The Rate of Convergence of Nesterov's Accelerated Forward-Backward Method is Actually Faster Than \$1/k^2\$ - Source link

Hedy Attouch, Juan Peypouquet
Institutions: Valparaiso University
Published on: 01 Sep 2016 - Siam Journal on Optimization (Society for Industrial and Applied Mathematics)
Topics: Separable space and Rate of convergence

Related papers:

- A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
- On the Convergence of the Iterates of the Fast Iterative Shrinkage/Thresholding Algorithm
- Convex Analysis and Monotone Operator Theory in Hilbert Spaces
- Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity
- A differential equation for modeling Nesterov's accelerated gradient method: theory and insights

THE RATE OF CONVERGENCE OF NESTEROV'S ACCELERATED FORWARD-BACKWARD METHOD IS ACTUALLY $o\left(k^{-2}\right)$

HEDY ATTOUCH AND JUAN PEYPOUQUET

Abstract

The forward-backward algorithm is a powerful tool for solving optimization problems with a additively separable and smooth + nonsmooth structure. In the convex setting, a simple but ingenious acceleration scheme developed by Nesterov has been proved useful to improve the theoretical rate of convergence for the function values from the standard $\mathcal{O}\left(k^{-1}\right)$ down to $\mathcal{O}\left(k^{-2}\right)$. In this short paper, we prove that the rate of convergence of a slight variant of Nesterov's accelerated forward-backward method, which produces convergent sequences, is actually o(k^{-2}), rather than $\mathcal{O}\left(k^{-2}\right)$. Our arguments rely on the connection between this algorithm and a second-order differential inclusion with vanishing damping.

Introduction

Let \mathcal{H} be a real Hilbert space endowed with the scalar product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$, and consider the problem

$$
\begin{equation*}
\min \{\Psi(x)+\Phi(x): x \in \mathcal{H}\} \tag{1}
\end{equation*}
$$

where $\Psi: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ is a proper lower-semicontinuous convex function, and $\Phi: \mathcal{H} \rightarrow \mathbb{R}$ is a continuously differentiable convex function, whose gradient is Lipschitz continuous.

Based on the gradient projection algorithm of [9] and [10], the forward-backward method was proposed in [11], and [20] to overcome the inherent difficulties of minimizing the nonsmooth sum of two functions, as in (1), while exploiting its additively separable and smooth + nonsmooth structure. It gained popularity in image processing following [8] and [7]: when Ψ is the ℓ^{1} norm in \mathbb{R}^{N} and Φ is quadratic, this gives the Iterative Shrinkage-Thesholding Algorithm (ISTA). Some time later, a decisive improvement came with [4], where ISTA was successfully combined with Nesterov's acceleration scheme [14] producing the Fast Iterative Shrinkage-Thesholding Algorithm (FISTA). For general Φ and Ψ, and after some simplification, the Accelerated Forward-Backward method can be written as

$$
\left\{\begin{align*}
y_{k} & =x_{k}+\frac{k-1}{k+\alpha-1}\left(x_{k}-x_{k-1}\right) \tag{2}\\
x_{k+1} & =\operatorname{prox}_{s \Psi}\left(y_{k}-s\left(\nabla \Phi\left(y_{k}\right)\right)\right)
\end{align*}\right.
$$

where $\alpha>0$ and $s>0$. This algorithm is also in close connection with the proximal-based inertial algorithms [1], [13] and [22]. The choice $\alpha=3$ is current common practice. The remarkable property of this algorithm is that, despite its simplicity and computational efficiency - equivalent to that of the classical forward-backward method-, it guarantees a rate of convergence of $\mathcal{O}\left(k^{-2}\right)$, where k is the number of iterations, for the minimization of the function values, instead of the classical $\mathcal{O}\left(k^{-1}\right)$ that is obtained for the unaccelerated counterpart. However, while sequences generated by the classical forward backward method are convergent, the convergence of the sequence (x_{k}) generated by (2) to a minimizer of $\Phi+\Psi$ puzzled researchers for over two decades. This question was recently settled in [5] and [2] independently, and using different arguments. In [5], the authors use a descent inequality satisfied by forwardbackward iterations. A perspicuous abstract presentation of this idea is given in [6, Section 2.2]. In turn, the proof given in [2] relies on the connection between (2) and the differential inclusion

$$
\begin{equation*}
\ddot{x}(t)+\frac{\alpha}{t} \dot{x}(t)+\partial \Psi(x(t))+\nabla \Phi(x(t)) \ni 0 . \tag{3}
\end{equation*}
$$

Indeed, as pointed out in [25, 2], algorithm (2) can be seen as an appropriate finite-difference discretization of (3). In [25], the authors studied

$$
\begin{equation*}
\ddot{x}(t)+\frac{\alpha}{t} \dot{x}(t)+\nabla \Theta(x(t))=0 . \tag{4}
\end{equation*}
$$

and proved that

$$
\Theta(x(t))-\min \Theta=\mathcal{O}\left(t^{-2}\right)
$$

[^0]when $\alpha \geq 3$. Convergence of the trajectories was obtained in [2] for $\alpha>3$. The study of the long-term behavior of the trajectories satisfying this evolution equation has given important insight into Nesterov's acceleration method and its variants, and the present work is inspired in this relationship. If $\alpha>3$, we actually have
$$
\Theta(x(t))-\min \Theta=o\left(t^{-2}\right)
$$

Although it can be derived from the arguments in [2], it was May [12] who first pointed out this fact, giving a different proof. This is another justification for the interest of taking $\alpha>3$ instead of $\alpha=3$.

