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Abstract: The objective of Air Traffic Flow Management is to maintain safe and
efficient use of airspace and airports by regulating the flow of traffic. In this paper,
we introduce a single-valued metric for post-operatively rating the performance of
achieved traffic flow against targeted traffic flow. We provide variations on the
metric, one of which factors out stochastic conditions upon which a plan is formu-
lated, and show how these improve on current traffic control analysis techniques.
The core of the metric is intuitive and simple, yet leads to an interesting optimiza-
tion problem that can be efficiently solved via dynamic programming. Numerical
results of the metric are given as well as a sample of the type of analysis that should
follow a low rating by the metric. Although this metric was originally developed
to rate the performance of Ground Delay Programs, it is equally applicable to any
setting in which the flow of discrete objects such as vehicles is controlled and later
evaluated.



1 Introduction

Air traffic low managers maintain safe and efficient use of airspace resources by re-
distributing flights both in space and time in accordance with available capacities.
The flow of traffic through airspace sectors and through airports is regulated to
ensure that airspace components do not become overloaded and that throughput
is maintained. At times of excessive demand or reduced capacity, special air traffic
initiatives, such as ground delay programs (GDPs), are put into effect.

The increase in air traffic in the United States over the last 20 years has
necessitated more frequent use of traffic low management initiatives. For instance,
in 1998, there were 187 ground delay programs (GDPs) run at San Francisco
airport alone. As a result, there has been considerable interest both in the aviation
and research communities regarding traffic low management and its analysis. The
issues of deepest concern have been the efficient use of airport landing resources and
the equitable distribution of arrival slots among competing airlines. See reference
5] for further treatment of this topic. Substantial efforts have been under way since
the mid 1990’s to revamp the manner in which traffic flow initiatives are planned
and executed. Most notable is the joint industry-FAA Collaborative Decision
Making project (CDM), which has made major changes to GDP procedures. See
reference [9] for details on ground delay program enhancements.

One can see the need to assess the quality of traffic control actions. In this
paper, we provide practical solutions for three major aspects of post-operative,
traffic flow analysis.

The first aspect is the basic need for a simple way of contrasting aggregate
traffic flow with desired traffic flow. We introduce the rate control index (RCI),
which gives a single performance value to the flow of traffic into an airport or sector
of space for a fixed time horizon. Unlike more traditional methods for comparing
traffic distributions, the rate control index bears an intuitive relation to the events
that have lead to the deviation from the plan. In essence, the metric tracks the
aggregate flight movements that have caused realized traffic flow to differ from
planned traffic flow. Although the basic concept behind the metric is intuitive
and simple, the normalization of the metric leads to an interesting optimization
problem.

The second aspect is the need to factor out from post analysis major stochas-
tic factors upon which a control action is based. Every traffic flow initiative is
based on forecasts of demand and resource capacities, which are often not realized
because they are dependent upon highly stochastic conditions. Air traffic demand



predictions, such as the number of arrivals to an airport, are vulnerable to airline
operational deviations while capacity predictions for airspace sectors, runways,
etc., are highly subject to weather conditions. Direct measurement of traffic con-
trol actions is not always the best way to judge the performance of a new program
or initiative; naive or ill-chosen metrics are heavily influenced by the quality of
the forecasts upon which a plan of action was based. For instance, in a GDP, the
objective is to deliver a specified number of aircraft to the airport during a fixed
time horizon. A common metric for program evaluation is landings-per-hour. If
runway conditions turn out to be more severe than previously forecasted, then
this metric will (correctly) reveal that the realized landing rate does not match
the desired landing rate. To a large degree, the program performance was beyond
the control of participating parties and yet is being judged (in part) by the fore-
cast upon which it was based. For situations such as this, we will show how to
model traffic flow into an airport independently of the ability of the airport to
land aircraft. Our metric provides for the inclusion or exclusion of these types of
stochastic factors.

