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THE RATE AT WHICH ENERGY DECAYS IN A DAMPED STRING
Steven Coxt and Enrique Zuazuaj

tDepartment of Computational and Applied Mathematics, Rice University, P.O. Box
1892, Houston, TX, USA.

{Departamento de Matematica Aplicada, Universidad Complutense de Madrid, 28040,
Madrid, Spain.

ABSTRACT: The energy of a string subject to positive viscous damping is known to
decay exponentially in time. Under the assumption that the damping is of bounded varia-
tion, we identify the best rate of decay with the supremum of the real part of the spectrum
of the infinitesimal generator of the underlying semigroup. We analyze the spectrum of this
nonselfadjoint operator in some detail. Our bounds on the real eigenvalues and asymptotic
form of the large eigenvalues translate into criteria for over/underdamping and so aid in
the attempt to distribute a given amount of viscous material so to maximize the rate of
decay.

1. Introduction

The displacement u of a string of unit length, fixed at its ends, and in the presence of
viscous damping 2a, obeys the boundary value problem equation

up(z,t)—uzz(z,t) + 2a(z)u(z,t) =0, 0<z <1, 0<4, (1.1)
u(0,t) = u(1,t) =0, 0<4{,

upon being set in motion by the initial disturbance
u(z,0) = ug(x), u(z,0)=vo(z), (1.2)

assumed an element of the energy space X = H}(0,1) x L*(0,1) with inner product

(If, 9], [u, v]) =/0 '@’ + gvde.

We assume a € L is nonnegative and strictly positive on some subinterval. In this case,

the energy in the string at time ¢,
1
E(t) = / ui(z,t) + ui(z,t)dz
0
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is know'n 'tfx obey E(t) < CE(0)e**! for some finite C > 0 and w < 0, independent of the
chosen initial data. We define the decay rate, as a function of q, as

w(a) = inf {w : 3C(w) > 0 s.t. E(t) < CE(0)e, (1.3)
for every finite energy solution of (1.1)}.

We shall interpret (1.1) as the system V; = AV where V = [u,us], A: D(A) — X,

0 I
A= (e ha)e  DA=(EODNE0,D) x BIO.D),
In terms of decay, the relevant measure is the spectral abscissa of A,
p(a) =sup{ReX: A € a(A4)}, (1.4)

where o( A) denotes the spectrum of A. It follows easily that p(a) < w(a). Our main result
establishes the reverse inequality under the assumption that a is of bounded variation. To
. our knowledge this has yet to be done carefully even in the case of constant damping. In
devoting §2 to this case we establish the procedure to be followed in the variable coefficient
case. In §3 we provide rough preliminary bounds on ¢(A). In §4 we establish necessary
and sufficient conditions for the presence of real eigenvalues and so sharpen the results,
including the proof of a conjecture, of J. Rauch [10]. In §5 we find the asymptotic form of
the eigenvalues and eigenfunctions. These asymptotic forms allow us, in §6, to conclude
that the root vectors of A constitute a Riesz basis for X. This in turn provides a Parseval
equality from which the desired control on the decay rate in terms of the spectral abscissa
follows easily. We close in §7 with comments on related problems and methods.

2. Constant Damping

We recall the spectrum of A when a is constant. If V = [y, z] € D(A) is an eigenvector
of A with eigenvalue A then z = Ay and y" —2az = Az, or

y" — Ay —2ady =0, (2.1)

subject to

WO =y =0 (22)

When a is constant it follows that A2 + 2a\ = —n27?, that is,
Agn = —a Va2 —n?72, n=12,.... (2.3)
with the corresponding eigenvector
Vin = sin(nmz)[1, Asnl],
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when n is such that Ay, are distinct. Should a = kn for some integer k, we call such a
defective, define Vi = sin(knz)[1, —kn] as above and the generalized eigenvector V_i via

(A - /\k)V—k = Vi and (Vk,V_k> = 0. That is,
V_i = 3 sin(krz)[1/(kr), 1].

Hence, the algebraic multiplicity of Ay = —a is at least two. We pause to show that it
1s precisely two and that this is the only eigenvalue of algebraic multiplicity greater than
one. If the algebraic multiplicity of A, is to exceed one then one must be able to solve
(A= Ap)Vo1 = Vi With V1 = [¢, 4], this requires ¥ = A, ¢ + sin(n7z) and

¢" +n?nr?p = 2(\, + a)sin(nrz), $(0) = 4(1) = 0.

This possesses a solution only when a = —A; for some k, i.e., when a = kn. For its
algebraic multiplicity to exceed two, one must then be able to solve (A — A\g)Vi 2 = V_i.
With Vi 2 = [f, g], we find g = A\, f + sin(knz) and

"+ k*n%f =sin(krz), f(0)= f(1)=0.

As this equation does not possess a solution, the algebraic multiplicity of A,, may not exceed
two. Apparently, the algebraic multiplicity of A, is its order as a zero of A\? 4+ 2a\ 4+ n?72.
As this remark will not survive the passage to nonconstant damping we turn to the more
general characteristic polynomial, A — y3(1, 1), of the so—called ‘shooting method’. Here
z +— y2(z, A) is the solution of (2.1) subject to the initial conditions

y(0,A) =0, ¢'(0,\)=1. (2.4)

Clearly the zeros of A — y2(1, ) are the eigenvalues of A. In addition, we shall see that
an eigenvalue’s algebraic multiplicity is the order to which y,(1, A) vanishes. As expected,
this may be checked explicitly when a is constant. For, in this case

sinh VA% 4+ 2\azx

JA) = 2.5
va(=, ) N 1 2ha (2:5)
Denoting /08X by * we find

\ (An +a)(=1)"*!

y2(17An) = n27r2 .
This vanishes only when A\, = —a, i.e., when a = nx for some n. The second derivative at
such a root, §2(1, —a) = —1/a?, is however, nonzero.