The purpose of this paper is to show that sequences generated by Nesterov's accelerated version of the forwardbackward method approximate the optimal value of the problem with a rate that is strictly faster than $\mathcal{O}\left(k^{-2}\right)$. More precisely, we prove the following:
Theorem 1. Let $\Psi: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper, lower-semicontinuous and convex, and let $\Phi: \mathcal{H} \rightarrow \mathbb{R}$ be convex and continuously differentiable with L-Lipschitz continuous gradient. Suppose that $S=\operatorname{argmin}(\Psi+\Phi) \neq \emptyset$, and let $\left(x_{k}\right)$ be a sequence generated by algorithm (2) with $\alpha>3$ and $0<s<\frac{1}{L}$. Then, the function values and the velocities satisfy

$$
\lim _{k \rightarrow \infty} k^{2}\left((\Psi+\Phi)\left(x_{k}\right)-\min (\Psi+\Phi)\right)=0 \quad \text { and } \quad \lim _{k \rightarrow \infty} k\left\|x_{k+1}-x_{k}\right\|=0
$$

respectively. In other words,

$$
(\Psi+\Phi)\left(x_{k}\right)-\min (\Psi+\Phi)=o\left(k^{-2}\right) \quad \text { and } \quad\left\|x_{k+1}-x_{k}\right\|=o\left(k^{-1}\right)
$$

Moreover, we recover some results from [2, Section 5], closely connected with the ones in [5], with simplified arguments. As shown in [2, Example 2.13], there is no $p>2$ such that the order of convergence is $\mathcal{O}\left(k^{-p}\right)$ for every Φ and Ψ. In this sense, Theorem 1 is optimal.

We close this paper by establishing a tolerance estimation that guarantees that the order of convergence is preserved when the iterations given in (2) are computed inexactly (see Theorem 4). Inexact FISTA-like algorithms have also been considered in [23, 24].

1. Main results

Throughout this section, $\Psi: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper, lower-semicontinuous and convex, and $\Phi: \mathcal{H} \rightarrow \mathbb{R}$ is convex and continuously differentiable with L-Lipschitz continuous gradient. To simplify the notation, we set $\Theta=\Psi+\Phi$. We assume that $S=\operatorname{argmin}(\Psi+\Phi) \neq \emptyset$, and consider a sequence $\left(x_{k}\right)$ generated by algorithm (2) with $\alpha \geq 3$ and $0<s<\frac{1}{L}$. For standard notation and convex analysis background, see [3, 21].
1.1. Some important estimations. We begin by establishing the basic properties of the sequence $\left(x_{k}\right)$. Some results can be found in [5, 2], for which we provide simplified proofs.

Let $x^{*} \in \operatorname{argmin} \Theta$. For each $k \in \mathbb{N}$, set

$$
\begin{equation*}
\mathcal{E}(k):=\frac{2 s}{\alpha-1}(k+\alpha-2)^{2}\left(\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)\right)+(\alpha-1)\left\|z_{k}-x^{*}\right\|^{2}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{k}:=\frac{k+\alpha-1}{\alpha-1} y_{k}-\frac{k}{\alpha-1} x_{k}=x_{k}+\frac{k-1}{\alpha-1}\left(x_{k}-x_{k-1}\right) . \tag{6}
\end{equation*}
$$

The key idea is to verify that the sequence $(\mathcal{E}(k))$ has Lyapunov-type properties. By introducing the operator G_{s} : $\mathcal{H} \rightarrow \mathcal{H}$, defined by

$$
G_{s}(y)=\frac{1}{s}\left(y-\operatorname{prox}_{s \Psi}(y-s \nabla \Phi(y))\right)
$$

for each $y \in \mathcal{H}$, the formula for x_{k+1} in algorithm (2) can be rewritten as

$$
\begin{equation*}
x_{k+1}=y_{k}-s G_{s}\left(y_{k}\right) \tag{7}
\end{equation*}
$$

The variable z_{k}, defined in (6), will play an important role. Simple algebraic manipulations give

$$
\begin{equation*}
z_{k+1}=\frac{k+\alpha-1}{\alpha-1}\left(y_{k}-s G_{s}\left(y_{k}\right)\right)-\frac{k}{\alpha-1} x_{k}=z_{k}-\frac{s}{\alpha-1}(k+\alpha-1) G_{s}\left(y_{k}\right) . \tag{8}
\end{equation*}
$$

