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The Rate-Distortion Function for Source Coding 
with Side Information at the Decoder 

AARON D. WYNER, FELLOW, IEEE, AND JACOB ZIV, FELLOW, IEEE 

Abstract-Let {(X,, Y,J}r= 1 be a sequence of independent drawings of 
a pair of dependent random variables X, Y. Let us say that X takes values 
in the finite set 6. It is desired to encode the sequence {X,} in blocks 
of length n into a binary stream*of rate R, which can in turn be decoded 
as a sequence { 2k}, where zk E %, the reproduction alphabet. The average 
distorjion level is (l/n) cl= 1 E[D(X,,z&, where D(x,$ 2 0, x E I, 
2 E J, is a pre-assigned distortion measure. The special assumption 
made here is that the decoder has access to the side information {Yk}. 
In this paper we determine the quantity R*(d). defined as the infimum of 
rates R such that (with E > 0 arbitrarily small and with suitably large n) 
communication is possible in the above setting at an average distortion 
level (as defined above) not exceeding d + E. The main result is that 
R*(d) = inf[Z(X,Z) - Z(Y,Z)], where the infimum is with respect to all 
auxiliary random variables Z (which take values in a finite set 3) that 
satisfy: i) Y,Z conditiofally independent given X; ii) there exists a 
functionf: “Y x E + .%, such that E[D(X,f(Y,Z))] 5 d. 

Let Rx, y(d) be the rate-distortion function which results when the 
encoder as well as the decoder has access to the side information {Y,}. 
In nearly all cases it is shown that when d > 0 then R*(d) > Rx, y(d), 
so that knowledge of the side information at the encoder permits trans- 
mission of the {X,} at a given distortion level using a smaller transmission 
rate. This is in contrast to the situation treated by Slepian and Wolf [5] 
where, for arbitrarily accurate reproduction of {X,}, i.e., d = E for any 
E > 0, knowledge of the side information at the encoder does not allow 
a reduction of the transmission rate. 

I. INTRODUCTION, PROBLEM STATEMENT, 
AND RESULTS 

A. Introduction 

I N THIS paper we consider the problem of source en- 
coding with a fidelity criterion in a situation where the 

decoder has access to side information about the source. 
To put the problem in perspective, conside; the system 
shown in Fig. 1. 

binary data at rate R 
&I 

Fig. 1. 

The sequence {(X,,Y,>}pi 1 represents independent copies 
of a pair of dependent random variables (X,Y) which take 
values in the finite sets X,CV, respectively. The encoder out- 
put is a binary sequence which appears at a rate R bits 
per input symbol. The decoder output is a sequence (8,): 
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which take values in the finite reproduction alphabet .!?. 
The encoding and decoding is done in blocks of length n, 
and the fidelity criterion is the expectation of 

where D(x,R) 2 0, x E %‘, 2 E @‘, is a given distortion func- 
tion. If switch A and/or B is closed then the encoder and/or 
decoder, respectively, are assumed to have knowledge of 
the side information sequence {Y,}. If switch A and/or B is 
open, then the side information is not available to the 
encoder and/or decoder, respectively. 

Now consider the following cases: 

i) switches A and B are open, i.e., there is no available 
side information; 

ii) switches A and B are closed, i.e., both the encoder 
and the decoder have access to the side information 

Pi>; 
iii) switch A is open and switch B is closed, i.e., only the 

decoder has access to the side information. 

We define R,(d), Rxly(d), and R*(d) as the minimum rates 
for which the system of Fig. 1 can operate in cases i), ii), 
and iii), respectively, when n is large and the average dis- 
tortion E[l/n Et= 1 D(X$,)] is arbitrarily close to d. The 
first two of these quantities can be characterized as follows. 

For d 2 0, define A,(d) as the set of probability dis- 
tributions p(x,y,g), x E X, y E g, 2 E 9, such that the 
marginal distribution x2 E t p(x, y,R) is the given distribu- 
tion for (X,Y), and 

C Nx,Jz)p(x,~,% I d. 
XAY 

Then the classical Shannon theory yields for case i), cf. 

PI, [31, C41, that 

R,(d) = min Z(X ;8), 
P E -h(d) 

(2) 

and for case ii), cf. [l, sec. 6.1.11, that 

R,,,(d) = min 1(X$ 1 Y). 
P E h(d) 

(3) 

The random variables X,Y,8 corresponding to p E 4,(d) 
are defined in the obvious way, and I(.) denotes the ordi- 
nary Shannon mutual information [3]. 

We now turn to case iii) and the determination of R*(d). 
For the very large and important class of situations when 
2” 7 .% and 

D(x,x) = 0, 

DW) > 0, x # 2, (4) 
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it is easy to show that and 

Rx(O) = H(X) &lr(0) = H(X I Y) (5) 

where H denotes entropy [3]. In this case Slepian and Wolf 
[S] have established that 

R*(O) = R&O) = H(XI Y). (6) 

The main result of this paper is the determination of R*(d), 
for d 2 0, in the general case. In particular, it follows from 
our result that usually R*(d) > RxlY(d), d > 0. 

