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Many ecologists have lamented the demise of natural history and have attributed

this decline to a misguided view that natural history is outdated and unscientific.

Although there is a perception that the focus in ecology and conservation have

shifted away from descriptive natural history research and training toward hypothetico-

deductive research, we argue that natural history has entered a new phase that we

call “next-generation natural history.” This renaissance of natural history is characterized

by technological and statistical advances that aid in collecting detailed observations

systematically over broad spatial and temporal extents. The technological advances

that have increased exponentially in the last decade include electronic sensors such

as camera-traps and acoustic recorders, aircraft- and satellite-based remote sensing,

animal-borne biologgers, genetics and genomics methods, and community science

programs. Advances in statistics and computation have aided in analyzing a growing

quantity of observations to reveal patterns in nature. These robust next-generation

natural history datasets have transformed the anecdotal perception of natural history

observations into systematically collected observations that collectively constitute the

foundation for hypothetico-deductive research and can be leveraged and applied

to conservation and management. These advances are encouraging scientists to

conduct and embrace detailed descriptions of nature that remain a critically important

component of the scientific endeavor. Finally, these next-generation natural history

observations are engaging scientists and non-scientists alike with new documentations

of the wonders of nature. Thus, we celebrate next-generation natural history for

encouraging people to experience nature directly.

Keywords: conservation, ecology, field studies, nature, environmental management

INTRODUCTION

Although the term natural history is familiar to all biologists, defining its boundaries is challenging.
Tewksbury et al. (2014) suggested that natural history is “the observation and description of the
natural world, with the study of organisms and their linkages to the environment being central.”
Barrows et al. (2016) more concisely defined it as the “observational study of organisms in their
environment.” Although definitions vary, all share the central theme of “direct observation and
description of organisms, communities, and habitats, including attentiveness to associated geology,
hydrology, and other physical factors” (Fleischner et al., 2017). Noticeably absent in this common
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understanding is an explicit mention of formal hypotheses or
generalizable theory, which Wilson and Armesto (2006) note
has led to the “prevailing view” that the natural history mode
of biological sciences is “hopelessly old-fashioned, unscientific,
sloppy, and useless.” Gould (2002) attributes this rift between
natural history and biology to the misconception that rigorous
science should not rely on anecdotal descriptive observations
but should explain natural phenomena by general laws. These
criticisms question the quality and objectivity of natural history
and the very value of proper description in the scientific
enterprise. The effects of these damning criticisms have
reverberated throughout academic institutions (Disney, 1968),
where taxon-specific biology and systematics courses such as
mammalogy, ornithology, and ichthyology are increasingly no
longer taught; natural history collections are being abandoned,
fewer field courses are offered, peer-reviewed natural history
publications are in steep decline, and research funding is being
diverted away from natural history (Stokstad, 2003; Bury, 2006;
McCallum and McCallum, 2006; Tewksbury et al., 2014). Yet, as
others have argued (Tewksbury et al., 2014), we believe natural
history maintains a valuable position in science and society and
lament the decline of natural history in training, practice, and
publication. In fact, we propose that natural history is far from
doomed; it has entered a renaissance that we call “next-generation
natural history.” This new phase has been revitalized by
embracing advances in technology that transform the anecdotal
character of few direct observations into scientific studies that
rely on systematically collected observations using remotely
sensed and non-invasive methods (Figure 1). Such technological
advances propel natural history into a contemporary, meticulous,
and systematic discipline with utility in both the hypothetico-
deductive approach to science (Winker, 2004; Willson and
Armesto, 2006; Tewksbury et al., 2014; Betts et al., 2021) and the
conservation and management of species.

The hypothetico-deductive approach relies on a cycle in which
patterns emerge from groups of observations. In the inductive
reasoning part of the cycle, these patterns produce theories. In
the deductive reasoning part of the cycle, these theories lead to
hypotheses that generate predictions, which can then be tested
with new observations (Figure 2). Natural history fits squarely
in the section of observations and patterns within this cycle.
Observations are a privileged part of this cycle as both the origin
and validation of theory, and next-generation natural history
provides substantial improvement to the quantity and quality of
observations. We argue that these natural history observations
are inherently important but also serve as fuel for the engine
that is science.

Next-generation natural history is once again encouraging
students, scientists, and non-scientists to go into the field to
non-invasively observe organisms using their newfound ability
to generate many natural history observations at broad spatial
and temporal scales. Because these types of biomonitoring and
other next-generation natural history observations amplify and
build upon natural history from field notebooks into graphical or
auditory forms that are viewable by the world, we argue that next-
generation natural history has the power to inspire enthusiasm
and awe, and to motivate scientific and conservation efforts.

This transition to next-generation natural history is driven
by technological advancements in both remote data collection
and statistical advances to extract patterns in nature. These
approaches have increased dramatically within the scientific
literature in recent years (Figure 3). Here we review how
electronic sensors such as camera traps and acoustic recorders,
aircraft- and satellite-based remote sensing of nature, animal-
borne biologgers, advances in genetics and genomics, and
burgeoning community science programs have been used
to generate robust next-generation natural history datasets
(Figure 1). We also review how statistical advances allow us
to analyze this growing quantity of data to make more reliable
observational inferences about the natural world that are once
again integrating natural history as a robust part of ecological
science. Finally, we review how next-generation natural history is
being applied to conservation and management and connecting
more people with nature.

WHAT IS IN NATURE AND WHERE IS IT:
DEVICES TO DETECT SPECIES,
INDIVIDUALS, AND COMMUNITIES

The advent of high-quality and affordable sensors deployed
in natural environments to detect species now allows for
the exploration of aquatic and terrestrial environments that
were previously challenging to directly observe rigorously and
systematically. These devices record what exists, where it exists,
andwhen it exists within an ecosystem, facilitating descriptions of
patterns and communities at unprecedented spatial and temporal
scales. Camera traps are especially useful for capturing visual
evidence of rare wildlife, as seen in studies focused on predators
such as ocelots (Maffei et al., 2005). They also capture cryptic
and elusive species, such as small burrowing rodents (Diete
et al., 2014). Camera trapping is increasingly used to estimate
wildlife population sizes (Maffei et al., 2005; Green et al., 2020)
and life history traits (Burton et al., 2015; Norouzzadeh et al.,
2018). Thermal imaging cameras have been used less frequently,
but have found unique applications such as estimating bat
populations non-invasively (Betke et al., 2008) or studying animal
behavior by recording and categorizing emotional states of rhesus
monkeys (Nakayama et al., 2005).