The third aspect of traffic flow analysis we address is the need for a metric that
tracks control actions on a nominal basis, thus acting as a counter-balance, or cross
check, to an aggregate anlaysis. Directives are given to individual flights (altering
flight paths, arrival times, etc.) in order to affect the aggregate flow of traffic.
Final success of these efforts is typically measured based on aggregate metering
of traffic. For instance, traffic flow managers may want to deliver 30 flights per
hour to region of space, and they may obtain 30 flights per hour, but were these
the 30 flights that were intended? If so, one might choose to ignore this issue and
happily accept the results. But it’s important to know when the aggregate flow
is being achieved for the wrong reason. In particular, this helps explain why, at
other times, the desired aggregate flow is not achieved.

We demonstrate a nominal version of the RCI metric, which meters traffic flow
according to which flights are in the flow and at which time. This gives information
that is complementary to and compatible with the aggregate form of RCI and is
very useful for revealing the underlying stochastic processes that can disrupt traffic
flow or fortuitously cancel each other to produce proper traffic flow.

Section 2 of this paper introduces the core of the RCI metric; Section 3 covers
in detail the mathematical underlying the metric; Section 4 demonstrates the use
of the metric through Ground Delay Program analysis. Lastly, Section 5 provides
some closing comments.



2 The Core of the RCI Metric

The perspective taken in this paper is one of post-analysis. We view a traffic flow
initiative as a plan of action which is to be later analyzed for effectiveness. We
assume that there is a planning time horizon, during which the flow of traffic into
some region is to be regulated. Usually, the goal of regulation is to reduce the rate
of flow, but there could be instances in which throughput is the primary goal and
so the rate is to be increased. The rate control index (RCI) meters the controlled
flow of any uniform set of objects through space but we will develop the metric in
the context of its original motivation, an air traffic control ground delay program
(GDP).

We assume that a traffic low manager has set a goal for each time period
t=0,1,...,7 of a time horizon, meaning the number of vehicles that should be
delivered to an airport (or more generally, pass through a region of airspace).
Once the time horizon has passed, the actual number of flights is recorded. This
establishes two distributions of flights: the planned distribution P = [pg, p1, ...p7]
and the realized distribution R = [rg,71,...r7], where p; and r; are the planned
and realized number of flights during time period ¢, respectively. The question is
how to weigh the realized distribution against the planned distribution. Ideally,
we would like a single-valued metric that will lend itself toward trend analyses.
An obvious idea here is to form a distribution of errors

E=P—R=[po—"70, 1 —T1,-, PT — 7T

by vector subtraction, then to apply a standard variance technique, such averaging
over the time periods or summing the squares of the deviations. There are two
reasons why this might not be the best approach. One is that it develops unintu-
itive (or meaningless) units that are difficult to translate into tangible quantities
or cost assessments. Secondly, consider the scenario in which 30 flights are planned
to arrive in each of two consecutive hours. Suppose that one flight scheduled for
the first hour arrives late and spills over into the second hour arrival count, i.e.,
P =[30,30] and R = [29,31]. Standard variance techniques would report an aver-
age error of one flight per hour, for each of the two hours. While this is statistically
correct, note that the traffic flow “error” was that one flight migrated one hour,
and yet this error is recorded twice, once in the first hour and once in the second.

The alternative measure of variance that we propose is to record the aggregate
flight movement, or drift, that lead to the deviation of R from P. This is the same
as the minimum amount of flight movement that would be necessary to revert R
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to P. In the case R = [29,31] and P = [30,30], one would have to move one
flight one hour earlier in time to transform R back into P. The final error, then,
is tallied as (minus) one flight-hour. More generally, given two finite distributions
over the same time horizon, P and R, we define the difference P — R to be the least
amount of flight movement (through time) that is necessary to convert R into P.
This can be computed by a greedy algorithm that sweeps through increasing time
periods, t = 0,1, 2, ..., moving however many flights are necessary to achieve the
desired distribution locally. The simplistic example that follows demonstrates the
computation of this distribution difference and the intuition behind the remaining
computation of the rate control index. Subsequent sections of this paper will cover
the more complex aspects of the mathematics.