At this point we pause to give some of the history of our 
problem. The characterization of R*(d) was first attempted 
by T. Goblick (Ph.D. dissertation, M.I.T., 1962) and later 
by Berger [l, sec. 6.11. It should be pointed out that 
Theorem 6.1.1 in [ 11, which purports to give a character- 
ization of R*(d), is not correct. After the discovery of his 
error, Berger (private communication) did succeed in giving 
an upper bound on R*(d) for the special case studied in 
Section II of the present paper. In fact our results show that 
Berger’s bound is tight. 

where 2” = F,,(Y”,FE(X”)). The correspondence between a 
code as defined here and the system of Fig. 1 with switch A 

open and switch B closed should be clear. 
A pair (R,d) is said to be achievable if, for arbitrary 

E > 0, there exists (for n sufficiently large) a code (n,M,A) 
with 

M 5 2n(R+e)) A5d-l-E. (01) 

We define W as the set of achievable (R,d) pairs, and define 

Since from the definition, .% is closed, the indicated min- 
imum exists. Our main problem is the determination of 
R*(d). 

An outline of the remainder of this paper is as follows. 
In Section I-B we give a formal and precise statement of 
the problem. In Section I-C we state our results including 
the characterization of R*(d). Section II contains an eval- 
uation of R*(d) for a special binary source. The proofs 
follow in Sections III and IV. 

We pause at this point to observe the following. Since 
R*(d) is nonincreasing in d, we have R*(O) 2 lim,,, R*(d). 
Furthermore, from (1 l), for all d 2 0, the pair (R*(d),d) E 9. 
Since 2 is closed, (limd+e R*(d),O) E W, so that R*(O) I 

limd+O R*(d). We conclude that R*(d) is continuous at 
d = 0. 

C. Summary of Results 

B. Formal Statement of Problem 

In this section we will give a precise statement of the 
problem which we stated informally in Section I-A. 

First, a word about notation: Let % be an arbitrary 
finite set, and consider %“, the set of n-vectors with elements 
in a. The members of @” will be written as U” = (ul,uz,. * * , 
u,), where the subscripted letters denote the coordinates and 
boldface superscripted letters denote vectors. A similar 
convention will apply to random variables and vectors, 
which will be denoted by upper case letters. When the 
dimension n of a vector U” is clear from the context, we will 
omit the superscript. Next for k = 1,2, * * a, define the set 

Z, = (0, 1,2;.*,k - 11. (7) 

Finally for random variables X, Y, etc., the notation H(X), 
H(X 1 Y), 1(X; Y), etc., will denote the standard informa- 
tion-theoretic quantities as defined in Gallager [3]. All 
logarithms in this paper are taken to the base 2. 

Let %“-,??/,!? be finite sets and let {(X,,Y,)}F be a sequence 
of independent drawings of a pair of dependent random 
variables X,Y which take values in X,g, respectively. The 
probability distribution for X, Y is 

Q(x,y) = Pr {X = x, Y = y}, XE%, ye?Y. (8) 

Let D: % x @ + [O,co) be a distortion function. A code 
(n,M,A) is defined by two mappings FE,FD, an “encoder” 
and a “decoder,” respectively, where 

FE: 22”” --f IM, 

E I i 0(X,,&) = A, 
n k=l 

PC) 

R*(d) = min R. 
(W) E W 

(11) 

Let X,Y, etc., be as above. Let p(x,y,z), x E .%, y E g, 
z E 3, where d is an arbitrary finite set, be a probability 
distribution which defines random variables X,Y,Z, such 
that the marginal distribution for X, Y 

zFs P(X, YJ) = Q(x, Y), (124 

and such that 

Y,Z are conditionally independent given X. (12b) 

An alternative way of expressing (12) is 

P(X,Y,Z> = Q(x>Y)P,(z I 4 (13) 

where p,(z 1 x) can be thought of as the transition prob- 
ability of a “test channel” whose input is X and whose 
output is Z. Now, for d > 0, define .4(d) as the set of 
p(x, y,z) which satisfy (12) (or equivalently (13)) and which 
have the property that there exists a function f: g x 
X + .@ such that 

E[D(&f)] I d where X = f( Y,Z). (14) 

As a mnemonic for remembering the above, we can 
think of X,Y,Z,X as being generated by the configuration 
in Fig. 2. > 

‘Y 

Fig. 2. 
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Next define, for d > 0, the quantity 

R(d) g inf [I(X,;Z) - I(Y;Z)]. 
P E M(d) 

(154 

Since 4(d) is nondecreasing in d, R(d) is nonincreasing, 
for d E (0,co). Thus we can meaningfully define 

R(0) = lim R(d). W) 
d-0 

Our main result is the following. 

Theorem 1: For d 2 0, R*(d) = R(d). 

Remarks: 1) We remarked (following (11)) that R*(d) is 
continuous at d = 0. Since W(d) is, by construction, also 
continuous at d = 0, it will suffice to prove Theorem 1 for 

I Xl 

d > 0. 
2) Let X, Y,Z satisfy (12). Then 

Z(X ;Z) - Z(Y ;Z) = H(Z 1 Y) - H(Z 

(*) 
= H(Z 1 Y) - H(Z 

= Z(X;Z 1 Y), 

I X,Y) 

(16) 

where step (*) follows from (12b). Thus (15a) can be 
written, for d > 0, 

W(d) = inf I(X;Z I Y). 
P E Jll(d) 

3) Let D satisfy (4). Let 6 & min,,, D(x$) > 0. Thus 
if X, Y,Z,X correspond to p E A(d), 

I p Pr (X # X} I ED(X,8)/6 < d/6. 

Now since k is a function of Z,Y, Fano’s inequality [3] 
implies that 

H(XIZY) 5 -Ilog - (1 - 1)log(l - 2) 

+ I log (card 3) 

B 44, 

so that 

Z(X;Zl Y) = H(XI Y) - H(XIZY) 

+ fwf I n, as d --, 0. 