Similar to camera traps, passive acoustic monitoring is a
fast-growing area of wildlife research (Laiolo, 2010; Shonfield
and Bayne, 2017; Sugai et al., 2018). Autonomous recording
units can be programmed for scheduled recording times over
long survey durations of weeks or months without the need
for direct observations, while providing permanent records of
sound and increasing the quantity of survey data (Tegeler et al.,
2012). Passive acoustic monitoring is a versatile approach that
may be used with a variety of taxa that either vocalize or make
audible movements, including birds, bats, terrestrial and marine
mammals, fish, amphibians, and insects (Newson et al., 2017;
Guazzo et al., 2019; Duchac et al., 2020). Recent examples of
passive acoustic monitoring for next-generation natural history
include tracking phenological shifts of frogs (Llusia et al., 2013)
in relation to climate change, estimating population sizes of

Frontiers in Ecology and Evolution | www.frontiersin.org 2 July 2021 | Volume 9 | Article 698131

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Tosa et al. Next-Generation Natural History

FIGURE 1 | Technology-fueled innovation that is allowing for next-generation natural history.

forest elephants (Wrege et al., 2017), and monitoring the impacts
of anthropogenic noise on terrestrial and marine communities
(Hatch et al., 2012).

A major advantage of next-generation natural history is
that these sensors collect data on entire ecosystems including
the biotic and abiotic components. Since these sensors create
permanent records of images and sounds, data can be extracted
later using continually improving methods, even if the study

FIGURE 2 | Conceptual framework of the scientific method where

observations both form the foundation of ecological theories through inductive

reasoning and serve as the validation of ecological theories through deductive

reasoning.

was only designed to monitor a single target species (Ruff
et al., 2020). Due to the ability to detect multiple species, these
sensors are increasingly utilized to monitor species interactions
and communities. Remote cameras have been used to identify
pollination services provided by bats (Frick, 2013), the relative
seed dispersal services provided by bears and birds (Harrer and
Levi, 2018; Figure 4F), small mammal foraging activity and
behavior as secondary seed dispersers from bear scats (Shakeri
et al., 2018), otherwise unobservable predator-prey interactions
in the tree canopy (Linnell and Lesmeister, 2020), and patterns
of species coexistence and partitioning (Lesmeister et al., 2015).
Auxiliary data from camera trapping can provide information
on the phenology of plants, daily temperature, and snowpack
(Hofmeester et al., 2019), which can be used to study climate
change. Passive acoustic monitoring is particularly well-suited
for large-scale multi-species biodiversity monitoring (e.g., Furnas
and Callas, 2015; Rich et al., 2019). These natural history datasets
allow us to investigate landscape-scale questions such as the
impacts of anthropogenic activities on the environment and
wildlife. One example is soundscape ecology, which focuses on
using acoustic indices to infer ecosystem status independent
of species identification. Soundscape ecology has been applied
to human well-being (Pijanowski et al., 2011), assessments
of noise pollution on protected areas and endangered species
(Buxton et al., 2017), and the creation of rapid and non-invasive
biodiversity indices (Ross et al., 2018).

A key challenge associated with surveys using non-invasive
sensors is that they generate a massive amount of data, which has
necessitated parallel advances in computer processing (Teixeira
et al., 2019). Whereas an increased efficiency of data collection
would generally constrain the storage, processing, analysis, and
sharing of large datasets, advances in artificial intelligence (e.g.,
computer vision and deep learning), and high-performance
computers have demonstrated the capability to relieve some
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FIGURE 3 | Temporal change in the use of next-generation natural history keywords and control keywords in a Web of Science literature search from 1965 to 2018.

Keywords are grouped by technological category. Percent of total publications calculated by dividing the number of publications in any given year by the total

number of publications that contain the keyword.

of the bottlenecks in data management and processing. In
addition, these advances make these technologies more accessible
to ecologists because they are no longer cost prohibitive,
limited to hardware that is physically accessible (e.g., cloud
computing, remote computing, and virtual networks), or reliant
on proprietary software for analyses (i.e., open-source software
such as Program R) (Ruff et al., 2021).

Advances in computer processing provide a method to obtain
data on the identity, demographic status, distribution, and even
behavior of a wide variety of species. Computer algorithms
can aid in identifying photographs and audio clips of species
of interest (Norouzzadeh et al., 2018; Ruff et al., 2020) and
even individuals (Schneider et al., 2019; Wood et al., 2021). In
particular, deep learning methods such as convolutional neural
networks have been successfully used to detect and identify
animals from camera trap images (Norouzzadeh et al., 2018;
Tabak et al., 2018) and acoustic recordings (Salamon and Bello,
2017; Ruff et al., 2020). Other applications of computer vision
technologies to natural history include identifying plants from
photographs (Wäldchen and Mäder, 2018), mapping vegetation
structure (Dandois and Ellis, 2013), reconstructing colonies of
Gentoo penguins (Pygoscelis papua; McDowall and Lynch, 2017),
and re-identifying individual animals based on unique markings
(Schneider et al., 2019).

The combination of electronic sensors, computational power,
and advances in artificial intelligence are transforming how we
catalog nature, describe species interactions, and study organism-
environment interactions. While these technologies are being
used for a variety of purposes, including hypothesis-driven
research, we have reviewed their use in descriptive research of
what is happening in nature, which we consider natural history
in its truest sense. These observations are next-generation natural

history because they are systematically collected with remote
devices, but the resulting descriptions do not have the anecdotal
feel of field observations by individual naturalists in nature. These
works have found outlets in prestigious academic journals, which
we argue demonstrates and inspires the renaissance of natural
history research.

ADVANCES IN GENETICS: DESCRIBING
NATURE WITH ENVIRONMENTAL DNA,
HIGH-THROUGHPUT SEQUENCING,
AND DNA METABARCODING

Perhaps no technological advancement applied to next-
generation natural history research has advanced as quickly as
molecular methods in genetics and genomics. In particular, the
advent of environmental DNA (eDNA) now allows us to detect
species and individuals using DNA shed into the environment
rather than handling organisms themselves in much the same
way that camera traps or passive acoustic monitoring allow us
to detect organisms that we do not see or hear directly. The first
use of contemporary eDNA to detect extant vertebrates was by
Ficetola et al. (2008) to detect invasive bullfrogs. Such attempts
to detect single species use real-time quantitative polymerase
chain reaction (qPCR) or digital PCR to selectively amplify
and quantify DNA of target organisms. In much the same way
that natural historians catalog species at field sites from direct
observations, eDNA now allows researchers to catalog species
in aquatic and terrestrial systems without directly observing
them (Figure 1). For aquatic systems, species, even those that
are difficult to identify using morphological characteristics, can
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FIGURE 4 | Examples of next-generation natural history research yielding unique insights about descriptions of how nature works. (A) New technologies can be

combined. For example, Ruprecht et al. (2020) integrated information from GPS telemetry, camera traps to resight marked individuals, and genotypes from scats to

estimate local population densities of four carnivores while testing a suite of methods for animal density estimation. (B) Levi et al. (2019) showed that flow-corrected

eDNA rates (blue line) are predictive of actual salmon counts at a weir (black dots), suggesting the environmental DNA can be used to enumerate salmon and track

their phenology on larger scales using water samples. (C) Animals can also now be counted from space, including animals as small as albatross, which Dolliver