The operator G_{s} satisfies

$$
\begin{equation*}
\Theta\left(y-s G_{s}(y)\right) \leq \Theta(x)+\left\langle G_{s}(y), y-x\right\rangle-\frac{s}{2}\left\|G_{s}(y)\right\|^{2} \tag{9}
\end{equation*}
$$

for all $x, y \in \mathcal{H}$ (see [4], [5], [19], [25]), since $s \leq \frac{1}{L}$, and $\nabla \Phi$ is L-lipschitz continuous. Let us write successively this formula at $y=y_{k}$ and $x=x_{k}$, then at $y=y_{k}$ and $x=x^{*}$. We obtain

$$
\begin{equation*}
\Theta\left(y_{k}-s G_{s}\left(y_{k}\right)\right) \leq \Theta\left(x_{k}\right)+\left\langle G_{s}\left(y_{k}\right), y_{k}-x_{k}\right\rangle-\frac{s}{2}\left\|G_{s}\left(y_{k}\right)\right\|^{2} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta\left(y_{k}-s G_{s}\left(y_{k}\right)\right) \leq \Theta\left(x^{*}\right)+\left\langle G_{s}\left(y_{k}\right), y_{k}-x^{*}\right\rangle-\frac{s}{2}\left\|G_{s}\left(y_{k}\right)\right\|^{2} \tag{11}
\end{equation*}
$$

respectively. Multiplying the first inequality by $\frac{k}{k+\alpha-1}$, and the second one by $\frac{\alpha-1}{k+\alpha-1}$, then adding the two resulting inequalities, and using the fact that $x_{k+1}=y_{k}-s G_{s}\left(y_{k}\right)$, we obtain
$\Theta\left(x_{k+1}\right) \leq \frac{k}{k+\alpha-1} \Theta\left(x_{k}\right)+\frac{\alpha-1}{k+\alpha-1} \Theta\left(x^{*}\right)-\frac{s}{2}\left\|G_{s}\left(y_{k}\right)\right\|^{2}+\left\langle G_{s}\left(y_{k}\right), \frac{k}{k+\alpha-1}\left(y_{k}-x_{k}\right)+\frac{\alpha-1}{k+\alpha-1}\left(y_{k}-x^{*}\right)\right\rangle$.
Since

$$
\frac{k}{k+\alpha-1}\left(y_{k}-x_{k}\right)+\frac{\alpha-1}{k+\alpha-1}\left(y_{k}-x^{*}\right)=\frac{\alpha-1}{k+\alpha-1}\left(z_{k}-x^{*}\right),
$$

we obtain

$$
\begin{equation*}
\Theta\left(x_{k+1}\right) \leq \frac{k}{k+\alpha-1} \Theta\left(x_{k}\right)+\frac{\alpha-1}{k+\alpha-1} \Theta\left(x^{*}\right)+\frac{\alpha-1}{k+\alpha-1}\left\langle G_{s}\left(y_{k}\right), z_{k}-x^{*}\right\rangle-\frac{s}{2}\left\|G_{s}\left(y_{k}\right)\right\|^{2} . \tag{12}
\end{equation*}
$$

We shall obtain a recursion from (12). To this end, observe that (8) gives

$$
z_{k+1}-x^{*}=z_{k}-x^{*}-\frac{s}{\alpha-1}(k+\alpha-1) G_{s}\left(y_{k}\right) .
$$

After developing

$$
\left\|z_{k+1}-x^{*}\right\|^{2}=\left\|z_{k}-x^{*}\right\|^{2}-2 \frac{s}{\alpha-1}(k+\alpha-1)\left\langle z_{k}-x^{*}, G_{s}\left(y_{k}\right)\right\rangle+\frac{s^{2}}{(\alpha-1)^{2}}(k+\alpha-1)^{2}\left\|G_{s}\left(y_{k}\right)\right\|^{2}
$$

and multiplying the above expression by $\frac{(\alpha-1)^{2}}{2 s(k+\alpha-1)^{2}}$, we obtain

$$
\frac{(\alpha-1)^{2}}{2 s(k+\alpha-1)^{2}}\left(\left\|z_{k}-x^{*}\right\|^{2}-\left\|z_{k+1}-x^{*}\right\|^{2}\right)=\frac{\alpha-1}{k+\alpha-1}\left\langle G_{s}\left(y_{k}\right), z_{k}-x^{*}\right\rangle-\frac{s}{2}\left\|G_{s}\left(y_{k}\right)\right\|^{2} .
$$

Replacing this in (12), we deduce that

$$
\Theta\left(x_{k+1}\right) \leq \frac{k}{k+\alpha-1} \Theta\left(x_{k}\right)+\frac{\alpha-1}{k+\alpha-1} \Theta\left(x^{*}\right)+\frac{(\alpha-1)^{2}}{2 s(k+\alpha-1)^{2}}\left(\left\|z_{k}-x^{*}\right\|^{2}-\left\|z_{k+1}-x^{*}\right\|^{2}\right) .
$$