Example: Suppose that a 4-hour GDP is planned and that the planned arrival
acceptance rate (PAAR) for each of those 4 hours is 30 flights. Then the planned
distribution is P = [30, 30,30, 30]. Further suppose that the actual number of
flights that arrived at the airport (or the airport terminal space) is given by
R = [27,32,35,24]. Then the rate control index for R (relative to P), denoted
RCI(P, R), is computed via the following two-part calculation.

Part 1: Compute the difference P — R. This is the minimum amount of flight
movement that is necessary to turn R into P. We sweep left to right through R
(increasing t), moving however many flights (say fi+1) are necessary from r; to
re41 to achieve ry = ry — fry1 = pp. Counting left-hand movements as negative and
right-hand movements as positive, we must move 3 flights from hour 1 to hour 0
(f1 = —3), move 1 flight from hour 2 to hour 1 (f; = —1), and move 4 flights from
hour 2 to hour 3 (fs =4). See Figure 1.

So far, R has been transformed into the distribution, R' = [30, 30, 30, 28]. Note
that this is 2 flights short of the desired distribution, because > p, — > r, =
120—118 = 2. We create a “slush fund” of 2 flights at the end of R to compensate
for the lack of conservation of flights. Equivalently, we could have started with
an augmented distribution R’ = [27,32,35,24,2]. Similarly, we extend P to a
five-hour distribution, P’ = [30, 30,30, 30,0]. To complete the example, we move
2 flights from hour 4 to hour 3 (fy = —2). The summary of flight-movements is
given in Table 1.

Now we can compute the cost of transforming R into P. Let ¢~ be the average
cost (say, in dollars per hour) of delaying a flight for one unit of time and let
c¢™ be the average cost (say, in dollars per hour) of a flight arriving early by
one unit of time. Then we break the flight-movements into left-hand movements
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Figure 1: Flight movements necessary to transform R into P

Movement | Notation | Flight-hours
Hr0— Hr1 fi -3
Hr1l— Hr2 fo -1
Hr2 — Hr 3 f3 4
Hr3 — Hr4 fa -2

Table 1: Summary of Flight Movements through Time



M~ = |-3| +|-1]| + |-2| = 6 and right-hand movements M* = 4, corresponding
to tardiness and earliness, respectively. The final cost is given by

¢ M +c"MT=6¢ +4c¢t .

In this example, we opt to set ¢~ = ¢ = 1.0 to obtain pure units of 4 + 6 = 10
flight-hours. In other words, R was off from P by 10 flight-hours. Intuitively, this
means that in order to turn R into P, one would have to do the work equivalent
to moving 1 flight 10 hours, or 2 flights 5 hours, etc. One variation on the metric
is to retain the positive and negative sums to show the breakdown of this total.
Part 2: Normalize the distribution error P’ — R'. To compare GDPs of
differing lengths and number of flights, we normalize by dividing the distribution
error by the cost of the worst-case scenario. This means we must find the five-
hour redistribution W of the 120 flights in PAAR with the highest cost difference,
P — W. In general, this involves solving a max-min problem, which is covered in
Section 3. For now, we take as a given that W = [0,0,0,0,120] with a cost of

P —W = (|=4| + |-3| + |—2] + |—1]) x 30 = (10) x 30 = 300 flight-hours.

(W corresponds to the scenario in which all the flights land in the final hour.) Thus,
the rate control index we assign to the distribution R is

10 flight-hours =
= 0.033.
300 flight-hours

Since we have kept pure cost parameters of 1.0, this is a pure ratio that indicates
the error of the realized distribution. In order to make the index more palatable, we
phrase the performance of the realized distribution in terms of what was achieved
rather than what was not achieved. Subtracting from 1.0, we obtain a final rate
control index (RCI) of

RCI (P',R) = 1.0 — .0333 = 0.966

If preferred, this final index can be transformed into a percentage, 96.67%. The
interpretation of the index is that the realized distribution achieved 96.67% of the
intended (planned) distribution. This number can then be used for comparing
GDP performance on different days and lends itself nicely to trend analyses (see
Section 4). Values below 90% should be investigated for causality.