(2019) counted using imagery from WorldView-3. (D) Bioacoustics is now being used to detect Spotted Owls, Barred Owls, and myriad other species (Ruff et al.,

2021) as part of Federal monitoring responsibilities under the Northwest Forest Plan. This will provide information about species occurrence, and migratory

phenology of songbirds, from Central California to the Canadian border. (E) Metrics of species occurrence can now be linked to detailed measurements of habitat

structure from remote sensing including lidar, which can provide a detailed look at tree size, density, composition, and structure. As such detailed characterizations

become available on large spatial scales, a growing suite of species distribution models can help researchers predict where species are likely to occur and why they

occur there. (F) Camera traps and eDNA have recently been used to describe species interactions such as the identity of seed dispersers for Devil’s club (Oplopanax

horridus). By monitoring fruit clusters with cameras or swabbing consumed clusters to genetically identify bear species and sex, Harrer and Levi (2018) showed that

brown bears were the dominant dispersers, but that black bears became important once salmon were available, that female bears dispersed more seeds than male

bears, and that birds dispersed far fewer seeds than did bears. (G) Diet analysis was once the type of descriptive research that had become discouraged in the

academy, but DNA metabarcoding has increased the throughput and taxonomy breadth such that Kartzinel et al. (2015) were able to publish diet analysis for seven

African herbivores in Proceeding of the National Academy of Sciences. Their fundamental insight was that herbivores were partitioning the savanna vegetation

structure, which facilitates coexistence. (H) Recent advances in biologging and analytical methods now allow researchers to determine not only where animals go,

but what behaviors they are exhibiting, and how much energy they are expending by combining GPS with accelerometers. Here Wilmers et al. (2017) were able to

characterize the locations of an adult male leopard that killed a domestic goat and then carried it across a river to feed. The leopard exhibited meandering behavior

followed by a kill surge (10:00 on accelerometer trace III) followed by directed travel (IV), meandering across the river, followed by feeding.
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be identified through water samples. Single-species detection
has proven to be particularly useful for monitoring the frontier
of invasions in aquatic systems by vertebrates and invertebrates
such as Asian carp (Hypophthalmichthys spp.) (Jerde et al., 2013),
American bullfrog (Lithobates catesbeianus) (Dejean et al., 2012),
and rusty (Orconectes rusticus) and signal crayfish (Pacifastacus
leniusculus) (Larson et al., 2017). Recent evidence suggests that
the quantity of DNA detected by real-time qPCR or digital
PCR can provide reliable information about the abundance or
biomass of organisms in addition to an occupancy record (Levi
et al., 2019; Pochardt et al., 2020; Figure 4B).

In addition to single-species detection, high-throughput
sequencing now allows for the amplification and sequencing
of short taxonomically informative fragments of DNA called
“barcodes” from environmental samples in order to profile whole
communities. This technique, called DNA metabarcoding, has
been used to reconstruct historic diversity of flora and fauna
using sediments (Willerslev et al., 2003), to construct present-day
plant biodiversity using samples taken from the air (Kraaijeveld
et al., 2015), fish and amphibian diversity in freshwater systems
(Thomsen et al., 2012) and marine environments (Port et al.,
2016), and a broad range of eukaryotes in soil (Drummond et al.,
2015). The substrates from which we can amplify DNA are ever
expanding and are reviewed by Bohmann et al. (2014) and Deiner
et al. (2017). Moreover, metabarcoding has been performed
on stomach contents and scat samples to study the diets of
numerous taxa including birds (Jedlicka et al., 2013), marine fish
and mammals (Leray and Knowlton, 2015; Berry et al., 2017;
Jakubavièiûtë et al., 2017), freshwater fishes (Guillerault et al.,
2017), terrestrial mammals (Shehzad et al., 2012; Srivathsan et al.,
2015; Iwanowicz et al., 2016), and even highly cryptic species
such as flying insects (Kaunisto et al., 2017) and insectivorous
bats (Bohmann et al., 2011; Galan et al., 2018). As the cost of
sequencing has declined, metabarcoding has been applied on
massive spatial extents to study the biogeography of animal diets
(Roffler et al., 2021). Some of the more interesting applications
have taken diet analysis a step further and inferred resource
partitioning among large-bodied African herbivores (Kartzinel
et al., 2015) and population structure of vampire bats (Bohmann
et al., 2018) from diet metabarcoding data (Figure 4G).

High-throughput sequencers are increasing in power at
an astounding pace such that entire genomes are now
readily resequenced and thousands of environmental samples
can be pooled for metabarcoding on a single sequencing
run. Recent advances in sequencing such as PacBio’s SMRT
technology have increased the length of sequences from
hundreds of base pairs to up to 100 kb using single-
molecule sequencing (Heather and Chain, 2016). Miniaturization
and portability are the next frontiers of sequencing. Oxford
Nanopore Technologies has developed the minIONTM and
smidgIONTM—portable sequencers that attach to a laptop or
cellular phone, respectively—promising to bring the power of
genomic sequencing to the field or rural areas with little access
to electricity or infrastructure. The cost to sequence DNA has
decreased by orders of magnitude over the last decade and
the development of benchtop sequencers that produce rapid

results allow for large-scale biomonitoring (Faria et al., 2016;
Goordial et al., 2017).

While DNA metabarcoding has enabled either qualitative
or quantitative inventories of ecological communities in the
wider environment, this technique is now being used to describe
the ecosystems found on and within organisms. For example,
sequencing to identify the microbial community has revealed
that microbial composition on the skin of amphibians varies
among species, changes during metamorphosis (Kueneman
et al., 2014; Chai et al., 2018), and can play a key role in
resistance to chytridiomycosis (Batrachochytrium dendrobatidis)
(Harris et al., 2009). In another system, the diversity of gut
microbes of black howler monkeys (Alouatta pigra) was higher
in populations living in pristine rainforests compared to those
in fragmented forests, suggesting that microbiomes can be used
as habitat quality indicators (Amato et al., 2013). Moreover,
next-generation natural history has revealed that vultures harbor
bacteria toxic to other species within their guts, suggesting co-
adaptation of host andmicrobiome to a specific diet (Roggenbuck
et al., 2014). Conversely, the giant panda retains a gut microbiota
more similar to its omnivorous relatives despite its herbivorous
diet indicating a strong influence of host phylogeny on microbe
composition (Xue et al., 2015).

