scheme",
Katholieke Universiteit Leuven, Lab. ESAT, 1986.

[5] Jordan, J.P., A Variant of a Fublic Key Cryptosystem based
on Goppa Codes", Sigact news, vol 13, no: 1, pp. 61-64, 1983.

[6] Rao, T.R.N., Nam, K.H., “Private-Key Algebraic-Coded
Cryptosystem”, in: Advances in Cryptology — CRYPTD 864,
A.M. Odlyzko (Ed.), Lecture Notes in Computer Science #263,
Springer, pp 35-48, 1987.

{71 Hin, P.J.M.,"Channel—-Error-Correcting Privacy Cryptosystems",
Thesis, Delft Univ. of Techn., 1986 (in Dutch).

[8] Struik, R., "Algebraic Coded Cryptosystems”, Frivate Communication,
July 1987.

[?] wvan Tilburg, J., "FPrivate—-key Cryptosystems based on Algebraic
Coding Theory", Pub 87 DNL/53, FTT/DNL, the Netherlands, 1987.