Equivalently,

$$
\Theta\left(x_{k+1}\right)-\Theta\left(x^{*}\right) \leq \frac{k}{k+\alpha-1}\left(\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)\right)+\frac{(\alpha-1)^{2}}{2 s(k+\alpha-1)^{2}}\left(\left\|z_{k}-x^{*}\right\|^{2}-\left\|z_{k+1}-x^{*}\right\|^{2}\right) .
$$

Multiplying by $\frac{2 s}{\alpha-1}(k+\alpha-1)^{2}$, we obtain

$$
\frac{2 s}{\alpha-1}(k+\alpha-1)^{2}\left(\Theta\left(x_{k+1}\right)-\Theta\left(x^{*}\right)\right) \leq \frac{2 s}{\alpha-1} k(k+\alpha-1)\left(\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)\right)+(\alpha-1)\left(\left\|z_{k}-x^{*}\right\|^{2}-\left\|z_{k+1}-x^{*}\right\|^{2}\right),
$$

which implies

$$
\begin{gathered}
\frac{2 s}{\alpha-1}(k+\alpha-1)^{2}\left(\Theta\left(x_{k+1}\right)-\Theta\left(x^{*}\right)\right)+2 s \frac{\alpha-3}{\alpha-1} k\left(\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)\right) \\
\leq \frac{2 s}{\alpha-1}(k+\alpha-2)^{2}\left(\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)\right)+(\alpha-1)\left(\left\|z_{k}-x^{*}\right\|^{2}-\left\|z_{k+1}-x^{*}\right\|^{2}\right),
\end{gathered}
$$

in view of

$$
k(k+\alpha-1)=(k+\alpha-2)^{2}-k(\alpha-3)-(\alpha-2)^{2} \leq(k+\alpha-2)^{2}-k(\alpha-3) .
$$

In other words,

$$
\begin{equation*}
\mathcal{E}(k+1)+2 s \frac{\alpha-3}{\alpha-1} k\left(\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)\right) \leq \mathcal{E}(k) \tag{13}
\end{equation*}
$$

We deduce the following:
Fact 1. The sequence $(\mathcal{E}(k))$ is nonincreasing and $\lim _{k \rightarrow \infty} \mathcal{E}(k)$ exists.
In particular, $\mathcal{E}(k) \leq \mathcal{E}(0)$ and we have:
Fact 2. For each $k \geq 0$, we have $\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right) \leq \frac{(\alpha-1) \mathcal{E}(0)}{2 s(k+\alpha-2)^{2}}$ and $\left\|z_{k}-x^{*}\right\|^{2} \leq \frac{\mathcal{E}(0)}{\alpha-1}$.
From (13), we also obtain:
Fact 3. If $\alpha>3$, then $\sum_{k=1}^{\infty} k\left(\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)\right) \leq \frac{(\alpha-1) \mathcal{E}(1)}{2 s(\alpha-3)}$.

Now, using (10) and recalling that $x_{k+1}=y_{k}-s G_{s}\left(y_{k}\right)$ and $y_{k}-x_{k}=\frac{k-1}{k+\alpha-1}\left(x_{k}-x_{k-1}\right)$, we obtain

$$
\begin{equation*}
\Theta\left(x_{k+1}\right)+\frac{1}{2 s}\left\|x_{k+1}-x_{k}\right\|^{2} \leq \Theta\left(x_{k}\right)+\frac{1}{2 s} \frac{(k-1)^{2}}{(k+\alpha-1)^{2}}\left\|x_{k}-x_{k-1}\right\|^{2} . \tag{14}
\end{equation*}
$$

Subtract $\Theta\left(x^{*}\right)$ on both sides, and set $\theta_{k}:=\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)$ and $d_{k}:=\frac{1}{2 s}\left\|x_{k+1}-x_{k}\right\|^{2}$. We can write (14) as

$$
\begin{equation*}
\theta_{k+1}+d_{k} \leq \theta_{k}+\frac{(k-1)^{2}}{(k+\alpha-1)^{2}} d_{k-1} \tag{15}
\end{equation*}
$$

Since $k+\alpha-1 \geq k+1,(15)$ implies

$$
(k+1)^{2} d_{k}-(k-1)^{2} d_{k-1} \leq(k+1)^{2}\left(\theta_{k}-\theta_{k+1}\right)
$$