Thus R(0) 2 H(X 1 Y). Furthermore, since setting Z = X 
and f(Y,Z) = Z = X, results in a distribution in d(d), 
for all d > 0, we have 

R(0) I Z(X; XI Y) = H(X 1 Y). 

Thus R(0) = H(X I Y), and Theorem 1 is consistent with 
the Slepian-Wolf result given in (6). 

4) The following is shown in the Appendix (Theorem A2) : 

a) R*(d) = R(d) is a continuous convex function of d, 
Osd<co; 

b) in evaluating R(d) from (15) it suffices to consider 
only sets d with card 3 I (card 3) + 1; 

c) the infimum in (15) is in fact a minimum. 

5) Let p E A(d) define X,Y,Z,X = f(Y,Z). Then from 

(16) 

Z(X;Z) - Z(Y;Z) = Z(X; z 1 Y). 

Furthermore, given that Y = y, the random variables X 
and d = f(y,Z) are conditionally independent given Z. 
Thus the data-processing theorem [3] yields 

Z(X; z 1 Y = y) 2 Z(X; 8 1 Y = y), 

so that 

Z(X; z 1 Y) 2 Z(X; 2 1 Y). (17) 

Furthermore, equality follows in (17) if and only if 

Z(X;Zp-Y) = 0. (18) 

Finally, the distribution defining X,Y,X belongs to .&I,(d), 
so that remark 2), (3), (17), and Theorem 1 imply that 

R*(d) 2 R,,rW, d r 0. (19) 

The equality holds in (19), for d > 0, if and only if the 
distribution for X,Y,X which achieves the minimization in 
(3) can be represented as in Fig. 2, with X, Y,Z,X satisfying 
(12) and (18). This is, in fact, an extremely severe condition 
and seems hardly ever to be satisfied. In particular, it is not 
satisfied in the binary example discussed in Section II. See 
remark 6) below. 

6) Although the discussion in this paper has been re- 
stricted to the case where % and Y are finite sets, it will be 
shown elsewhere that Theorem 1 is valid in a more general 
setting which includes the case where X is Gaussian and 
Y = X + U, where U is also Gaussian and is independent 
of X. The distortion is D(x$) = (x - a>2. In this case, it 
turns out that for all d > 0 

R”(d) = RX,YW 

I 

flog O” 
2 ox2 2 ox2 

(0,” + au2>d’ 
O<d< ‘Ju 

ox2 + CT”2 ’ 
= 

0, d> Ov 
2 f.Q2 

Q2 + cTu2’ 

where cx2 = var X, au2 = var U. Thus in this case the 
condition for equality of Rx,, and R” given in remark 5) 
holds. 

II. EXAMPLE: DOUBLY SYMMETRIC BINARY SOURCE 

A. Evaluation of R*(d) 

’ In this section we evaluate R*(d) from Theorem 1 for 
the special case where X = Y = @ = (0,l) and for 

KY = (41, 

Q(x, y) = (l ; I") a,,,, + F (1 - &> (20) 

where 0 I p. I 3. We can think of X as being the un- 
biased input to a binary symmetric channel (BSC) with 
crossover probability po, and Y as the corresponding out- 
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put, or vice versa. The distortion measure is, for x,R = O,l, 

D(x$) = ;’ 
x = 2, 

, x # 2. (20 

It is known [l, pp. 46-471 that 

Osdsp, Of course, g*(d) is nonincreasing in d. 

d 2 P, (22) In the remainder of this section we establish that 

where h(A) = -I log L - (1 - A) log (1 - A), 0 < 2 I 1, 
is the usual entropy function. We now give the formula for 
R*(d). 

For 0 I d I po, let g(d) be defined by 

g(d) = 
( 
h(po * 4 - h(d), 0 I d < po, 
o 

7 d = PO, (234 

wherefor I U,V I 1, 

u * v g U(1 - u) + u(1 - 24). CW 

Also define 

(24) 

where the infimum is with respect to all 8 E [O,l] and 
/11,p2 E [O,p,] such that d = e/3, + (1 - e)p,. The func- 
tion g*(d) is seen to be the lower convex envelope of g(d). 

We will show below that, for 0 I d < po, g(d) is con- 

vex. Thus, in performing the minimization in (24), we can 
take fi2 = po, and (24) becomes 

g*(d) = iensf [Who * P> - W-VI, 0 I d I p. (25a) 

where the infimum is with respect to all 0$, such that 

osea, 0 I p <p(). (25b) 

and 

d = ep + (I - e)p,. (25~) 

H(XIY)=h(PO) - 

g(d)=h(P# d)-h(d) 

/ 

through the point (p,,O). The point of tangency is (d,,g(dJ). 
Thus dc is the solution to 

ddc) - = g’(d,). 
dc - PO 

(26) 

R*(d) = g*(d), (27) 

as given in (25). It should be observed that, for d > 0, 

R*(d) = g*(d) > R,,Ad), as given in (22). Thus we see 
that knowledge of the side information at the encoder does 
effect the required code rate. When d = 0, however, 

R,,,(O) = R*(O) = h(po). 
Before proceeding with the proof of (27), we pause to 

establish the convexity of g(d), 0 I d < po. We shall fulfill 
this task by establishing the following. 

Lemma A: For 0 I u I I,0 I p. I 3, the function 

G(u) Q h(po * 4 - h(u) (28) 

is convex in 24. 