In practice, strategic traffic flow management plans such as a GDP are of-
ten revised several times before or during execution, in accordance with changing
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Figure 2: Network flow representation of a redistribution

demand and capacity, thus changing the planned distribution. The rate control
index can accommodate such revisions by setting p; to be the latest target value
for time period t that was set prior to time period t. This way, the target value py
can be changed as many times as one wished but the program will ultimately be
evaluated on the final target value.

3 The Mathematics of RCI

3.1 The Difference of Two Distributions
We define a (finite) distribution D = (dp,d1,...,dr) to be any (T + 1)-tuple of
T

non-negative numbers. D is said to have order (T'+ 1, S), where S = > d;
i=0

is the ‘mass’ of D. Consider the transformation of D into another distribu‘;ion,
D' = (dy,d, ...,d), of the same order. This transformation can be characterized
in terms of non-negative flow variables x; and y; that satisfy

d —dé =T+ Y41 — Ter1 —Yp, for t =12, .. T — 1
do —dy =41 — 11 (1)
dr —dp = xr —yr
as illustrated in Figure 2.
We wish to establish a systematic means for comparing two distributions, D

and D', of the same order. The motivating example of Section 2 suggests that
this should be the minimum cost of transforming one distribution into the other in
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the context of the network flow in Figure 2. So, we establish two cost parameters,
¢t > 0 and ¢~ > 0, which represent the cost of moving a unit of mass within
distribution D one unit to the left and to the right, respectively. Thus, if we let
X = (x1,22,,,.2r) and Y = (y1,¥2,...,yr), the cost of the transformation of D
into D’ is given by the minimization of the following objective function against
appropriate conservation of flow equations.

T T
CX,Y)=c Y m+ct Y w (2)
=0 =0

It is not hard to show (see reference [4]) that a feasible solution (X,Y") to such a
network flow problem is optimal if and only if it has the acyclic property, meaning
if z; > 0, then 3 = 0, and if y; > 0, then x; = 0. (See reference [2| for a treatment
of network flow problems and their properties.) This serves as justification of the
greedy algorithm used in the example in Section 2 to find the minimum cost flow.
In light of the acyclic property, in comuting a minimum cost soution, it is only
necessary to keep track of the met flow between nodes of Figure 2. Let f; be
the net flow from node t — 1 to ¢, that is, fi = y+ — x+. Then we can represent
the transformation of D into D’ by a T-tuple, F = (f1, f2, ..., fr), which can be
computed using the following greedy algorithm.

GREEDY
Set f1 = do — d6
Fort=2toT:

set fr=di1 —d,_1 + fi1

Alternatively, we can compute F directly from

¢
fe= Z(ds—1 —dy ) fort=1,2,..T. (3)

s=1

We call F a redistribution vector (relative to D) and denote it’s action by
F : D — D'. F is unique for a given pair, D and D’. (See Figure 3). Later,
we will see that there are several advantages to this alternative representation
of the transformation, beyond uniqueness and the elimination of needless vari-
ables. Conversely, given any D = (dp, d, ...,dr) and F = (f1, fe, ..., fr) that satisfy
Equation (3) for some (nonnegative) distribution D’ = (df, d, ...,d/,), then F is a
redistribution of D into D’.
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Figure 3: Transformation of distribution D into distribution D’ by vector F'

Given a vector F' the transformation cost can be written as,
T
C(F)=>[c¢"max{f;,0} + ¢~ max{—f;,0}]. (4)
t=1
Intuitively, when ¢t = ¢~ = 1.0, C(F) is the amount of 'work’ done to transfrom
D into D'.
For the purposes of comparing two distributions D and D’ of the same order,
we define their difference to be the cost of transforming D’ into D. That is,

D-D =C(F), (5)

where I : D' — D and the cost function C is fixed a priori. Note that this
difference is not, in general, commutative. Since we allow that ¢* # ¢~, a situation
may arise in which D — D/ # D’ — D. That is, the cost of transforming D into
D’ may be not be equal to the cost of transforming D’ back into D. However,
once F : D' — D is known with corresponding cost C (F) = act + bc™, then the
reverse transformation, G : D — D', given by G = (—f1,—fa, ..., —fr), has cost
C (G) = bet +ac . In this respect, the direction or transformation established by
(5) is arbitrary and consistency of application is all that matters.