But then

$$
(k+1)^{2}\left(\theta_{k}-\theta_{k+1}\right)=k^{2} \theta_{k}-(k+1)^{2} \theta_{k+1}+(2 k+1) \theta_{k} \leq k^{2} \theta_{k}-(k+1)^{2} \theta_{k+1}+3 k \theta_{k}
$$

for $k \geq 1$, and so

$$
\begin{aligned}
2 k d_{k}+k^{2} d_{k}-(k-1)^{2} d_{k-1} & \leq(k+1)^{2} d_{k}-(k-1)^{2} d_{k-1} \\
& \leq(k+1)^{2}\left(\theta_{k}-\theta_{k+1}\right) \\
& \leq k^{2} \theta_{k}-(k+1)^{2} \theta_{k+1}+3 k \theta_{k}
\end{aligned}
$$

for $k \geq 1$. Summing for $k=1, \ldots, K$, we obtain

$$
K^{2} d_{K}+2 \sum_{k=1}^{K} k d_{k} \leq \theta_{1}+\frac{3(\alpha-1) \mathcal{E}(1)}{2 s(\alpha-3)}
$$

in view of Fact 3. In particular, we obtain
Fact 4. If $\alpha>3$, then $\sum_{k=1}^{\infty} k\left\|x_{k+1}-x_{k}\right\|^{2} \leq \frac{\alpha(3 \alpha-5) \mathcal{E}(1)}{4 s(\alpha-1)(\alpha-3)}$.
Remark 1. Observe that the upper bounds given in Facts 3 and 4 tend to ∞ as α tends to 3 .
1.2. From $\mathcal{O}\left(k^{-2}\right)$ to $o\left(k^{-2}\right)$. Recall that $\Psi: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ is proper, lower-semicontinuous and convex, $\Phi: \mathcal{H} \rightarrow \mathbb{R}$ is convex and continuously differentiable with L-Lipschitz continuous gradient, and $\Theta=\Phi+\Psi$. We suppose that $S=\operatorname{argmin}(\Psi+\Phi) \neq \emptyset$, and let $\left(x_{k}\right)$ be a sequence generated by algorithm (2) with $\alpha>3$ and $0<s<\frac{1}{L}$. We shall prove that the function values and the velocities satisfy

$$
\lim _{k \rightarrow \infty} k^{2}\left((\Psi+\Phi)\left(x_{k}\right)-\min (\Psi+\Phi)\right)=0 \quad \text { and } \quad \lim _{k \rightarrow \infty} k\left\|x_{k+1}-x_{k}\right\|=0
$$

respectively. In other words, $(\Psi+\Phi)\left(x_{k}\right)-\min (\Psi+\Phi)=o\left(k^{-2}\right)$ and $\left\|x_{k+1}-x_{k}\right\|=o\left(k^{-1}\right)$.
The following result is new, and will play a central role in the proof of Theorem 1.
Lemma 2. If $\alpha>3$, then $\lim _{k \rightarrow \infty}\left[k^{2}\left\|x_{k+1}-x_{k}\right\|^{2}+(k+1)^{2}\left(\Theta\left(x_{k+1}\right)-\Theta\left(x^{*}\right)\right)\right]$ exists.
Proof. Since $k+\alpha-1 \geq k$, inequality (15) gives

$$
k^{2} d_{k}-(k-1)^{2} d_{k-1} \leq k^{2}\left(\theta_{k}-\theta_{k+1}\right)
$$

But

$$
(k+1)^{2} \theta_{k+1}-k^{2} \theta_{k}=k^{2}\left(\theta_{k+1}-\theta_{k}\right)+(2 k+1) \theta_{k+1} \leq k^{2}\left(\theta_{k+1}-\theta_{k}\right)+2(k+1) \theta_{k+1}
$$

and so

$$
\begin{equation*}
\left[k^{2} d_{k}+(k+1)^{2} \theta_{k+1}\right]-\left[(k-1)^{2} d_{k-1}+k^{2} \theta_{k}\right] \leq 2(k+1) \theta_{k+1} \tag{16}
\end{equation*}
$$

The result is obtained by observing that $k^{2} d_{k}+(k+1)^{2} \theta_{k+1}$ is bounded from below and the right-hand side of (16) is summable (by Fact 3).

We are now in a position to prove Theorem 1.
Proof of Theorem 1. From Facts 3 and 4, we deduce that

$$
\sum_{k=1}^{\infty} \frac{1}{k}\left[k^{2}\left\|x_{k+1}-x_{k}\right\|^{2}+(k+1)^{2}\left(\Theta\left(x_{k+1}\right)-\Theta\left(x^{*}\right)\right)\right]<+\infty
$$

Combining this with Lemma 2, we obtain

$$
\lim _{k \rightarrow \infty}\left[k^{2}\left\|x_{k+1}-x_{k}\right\|^{2}+(k+1)^{2}\left(\Theta\left(x_{k+1}\right)-\Theta\left(x^{*}\right)\right)\right]=0
$$

Since all the terms are nonnegative, we conclude that both limits are 0 , as claimed.