We next demonstrate that {Vi,}S2; constitutes a basis for the energy space X. This
is done by comparing it with the orthonormal base of eigenfunctions of the undamped

problem, a = 0, namely
., =sin(nrz)[l/(n7),£t], n=12,.... (2.6)
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For nonreal ),, we normalize the corresponding eigenvector, V,, = -L sin(nrz)[1,\,], and
nm

find that
®n — Vall% = li — An/(mr)lz/ sin®(nrz) dz = O(1/n?).
0

Hence {Vi,} is quadratically close to {40}, i,

oo
S @0 = Val% < 0.
n=x%1

To see that the Vi, are, in addition, linearly independent, we turn to the eigenvectors of

the adjoint of A,
* 0 _'I .
AT = (—dz/d:l:2 —2a ) ’ : (2.7)

Of course the eigenvalues are precisely those of 4, see (2.3), including multiplicities, while
the corresponding eigenvector is

Win = sin(nrz)[1, —Az,)

when Ay, are distinct. Should a = kn for some integer k we define Wy = sin(kwz)[1, k7] as
above and the generalized eigenvector W_g via (A* — A\ )W_x = Wy and (W_;,V_;) = 0.
That is,

W_i = 3 sin(krz)[1/(kr), —1].

When a is not defective we see that (V;, Wy.) = —2A;(a+A;)6; », and hence V;, can not be in
the closed linear hull of the remaining Vj, i.e., {V,}52% is a linearly independent set. If, in
fact a = kn for some k we note that (i) for j # k, as above, (V;, W,,) = —=2X;(a + A;)é; n,
and (i) (Vik, Wa) = (k7/2)6+k,—n. Hence, even in the defective case, {V,}%,, is a
linearly independent set.

It now follows from the Fredholm Alternative, see, e.g., [9, App. D, Theorem 3], that
a linear independent set that is quadratically close to an orthonormal basis is in fact
equivalent to that basis in the sense that there exists a linear isomorphism 7 of X under

which Vi, = Z®4,. We may now prove the desired special case of our main result.

Theorem 2.1. If a is constant then p(a) = w(a).

Proof: We may expand the initial data as

o0
[UO,UO] = Z 7nVn,

n=%1
and note that, so long as a is not defective,
oo _
[wu] = ) exp(Ant)1nVa (2.8)
n=x%1
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satisfies (1.1) and (1.2). Moreover,

+oo 2
I exp(Ant)1a®n

n==1

E(t) = |[u,ud| =

X

+oo
<NZIP ) lexp(Aat)?|yal?
n=x=1
+o0
< IITI? exp(20st) Y Jynl?
n=x=1
2

+oo
= ||Z1I exp(2ut) | 3~ 7n®n
n=z%1

X
2

Foo
= |ZI* exp(2ut) |[Z71 )" 7aVhn
n==1

< IZIPNZ™* E(0) exp(2put).

X

In case a = k7 we must of course modify (2.8) to

Fo0

0] = texpOutyroiVi + 3 exp(hatinali
n=x%1

and so obtain E(t) < ||Z]|?|IZ7!||2E(0)(1 + t) exp(2ut). Hence, even in the defective case,
p(a) is the decay rate, though the infimum in (1.3) is not attained, i.e., there exists no

finite C for which E(t) < CE(0)exp(2ut). o

A sequence in a Hilbert space H that is the image of an orthonormal base for H under

a single linear isomorphism is commonly known as a Riesz basis for H.

This result allows us to express the decay rate in terms of the easily computed spectral
abscissa, pu(a) = —a+ Re va? — 72, This makes precise the notion of under(over)damping

when a is less(greater) than .

3. The General Case

We now prepare to prove Theorem 2.1 in the variable coefficient case. Here we shall

assume only that
0<a<a(z)Lf <o

almost everywhere in (0,1). The eigenvalues of A are the poles of the resolvent (4 — X)L

To solve (A — A)[vy,v2] = [f1, f2] is to solve vy = Avy + f; and

v — A A+ 2a)v, = fa + (A +2a)fr.
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Solving the latter via the Green’s operator, v; = G(A)(f, + (A4 2a)f1), we find

GO)(A + 2a) A
(4-07 = <I+AG(A)(A+2a) AG((A))) (3.1)

This Green’s operator is

1
m»«&=égu@ﬁmwm,wmm (32)
w;!z,/\!yggf,)‘! fO < < <1
(2,6,0) =14 , 20N s (3.3)
LN fo<r<e<

where z — y;(z, X)) and z — wy(z, A) solve (2.1) subject to (2.4) and
respectively. This has prepared the following rough estimate on the spectrum of A.

Theorem 3.1. (i) A possesses a compact inverse and so a discrete spectrum o(A) of
eigenvalues of finite algebraic multiplicity. (ii) The eigenvalues are the roots of A\ —
y2(1,)A). If A, is such a root then ys(z,\,)[1,\,] spans the corresponding eigenspace
and its algebraic multiplicity is the order to which A +— y5(1,)) vanishes. (iii) o(A) is
symmetric about the real axis and is contained in

{(AeC:|\|>m —B<ReA< —a}U[-B— (B - )% —a+ (B2 — )%  (3.5)

(iv) The root vectors of A are complete in X.