We use this distribution difference as the raw (unnormalized) score of the
rate control index (RCI). Given a planned distribution of arrivals over time, P =
(po,p2, .-, pr), and a realized distribution, R = (ro,72, ...,7r), we define their dif-
ference to be P— R, as set by (5). In practice, there are complicating factors when
the realized distribution does not have the same order as the planned distribution
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(some vehicles may arrive beyond the considered time horizon or not arrive at all,
e.g., flight cancellations). These spill-overs and cancellations can be handled by
making appropriate extensions of the two distributions so that they again have
the same order, as in the motivating example of Section 2. Care should be taken,
however, that the effects on the cost function make intuitive sense in the context
of the overall problem.

3.2 Normalization of RCI
3.2.1 The Worst-case Scenario

In the motivating example of Section 2, we saw that the normalization step of the
RCI computation requires that we find the redistribution W of a fixed distribution
D with the worst-case (highest) value, D — W. Consequently, we must consider
what types of distributions could realistically be formed from D. For instance,
could the planned distribution D = (2,4,6) be transformed into either of the
realized distributions D’ = (0,0,12), or D' = (12,0,0)? In theory, yes, but in the
context of arriving vehicles, these represent the case in which all vehicles arrive in
the last and first time periods, respectively. In the air traffic management case and
possibly in many other applications, for each vehicle, there is an earliest arrival
time (based on its scheduled arrival time) but no practical latest arrival time. This
means that D’is at least conceivable but that D” is effectively impossible.

To model earliest arrival times, we fix a leftward bounding distribution B =
{bo, b1, ...,b7} of order (T"+ 1, S) and consider the family of (re)distributions of B
defined via

QB = {D’| there is a nonnegative redistribution vector F': B — D'} .

Then if D' € OB, D' can be obtained from B by making strictly rightward shifts in
B. For example, if D = (0,3,3) and B = (1,2, 3), then D’ = (0,0,6) is in Q7 via
F = (1,3), while, in contrast, D" = (3,0,3) is not in QF | because G : B — D" is
uniquely determined by G = (—2,0), which contains a negative entry. We assume
that B has been properly constructed from the original distribution D so that
D € QB. Note that given any D’ of the same order as B, D’ € QF if and only if

¢ ¢
Zd’s < Z bsfor all ¢, (6)
s=0 s=0

which provides a membership criteria for QF.
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Recall that our approach to the normalization of the RCI metric is to divide
the difference of two distributions, D — D', by D — W, where W is the worst case
(highest cost) scenario. Then, given D, we seek the solution to

max{C(F)|F:W—>DandWEQB}. (7)

Next, we show how to solve (7) by dynamic programming. Had we retained the
network flow description, finding a solution to (7) would require us to find the
maximum value over a family of linear programming problems. This is complicated
by the presence of the side constraint W € Q. This max-min problem can be
solved by dynamic programming.

3.2.2 A Dynamic Programming Solution

We wish to write a recursive relation for finding a solution to (7). Fix a distribution
D = (dy,ds, ...,dr) of order (T'+ 1,S), where S = Z?:o di. Let B = (bg, b1, ..., br)
be a bounding distribution for D and let D’ = (df,dY, ..., d) be any distribution
of order (I'+1,5). For any z, let

est (z) = ¢ max {z,0} + ¢~ max {—z,0}.

Then the corresponding cost of F, given below, is consistent with (4).

T
C(F) =Y est(f)
t=1

For any distribution E = (e, €1, ...,er), we establish the following partial sum
notation:

i—1
E; = Zes fort=1,2,...,T.
s=0

Thus, for ' : W — D, using (3), we can now write the ¢ component of F =

(f1, f2y -y f7) @s fy = Wy— Dy. For a fixed ¢t with 0 < ¢ < T, we define the following
truncated vectors.