Remark 2. Facts 3 and 4, also imply that the function values and the velocities satisfy

$$
\liminf _{k \rightarrow \infty} k^{2} \ln (k)\left((\Psi+\Phi)\left(x_{k}\right)-\min (\Psi+\Phi)\right)=0 \quad \text { and } \quad \liminf _{k \rightarrow \infty} k \ln (k)\left\|x_{k+1}-x_{k}\right\|=0
$$

respectively. Indeed, if β_{k} is any nonnegative sequence such that $\sum_{k=1}^{\infty} \frac{\beta_{k}}{k}<\infty$ (which holds for $\left(k^{2} d_{k}\right)$ and $\left(k^{2} \theta_{k}\right)$), then it cannot be true that $\liminf _{k \rightarrow \infty} \beta_{k} \ln (k) \geq \varepsilon>0$. Otherwise, $\frac{\beta_{k}}{k} \geq \frac{\varepsilon}{k \ln (k)}$ for all sufficiently large k, and the series above would be divergent.
1.3. Convergence of the sequence. It is possible to prove that the sequences generated by (2) converge weakly to minimizers of $\Psi+\Phi$ when $\alpha>3$. Although this was already shown in [2], we provide a proof following the preceding ideas, for completeness.

Theorem 3. Let $\Psi: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper, lower-semicontinuous and convex, and let $\Phi: \mathcal{H} \rightarrow \mathbb{R}$ be convex and continuously differentiable with L-Lipschitz continuous gradient. Suppose that $S=\operatorname{argmin}(\Psi+\Phi) \neq \emptyset$, and let $\left(x_{k}\right)$ be a sequence generated by algorithm (2) with $\alpha>3$ and $0<s<\frac{1}{L}$. Then, the sequence (x_{k}) converges weakly to a point in S.

Proof. Using the definition (6) of z_{k}, we write

$$
\begin{aligned}
\left\|z_{k}-x^{*}\right\|^{2} & =\left(\frac{k-1}{\alpha-1}\right)^{2}\left\|x_{k}-x_{k-1}\right\|^{2}+2 \frac{k-1}{\alpha-1}\left\langle x_{k}-x^{*}, x_{k}-x_{k-1}\right\rangle+\left\|x_{k}-x^{*}\right\|^{2} \\
& =\left[\left(\frac{k-1}{\alpha-1}\right)^{2}+\left(\frac{k-1}{\alpha-1}\right)\right]\left\|x_{k}-x_{k-1}\right\|^{2}+\left(\frac{k-1}{\alpha-1}\right)\left[\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k-1}-x^{*}\right\|^{2}\right]+\left\|x_{k}-x^{*}\right\|^{2}
\end{aligned}
$$

We shall prove that $\lim _{k \rightarrow \infty}\left\|z_{k}-x^{*}\right\|$ exists. By Lemma 2 (or Theorem 1) and Fact 4, it suffices to prove that

$$
\delta_{k}:=(k-1)\left[\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k-1}-x^{*}\right\|^{2}\right]+(\alpha-1)\left\|x_{k}-x^{*}\right\|^{2}
$$

has a limit as $k \rightarrow \infty$. Clearly, $\left(\delta_{k}\right)$ is bounded, by Facts 2 and 4. Write $h_{k}:=\left\|x_{k}-x^{*}\right\|^{2}$ and notice that

$$
\begin{align*}
\delta_{k+1}-\delta_{k} & =(\alpha-1)\left(h_{k+1}-h_{k}\right)+k\left(h_{k+1}-h_{k}\right)-(k-1)\left(h_{k}-h_{k-1}\right) \\
& =(k+\alpha-1)\left(h_{k+1}-h_{k}\right)-(k-1)\left(h_{k}-h_{k-1}\right) . \tag{17}
\end{align*}
$$

On the other hand, from (11), we obtain

$$
\Theta\left(x_{k+1}\right)-\Theta\left(x^{*}\right) \leq\left\langle G_{s}\left(y_{k}\right), y_{k}-x^{*}\right\rangle-\frac{s}{2}\left\|G_{s}\left(y_{k}\right)\right\|^{2}
$$

Since $x_{k+1}=y_{k}-s G_{s}\left(y_{k}\right)$, we have

$$
\begin{aligned}
0 & \leq 2\left\langle y_{k}-x_{k+1}, y_{k}-x^{*}\right\rangle-\left\|y_{k}-x_{k+1}\right\|^{2} \\
& =\left\|y_{k}-x_{k+1}\right\|^{2}+\left\|y_{k}-x^{*}\right\|^{2}-\left\|x_{k+1}-x^{*}\right\|^{2}-\left\|y_{k}-x_{k+1}\right\|^{2}
\end{aligned}
$$

and so

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|^{2} & \leq\left\|y_{k}-x^{*}\right\|^{2} \\
& =\left\|x_{k}-x^{*}+\frac{k-1}{k+\alpha-1}\left(x_{k}-x_{k-1}\right)\right\|^{2} \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\left(\frac{k-1}{k+\alpha-1}\right)^{2}\left\|x_{k}-x_{k-1}\right\|^{2}+2 \frac{k-1}{k+\alpha-1}\left\langle x_{k}-x^{*}, x_{k}-x_{k-1}\right\rangle \\
& =\left\|x_{k}-x^{*}\right\|^{2}+\left[\left(\frac{k-1}{k+\alpha-1}\right)^{2}+\frac{k-1}{k+\alpha-1}\right]\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{k-1}{k+\alpha-1}\left[\left\|x_{k+1}-x^{*}\right\|^{2}-\left\|x_{k}-x^{*}\right\|^{2}\right] \\
& \leq\left\|x_{k}-x^{*}\right\|^{2}+2\left\|x_{k}-x_{k-1}\right\|^{2}+\frac{k-1}{k+\alpha-1}\left[\left\|x_{k}-x^{*}\right\|^{2}-\left\|x_{k-1}-x^{*}\right\|^{2}\right] .
\end{aligned}
$$