Proof: Let a = (1 - 2p,), so that p. * u = au + po, 

and 

d2G 
du2 (u) = a2h”(au + po) - h”(u) 

where h”(u) = (log e)(- l/u(l - u)). Continuing we have 

S(u) = log e 

(au + p,)(l - au - PO)@ - u> 

* [(au + PO)0 - au - po) - a2u(l - IL>] 

log e 

= (au + po)(l - au - p&(1 - u) 

- [p,(l - PO)] 2 0, 0 I ZJ I 1, 

so that G(u) is convex, completing the proof. 

In Section II-B we show that R*(d) < g*(d), and in 
Section II-C that R*(d) 2 g*(d). 

B. Proof that R*(d) I g*(d) 

We begin by obtaining an upper bound on R*(d). Con- 

0,) 
sider the following situations. 

a) Let Z be the output obtained from a BSC with cross- 
over probability B (0 I b < +), when the input is X. 
Setting 8 = f(Y,Z) = Z, we have E[D(X$)] = j3, so 
that the distribution for 1, Y,Z belongs to A(/?). Now Y,Z 

dc PO 
can be thought of as being connected by the channel which 
is the cascade of a BSC with crossover probability p. with 

Fig. 3. Graph of g*(d) versus d (solid line). Lower dashed curve is 
Rx, y(d) = h(po) - h(d). 

a BSC with crossover probability /I. This cascade is a BSC 
with crossover probabilityp, * /I = po(l - /I) + (1 - po)j?. 
Thus 

Referring to Fig. 3, we see that g*(d) = g(d), for d I dc. 
For d, 5 d I po, the graph of g*(d) is the straight line 
which is tangent to the graph of g(d) and which passes 

W;Z) - WZ) = Cl - h(B)] - Cl - 0, * P>] 

= 0, * PI - h(P). 
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Thus, from Theorem 1, Equality (*) follows from (12b). If, however, z E AC, but 

R*(B) 5 Uo * B> - h(P), OS/l<*. 
(29) f(O,z) = 1, then we have 

b) Let Z be degenerate, let us say Z = 0, and let 8 = 
E[D I Z = z] = 1 -p. 2 po, Wb) 

f(Y,Z) = Y. Then we have E[D(X$)] = po, so that this since p. I 3. Inequality (36) follows from (37) and (38). 
distribution belongs to A’(po). Since Z(X,Z) - Z(Y;Z) = 0, Therefore, using 
we have from Theorem 1, 

R*(p,) = 0. (30) 
E[DIZEA] = c Pr lz = ‘I E[D 1 Z = z] 

zs~ Pr{ZEA} 

Now let d, 0 I d 5 po, be given and say that 0,/I are (35) and (36) yield 

such that 

d = ep + (1 - e)p,, 
d’ A 8 C &d, + (1 - f3)p, I d (394 

0 5 e I I, 0 I p < po. (31) Z.ZA 

[Equation (31) is always satisfied for some 0,/I.] Since where e = Pr tz E A)y 1z = Pr fz = z}/Pr fzE A)y and 
R*(d) is convex, d, = E[D(X,z) 1 Z = z]. (39b) 

R*(d) = R*(@ + (I - 0)p,) I OR*(P) + (I - B)R*(p,) Next, consider 

5 w4po * B> - WI (34 Z(X ;Z) - Z(Y ;Z) 
where the last inequality follows from (29) and (30). To get 
the tightest bound we minimize (32) with respect to all f3J3 

= H(YIZ) - H(XIZ) 

satisfying (31) or (25b), (25c), yielding R*(d) I g*(d). 2 z;A [H(Y 1 Z = 2) - H(X 1 Z = z)] Pr (Z = z} 

C. Proof that R*(d) 2 g*(d) = 8 =?A I,[H(Y 1 z = z) - H(X 1 z = z)]. (40) 

Let X, Y,Z,X = f (Y,Z) define a distribution in &i’(d) 

(d < po). We will show that R*(d) 2 g*(d) by showing that Now, for z E A, define y(z) = f (0,z) = f (1 ,z). Then 

Z(X,Z) - Z(y;Z) 2 g*(d) (33) d, = E[D(X,8) ) Z = z] = Pr {X # y(z) ) 2 = z}, 

and invoking Theorem 1. Define the set so that 

A = {z:f(O,z) = f(l,z)} (344 
H(X ( Z = z) = h(d,) @la) 

so that its complement 
and from (12b), 

AC = d - A = {z: f(O,z) # f(l,z)}, PW 
H(Y 1 Z = z) = h(p, * d,). @lb) 

by hypothesis, 
Thus (40) and (41) yield 

E[D(X,T)] = Pr (Z E A}E[D(X$) I 2! E A] z(x $1 - z(Y 3) 2 0 =;A &[KP, * 4 - Md,)l 

+ Pr {Z E A’)E[D(X$) 1 Z E AC] = e c &G(dz), (42) 
ZEA 

I d. (35) where G is defined by (28). Since, by Lemma A, G is 
We first show that convex, and C, EA 1, = 1, 

E[D(X,i?) I ZE AC] 2 po. 

To do this, we write 

E[D I Z E AC] = 

Next, note that if z E AC and iff(O,z) = 0, then f (1 ,z) 
Therefore, for such z, 

E[D]Z = z] 

= Pr {X = 1, Y = 0 1 Z = z} 

+ Pr {X = 0, Y = 1 I Z = z> 

(*j 

(36) 
Z(X ;z> - Z(Y;Z) 2 BG c J,d, 

( ) 
= e[h(p, * p> - h(/3>] 

z 

(43a) 

(37) where 

P = .?A M- (43b) 
= 1. 