Proof: (i) From (3.1) and (3.3) it follows easily that ||[A™'®,||x = O(1/n), so, in fact A~!
is Hilbert-Schmidt.

(i) If AV, = AV, and V,, = [y, 2] then, as just sketched, V,, = y[1, A,] where y satisfies
(2.1) (at A,;) and (2.2). As the initial value problem (2.1)-(2.4) possesses the unique
solution yz(z,A,) we see that y must be a scalar multiple of y3(z,A,) and y2(1,A,) = 0.
Hence, the geometric multiplicity of each eigenvalue is one. Its algebraic multiplicity is its
order as a pole of the resolvent, which, again via (3.1) and (3.3), we recognize as its order
as a zero of A — ya(1,A).

(iii) As A is real it follows that V, = ya(z,An)[1, An) is an eigenvector of A corresponding
to the eigenvalue A,. On integrating each side of (2.1) against ya(z, An) we find

1 2 1 2 2 1 42 1 2 1
— Ja alyal?dz £ ( () alwaPde) = [} lv3l? da [y |y [ de
I ly2|? de '

Hence, if ), is a nonreal eigenvalue, we find

(3.6)

Ap =

1
— Jy alyz|? dz

, and (ImX,)* =
[} 2|2 dz

Re ), =

.QMPM_(—ﬂMwF®>2

I y2 |2 de I3 y2? da



It follows that —3 > Re A\, > —a and [\,;|? = (Re,)? + (Im A,)? > 2. When ), is real

we observe that

( 1 2 2 Ly 12 1 2
Jy alyal? dz)” = fy Iy ? do f; lyal? de
Jo lyal? de

(iv) Our A is a bounded perturbation of a skew symmetric (undamped) operator and so
this claim follows directly from Theorem 10.1 of chapter 5 of Goberg and Krein [3]. g

1/2

< (B - 71,2)}{_/2_

The upper bound on Re A in (3.5) is far from sharp. In particular, the upper bound on
the largest real eigenvalue may be positive! We rectify this in the next section. Regarding
the bound Re A < —a on nonreal eigenvalues we have already noted that so long as a is
strictly positive on a subinterval exponential decay is assured.

The lower bound on real eigenvalues expressed in (3.5) corrects the statement of
Corollary 8 in [10]. The lowest order term in the first PDE of of the proof of Theorem 7
in [10] should have as its coefficient (a? — aa) rather than (a? + aa).

4. Low Frequencies

It is clear from the previous Theorem that # > 7 is a necessary condition for existence
of real eigenvalues. We assume this inequality throughout the section.

We exploit the observation that the real eigenvalues of A are the fixed points of
a parametrized self-adjoint eigenvalue problem. Regarding A\ < 0 as a parameter, the
problem,

" = A =2vap, $(0) = (1) =0, (4.1)

admits the simple eigenvalues
0> 11(A) > 1r(X) >— —o0, (4.2)

and a corresponding base of eigenfunctions {¢;}. Clearly, Ay is a real eigenvalue of A if
and only if it is a fixed point of A — vg(A) for some k. Consequently, we take a close look
at the dependence of vx on a and A.

From the well known characterization

1 "2 4 )2 1 24
uk(/\)=—minmaxf° W da+ X )y 4 da

- , (4.3)
Ex $EE: 2 [, ayp?dz

where the Ej vary over the k—dimensional subspaces of H} (0, 1), come the rough estimates

2.2 _ )2 2.2 )2
Lt WS WP e i it

50 55 (4.4)

From the ordering in (4.2), the real eigenvalues of A must lie between the fixed points of
A — v1(A). Hence, (4.4) provides the following improvement of (3.5),

J(A)NRC[-B— VB =2, —B+ /B — 2. (4.5)
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As -3+ /B2 — 72 < —a when a(28 — @) < 7% we have found a simple proof of Theorem
6 of [10].

Theorem 4.1. If (28 — a) < n? then 0(A) C {z € C : Rez < —a}.

From the upper bound we see that if # < kw then A has at most k£ — 1 real eigenvalues
larger than —3+4/8? — (k — 1)?x2. This, together with the fact that no nonreal eigenvalue
has real part greater than —a, gives the following affirmative reply to a conjecture of Rauch

[10].

Theorem 4.2, If § < kn then A has at most k — 1 eigenvalues with real parts in excess
of —a.

To guarantee the presence of a real eigenvalue greater than —a one finds from the
lower bound in (4.4) (with k = 1) that it suffices to assume a > 7.

Each of these results holds for bounded domains @ C R™ with kn? replaced by the
kth eigenvalue of the negative Dirichlet Laplacian on .