In other words,

$$
(k+\alpha-1)\left(h_{k+1}-h_{k}\right)-(k-1)\left(h_{k}-h_{k-1}\right) \leq 2(k+\alpha-1)\left\|x_{k}-x_{k-1}\right\|^{2} .
$$

Injecting this in (17), we deduce that

$$
\delta_{k+1}-\delta_{k} \leq 2(k+\alpha-1)\left\|x_{k}-x_{k-1}\right\|^{2}
$$

Since the right-hand side is summable and $\left(\delta_{k}\right)$ is bounded, $\lim _{k \rightarrow \infty} \delta_{k}$ exists. It follows that $\lim _{k \rightarrow \infty}\left\|z_{k}-x^{*}\right\|$ exists. In view of Theorem 1 and the definition (6) of $z_{k}, \lim _{k \rightarrow \infty}\left\|x_{k}-x^{*}\right\|$ exists. Since this holds for any $x^{*} \in S$, Opial's Lemma shows that the sequence $\left(x_{k}\right)$ converges weakly, as $k \rightarrow+\infty$, to a point in S.
1.4. Stability under additive errors. Consider the inexact version of Algorithm (2) given by

$$
\left\{\begin{align*}
y_{k} & =x_{k}+\frac{k-1}{k+\alpha-1}\left(x_{k}-x_{k-1}\right) \tag{18}\\
x_{k+1} & =\operatorname{prox}_{s \Phi}\left(y_{k}-s\left(\nabla \Psi\left(y_{k}\right)-g_{k}\right)\right)
\end{align*}\right.
$$

The second relation means that

$$
y_{k}-s \nabla \Psi\left(y_{k}\right) \in x_{k+1}+s\left(\partial \Phi\left(x_{k+1}\right)+B\left(0, \varepsilon_{k+1}\right)\right)
$$

for any $\varepsilon_{k+1}>\left\|g_{k}\right\|$. It turns out that it is possible to give a tolerance estimation for the sequence of errors $\left(g_{k}\right)$ in order to ensure that all the asymptotic properties of (2) (including the $o\left(k^{-2}\right)$ order of convergence) hold for (18). More precisely, we have the following:

Theorem 4. Let $\Psi: \mathcal{H} \rightarrow \mathbb{R} \cup\{+\infty\}$ be proper, lower-semicontinuous and convex, and let $\Phi: \mathcal{H} \rightarrow \mathbb{R}$ be convex and continuously differentiable with L-Lipschitz continuous gradient. Suppose that $S=\operatorname{argmin}(\Psi+\Phi) \neq \emptyset$, and let $\left(x_{k}\right)$ be a sequence generated by algorithm (18) with $\alpha>3$ and $0<s<\frac{1}{L}$. If $\sum_{k=1}^{\infty} k\left\|g_{k}\right\|<+\infty$, then, the function values and the velocities satisfy $\lim _{k \rightarrow \infty} k^{2}\left((\Psi+\Phi)\left(x_{k}\right)-\min (\Psi+\Phi)\right)=0$ and $\lim _{k \rightarrow \infty} k\left\|x_{k+1}-x_{k}\right\|=0$, respectively. Moreover, $\left(x_{k}\right)$ converges weakly to a point in S.

The key idea is to observe that, for each $k \geq 1$, we have

$$
\mathcal{E}(k) \leq \mathcal{E}(0)+\sum_{j=0}^{k-1} 2 s(j+\alpha-1)\left\langle g_{j}, z_{j+1}-x^{*}\right\rangle
$$

(with the same definitions of z_{k} and $\mathcal{E}(k)$ given in (6) and (5), respectively). This implies

$$
\left\|z_{k}-x^{*}\right\|^{2} \leq \frac{1}{\alpha-1} \mathcal{E}(0)+\frac{2 s}{\alpha-1} \sum_{j=1}^{k}(j+\alpha-2)\left\|g_{j-1}\right\|\left\|z_{j}-x^{*}\right\|
$$

Then, we apply Lemma [2, Lemma A.9] with $a_{k}=\left\|z_{k}-x^{*}\right\|$ to deduce that the sequence $\left(z_{k}\right)$ is bounded and so, the modified energy sequence $(\mathcal{F}(k))$, given by

$$
\mathcal{F}(k):=\frac{2 s}{\alpha-1}(k+\alpha-2)^{2}\left(\Theta\left(x_{k}\right)-\Theta\left(x^{*}\right)+(\alpha-1)\left\|z_{k}-x^{*}\right\|^{2}+\sum_{j=k}^{\infty} 2 s(j+\alpha-1)\left\langle g_{j}, z_{j+1}-x^{*}\right\rangle,\right.
$$

is well defined and nonincreasing. The rest of the proof follows pretty much the arguments given above with \mathcal{E} replaced by \mathcal{F} (see also [2, Section 5]).