Ft = (f17 f27 ey ft) ) Wt = (w17w27 ---awt) ’ and Dt = (d17d27 "'7dt)
We now define the sub-problem for our dynamic programming recursion as

Cmazx (t,3) = Imax {C (Ft) | fs = Wy — Dy and W, < Bgfor s < t;W, = 3; Wt > O}.
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Figure 4: Finding the highest cost redistribution W when the partial sum
Wi_1 is set to f.

where Cmax (0,3) = 0 for all 5. It might not appear that Wj is restricted to be
less than or equal to S = Y dy; this is captured by the W, < B; restriction since
Br must equal S. In essence, C'mazx (t,3) is the cost of transforming (the most
costly) Wt into D' when we have set the partial sum W; equal to 3 (see Figure
4). Then, Cmax (t, 3) can be found recursively via

0,ift=0
Cmax (t,5) = —oo, for 5> By (8)
p X {Cmax (t —1,b) +cst(fy) | fr =5 — D¢} else.

and the maximal cost that we seek in (7) is given by Cmax (T, S). The correctness
of (8) in the case of t = 0 follows from the definition of Cmax ( ) and in the case
of B > B; because values of W; > B, are not feasible. For the general case, note
that by fixing W = 3, f; (and its cost) are fixed. To insure the non-negativity of
wy , the possible W;_1 over which the max is taken must be less than or equal to 3.
This recursion might seem simple, even trivial, since f; does not vary in the max
operation. The complexity of this problem lies within the restrictions imposed by
the B; vector which limits the values to which the max operation is applied. In
fact, without, the B; restrictions, extreme or trivial solutions would always result.
Equation (8) can be readily used to construct a forward recursion dynamic
programming algorithm. It is clear that the running time is at most O(T'S?) since
there are at most O(T'S) Cmax ( ) values to be computed and the computation

of each one requires at most O(S) comparisons.
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4 Ground Delay Program Analysis

In this section, we demonstrate the usefulness of the RCI metric in the context of
ground delay programs.

4.1 Modeling Air Traffic Flow into an Airport

A Ground Delay Program (GDP) is an FAA initiative to reduce the flow of aircraft
into an airport. A GDP is implemented whenever it is predicted that the arrival
demand at an airport will exceed the arrival capacity for a significant period of
time. In essence, flights bound for a single airport are held at their origin airports
in lieu of anticipated airborne holding. This prevents the airport the from being
inundated with the hazardous and unwanted airborne holding that would result at
the destination airport if flights were allowed to depart on schedule. Most GDPs
are prompted by adverse weather conditions that can dramatically reduce the
airport acceptance rate (AAR). Other causes are runway construction and special
airport operations. GDPs are planned several hours in advance and can run for
periods as long as 12 hours. (For more background on ground delay programs and
the ground holding problem, see references [3], [10], [11], [12], [13], [14], [15], [16],
and [17].)

Since the primary purpose of a GDP is to control the rate of flow of aircraft
into an airport, the typical metric for evaluating the performance of a GDP is to
measure the actual landings per hour (LAN D, where t varies over the discretized
time intervals over which the GDP operated) against the planned landings per hour
(PAARy). Although this is often taken to be the “bottom line” in a GDP, it is in
fact a hybrid analysis that blurs the appropriateness of the plan with the execution
of the plan. The appropriateness of the plan is largely determined (in hindsight) by
the matching of the GDP parameters with the resulting airport conditions (such
as the timing of a weather front) the severity of runway conditions, the expected
demand, and so on. Since these conditions are hard to predict with accuracy, there
needs to be a mechanism to analyze the success with which the plan was executed,
independently of the appropriateness of the plan and the forecasts upon which it
was based. (See reference [3] for treatment of stochastic airport capacity.)