In hopes of establishing sharp sufficient conditions we pause to sharpen the lower

bound under the assumption that ay = fol adz is also known. In this case one may argue
as Krein [7, §4.3] and find

k(A) < vi(X) (4.6)
where k() is the kth eigenvalues of (4.1) with damping

a(z) =4 @ Hze€(mi—grmitgp) j=1...k
B, otherwise,

where mi = %;Ll is the midpoint of the interval (J;—l, %) and v = (B — a9)/(B — @) is

the volume fraction of @ material. Being piecewise constant, it is not difficult to compute
the associated eigenvalues. These calculations take their most simple form when a = 0.
We note that #x()) is the first eigenvalue of each of its nodal domains. By symmetry,
its first nodal domain is (0,2m}) = (0,1/k), and on this interval the corresponding kth
eigenfunction is in fact even. Hence, 7;()) is the greatest negative v for which

P'(z) = (N +28)(z), 0<z <3, $(0)=0,
P"(z) = A%, 25 <z < 2=, ¥ (35) =0,
possesses a nontrivial C! solution. Matching sinh(1/A2 + 2vfz) and ccosh(A(z — 5%)) to

first order at x = =22 we find 7x()) to be the greatest negative root of

2kpB
tanh(335 /A% + 2v8) _ coth(ﬁ-(%‘l - 1))
VA 4+ 203 A
As X < 0, so too is the right hand side. The left side is positive up to its first negative

pole, where 5%95 A2 4 2v8 = in /2, after which it is negative up to its first negative zero,

where 22-1/A2 + 203 = in. That 7x()) is trapped between this pole and zero means

2k8
—(2kmfag)? — N —(kmB/ap)? — A2
283 28 '

IN

7(A) <




On combining this with (4.6) we find, for nonnegative a bounded by 8 and of mean aq,

that
—(2kmB/ag)? — A2 —k%7? — \?

28 2p

As an immediate improvement of the remark following Theorem 4.2 we see that when

ap > 27 and
p) 2
> 1 Vag —4r

ap

<wr(A) < (4.7)

™| R

that

—(278/a¢)* — o?
< 28
and hence that —a < v;(—a) from which it follows that A has a real eigenvalue greater
than —a.
We shall also require vk, the derivative of v with respect to A. Formally, this is
simply the derivative of the Rayleigh quotient in (4.3) evaluated at the corresponding
eigenfunction,

—A fol idz
fol ayldz
For a precise derivation we note that A — (d?/dz? — A?) is a holomorphic family of type

(A), in the sense of Kato [6]. As each eigenvalue is simple, (4.8) follows directly from
formula (VIL.6.29) on page 422 of [6].

Ue(A) = (4.8)

Theorem 4.3. Assume that A has j distinct real eigenvalues. (i) If j is even then each
of these eigenvalues is of algebraic multiplicity one, they may be ordered

A1 <A< <Al <Ay < <A < Ay,

and = — yo(x, A1k) has precisely k — 1 zeros in (0,1), for k =1,2,...,5/2. (i) If j is odd
then one has the ordering

Ay <A <o < Aonz < A-Gan/z T AGHD/2 < Ag-n/2 << A2 < g,

and = +— yo(x,Asx) has precisely k — 1 zeros in (0,1), for k = 1,2,...(j + 1)/2. For
k < (j —1)/2, the algebraic multiplicity of A4} is one while that of A(j1)/2 is at least two.

Proof: Assume that A has but one real eigenvalue, A;. In this case, A; is in fact a multiple
root of v1(A) = A. For, if not, the monotonicity of v and the fact that it behaves like -2
for large A would together produce a second distinct root. Hence,

. A7 Yidz . —f ay? dz
1= 1/1(/\1) = _i_f()2—l, l.e., Al = ——f(l)—'?l—
fo ay$ dz fo Yide

We now show this to be a necessary and sufficient condition for y2(1, A;) = 0. Differentiate
(2.1) with respect to A

yn(z, ) — Mo(z, N) — 2a(z)Ag2(z, A) — 2(X + a(z))y2(z,A) = 0, (4.9)

9



multiply by ys, subtract the result from the product of (2.1) and ¥,, and conclude
Y293 — 92y2 = 2(A + @)y3.

Upon integration this yields

§2(1, \yh(1, 1) = 2/0 (A + a)y2(z, \) de.

Now y5(1, A1) # 0 by the uniqueness of the initial value problem for (2.1). Hence,

. 2 [ ,
y2(1, A1) = m/o (M +a)pide =0.

so the algebraic multiplicity of A; is at least two. As y,(z,A;) = ¥;(z) it follows that
z — yo(z, A1) has no interior zeros.

If A has two distinct real eigenvalues then by the monotonicity of A — v¢(A) and the
ordering of the vy they are simple roots of A — 1;(\) and hence of algebraic multiplicity
one. At each root y, is the first eigenfunction of (4.1) and so has no interior zeros in z.

If A has three distinct real eigenvalues we recognize the outer pair to be simple roots
of v1(A) — A while the center is necessarily a multiple root of v2()\) — A. The pattern of
multiplicities and interior zeros is now established. g

Regarding sufficient conditions we note that if v possesses two fixed points then so
does v; for each j < k. By the lower bound in (4.7), for v to possess two fixed points it
suffices to have two real roots of

A2 426X + (2k7B/ag)?.

We have established
Theorem 4.4. If ag > 2kw then A has at least 2k real eigenvalues.
Our primary interest being the determination of the decay rate via the supremum of

the real part of the spectrum of A, we now focus on lower bounds for v, alone. From (4.3)
comes

S 18P dz + N2 [ p?de
2 fol ay? dz

Hence, v; will have a fixed point when there exists a 1 for which

1 1 1
/ l'|? d:c+/\2/ p? dz+2/\/ ay? dz
0 0 0

<1 (A), Vo€ Hj0,1). (4.10)

possesses a real and negative root, i.e., a ¥ for which F(¢) > 0, where

1 2 1 1
F(y) = (/ ay? d:l:> —/ g d:c/ y? dz.
0 0 0
10



Theorem 4.5. A has a real eigenvalue iff there exists a ¢ € H}(0,1) for which F(4) > 0.
Proof: If A has a real eigenvalue Ag then, recalling (3.6), we find F(y2(:, Ag)) > 0. Suffi-

ciency was established above. g
Accordingly, we turn our attention to F.