Thus we have shown that, for any distribution in d(d), 
there exists 0 I 8 I 1 and 0 I p < p. such that (43a) 
holds and (from (39a)), 

ep + (1 - e)p, = dt. (44) 

Comparison of (43a) and (44) with (25) yields 
\ I 

= Pr {X = 11 Z = z} Pr {Y = 0 1 X = l} Z(X;Z) - Z(Y;Z) 2 g*(d’). (45) 

+ Pr {X = 0 1 Z = z} Pr (Y = 1 I X = 0} = po. Now, from (39a), d’ I d, and since g*(d) is nonincreasing 

(384 in d, we have that (45) yields (33), completing the proof. 
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III. CONVERSE THEOREM 

In this section we establish the converse theorem. 

Theorem 2: R*(d) 2 R(d), d 2 0. 

Proof: Let (FE,FD) define a code with parameters 
(n,M,A). We will show that 

; log M 2 R(A). (46) 

Thus if (R,d) E .%?‘, then, for arbitrary E > 0, with n suffi- 
ciently large, there exists a code (n,M,A) with A4 I 2n(R+E), 
A I d + E. Inequality (46) and the monotonicity of R(A) 
imply 

R + E 2 W(A) 2 R(d + E). (47) 

Letting E + 0 and invoking the continuity of R(d) (see 
Theorem A2), we have R 2 R(d), whenever (R,d) E 9, 
which implies Theorem 2. It remains to establish (46). 

Let W = FE(Xn), so that Xn = (X1,. * .,X,) = F,(Y”, W). 
Let 

A, = EW,,&) (48) 
so that 

A = A i Ak. (49) 
n k=l 

Now 

(1) (2) (3) 

log M 2 H(W) 2 Z(X”; W) = H(X”) - H(X” I W). 

(50) 

Step (1) follows from WE ZM and steps (2) and (3) from 
standard identities. Now 

(1) 
H(X” 1 W) = 1(X”; Y” 1 W) + zz(xn 1 y”, W) 

(2) 
= zz(Y” 1 W) - H(Y” 1 Xwq + H(X” [ Y”W) 

(3) 

< H(Y”) - H( Y” 1 Xn) + H(X” 1 Y”W) 

(4) 

= I(X”;Y”) + H(X” 1 Y”W). (51) 

Steps (I), (2) and (4) are standard identities, and step (3) 
follows from H(Y 1 W) < H(Y), and H(Y” I XnW) = 

H(Yn 1 X”) since W = FE(X”). Substituting (51) into (50) 
we have 

log M 2 H(X”) - H(X” 1 YW) - z(X”;Y”) 

= El CHcXk) - H(Xk I Xk-ly”W) - 1(xk;y,)] 

(52) 

where Xk-’ = (X1;** ,X, _ l). Here we have used the in- 
dependence of the {(X,,Y,)} and standard identities. Now 
define, for k = 1,2,. . . ,n, 

q = (Xk-%,Y2,. . .,yk--l,yk+l; * *,r,,W) (53) 

so that (52) becomes 

1% M 2 f [H(X,) - ff(Xk 1 ykzk) - z(xk; y,)]* (54) 
k=l 

We pause to point out two facts about Z,: 

a) X, is the kth coordinate of FJY”, W) so that we can 
write 2, as a deterministic function of Y, and Z,, let 
us say 8, = f(Y,,Z,); of course, (48) still holds, so 
that E[D(X,,Tk!] = A,; 

b) Y,,Z, are conditionally independent given X,. 

Facts a), b) imply that the distribution which defines 
X,,Y,,Z, belongs to &(AJ, so that from the definition (15), 

Z(X,;Z,) - Z(Y,;Z,) 2 @A,). (55) 

Now, returning to (54) we can write the second term in 
the summand as 

The above follows from fact b), which implies that 
H(Y, I X,Z,) = H(Y, 1 XJ and standard identities. Sub- 
stituting (56) into (54) we have 

1% M 2 i: [ff(&) - ff(X, 1 z,> - H(Y, 1 xk) 
k=l 

+ H(Yk 1 zk> - H(Yk) + H(Yk I xk>] 

= k$, [z(xk;zk) - z(yk;zk)] 

(1) n (2) 
2 ,z, i?(A,) 2 nR nR(A). (57) 

Step (1) follows from (55), step (2) from the convexity of 
R(A) established in the Appendix, and step (3) from (49). 
This establishes (46) and completes the proof of Theorem 2. 

IV. DIRECTTHEOREM 

We begin by stating precisely a version of the result of 
Slepian and Wolf [l] which was mentioned in Section I. 
Let X, Y be random variables as above which take values in 
X,Y, respectively. Let the reproduction alphabet .@ = 3, 
and the distortion measure be the Hamming metric, for x, 
2E.3, 

D(x$) = D,(x,R) = ;’ 
x # 12, 

3 x = R. (58) 

Their result is that R*(O) (as defined in Section I-B) is 
given by 

R*(O) = H(X I Y). (59) 

This means that, for arbitrary sl,s2 > 0, the sequence 
{X,} can be encoded into blocks of length n (sufficiently 
large) and that the decoder (which has access to {Y,}) can 
produce a sequence {X,} such that 
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Furthermore, the code with block length y1 has at most 
exp, {n(H(X 1 Y) + Q)} codewords. 