Inexact FISTA-like algorithms have also been considered in [23, 24]. It would be interesting to obtain similar order-of-convergence results under relative error conditions.

Acknowledgement. The authors thank Patrick Redont for his valuable remarks.

References

[1] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Analysis, 9 (2001), No. 1-2, pp. 3-11.
[2] H. Attouch, Z. Chbani, J. Peypouquet, P. Redont, Fast convergence of inertial dynamics and algorithms with asymptotic vanishing damping, Paper under review.
[3] H. Bauschke, P. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, CMS Books in Mathematics, Springer, (2011).
[4] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), No. 1, pp. 183-202.
[5] A. Chambolle, C. Dossal, On the convergence of the iterates of Fista, HAL Id: hal-01060130 https://hal.inria.fr/hal-01060130v3 Submitted on 20 Oct 2014.
[6] A. Chambolle, T. Pock, A remark on accelerated block coordinate descent for computing the proximity operators of a sum of convex functions, SMAI Journal of Computational Mathematics 1 (2015), pp. 29-54.
[7] P.L. Combettes, V.R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), pp. 11681200.
[8] I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413-1457.
[9] A.A. Goldstein, Convex programming in Hilbert space, Bulletin of the American Mathematical Society 70 (1964) pp. 709-710.
[10] E.S. Levitin, B.T. Polyak, Constrained minimization problems, USSR Computational Mathematics and Mathematical Physics 6 (1966) pp. 1-50.
[11] P.L. Lions, B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), pp. $964-979$.
[12] R. MAy, Asymptotic for a second order evolution equation with convex potential and vanishing damping term, arXiv:1509.05598.
[13] A. Moudafi, M. Oliny, Convergence of a splitting inertial proximal method for monotone operators, J. Comput. Appl. Math., 155 (2003), No. 2, pp. 447-454.
[14] Y. Nesterov, A method of solving a convex programming problem with convergence rate $\mathcal{O}\left(1 / k^{2}\right)$, Soviet Mathematics Doklady, 27 (1983), pp. 372-376.
[15] Y. Nesterov, Introductory lectures on convex optimization: A basic course, volume 87 of Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004.
[16] Y. Nesterov, Smooth minimization of non-smooth functions, Mathematical programming, 103 (2005), No. 1, pp. $127-152$.
[17] Y. Nesterov, Gradient methods for minimizing composite objective function, CORE Discussion Papers, 2007.
[18] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), pp. 591-597.
[19] N. Parikh, S. Boyd, Proximal algorithms, Foundations and trends in optimization, volume 1, (2013), pp. 123-231.
[20] G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J. Math. Anal. Appl., 72 (1979), pp. 383-390.
[21] J. Peypouquet, Convex optimization in normed spaces: theory, methods and examples. Springer, 2015.
[22] D.A. Lorenz, T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, pp. 1-15, 2014. (online).
[23] M. Schmidt, N. Le Roux, F. Bach, Convergence rates of inexact proximal-gradient methods for convex optimization, NIPS'11-25 th Annual Conference on Neural Information Processing Systems, Dec 2011, Grenada, Spain. (2011) HAL inria-00618152v3.
[24] S. Villa, S. Salzo, L. Baldassarres, A. Verri, Accelerated and inexact forward-backward, SIAM J. Optim., 23 (2013), No. 3, pp. 1607-1633.
[25] W. Su, S. Boyd, E.J. Candès, A Differential equation for modeling Nesterov's accelerated gradient method: theory and insights. Neural Information Processing Systems (NIPS) 2014.

Institut de Mathématiques et Modélisation de Montpellier, UMR 5149 CNRS, Université Montpellier 2, place Eugène Bataillon, 34095 Montpellier cedex 5, France E-mail address: hedy.attouch@univ-montp2.fr

Departamento de Matemática, Universidad Técnica Federico Santa María, Av España 1680, Valparaíso, Chile
E-mail address: juan.peypouquet@usm.cl

[^0]: Key words and phrases. Convex optimization, fast convergent methods, Nesterov method.
 Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-14-1-0056. Also supported by Fondecyt Grant 1140829, Conicyt Anillo ACT-1106, ECOS-Conicyt Project C13E03, Millenium Nucleus ICM/FIC RC130003, Conicyt Project MATHAMSUD 15MATH-02, Conicyt Redes 140183, and Basal Project CMM Universidad de Chile. Part of this research was carried out while the authors were visiting Hangzhou Dianzi University by invitation of Professor Hong-Kun Xu.