An offshoot of eDNA permits the use of invertebrate-
derived DNA (iDNA) to measure vertebrate biodiversity from
the gut content of hematophagous (Schnell et al., 2012;
Kocher et al., 2017; Tessler et al., 2018), coprophagous,
and sarcophagous (Calvignac-Spencer et al., 2013; Rodgers
et al., 2017) invertebrates. In essence, this advancement allows
researchers to take advantage of invertebrates to sample the
vertebrate community, which can be difficult to survey directly.
Once collected, processed and genetically identified, these data
can be fed into occupancy models for species- and community-
level monitoring (Abrams et al., 2019; Tilker et al., 2020).

The combination of traditional morphological techniques
with molecular methods has enabled significant advancements
in phylogenetic resolution and systematics analyses (Rokas et al.,
2003; Wiens et al., 2010; Giribet, 2015; Pyron et al., 2015).
Delimitation of species has been improved by the use of
molecular tools (Leaché et al., 2014), and reinterpretations of the
fossil record using molecular data have given us new insights into
the tree of life on different taxonomic levels (Delsuc et al., 2005;
Dunn et al., 2008; Meusemann et al., 2010; Hug et al., 2016).
Additionally, phylogenetics, phylogeography, and population
genetics have provided a more complete picture of global
biodiversity (Cutter, 2013; Soltis and Soltis, 2016; Vacher et al.,
2020). These next-generation genetic techniques critically rely
on traditional natural history collections that provide voucher
specimens that link organisms and their genomes to specific
places and times.

While these genetic methods can be used to test specific
hypotheses, we highlight research that helps describe what species
occur where, how they relate to each other, and where they are
situated on the tree of life. All such applications are curiosity-
driven descriptive research that highlight the renaissance of
natural history.
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COMMUNITY SCIENCE

Often, one of the challenges with natural history research has
been the collection of sufficient observations in space and
time to understand large-scale patterns. By mobilizing public
participation to collect observations for scientific research,
community science (previously called citizen science) has
emerged as a critical tool for natural history research (Bonney
et al., 2009; Dickinson et al., 2010; Theobald et al., 2015). The
availability of new affordable devices and advances in genetic
methods have improved the validity of community science
observations (Kamenova et al., 2017; Beck et al., 2018). Not only
can community scientists collect their own observations, non-
specialists across the globe can place and retrieve devices, such
as camera traps and bioacoustic recorders, or collect samples
from the environment that can be processed later by specialists
to detect species or individuals. As such, community scientists
have expanded the spatial (Dickinson et al., 2012; McKinley
et al., 2017) and temporal (Magurran et al., 2010; Dickinson
et al., 2012) scales that can be monitored. Public participation
has substantially increased the number of observations and
the diversity of taxonomic groups observed (Turrini et al.,
2018) and thereby the resolution of natural history data at
relatively minimal cost (McKinley et al., 2017). Our knowledge
of natural history has increased while encouraging the public
to develop connections with nature. These new technologies
are expanding the pool of people engaged in natural history,
which may help increase diversity within the discipline. Research
dependent on community scientists has thereby raised awareness
of multiple environmental problems (Dickinson et al., 2012;
McCormick, 2012).

Some of the most outstanding examples of community science
are the Christmas Bird Count (CBC) established in 1900 (Butcher
et al., 1990), the Breeding Bird Survey (BBS) initiated in 1965
(Hudson et al., 2017), and the Garden Bird Feeding (GBF) Survey
commenced in 1970. Thousands of people have participated in
data collection useful to understand not only population trends
of different bird species but also to improve our knowledge on
natural history of parental care behavior (Zárybnická et al., 2017),
habitat selection (Sauer et al., 1996; Hoffman and Smith, 2003),
diet (Schmidt and Ostfeld, 2003; Boyle and Sigel, 2015), and
species distributions (La Sorte and Thompson, 2007; Kirchman
and Van Keuren, 2017).

New technologies have allowed better integration of public
participation in research through platforms such as iNaturalist,
eBird, Zooniverse, and Reef. These platforms facilitate rapid
information sharing, which allows participants to manage their
observations using globally accessible databases. Beginning
in 2002, the Cornell Lab of Ornithology and the National
Audubon Society launched eBird, which has grown such
that hundreds of thousands of community scientists have
entered nearly 1 billion records. iNaturalist, launched in
2008, works as a social network to which pictures of
fauna and flora can be submitted, identified, and validated
by other iNaturalist users. These georeferenced and dated
observations from multiple platforms are shared with the
Global Biodiversity Information Facility. Finally, Zooniverse

launched in 2009 with the purpose of connecting volunteers
with researchers to facilitate data processing in many disciplines.
The diversity of disciplines and total number of users
make this science web portal one of the most popular and
successful community science platforms (Hecker et al., 2018;
Adler et al., 2020).

Data collected through these platforms are made public and
offer researchers, land managers, and educators different ways
to be involved in research. Hundreds of natural history papers
have used these data and filled knowledge gaps on changes in
species abundance (Breed et al., 2013) and distribution (Gomes
et al., 2019; Vendetti et al., 2019), biodiversity, plant and animal
reproductive phenology (Chandler et al., 2017; Li et al., 2019),
and have informed conservation actions (Robinson et al., 2018;
Schuttler et al., 2018).

Advances in computing have also interfaced with community
science to allow for the processing of large data sets.
Web-based applications allow citizens to train and then
tag large numbers of photos (Swanson et al., 2016) and
bird calls (Priyadarshani et al., 2018). These large datasets
assembled with the help of community scientists can now
be processed with computer vision and deep learning to
automate species identification (Trouille et al., 2019). As a
result, large community science repositories like iNaturalist,
Pl@ntNet, Merlin, and SongSleuth now include automated
identification of photos and recordings uploaded by users.
This has recently advanced toward automated identification of
individual animals. For example, the non-profit organization
Wild Me uses computer vision to identify unique individuals
of a variety of species based on spot patterns. This technique
has been integrated with community science to identify unique
whale sharks (Rhincodon typus) from videos taken by scuba
divers, tourists, and scientists. Wild Me is now mining
YouTube videos, where the tags and text in videos are used
to identify the spatial location, and computer vision identifies
the unique individual. By so doing, Wild Me is able to
reconstruct movement patterns and estimate survival of sharks
(McKinney et al., 2017).