The following is a corollary of the Slepian-Wolf theorem. 
Lemma 3: Let X,Y, etc., be as in Section I-B, and let 

(FE(o’,FD’o’) be a code (n,,M,,A,), as defined in that section. 
Define R,, by 

R, = L H(w 1 Y""), 
no 

where W = FECo’(X”“). Then, for arbitrary 6 > 0, there 
exists an its (sufficiently large) so that there is a code 
(n,F,A) with 

n = nOnI (604 

M I ytWo+~) < y(Ro+@ (6Ob) 

A 5 A, j- 6. (604 

Remark: The essence of Lemma 3 is the following. 
Ordinarily, the rate of any code is about (l/n)H( W), where 
W = FE(Xn). However, should a code be such that 
(I/n)H( W 1 Y”) is significantly less than (l/n)H( W), the 
rate can be reduced to about (l/n)H( W 1 Y”). This can be 
done by further encoding the W corresponding to succes- 
sive blocks (of length no) using the Slepian-Wolf scheme. It 
follows that for an optimal code (l/n)H( W) x (l/n) * 
H( W 1 Y”) or (l/n)Z(W;Y”) M 0. Thus the encoded in- 
formation W and the side information Y are approx- 
imately independent. 

Proof of Lemma 3: Let (,FECo),FDCo)) satisfy the hy- 
potheses‘.of the lemma. We can consider the independent 
repetitions of (W,Y”O) as a new “supersource.” Denote the 
sequence of successive repetitions of W by {Wj}. 

Now let 6 > 0 be given. For n, sufficiently large, there 
exists (by Slepian-Wolf) an encoding of (W,; * .,W,,,) into 
a code with no more than 

exp, (n,(H(W 1 Y”“) + S)} = 2n1(noRo+d) (61) 

codewords such that the decoder (which knows {Y,}) can 
recover a sequence, let us say (l?l,l?z,. * . ,pn,,), where 

(62) 

The decoder can then apply F,(O) to ~j and (~j- ljno+ 1, * * . , 
Yjno) to obtain say (Xz- ljno + 1, * * . ,Xzo) as a decoded message. 
The combination of the given code (FEco),FDco)) and the 
Slepian-Wolf code results in a new code (n,M,A), where 
n = ytonl (satisfying (6Oa)), and M satisfies (60b). Further- 
more, 

A = -!- “5 E[D(X,,X,*)] 
n,,Yll k=l 

= k sl E (t &j;$no+l O(xk~xk*)) 

(2 L 2 [A0 + max o(Q) Pr { wj # mj}] 
Iz1 j=l x,2 

(2) 
I A0 + 6. (63) 

To verify inequality (I), set the term in brackets in the 
left member of inequality (1) equal to C#J~ and define the 
event d = { Wj # pj}. NOW write 

Edj = Pr {bC)E[+j I 8’1 + Pr (6)E[4j I &] 

I Pr {bC}E[4j I a”] + Pr (&‘} ;y o(x$), 

and observe that if bc occurs, then 

4j = i F D(xk,sk>, 

0 

so that (since D 2 0) 

Pr {bC}E[tij I 6’1 I E 1 ‘j$ D(X,,z,) = do. 
0 1 

Thus 

E[$j] < A0 + Pr { Wj # @‘j} max D(x$), 
x,f 

which is inequality (1). Inequality (2) follows from (62). 
Since (63) is (~OC), the proof of Lemma 3 is complete. 

We now state the direct theorem. 

Theorem 4: For d 2 0, R*(d) I R(d). 

Proof: As indicated in remark 1) following Theorem 1, 
it will suffice to establish Theorem 4 for d > 0. We will do 
this by showing that if X, Y,Z, and X = f (Y,Z) correspond 
to a distribution p(x,v,z) in &2’(d), for some d > 0, then 
(R,,d) E W, where 

R, = Z(X;<) - Z(Y;Z). (64) 

We will do this by means of the following. 
Lemma 5: With X, Y,Z, f as above, and so > 0 arbitrary, 

there exists, for no sufficiently large, a code (FE(o’,FD’o’) 

with parameters (no,Mo,Ao), such that 

and 

A0 I d + e. 

ie H(W 1 Y”“) I R, + &o 
n0 

(65) 

(66) 

with R, = Z(X;Z) - Z(Y;Z), as in (64). 
Theorem 4 now follows from Lemmas 3 and 5, which 

together assert, for arbitrary co, 6 > 0, the existence of a 
code (n,M,A) with M I 2n(Ro+Eo+d) and A I d + .zo + 6. 
Thus (R,d) E 9. We now give the proof of Lemma 5. 

Proof of Lemma 5’: With so > 0 and p(x,y,z) E d(d) 

given, let p(“‘(x,y,z) define the probabi!ity distribution on 
%” x %)/” x 9”’ corresponding to n independent repetitions 
of p(x,y,z), n = 1,2,. . . . All probabilities in this proof will 

be computed with respect top@‘). For c( > 0 and n = 1,2,. 1 . , 
let T(n,a), the “typical” sequences, be defined as the set of 
all y,z E CV” x 9” for which 

- 1 log Pr {Y” = y, 2” = z> - H(Y,Z) I a (67) 
n 
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and 

-AlogPr{Z” = z} - H(Z) I a. (68) 
n 

It follows from the weak law of large numbers that, with 
c( > 0 held fixed, 

Pr {(Y”,Z”> 6 %4) -+ 0, asn+ co. (69) 

The set T(n,a) also has the property that for all z E b”, 

card {y: (y,z) E T(n,a)} I 2”(H(YIZ)fZa). (70) 

To verify (70), note that if (y,z) E T(n,a), then 

Let CL,E > 0 be arbitrary and let F be a mapping which 
satisfies (78). Define FE(‘) by FEE”‘(x) = i, when F(x) = zi. 