Lemma 4.6. Ify € H;(0,1) then

1 1 1/2 1
/ ay?dz < ag (/ Tk dx) (/ y? d:r)
0 0 0

/ 'y de = / o) ([ woweras— | 1 YW(s)ds ) do
//a(m)y s)y'(s dxds—/ / a(z)y(s) s)dmds

=/0 y(s)y(s>(/s )iz - [ a(a)ds ) ds
Sao/ollyy'ldwsao</0 y dx) (/ Iylzdw) ]

This gives a necessary condition solely in terms of ay3. Compare the corresponding
sufficient condition of Theorem 4.4.

1/2

Proof:

Corollary 4.7. If A has a real eigenvalue then ag > 1.
Proof: There exists a nontrivial y for which

1 1 1 2 1 1
/ly'lzdm/ y2dw§(/ ayzdw) Saﬁ/ Iy'|2dw/ y* dz. g
0 0 0 0 0

We can improve both of these results upon recalling Krein’s bounds on A;, the least
eigenvalue of

—¢" = Aag, 4(0) = ¢(1)=0. (4.11)
In particular, see [7, eq. (0.2)],
2
2 o< g (4.12)
Qo 0

Theorem 4.8. If A has a real eigenvalue then Bay > 4.
Proof: We have

1 1 1 1
/ ay’de < ,3/ y*>dz and / ay?dz < —/ ly'|* de,
0 0 0 Ar Jo
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and so, for that y for which F(y) > 0 we find,

! 12 12 2 ,3 ! 12 12 IB ! 12 12
/lyldw/ydxsaoS—/ Iyldw/yde—ao/ Iyldw/ydfc-l
0 0 Al 0 0 4 0 0

Recall from figure 1 that the decay rate under constant damping can be no less than
—7. It may be possible to do better with variable damping, though not when the square
of the average of a exceeds the product of its maximum and =.

Theorem 4.9. If a2 > 73 then A has a real eigenvalue on each side of —.
Proof: Let ¢; denote the first eigenfunction of (4.11), and from

1 1 1 1
7r2/ $2 de < / |¢}|* dz  and / |6} |? dz = Ay / a¢? dx
0 0 0 0
deduce that

1 1 2 1 2 2 22 1
/qsfdx/ 6 2de <M /aqsfdx < ™5 /aqs';’dz
0 0 72 \Jo “3 0

Hence, if a2 > 3 then F(¢;) > 0 and so A possesses a real eigenvalue. Recalling (4.10)
we see that this eigenvalue is in fact to the right of the largest root of

2

1 1 1
/ |<15'1|2 d:v+/\2/ (15% dm+2)\/ aqﬁ% dz,
0 0 0

i.e., to the right of

_/01a¢§dm+<(/ a¢2dx> /|¢1[2dx)

Whether this value is greater than —7 is equivalent to whether

1 1
—/ |4 |? dz > n* — 27r/ a¢? dz,
0 0

(2 o) bl .
Ay fo $2dz

which in turn is equivalent to A; < 7 which indeed is true when a2 > 7.
The second root is smaller than —m exactly when

1 1
n? — 27r/ a¢l dz < —/ |6} |? dz,
0 0

12
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precisely as above. g
5. High Frequencies

There exist a number of means by which one may study the large eigenvalues of A.
Henry, [4], in the context of functional differential equations, argues that if Ty(¢) is a
semigroup whose asymptotic behavior is determined by the spectrum of its infinitesimal
generator then the same may be said of any compact perturbation of Ty. Neves, et al., [8],
have extended Henry’s findings to systems of hyperbolic equations in one space dimension.
Our asymptotic form for the spectrum, under the hypothesis that a € C(0,1), follows
from Theorem B of [8}.

A second, more classical, approach that yields asymptotics for both the eigenvalues
and eigenfunctions is the shooting method. Here one studies A — y3(1, A), where ya(z, )
solves (2.1) subject to (2.2), for A of large magnitude. Such an approach has been system-
atically studied by Birkoff and Langer [1]. Chen et al., [2], argue, without proof, under
the assumption that a € C*(0,1), that (2.1) is indeed amenable to the methods of [1] and
proceed to claim the asymptotic form for the eigenvalues found below in our Theorem 5.3.

We too shall adopt the shooting method, though in guise perhaps closer in spirit to
Henry than to Birkoff and Langer. In particular, we shall use an ansatz of Horn [5] to find
an exact solution to an equation that differs from (2.1) only by a potential term. We then
develop y, as a power series in this fake potential. Via this explicit elementary approach
we shall see that it suffices to assume a € BV(0,1). We were guided in this application of
the shooting method by the elegant exposition of Poschel and Trubowitz [9].

The ansatz for (2.1) suggested by Horn is

u(z,2) = §(2)ND Y fa(@)A7", folz) = 1.