HOW DO ORGANISMS BEHAVE:
BIOLOGGERS

In addition to detecting which organisms are present in the
environment, natural history research endeavors to describe
how they behave. Advancements in biologging, or the “use of
miniaturized animal-attached tags for logging and/or relaying
of data about an animal’s movements, behavior, physiology
and/or the environment” (Rutz and Hays, 2009) represents a
goldmine for such descriptions. The use of biologging overcomes
many of the challenges previously encountered when seeking
to observe animals undisturbed in their natural environment
(Rutz and Hays, 2009), particularly for cryptic or wide-ranging
species (Wilmers et al., 2015). Studies utilizing biologging
are often exploratory and seek to describe novel patterns or
behaviors and is why natural history is a beneficiary of this
advancement in technology.
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A brief chronology of biologging applications indicates how
much progress has been made since their inception. Among
the first uses of biologgers came from Scholander (1940) who
attached gauges to whales to study diving depths. Telemetry
devices using radio signals to transmit information on animal
locations were first used in the early 1960s on grizzly bears in
Yellowstone National Park (Hebblewhite and Haydon, 2010).
The advent of the Global Positioning System—first used in
biologging on caribou in Ontario in the early 1990s (Rodgers,
2001)—automated the acquisition and increased the precision of
animal positional data. Currently, biologgers provide much more
information than animal locations (reviewed in Wilmers et al.,
2015). They provide animal activity patterns and acceleration
and information about the external environment, often in near
real-time (Wang et al., 2015; Wilmers et al., 2017; Figure 4H).

Demonstrating the renewed appreciation for next-generation
natural history in the academy, Wilson et al. (2013) published a
description of cheetah hunting behavior in the journal Nature.
Similarly, Williams et al. (2014) described the energetic costs of
multiple puma (Puma concolor) behavior in the journal Science.
Advances in biologging have also prompted several recent special
features in scientific journals (Cagnacci et al., 2010; Börger et al.,
2020). Thus, the importance of next-generation natural history
observational research is now recognized by top-tier journals,
which was not the case for the former generation of natural
history. Similarly, analytical methods for biologging data have
emerged; there now exist at least 58 user-contributed R packages
for analyzing animal movements (Joo et al., 2020).

A continual challenge in biologging is to make products
that are smaller, lighter, less expensive, and have more efficient
batteries. For example, the first GPS collars were suitable only for
the largest animals (Tomkiewicz et al., 2010) given the ethical
rule that sensors should weigh a very small percentage of the
animal’s body weight (<5% of an individual’s body mass; Sikes
and Animal Care and Use Committee of the American Society of
Mammalogists, 2016). Miniaturization is increasingly permitting
smaller subjects to be studied, and cost reductions are allowing
for larger sample sizes and more widespread use (Ripperger
et al., 2020). Miniaturizing is excelling with initiatives such as the
Icarus project1, which is using space-based receivers to facilitate
extremely small transmitters for the study of animal movement.
Sensors have now been attached to organisms ranging from bees
to lions, passerines to fish, snakes to whales, and most taxa in
between (reviewed in Cooke et al., 2004). Given the impressive
trend of animal-borne sensors becoming smaller and more
efficient in the last decade, the future of biologging seems bright.

The diversity of applications of biologging to the field of
natural history is impressive. The flight mechanics of insects
have been studied in detail (Ando et al., 2002; Kutsch, 2002),
and previously undescribed transcontinental bird migrations
spanning tens of thousands of kilometers have been documented
(Egevang et al., 2010; McKinnon et al., 2017). Video cameras
mounted on secretive woodland caribou have provided a rare
glimpse into the predator evasion strategy of an adult female
protecting its young calf (Thompson et al., 2012), and the time

1https://www.icarus.mpg.de/en

it takes a brown bear to consume a moose calf has been recorded
to the nearest minute (Brockman et al., 2017). Whale foraging
behaviors, including cooperative hunting, dive patterns, and prey
choice has been linked to whale morphology, prey distribution,
and oceanic conditions through the use of multisensory tags
attached to whales with suction cups (Goldbogen et al., 2013,
2017; Friedlaender et al., 2020). Accelerometers have taught us
that pumas (Puma concolor) can mitigate the high energetic
hunting costs of pouncing by using cryptic tactics such as stalking
(Williams et al., 2014), but that canids gain more energy per
unit effort employing a cursorial cooperative hunting strategy
(Hubel et al., 2016). These illuminating examples only scratch
the surface of what has already been done, let alone what the
future holds. We believe biologging will continue to produce
the detailed observations that underlie next-generation natural
history and will only be limited by the imagination of a new
generation of naturalists.

WHY ARE ORGANISMS WHERE THEY
ARE: REMOTE SENSING

Remote sensing has been used to characterize the environment
where species occur but is increasingly being used to detect
species themselves. Remote sensing involves the acquisition of
information about organisms and processes on Earth via aircraft
or satellite including Radio Detection and Ranging (radar),
Light Detection and Ranging (lidar), multispectral imagery,
hyperspectral imagery, thermal imagery, and acoustic sensing.
Aerial observations have long contributed to our understanding
of plant community growth and succession regimes (Graham,
1997; Asner et al., 2015; Merkle et al., 2016) and animal
distribution (Richard et al., 2010) and aggregation (Miller
et al., 1998; Slooten et al., 2006). Within the last decade,
unmanned aerial vehicle (“drone”) surveys have greatly improved
the accuracy of aerial surveys (spatial resolution as high as
0.82 cm/pixel) (Jones et al., 2006; Getzin et al., 2012; Hodgson
et al., 2016, 2018; Figure 4E). The advent of pole-to-pole
sensing via satellites has expanded these studies from local
to global analyses using multi-decadal time series (Boyd and
Danson, 2005). At nearly the same spatial resolution, satellite
sensing has surpassed the travel radius of a single researcher,
and provides critical, frequent data, even in harsh climates
(Cavalieri et al., 2003; Castañeda et al., 2005), areas of political
instability, or human-wildlife conflict (De Wulf et al., 1988;
Nackoney et al., 2014). In sensitive ecosystems, rare and sensitive
organisms can benefit from this type of monitoring because
in situ sampling is non-essential, thereby limiting the researcher
footprint (Kellenberger et al., 2009). In addition, remote sensing
facilitates global understanding of biotic data by placing local
findings (e.g., deforestation) in a larger network of interconnected
regions (Vargas Zeppetello et al., 2020).