The simple solution is to meter the traffic as it enters the terminal space of
the airport, rather than on the runways. The problem is that the terminal area
of an airport is not so easily defined and, even if it were, the time at which a
flight enters the terminal space is generally not recorded or such data is hard to
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obtain. The data that is readily obtained is from the enhanced traffic management
system (ETMS) is the (runway) departure time of each flight f, the arrival time
of f denoted by ART' Ay, and a sequence of ETAs (estimated time of arrival), as
f moves along its flight path.

One solution is to define a radius of geographical distance (or time) about the
airport and declare that once a flight has passed over this boundary, it has entered
the terminal airspace of the airport. This should roughly correspond to the point
at which flights are ordinarily put into a state of airborne holding. (We recognize
that at some airports, airborne holding of certain flights can take place far out
from the terminal space of the airport.) The objective is to meter the traffic at
this point, then use the RCI metric to compare the traffic low against the desired
traffic flow. The metric will tell us how successfully the GDP delivered flights to
the airport, independently of the airport status (capacity) and any airborne that
may have taken place.

We assume the existence of a model that will estimate, post facto, for each
flight f the amount of airborne holding that it incurred, which we denote ABH
(see [6] for one such model). From this, we can deduce that f was in a state of
airborne holding at a given time t < ART Ay if and only if ABH; > ART Ay —t.

For a set of contiguous time intervals t = 1,2, ...;7T , let DEL; be the number
of flights that is delivered to the airport during time interval ¢, meaning, arrived
at the border of the terminal space (but not necessarily landed). Let ABH; be the
number of flights that are in a state of airborne holding at the end of interval ¢.
Let LAN D, be the number of flights that land during time period ¢. If we view the
airport as a closed network, then we have the following elementary relationships
(see Figure 5).

DEL; = (ABH, — ABH,_) + LAND,

After a GDP, three distributions can be assembled: PAAR, DEL, and LAND.
One would want to measure RCI (PAAR, LAND) and RCI (PAAR,DEL), as in
the following case study.

4.2 The Aggregate Version of RCI

Figure 6 shows a graphical analysis of the performance of a ground delay program
(GDP) conducted at San Francisco airport (SFO) on March 5, 1998. The planned
acceptance rate of flights (the PAAR distribution) was set at 32 flights per hour
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Figure 5: Model of an airport as a closed system

for each of the six hours of the GDP. The RCI value assigned to this GDP was
88.24%. This is below the 1998 RCI average for SFO, approximately 92.0%, it
would be a likely candidate for further analysis. The RCI value of 88.24% was
computed based on PAAR versus DEL, the distribution of “flights delivered” to
the terminal airspace of the airport (but not necessarily landed), indicated by the
asterisks. Also shown are the distributions LAND, flights landed at the airport
(indicated by solid dots) and the ABH, the size of the airborne holding queue at
the end of each hour (indicated by triangles).

A quick glance at Figure 6 shows why the RCI(PAAR, DEL) was not closer
to the optimal value, 100%. There were too many flights delivered to the airport
early in the program: in the first hour, 41 flights were delivered when only 32 were
intended. One possible explanation for this is that the GDP was implemented
too late and some of these 41 flights were already airborne when the program
was planned, hence, they could not have been held on the ground. Some of these
flights may have been assigned ground holds but departed too early, but this is a
less likely explanation. Moreover, there were drastically too few flights delivered in
the 2100z hour: 16 flights compared to the desired 32. Some of the flights intended
to arrive in hour 2100z may have arrived in the 2000z hour. Note the airborne
holding queue that resulted when the glut of flights arrived in the 2000z hour. It
took most of the rest of the program for this queue to dissipate.

One can see that the LAND distribution more closely follows PAAR than does
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Figure 6: Analysis of ground delay performance at San Francisco Airport,

March 3, 1998
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DEL. Thus, the value of RCI(PAAR, LAND) (not computed) would be slightly
better than RCI(PAAR, DEL). This is not uncommon: some of the arrival flow is
smoothed out by airborne holding, resulting in a smoother distribution.

An interesting feature of this GDP was that in the 2100z hour, even with
the pressure of a substantial airborne holding queue, the airport was able to land
only 23 flights, instead of the forecasted number, 32. Airport tower traffic counts
confirm that in the 2100z hour, the controllers at the airport favored departures.