Its application in (2.1), upon equating like powers of A, produces, as a first term
71z, \) = e,\z+fo’ adt
This of course does not satisfy (2.1) but rather
—2" + X%z 4+ 2)az+ (a* + d')z = 0. (5.1)

Though this makes sense as an equation in H~1(0,1) (write a’z = (az)' —az'), by requiring
slightly more of a we shall gain sufficient control of z. We shall assume that a is of bounded
variation. In this way, a’ is a measure and the standard weak form of (5.1) has sense. Via
reduction of order (5.1) possesses the second solution

2oz, A) = 21(, /\)/ 2(t ) dt = Az+f0=adt/ 6—2At—2foads dt.
0

Note that 2, satisfies (2.4) and, upon integrating by parts, that

22(513 A) —SlIlh()\.’L' + fO adt)+ )‘I+fo adt/ ae_zl\t_2 fo ads dt.
0

13



Hence, 2, obeys the crude bound

e3f(1+ B)

<
|22($’A)I = \AI )

(5.2)
when 0 < z < 1 and —28 < Re A < 0. Integrating by parts once more produces

22z, \) = isinh(xa,- 4 7 adt)

2%6/\2-{—!0 adt (a(O) — a(z)e~ P2 [ aat +/ (@ — 2a2)e” M2 [l ads dt) .
0

Hence, where 0 < z < 1 and —28 < Re A < 0, we see that

e*?(T, + % + B)
A2 ’

|za(z, A) — %sinh(/\x + [y adt)| < (5.3)

where T, denotes the total variation of a. We demonstrate that y, may replace 2, in the
above. Compare [9, Theorem 1.1].

Theorem 5.1. If a € BV(0,1) then there exist constants Cy and C; such that

1. . Co(B,T,
lya(z, A) — X sinh(Az + [ adt)| < L(lf-l—z-—) (5.4)
and
lyj(z,A) — cosh(Az + f; adt)| < % (5.5)

uniformly for 0 < z < 1 and —28 < Re A < 0.

Proof: Note that ys is the solution of
—2" + X242 az + (a® +d )z =(a®* +4d')z, 2(0)=0, 2'(0)=1.

Hence,

yo(z,A) = zo(z, A) + /:{zl(:c, Nzz(t, A) — za(z, M) 21 (¢, M Ha?(t) + a'(2))y2(t, N) dt

= z2(z,\) + /0 " Kzt ) (a2(t) + a'(8))yalt, \) dt
(5.6)

We solve this integral equation in series form

y2(z,2) = z2(z,\) + ¥ Sn(z, V),

n=1

14



where Sy = 29 and

Sn(z, ) = /OI K(z,t,A)(a*(t) + a'(t))Sn—1(t, A) dt

_ / 2a(tn, ) [TIE (b1, i Aa2(t:) + a'(8))] dty - dit .
OStIS"'Stn+1=I

=1

Having estimated z2 we turn to K. In particular,

K(z,t,A) = z1(z, A)z1(t, A) /tf 27 %(s, ) ds

= _Tl sinh(A(z —t) + ftl ads)+

%e/\(z+t)+ JSadt + fot ads /I ge-2e-2 [ adr 4
t

As a result

e?P70(1 + B)

|K(z,t,))| <
Al
With this we find
eGﬂ(1+ﬂ)"+1/ -
Sa(z, N)] < a?(t;) + a'(t;)| dty - - dip.
|Sn(z, )| e OStls---Stn+1=zgl () + d'(t3)] dts

= eSﬂ(|1/\-|tfl)n+1$ (/Oz la®(t) + a'(t)] dt)n

eSB(1 4 Byt (B2 +T.)"
= BE nl

when |A| > 1. Hence, the S, are summable and

oo

> Sn(z,A)

n=1

58 2 68+(1+8)(Ta+8%)
Tt B +B) (148
- |Al2 |2

1., T 1. z
ly2(z, A) — X sinh(Az + [ adt)| < |za(z, ) — " sinh(Az + [ adt)| +

This establishes (5.4).
Regarding the estimate of y} we simply differentiate (5.6),

ya(z, A) = z5(z, ) + /01 K.(z,t,2)(a?(t) + a'())y2(t, \) dt.
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and proceed to bound each of these terms. First, from

zo(z,N) = (A + a)z2(z, A) + e~ AT fo adt

= cosh(A\z + [ adt) + a(;) sinh(Az + [ adt)—

1 “a - -2 (%a ‘ —2xt-2 [‘a

2\

comes the estimate

38
|24(2,X) — cosh(Az + [y adt)| < (8% + B + o).

LY
Next,
|KI($7 t ’\‘)| = |Zi($, ’\)ZZ(t’ ’\) - Z;(IL‘, ’\)21 (t’ ’\)|
= |A + a(z)||21(z, M[22(8, M) + [A + a(z)]|22(z, M)l|21 (¢, A) |+
ENCPYIEACPY]

< e*(3+2p).

And finally, .
2 )| < Sr(14 B)(1 4 PHI+AG 4T

Together, these three estimates produce

6g
lyy(z,A) — cosh(Az + [, adt)| < %ﬂ—(ﬂz +B+T)(4+58+28%)(1+ e3ﬂ+(1+ﬂ)(B2+Ta)),
and the proof is complete. g

Via Rouchés Theorem this result will force the (large) zeros of A — y2(1,A) to lie in
a neighborhood of the roots of A — A~!sinh(\ + ag), these being

—ag tinm, n==+1,%£2,....