For the last 50 years, satellite remote sensing has documented
landscape-level modifications due to human encroachment
(Harper et al., 2007), spread of invasive species (Pengra et al.,
2007), plant and animal diseases (Colwell, 1996; Liu et al., 2006;
Bruno et al., 2007), and fire (Nepstad et al., 1999). The recent
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availability of satellite based lidar data from the Global Ecosystem
Dynamics Investigation mission now opens a new window of
opportunity to understand fine scale vegetation structure at a
global scale, including predictions of tropical forest tree species
richness (e.g., Marselis et al., 2020). These data collected at the
global scale can then be used as explanatory variables to model
resource selection and identify suitable habitat for target species
(Jarvis et al., 2005).

With advances in spatial resolution in satellite imagery,
scientists can also detect and enumerate individual plants
and animals in open environments. This has resulted in the
identification of rare species (Jarvis et al., 2005), subpopulations,
and global censuses (Lynch and LaRue, 2014). Automated image
analysis has complemented advances in remote sensing to greatly
increase the efficiency of natural history research (Brodrick et al.,
2019). In cases where individual animals visually contrast with
their environments, feature extraction and object-based image
analysis have been used to count animals from aerial imagery,
including waterbirds (Dolliver, 2019; Figure 4C), caribou
(Rangifer tarandus; Laliberte and Ripple, 2003), and dugongs
(Dugong dugon (Hodgson et al., 2013). Even high-resolution
satellite images of the entire planet have been used to census large
vertebrates, including marine mammals in vast oceanic areas
(Borowicz et al., 2019). Pattern recognition methods have been
used to identify individual marine mammals such as gray seals
(Halichoerus grypus; Hiby and Lovell, 1990). Moreover, high-
resolution imagery has documented the decline in species (Avery
and Haines-Young, 1990) and identified aggregations of species
in previously unknown places (Fretwell et al., 2015).

A variety of non-satellite platform technologies has enabled
detection on smaller scales. These technologies have recorded
the presence of individuals without dependence on visible light,
including radar to map breeding habitat (Cortez et al., 2013) and
aerial infrared imagery to estimate population size (Udevitz et al.,
2008). Locally and globally, the availability of new remote sensing
technologies continues to emerge and push the boundaries of
spatial (e.g., Moxley et al., 2017) and spectral (e.g., Sandino et al.,
2018) analyses. The continued advancements of these remote-
sensing technologies have allowed for the extraordinarily detailed
descriptions of where species are, howmany of each species there
are, and the habitats that influence their occurrence.

MAKING SENSE OF THE DATA:
STATISTICAL ADVANCES

Along with the efficiency gains of recent technological advances
in species detection, comparable advances in statistical
approaches have allowed us to make sense of this massive
quantity of data to produce robust natural history inferences.
Thus, such efficiency gains, which enables the detection of
hundreds to thousands of species (e.g., DNA metabarcoding)
in hundreds to thousands of samples, have been followed by
advances in statistical approaches. Although these methods can
be used for a variety of applications including hypothetico-
deductive research, they are essential to describing patterns
of diversity, occurrence, and abundance of the large datasets
generated by next-generation natural history.

The emergence of new statistical methods for analyzing
community and metacommunity data, in particular (latent
variable) joint species distribution models, now allow an explicit
and flexible explanation of community composition by species’
environmental preferences, as well as biotic interactions and
spatial autocorrelation (Warton et al., 2015; Bush et al., 2017;
Ovaskainen et al., 2017). The ability to collect community
data at broad scales and analyze such data with new statistical
approaches effectively solves many of the problems around
data limitation and analysis that community ecology has long
struggled with, especially when using both techniques in synergy
(Bohmann et al., 2014;Warton et al., 2015; Creer et al., 2016; Bush
et al., 2017; Ovaskainen et al., 2017). For example, joint species
distribution models require large datasets, which may limit their
application to conventional, small metacommunity datasets. The
“novel community data” generated by sequencers and sensors is
much better suited for these complex models, especially when
quantifying changing biotic interactions over scales, in space, and
with the environment (Ovaskainen et al., 2016).

Beyond community-level data, statistical advances can correct
for imperfect detection of species in natural history observations
to produce reliable information about species occurrences. For
example, the development of occupancy models (MacKenzie
et al., 2018) has allowed next-generation natural history
observations, such as those collected with camera traps,
bioacoustics, or environmental DNA, to produce more robust
inference by disentangling the probability that a species is
detected from the probability that it occurs at a given spatial
location or under a given set of environmental conditions.
Dynamic occupancy models have extended this framework
to estimate rates of patch colonization and extinction, which
can be linked to biotic or abiotic predictors in long-term
monitoring programs (Royle and Kéry, 2007). In addition, these
models have been extended to co-occurrence models to quantify
species interactions by asking how the presence of one species
influences the probability that another is also present while
accounting for landscape covariates that may influence each
species independently (Bailey et al., 2009).

While species occupancy is an important state variable
in ecology, more recent statistical approaches allow for the
estimation of population density, and not just probability of
occurrence, from a wide variety of natural history datasets.
Perhaps the most transformative of these approaches is the
class of spatial population models that include spatial capture-
recapture, spatial mark-resight, and spatial correlated count
models (Royle et al., 2013), which overcome the sensitivity
of mark-recapture density estimates to closure assumptions
previously corrected for by placing a buffer around a study
area. Spatial capture-recapture is the most data-hungry of these
approaches because it requires the identification of unique
individuals such as through camera trapping of uniquely marked
individuals (e.g., jaguars, Sollmann et al., 2011) or with non-
invasive genetic sampling (Sollmann et al., 2013; Augustine et al.,
2019). As the efficiency of fecal genotyping has increased with
improved molecular approaches (Eriksson et al., 2020) and the
use of scat detection dogs, spatial capture-recapture has become
the canonical statistical framework for estimating population
density when animal identity is known. Genetic data can also be
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incorporated using close-kin mark recapture (first proposed by
Skaug, 2001) based on the principle that an individual’s genotype
can be considered a recapture of its parents’ genotypes, which
allows abundance to be estimated based on the number of parent-
offspring pairs in a sample. If only a portion of animals can
be uniquely identified, such as when combining cameras with a
subset of marked animals, spatial mark-resight models can be
employed to produce density estimates consistent with spatial
capture-recapture analysis (Ruprecht et al., 2020; Figure 4A).