4.3 The Nominal Version of RCI

In this section, we demonstrate the use of a nominal version of the rate control
index. For each flight f, we compute the amount of arrival delay, M; via

My = |actual arrival time — planned arrival time|.

The unnormalized RCT score is - ¢ M (f), which represents the amount of flight
movement through time that would be necessary to restore all flights to their
planned arrival time. This number is normalized by dividing by the cost of the
worst-case scenario, > ¢ W (f), where W (f) is the most arrival delay that could
have occurred for flight f (i.e., the farthest time period from its planned period of
arrival). The final value is subtracted from 1.0 and multiplied by 100%.

Each point on the scatter plot in Figure 7 is an ordered pair, (RCI Nom RC'[A99 ),
for a GDP run at SFO during the period January 1 to October 28, 1998. Consider
the point (64,92)for July 10. The value RCIA99 = 92% indicates that, in the
aggregate, the distribution of landed flights closely matched the desired distribu-
tion. However, the low value of RCIN™ reveals that, too often, the flights that
landed in a given time interval were not the flights that were intended to land in
that time interval. Some of the flights arrived earlier than planned while others
arrived too late. On the whole, for any given time interval, the number of flights
that migrated out of a time interval was almost equal to the number of flights
that migrated into that time interval, hence, the aggregate numbers of flights were
preserved. The stochastic processes canceled each other out and there was a great
deal of ‘luck’ involved in achieving the high value of RCT#99 = 92%.

In general, points in the upper right quadrant of Figure 7 correspond to days
in which the aggregate distribution of flights was achieved and most of the flights
arrived in their expected time periods. These are the best-run programs - the goal
of each program being (100%, 100%). Given two points (x1,y1) and (x2,y2), with
x1 < w9 and y; = Y9, we can say that they had the same level of aggregate success
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but that program first program involved more ‘luck’ while the second program
involved more ‘skill’.

The center of mass of the squares lies at about (82,92), marked by the cross.
This indicates that the ground delay performance at SFO is generally quite good.
In general, RCIV°™ is about 10% less than RCI499. Note that all of the points
lie above the 45-degree line. This is to be expected since as RCIN°™ increases,
more flights are arriving in their planned arrival periods and so the aggregate
distribution of flights is more likely to match the planned distribution, which also
increases the value of RCTAGG. Note that when RCINe™ = 100%, the only way
for RCT499 to fall below 100% is for there to be arrivals that were not anticipated
by the GDP.

5 Closing Remarks

We have introduced a new metric for the evaluation of planned versus realized
traffic flow for a region of space or an airport. In its most general form, the metric
generalizes to a comparison of two finite distributions, hence, has the potential for
use in any area of traffic management in which vehicular movement through time is
regulated. This represents a substantial improvement over the standard techniques
for comparing two finite distributions. The metric naturally lends itself to intuitive
interpretation (when decomposed into left and right-handed movements) and to
cost evaluation. The development of an aggregate and nominal version of the
metric captures the two crucial aspects of traffic flow management: how many
flights flowed through a region of space and which flights flowed through the region.
Also, we have shown how to apply the metric to factor out the effects of inaccurate
forecasts from performance analysis of a traffic flow initiative.

We showed how to compensate for controlled flights that arrive outside the
planned time horizon by augmenting the realized distribution. The intuitive jus-
tification for this was that the cost added is assessed at a rate commensurate with
the wasted capacity due to these flight cancellations. However, there doesn’t seem
to be an analogous compensation for the case in which unanticipated flights arrive
within the planned time horizon. For consistency with flight shortages, the logical
adjustment for these pop-up flights would be to augment the planned distribution.
Unfortunately, the added cost would be assessed at a rate commensurate with the
movement of flights backward in time, for which there is no intuitive obvious jus-
tification. In practice, pop-up flights comprise a small enough percentage of the
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total flights that their effect on the RCI metric is minimal when they are ignored.

However, future development of the metric should incorporate pop-up flights.

6
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