To make this precise we choose N, the least integer greater than 4Cy /7, and, with respect
to

'yv={z:|z4+ay|=Nr+n/2}, and

Fin ={z:]2+ao Finn|=2Co/(n7)}, n> N,
prove the following preliminary estimate
Lemma 5.2. If z € ', and n > N then |sinh(z + ag)| > Co/|2].
Proof: If z € Ty then z = —ap + (N7 + 7/2)e*® where 6 € [0,27). Hence,

| sinh(z + ag)|? = sinh? (N7 + 7/2) cos §) + sin?((N7 + 7/2)sin §).

16



As this function achieves its minimum at § = 7/2, we see that
|sinh(z 4+ ag)| > 1, z€Tn.

As Co/|z| < 1/4 for z € 'y our claim follows for n = N.
If z €T, then z = —ag + in7 + pre'? where p, = 2C;/(n7) and 6 € [0,27). Hence,

| sinh(z + ao)|? = sinh?(p,, cos §) + sin®(p, sin §).

This too achieves its minimum at § = 7/2. Hence, via the mean value theorem,

|sinh(z + ao)| > sin(pn) = pn — $p2 sin¢

for some ¢ € (0, pn). As

Co Co Co

= _ _ — < :
|z2| | —ap+inT+ ppet®| T nw—p,

it remains only to check that

that is, that

. nw 1

As Cy > 1 the right hand side in fact is larger than one when n > 4Cy /7. g

Theorem 5.3. Ifa € BV(0,1) then A has exactly 2N eigenvalues, including multiplicity,
in I'ny and one simple eigenvalue in 'y, for each n > N. This exhausts the spectrum of A.

Proof: For A € T',, we see that

sinh(A + ao)
A

Co
~ AP

sinh(A + ao)
A

y2(17 ’\) -

Hence, by Rouchés Theorem, yo(1,A) possesses the same number of zeros in I',, and in
the complement of their union, as A™* sinh(\ + a¢). g

This affords an immediate comparison with the constant case.

Corollary 5.4. If a € BV(0,1) then w(a) > —ag. In particular, over all such a with
ap < , the constant a = m achieves the greatest rate of decay.

Proof: From the Theorem we find the spectral abscissa, u(a), to be no less than —ag. As
w(a) > p(a) the result follows. g
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The Theorem also provides us with a means to order the large eigenvalues of A. We
write

U(A) = {/\n fio;tl

where

An+ag| < Nr+7/2, |n|]<N, and |An+a0—inw|§%, In|>N.  (5.7)

These eigenvalue estimates may now be used to refine the eigenfunction estimates. In

particular, (5.4) and (5.7) yield

sinh(f; adt — apz + inwz + O(1/n))
—ag +inm + O(1/n)
. h T dt _ .
_sin (J, a aoz + inmx) +0(1/n%).

—ag +in7w

ya2(z, Ap) = + O(1/n?)

A similar estimate is true of y5. We collect these for future use in.

Theorem 5.5. If a € BV(0,1) then

sinh(é(z) + inmzx
y2(2, An) = Ea(o 2l-imr )

yo(z, Ay) = cosh(é(z) + inwz) + O(1/|n|), where

{(a:):/ozadt—z/oladm

measures the deviation of a from constant.

+0(1/n?), and

6. The Root Vectors

We now address the extent to which the root vectors of A constitute a basis for X.
We must first fix some notation. Denoting the algebraic multiplicity of A, by m,, to A,

is associated the Jordan Chain of root vectors, {V,, ;":"0”1,

Vao(z) = y2(2, An)[1, Anl,

) 6.1
AVn,j = /\nVn,j + Vn,j—11 (Vn,ijn,0> = 0’ .7 =1,...,m, — 1. ( )

Va0 is an eigenvector and the chain is a basis for the root subspace
Lo ={V:(A-AX)™V =0}.

Our work in the last section permits us to conclude that m, = 1 when |n| > N. Now it is
not difficult to show that, unless a is constant, the V,, o are not quadratically close to the
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®,, (the base with a = 0). Hence, a less constructive method than that used in §2 must be
invoked. In particular, we shall exploit the following characterization.

Theorem 6.1. (Bari, see [3, Theorem 2.1, Chapter VI]). {¢#,} is a Riesz basis of H if
and only if {¢,} iIs complete in H and there corresponds to it a complete biorthogonal
sequence {¢,}, and for any f € H one has

D 1 AP <00 Y [(a, I < oo,

To construct a sequence biorthogonal to the {V;, ;} we naturally look to the rootvectors
of the adjoint of A, see (2.7). It follows that 0(A) = o0(A*), including multiplicities, and
to A, is associated the Jordan Chain of root vectors, {W,, j}Tz"O_l,

W",O(x) = y2($’ Xn)[L _’—\n]’

_ 6.2
A*Wn,j = /\an,j + Wn,j—l’ (Wn,javn,mn—l> = Oa ] = 1, yMp — 1. ( )

Note that W, o is an eigenvector for A* and that the subsequent W), ; are uniquely deter-
mined so long as (Wy 0, Va,m,~1) # 0. In addition, the chain {Wn,j};-";o"l is a basis for
the root subspace

Ly, ={W:(A" - :\n)"‘"W = 0}.
Lemma 6.2. There exists a ¢ > 0 such that

(Vn,p, Wj,k) = (Vn,paWn,m,.—l—-p>5n,j6m,,—l—p,k 2 Can,j(smn—l—p,k-
Proof: We first check that £; L £} when j # k. Taken together

<A‘/j,0’Wk,0> = Aj(‘/j,(),VV":,O), a'nd
(AVjo0, Wi o) = (Vj0, A" Wi o) = A (Vj 0, Wi o),

predict that (A\; — Ax)(Vj 0, Wko) =0 and so (Vj o, Wi ) = 0. Next,

(AVj0,Wi1) = Aj(Vjo,Wi,1), and
(AVi0, Wi 1) = (Vio, A"Wi 1) = M (Vjo, W 1) + (Vio, W),

predict that (A; — Ax)(Vj0, Wk,1) = 0. Proceeding in this way one finds the two chains to
be orthogonal.