Define FDco) by F,“‘(y,i) = f,,(y,zJ, where f,, is defined 
by (73). Let the parameters of (FEco),FDco)) be (no,Mo,Ao). 
Set W = FE(‘)(Xno). From (76) and (78) we have 

Ao = E [~,o(X”o,~,(Y”o,W)] 

= E [Qzo(Xno,fno( Y”“,F (Xno))>l 

I (d + cc) + [:I D(x$>] 

. Pr (Dno(X”o,f,o(Y”o,F(X”o))) 2 d + a> 

5 (d + M) + [max D(x,R)]E [$,o(X”o,Y”o,F(X”O))] 

I d + ct + s[max o(x,a)] (79) 

with a,~ sufficiently small, A0 I d + eo, which is (65). It 
remains to verify (66). Write 

t H(W 1 Y”“) = i [H(W,Y”O) - H(Y”O)] 

= ; [H(W) + H(Y”O 1 W)] - H(Y) 

< Z(X;Z) + E - H(Y) + -A- H(Y”” 1 W). 
no 

@I) 

Pr (Y” = y 1 2” = z} = 
Pr {Y” = y, 2” = z} 

Pr (2” = z} 

2 exp,{-n(H(YlZ) + 

Inequality (70) follows from (71) on writing 

12 c Pr(Y” = ylZ”= z> 
Y: (YJ) E ww) 

2a)). (71) 

> 2n(H(Y1Z)+2a) card { y: (y,z) E T(n,a)}. - 

Next, for n = 1,2;* a, define the function D,: I” x 
it?-” + [O,co) by 

D”(X”$“) = I i: D(xk,2k). 
n k=l 

(72) 

Also for y,z E %” x 6”, set 

f,(YJ) = (f (YlJAf (YZJA . . .Pf (Y&)) E 3” (73) 

so that we have 

D,(x”~f,(y”~zn>> = ‘, k$l D(Xk,f(Y,,Zk)) 

= t cl D(xk,2k)* (74) 

Again, the law of large numbers yields, with a > 0 held 
fixed, 

Pr {D,(X”,f,(Y”,Z’)) 2 (d + a)} + 0, as n + co. (75) 

Now define the function $, : !En x %” x 2”” + [O,l], by 

i 

I, if D,kfn(y,z)) 2 d + a, 

Icl”(X,Y,Z) = or (YJ> 4 Ww) 
0, otherwise. (76) 

We have from (69) and (75), 

E[+,(X”,Y”,Z”) + 01, asn+ co. (77) 

We now apply a lemma in [7]. This lemma asserts that, for 
arbitrary E > 0, there exists (for no sufficiently large) a 
mapping F: sno + {z,}F1 c z’“, such that 

MO 4 2”0w:Z)+E) 
( 79 

E [+,(X”O, Y”“,F(X”o))] I E. (78b) 

We show how to obtain (78) from the result in [7] in 
Appendix A2. The mapping F will define the code 
(FEco),FDcol) which will establish Lemma 5 as follows. 

The inequality follows from H(W) < log MO, and (78a). 
Now 

H(Y”O I W) I H( Y”O,ll/,, I W) 

= wbk, I w> + wY”o I wklo> 

= fw”, I w 

+ Pr {$no = O}H( YE0 1 W, $,, = 0) 

+ Pr {+no = l}H(Y”O I W, *,, = 1) 

5 W$,,) + fvno I w, AI0 = 0) (81) 

+ W,,)fW”” I W, $n, = 1) 
(1) 
I h(E) + n,(H(Y I 2) + 24 

+ En0 log card % 

< n,[H(Y 1 2) + 2c( + E log card % + h(c)]. 

Inequality (1) follows from the definition of $,, (76) and 
from (70) (assuming E I 3). Substituting (81) into (80) 
yields 

1 H(W 1 Yno) 5 Z(X ;Z) - Z(Y ;Z) 
no 

+ 2a + E + E log card % + h(e) 

I R, + ~0 

for E,CI sufficiently small. This is (66). This completes the 
proof of Lemma 5. 
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APPENDIX 

AI. Some Facts About i?(d) 

The techniques in this section are similar to those in [6]. We 
begin by giving an alternative, though equivalent, formulation 
of the definition of K(d). Let the set X = {1,2,. . .,K} and the 
set% = {1,2,-a. J}. Then, for k = 1,2,. . -,K, set 

Qk = Pr ix = kl = j$l Qki), (Al) 

where the given distribution Q defines X, Y. Also let 

tjk = pr{Y=jlX= k} = y, 
k 

1 I k I K, 1 5 j 5 J. (A2) 

Let T be the J x K matrix, with (j,k)th entry tjk. Also, for 
m = 1,2,-e-, let Am be the simplex of probability m-vectors. 

Thus, since tjk is given and fixed, the function which minimizes 
E [D] depends only on q(z). If we assume that f is always this 
minimizing function, we can write 

where 

E P(X’,~)l = c ~&z(z)) z Wa) 

A(q(z)) = c tjkqk(Z)D(k,f (j,z)). 
j.k 

Wb) 

Now let A(d) be the family of {l,,q(z)},,z (where d is a 
finite set and q(z) E AK) such that (A5) is satisfied and E [0(X,8)] 

as given by (A9) does not exceed d. Each member of A(d) 

generates a distribution for X’, Y’,Z in 4(d). Furthermore, each 
distribution for X’,Y’,Z in A(d) generates a {&q(z)} in A’(d) 

by 

1, = Pr{Z= z} 

q,(z)=Pr{X’=k]Z=z}. 
Then Q = (Q,,Q,,. . .,Q,)t E AK, and TQ E A,. Of course, T 

defines a channel. 
Thus we have shown the following. 