Statistical approaches purporting to estimate the population
density of animals when no individuals can be uniquely
identified represent the most challenging problem, but attempts
at this include the random encounter model (Rowcliffe et al.,
2008), N-mixture models (Royle, 2004), spatial correlated count
models (Chandler and Royle, 2013), and more recently time-
to-event and space-to-event models (Moeller et al., 2018).
While these approaches have received some support in the
literature, they can be highly sensitive to the violation of
assumptions and further research is required to assess the
conditions under which some of them yield robust estimates
of population density (Duarte et al., 2018; Ruprecht et al.,
2020).

Statistical approaches have similarly advanced for the analysis
of a growing number of large animal movement datasets.
Resource selection functions and their variants were first used to
identify how animals used landscapes at multiple spatial scales,
but have increasingly been expanded to study how prey respond
to predators (Basille et al., 2015; Rayl et al., 2018) and how animal
movement rates vary according to landscape properties (Avgar
et al., 2016). Such estimation of animalmovement parameters can
now be used to infer the behavioral state of animals using state-
space models that account for imperfect locations (Patterson
et al., 2008), mixture-models (Morales et al., 2004), and hidden
Markov models (Franke et al., 2004), which can be used, for
instance, to distinguish active foraging behavior frommovements
between feeding patches and migration.

As new technologies in remote sensing have allowed us to
measure landscape variables with heightened accuracy, advances
in statistical approaches have been required to link landscapes
to the occupancy, density, space use, and distribution of
individual species or whole communities. The resulting datasets
are largely (but not exclusively) descriptive in nature. These
statistical advances applied to the large datasets afforded by new
technologies produce natural history insight that can lead to
new research questions and help address applied problems in
conservation and management in a manner distinct from how
natural history was conducted a generation ago.

DISCUSSION

Leveraging Next-Generation Natural
History for Ecological Theory,
Conservation, and Management
The technological advances discussed above are allowing
ecologists to engage in next-generation natural history. As
before with traditional natural history, this natural history

provides the observational data necessary for future ecologists
and conservationists to develop new hypotheses pertinent
to ecological theory, conservation, and management. Next-
generation natural history, however, provides robust, large
datasets of observations that cover large spatial and temporal
extents. Unlike traditional natural history observations that
produced anecdotes of what individuals saw and heard, next-
generation natural history observations are auditable, verifiable,
and archivable, thereby ensuring more reproducible research.
The archivable nature of next-generation natural history allows
for researchers to go back in time and ask and answer questions
about long-term changes or apply new technology that was
not available when the data were initially collected. Thus, next-
generation natural history description no longer depends on the
identification, interpretation of behavior, and documentation by
a few observers for a small set of observations, making it less
“old-fashioned” and “sloppy,” that is, more objective. With next-
generation natural history, hypotheses pertinent to ecological
theory, management, and conservation can be developed based
on richer and more objective data, thereby promising a more
robust theorization of the natural world.

In addition to serving as the jumping off point for hypothesis-
driven research probing ecological theory, next-generation
natural history provides greater objectivity and efficiency in
conservation and management. To highlight the efficacy of
next-generation natural history, we consider a case study
of the famous long-term study of the federally threatened
northern spotted owl (Strix occidentalis caurina) (Figure 4D).
Due to precipitous population declines, increased uncertainty
associated with estimates of vital rates for small populations,
and because non-invasive methods can be effective for detecting
and tracking population change of spotted owls (Duchac et al.,
2020; Lesmeister et al., 2021), this study is now transitioning
from traditional mark-resighting of individuals to passive
acoustic monitoring focused on occupancy. From a long-
term population monitoring standpoint there are several key
advantages to using next-generation natural history methods.
First, extended deployments of autonomous recording units
have dramatically increased effective survey coverage from
a handful of study areas to broad spatial coverage of the
forests in the Pacific Northwest. Further, the transition to next-
generation natural history methods allows for simultaneous
monitoring of an important congeneric competitor (barred
owl; S. varia) that contributes to spotted owl population
declines, in addition to providing a permanent record of all
vocal species at survey locations. These observations can be
linked to remote sensing data to describe and then generate
hypotheses about the relationships and effects of forest structure,
abiotic factors, and anthropogenic disturbance. This approach
would not be possible without the technological advancements
that enable long-term passive acoustic monitoring of forests,
hundreds of terabytes of acoustic data to be affordably
stored and archived, and the advent of high-performance
computers and artificial intelligence to automate the classification
of hundreds of thousands of hours of acoustic recordings
(Ruff et al., 2021).

The northern spotted owl case study is interesting not only
for the shift to using next-generation natural history to increase
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the spatial extent and scope of the project; the basic ecological
knowledge about this species gained by Forsman et al. (1984)
prompted one of the greatest changes to federal landmanagement
through the Northwest Forest Plan of 1994. Thus, natural history
and next-generation natural history can play a crucial role in
conservation and management by addressing one of the key
limitations to conserving biodiversity–a dearth of basic ecological
knowledge and a poor understanding of community ecology.

Such a lack of understanding persists with other taxa and
continues to restrict our ability to respond to disturbances
(e.g., timber harvest and wildfire) at local, regional, and
global scales. Despite protection of remaining old-growth
forests on federal lands through the Northwest Forest
Plan, numerous species became imperiled in the Pacific
Northwest (e.g., marbled murrelet, Brachyramphus marmoratus;
red tree vole, Arborimus longicaudus; Humboldt marten,
Martes caurina humboldtensis). Following next-generation
natural history studies that described the population size
using mark-resight models (Linnell et al., 2018) and diet
of the species through DNA metabarcoding (Eriksson
et al., 2019) among other studies, the Humboldt marten
was formally listed as a threatened species under the
Endangered Species Act, thereby increasing the protections
for the species and increasing effort toward long-term
conservation of the species.

Another example of next-generation natural history
informing management and conservation at the local scale
is possible from describing “what killed this animal?,” which
can have significant consequences for public perception,
management, and future policy in cases of livestock depredations
and crop damage. This question can be answered simply by
swabbing carcasses for DNA in a timely fashion (Williams
et al., 2003; Hopken et al., 2016) or through biologging the
predator (Bacon et al., 2011; Johansson et al., 2015). More
globally, describing “which tusks belong to the same elephant
and where did it come from?” in illegally trafficked ivory tusks
can reveal transnational criminal networks (Wasser et al.,
2018) because genotypes from numerous source populations
spanning entire continents were described through next-
generation natural history. Next-generation natural history is
therefore increasingly producing data streams that are allowing
for robust evidence-based conservation and management.
Used effectively, next-generation natural history can rapidly
inform managers, organizations, and nations that currently
have limited data concerning which organisms are present,
how organisms are distributed, and why organisms are where
they are. This rapid infusion of data to data-poor areas
can help identify mechanisms of species decline and propel
conservation efforts.