We now address the orthogonality between £, and L},. Regarding (6.1) the Fredholm
Alternative requires that (V, j, Wy, o) = 0 for j = 0,1,...,m, — 2. By completeness it
then follows that (Vi ;. —1, Wn) # 0. Likewise, (V;, 0,W, ;) =0for j =0,1,...,m, — 2
and (Vo 0, Wn,m,-1) # 0. On comparing (AVy 1, Wy m, k) and (Vo 1, A*Wy m, —k) we find
(Va1 Wam,—k=1) = (Va,0, Wo,m,—k) and so V;, 1 is orthogonal to each W, ; save when
j = my, — 2. Continuing in this way we find (Vo 2, Wam, —k-1) = (Vao,1, Wa,m, —k) and so
Va2 is orthogonal to each W, ; save when j = m, — 3. The pattern is now established.
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It remains to show that these two systems may be binormalized. This is tedious
though straightforward (only a finite number of our chains have length greater than one)
for the low frequencies, while for the high frequencies,

(Vn,O, Wn,O) = (y2(za )‘n)[l’ ’\n], y2($’ S‘n)[l’ _’_\n])

1
- / (wh(@, An))? = Xy2(, An) da
0
1

_ / cosh®(Anz + [7 adt) — sinh®(Anz + [ a dt) dz + O(1/|An])

0

=1+ 0(1/In)).

This establishes the ¢ of the claim. g

We introduce the normalized eigenvectors

Vo(2) = (Vao, Wa o) "2V, 0(2) = Vao(z) + O(1/In|), and
Wao(2) = Va0, Wayo) 2 Wa o(z) = Wao(z) + O(1/|n|)

for |n| > N. It remains only to establish, for each [f, g] € X, the convergence of
2

1
/ U (2, A) F(2) + Ay (2, A)g(2) do

0

D Voo, [f gD = D Vi, Wa) ™!

n>N n>N

2

= Z (1+0(1/n)) / cosh(Anz + [ adt)f'(z) + sinh(Anz + [ adt)g(z) dz
n>N 0

2
+

= z (1+0(1/n)) /(; (cosh &é(z)f'(z) + sinh é(z)g(x)) cos nrz dr

n>N

2

(14 0(1/n)) /0 (sinhé(z)f'(z) + cosh £(z)g(z)) sinnrz dr

We have used Theorem 5.5 in the last step. As £ is bounded, the coefficients of cosnrz
and sinnwz belong to L2(0,1), and therefore these series converge. The sum over negative
n is handled identically. Having fulfilled the conditions of Theorem 6.1, we find

Theorem 6.3. {Vn,j in==1,...,+00;5 =0,...,my, — 1} is a Riesz basis for X.

Now there exists a linear isomorphism Z of X and an orthonormal base {e, ;} for X

for which f/n,j = Tey,, ;. We proceed exactly as in the proof of Theorem 2.1. We expand
the initial data in

*oo m,—1

[uo,vo] = Z Z Vr,i Voo

n=x%1 j=0
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and note that

Foo my,—1 J
(G-k) &
[u’ut] = Z exp()‘nt) Z Yn,j Z zt.';:k—)!vn,k

satisfies our initial value problem, (1.1), (1.2). On recalling from Theorem 5.3. that at
most 2N eigenvalues may be of algebraic multiplicity greater than one and that 2N is the
maximum such multiplicity we may conclude the existence of a finite C for which

E(t) < CE(0)(1 + t*")exp 2ut.

We have established our main result.

Theorem 6.4, If a € BV(0,1) then p(a) = w(a).

7. Comments

In this last result we have expressed the decay rate in terms of the spectral abscissa. It
is of practical importance so long as one has a full characterization of the latter. We have
characterized the real and large eigenvalues though remain fairly ignorant of those nonreal
eigenvalues in the disk bounded by I'y. Can their algebraic multiplicities indeed exceed
one? May the real part of one of them exceed the real part of each of the real eigenvalues?
The parametrized eigenvalue problem (4.1) continues to make sense for complex A. In
this case however one is merely trading one nonselfadjoint problem for another. Though
the latter indeed corresponds to a spectral operator, very little, of a quantitative nature,
appears known regarding the nonasymptotic region of its spectra. Our success in §4 was
almost entirely dependent on the available variational structure.

Regarding issues of optimal design, we have yet to determine whether a — p(a) is
even bounded below on BV(0,1). We remarked at the close of §2 that this map is not
Lipschitz near a = 7.

The arguments of §§3 and 4, as noted, extend to a variety of problems in several
variables. The higher dimensional version of the functional F' of Theorem 4.5 provides
an interesting test for the presence of real eigenvalues. The shooting method, a one-
dimensional tool, constrains the arguments of §5 to such generalizations as

purt — (ouz)z + 2auy — qu =0,
under reasonable boundary conditions, and their fourth order counterparts.
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