Now let Mz)L, s be a finite set of vectors in AK, indexed by 
Lemma AI: For d > 0, 

the finite set 3. Also let {a,}, E s satisfy R(d) = inf c &F(q(z)) 
!zE~ - 

(A3) where the infimum is with respect to all {&q(z)} in A(d). 

Let Z be the random variable which takes the value z E 3’ with 
Next consider the polytope AK x [O,oo ] x [O,co 1, which is 

probability I,. Furthermore, suppose that Z is the input to a 
(K + 1)-dimensional. The mapping q --t (q,r(q),A(q)) assigns 

channel with output (let us say X’) taking values in 3? with 
a point in this polytope to each point in AK. Let S be the image 

transition probability 
of AK under this mapping and let C be the convex hull of S. Let 
CQ = {(pJ): (Q,p,S) E C}. Co is also convex. A pair (p,6) E Ce, 

Pr{X’= klZ= z} = qk(z), 1 I k 5 K (A4) if and only if for some &q(z)}, satisfies (A5), and the corre- 
sponding X’, Y’,Z satisfy 

where qk(z) is the kth component of q(z). Let Y’ be the output 
of the channel defined by T when X’ is the input. The random 

1(X’;Z) - I(Y’;Z) = c Q(q(z)) = p (AlOa) 
z-sa 

variables X’,Y’,Z satisfy (12) if and only if and 

(A% 

(In other words, X’ and Y’ have marginal distribution Q.) 
Assuming that (A5) is satisfied, we have 

Z(X’;Z) - Z(Y’;Z) 

= H(X) - H(Y) + c &W(Tdd) - Wdd)l, 646) 
ZSd 

where %a(~,, . . . ,p,) = -c$ 1 pi log pi. Thus we can write 

z(x’;z) - z(Y’;z) = C azr(dz)) W’a) 
ZSb 

where 

r(q) 4 fw) - H(Y) + *G%) - wq>. (A7b) 

Finally, assume that {&q(z)>, satisfy (A$ and let X’,Y’,Z 
be the corresponding random variables. Let f: % x 3 -+ 2. 

Then, with 8 = f( Y,Z), 

E[D(x',%)] = c 1,zPr 0” = jl X’ = k) 
2~3 J’,k 

. Pr {X’ = k I Z = z}D(k,f(j,z)) 

E[D(X,J?)] = c &A(q(z)) = 6. (AlOb) 
I 

Thus from Lemma Al, for d > 0, 

W(d) = inf p. (All) 
(P,f$cQ 

We can now establish the following. 

Theorem A2: i?(d) is convex and, therefore, continuous in d, 
0 < d < cc. Furthermore, in the calculation of R(d) in (15), 
we can assume that card 3 5 card X + 1 = K + 1, and we 
can assert that the “infimum” is a minimum. 

Proof: The convexity of R(d) follows from (All) and the 
convexity of CQ. Next observe that, since S is the continuous 
image of the compact set AK, S is connected and compact. It 
then follows from the Fenchel-Eggleston strengthening of 
Caratheodory’s theorem’ that any point in (p,6) E CQ can be 
expressed as in (AlO) with card 3’ I dimension S 5 K + 1. 
Finally, since S is compact, C and CQ are also compact, so that 
the infimum in (Al 1) and, therefore, in (15) is in fact a minimum. 
This establishes Theorem A2. 

= c AZ c tjkdZ)D(kf (j,z)). (A81 
A2. Application of [7] 

z j,k In Section IV of the present paper we used a lemma from [7] 

Now E [D] is minimized with respect to A if for all j,z we take 
to deduce the existence of the function “F.” The result from [7] 

f(j,z) as that value of 2 E g which minimizes 

C tjkqk(Z)D(kS.)* 
1 If S is a connected subset of an n-dimensional linear space, any point 

in the convex hull of S can be expressed as a convex combination of at 
k most n points of S 12, p. 351. 
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which we used is the following. Let the random vectors U”, V”, W” 

be independent copies of U,V, W which take values in the finite 
sets %,V,w, respectively. Assume further that U and W are 
conditionally independent given V. Let $,,: @I” x -Ilr” + [O,l ] 
be an arbitrary function and let {tin},“=, be sequence of such 
functions. Assume that 

lim E [h(U”, W”)] = 0. (AW 
n-rm 

A PB-code (n&f,) is a mapping 

‘F: Y” + {wj}21 c w”. 

Lemma 4.3 in 273 states that, for arbitrary E > 0 and for 
n, = no(s) sufficiently large, there exists a PB-code (n,,M,) such 
that 

MO I: em2 bo[f(V;W) + ~11 (A13a) 

E k,W”,FW”))] 5 8. (A13b) 

To apply this lemma to our problem, let % = % x g/, Y = 6, 
and w = 2, and set U = (X,Y), V = X, and W = Z. Since 
X, Y,Z satisfy (12b) and U an,d W are conditionally independent 
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given V, as required. Now the functions {$,,}, defined in (76) 
satisfy (A12) (by (77)), so that Lemma 4.3 in [7] can be applied to 
deduce the existence of a function F which satisfies (A13). Since 
(A13a) and (Al3b) are identical to (78a) and (78b), respectively, 
our task is completed. 
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