Training the Next Generation of
Ecologists
As ecologists are once again doing detailed descriptive research,
the distinction between natural history and ecology have
become blurred. We argue that researchers should embrace
detailed descriptions of nature as a critically important scientific

endeavor. Without the need for hypotheses to drive data
analyses, natural historians can make exciting discoveries by
looking for patterns that may have been overshadowed by
the results of hypothesis testing (Yanai and Lercher, 2020).
Further, unique natural history insights are finding their way
into journals of the highest caliber, suggesting that descriptive
natural history research is experiencing a renaissance through the
uniquely detailed observations made possible by next-generation
natural history.

As dedicated natural historians, we deplore the decline
in taxon-specific biology and systematics courses. Through
these formative courses, students learn how to interpret and
understand the natural world with direct first-hand experience.
Even more tragically, this decline has not been replaced with
adequate training in the requisite technical skillsets necessary
to conduct next-generation natural history. We are failing
to train the next generation of ecologists in both regards.
Both observation-based taxon-specific biology courses and
technical skillsets such as genetics wet lab techniques, proficiency
in computer programming languages, and a more robust
understanding of statistics, are necessary for future ecologists to
push the boundaries of next-generation natural history.

We acknowledge that a possible result of these technological
advances is a growing gap between natural history conducted
in developing and economically wealthy nations. Even though
new technologies have greatly reduced the costs of obtaining each
sample, much of the equipment necessary to acquire and process
data (e.g., sequencers, LiDAR sensors mounted on planes, high-
performance computers) remains quite expensive and requires
regular maintenance. Thus, next-generation natural history must
involve collaboration and scientists should strive to conduct
ethical science and leverage interests in these technologies to
enhance the diversity in our science.

Next-Generation Natural History Can
Connect More People With Nature
Naturalists often lament that the technological advances above
are detrimental to developing connections between humans and
nature, despite their promise of more rigorous science and
useful applications. We do not dispute that, for some people,
this is a possible consequence, and these technologies may
exacerbate the division of labor between fieldwork, data analysis,
and interpretation. But many modern ecologists are increasingly
bound to the office anyway. For example, post-doctoral scholars
are typically handed datasets that they did not collect themselves,
and principal investigators often desk-manage multiple projects
and their personal life at the expense of extensive field seasons.
In addition, the competition to secure an academic job and the
drive toward increasing citation metrics for career advancement
unfortunately disincentivize years-long hard-won field studies
where the data are collected by the person leading the research.
We, however, acknowledge that a solid amount of direct field
experience can be invaluable if not irreplaceable—particularly
in the formative years of many ecologists—as a source of
inspiration, intuition, and baseline information that can serve
as a “reality-check” in building sensible biological hypotheses
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for many years to come. Acquisition of direct anecdotal or
systematic observational data, even if the observer is armed with
nothing more than a pen and paper, are also an important step
to encouraging participation and gaining a robust gut-feeling
about how nature works. These anecdotal field experiences
importantly guide what to measure and which metrics to use
(i.e., study design) and help guide more effective evaluation of
patterns, generation of realisticmodels, and testing of hypotheses.
While collecting field data is still time consuming and labor
intensive, next-generation natural history can greatly boost this
field investment into hyper-dimensional datasets that often span
very large spatial scales with substantial replication.

The higher-quality datasets generated by next-generation
natural history motivate landscape to regional scale eDNA or
community-wide DNA surveys, biologgers on animals, camera
traps, or audio recorders. While there are consequences to using
new technologies to detect and identify species, the use of these
new technologies does not necessitate a disconnect between
humans and nature and between field intuition and data analyses.
Although implementing next-generation natural history takes
advantage of technological advancements, it continues to require
researchers to intentionally spend time in nature to deploy
devices through which observations can accrue and intuition
can develop. We argue that these technologies allow early
engagement of students to see, hear, or otherwise detect animals
in the wild and inspire engagement with nature.

Next-generation natural history also allows ecologists to
bring the experience of nature to humans without having
to invest in long field seasons. Data collectors can share
photographs of rare and cryptic animals, sounds of the forest,
and movement of animals without observation bias. With the
use of the internet, these experiences can be shared across
the globe with millions of people, which allows ecology to
be more inclusive while having minimal impact on wild
places. No longer is a 4-year botany degree needed; kids
can at least play with apps like iNaturalist and have their
observations auto-identified through computer algorithms and
verified by other observers. While these virtual experiences
are valuable for science communication and engagement,
they are a complement but not a substitute for directly
connecting with nature. This inclusivity allows people with
disabilities or those in an increasingly urbanized world to
gain new avenues for the appreciation and understanding of
nature. Those without an entry point for hiking and camping
(e.g., people from urban environments), international travel
experience, money, or freedom from family obligations to
spend months away from home can contribute to research and
develop a connection with the flora, fauna, and places that are
otherwise inaccessible. Even non-experts can help collect data
for analyses by placing devices on their property or by tagging
photos and sounds (e.g., via Zooniverse). By including these
traditionally excluded groups, next-generation natural history
can diversify, increase its stakeholders, and influence nature
conservation policy.

We argue that an ongoing development of next-generation
technologies for natural history is deepening our connections
with nature instead of eroding them. As Wilmers et al. (2015)
state in their review of biologging, “Ecologists often lament
that increased use of technology is removing ecologists from
the field and so causing a general decline in natural history
skills. Our experience, however, has been the opposite. The more
multidimensional and fine-scaled animal sensors become, the
more time and effort is required by biologists in the field to collect
the environmental covariates that are used to predict sensor
output.” In our experience, next-generation natural history
projects require a different approach to fieldwork. Although
initially researchers may spend less time in each location, the
benefits of next-generation natural history research facilitate
robust landscape-scale studies that continue to require extensive
time spent in the field. The devices deployed and samples
collected allow us to multiply our sampling locations while
increasing the duration of sampling time, thereby increasing our
sampling effort and area of inference. These new technologies
allow us to process samples quickly and efficiently, sometimes
even in real time. What has changed in natural history is that
in addition to extensive collection of field data, ecologists now
implement advanced statistical, computational, and molecular
methods when returning from the field to answer the question at
hand.We argue that the result is a deeper understanding of nature
that can build a greater appreciation for nature and motivate
its conservation.
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