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ABSTRACT

The aim of this paper is to provide a handy tool to compute the impact of type Ia SN (SNIa) events on the evolution of stellar systems. An
effective formalism to couple the rate of SNIa explosions from a single burst of star formation and the star formation history is presented,
which rests upon the definition of the realization probability of the SNIa event (AIa) and the distribution function of the delay times ( fIa(τ)).
It is shown that the current SNIa rate in late type galaxies constrains AIa to be on the order of 10−3 (i.e. 1 SNIa every 1000 M⊙ of gas turned
into stars), while the comparison of the current rates in early and late type galaxies implies that fIa ought to be more populated at short delays.
The paper presents analytical formulations for the description of the fIa function for the most popular models of SNIa progenitors, namely
Single Degenerates (Chandrasekhar and Sub-Chandrasekhar exploders), and Double Degenerates. These formulations follow entirely from
general considerations on the evolutionary behavior of stars in binary systems, modulo a schematization of the outcome of the phases of mass
exchange, and compare well with the results of population synthesis codes, for the same choice of parameters. The derivation presented here
offers an immediate astrophysical interpretation of the shape of the fIa functions, and have a built in parametrization of the key properties
of the alternative candidates. The important parameters appear to be the minimum and maximum masses of the components of the binary
systems giving rise to a SNIa explosions, the distribution of the primary mass and of the mass ratios in these systems, the distribution of the
separations of the DD systems at their birth. The various models for the progenitors correspond to markedly different impact on the large
scales; correspondingly, the model for the progenitor can be constrained by examining the relevant observations. Among these, the paper
concentrates on the trend of the current SNIa rate with parent galaxy type. The recent data by Mannucci et al. (2005, A&A, 433, 807) favor the
DD channel over the SD one, which tends to predict a too steep distribution function of the delay times. The SD scenario can be reconciled with
the observations only if the distribution of the mass ratios in the primordial binaries is flat and the accretion efficiency onto the WD is close
to 100%. The various models are characterized by different timescales for the Fe release from a single burst stellar population. In particular the
delay time within which half of the SNIa events from such a population have occurred, ranges between 0.3 and 3 Gyr, for a wide variety of
hypothesis on the progenitors.

Key words. stars: binaries: close – stars: supernovae: general – galaxies: evolution – galaxies: intergalactic medium –
stars: white dwarfs

1. Introduction

The evolution of the rate of type Ia Supernovae (SNIa) with
time is a fundamental ingredient for the study of a variety of as-
trophysical issues, ranging from the chemical evolution of stel-
lar systems, to the interpretation of the SNIa rates as a function
of redshift.

Indeed, while type II Supernovae (SNII) precursors are
short lived, massive stars, so that their rate evolves (almost)
in pace with the rate of star formation, SNIa come from bi-
nary systems with a wide range of lifetimes, as indicated by
their occurrence in both late and early type galaxies. Thus,

⋆ Appendix A is only available in electronic form at
http://www.edpsciences.org

the SNIa products are released to the interstellar medium over
longer timescales, compared to SNII products. Since the α el-
ements are mostly produced by SNII, while SNIa are impor-
tant contributors of iron, the shorter the formation timescale
of a stellar system is, the higher the α to Fe abundance ra-
tio recorded in its stars. This argument is at the basis of the
evaluation of the formation timescales of stellar systems from
the α to Fe abundance ratios, and has been used to estimate the
formation timescale of the halo of our galaxy from individual
stellar abundances (e.g. Matteucci & Greggio 1986), as well as
to infer short formation timescales for Es from the Magnesium
and Iron indices in their spectra (e.g. Matteucci 1994; Greggio
1997; Thomas et al. 2005). SNIas are also thought to produce a
major fraction of the iron in the intracluster medium in galaxy
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clusters (e.g. Matteucci & Vettolani 1988; Renzini 1997); the
temporal behavior of the SNIa rate will then impact on the iron
abundance of the intracluster gas at high redshift.

Type Ia SNe provide the heating mechanism of the mass
lost by stars in Ellipticals, an therefore determine the dynam-
ical evolution of the gas in these galaxies. Following Renzini
(1996), this evolution depends on the balance between the rate
of mass return, and the secular evolution of the SNIa rate: if
the latter decreases faster than the former, the early stages are
characterized by supersonic winds, which then turn to subsonic
outflows, and eventually to inflows (Ciotti et al. 1991). The re-
verse sequence applies instead in the case of a mild secular evo-
lution of the SNIa rate, with early inflows eventually turning
into winds, such as in the models of Loewenstein & Mathews
(1987).

Finally, cosmological applications of the SNIa rate include
the possibility of deriving clues on the SNIa progenitors, and/or
constraining the cosmic star formation history from the evolu-
tion of the SNIa rate with redshift (Madau et al. 1998; Strolger
et al. 2004). Understanding the evolutionary path which leads
to a type Ia explosion is of great importance to assess the use
of SNIa as distance indicators, and to derive the cosmological
parameters (Riess et al. 1998; Perlmutter et al. 1999).

To address these issues and quantitatively interpret the re-
lated observations we need a suitable description of the evo-
lution of the SNIa rate from a single burst stellar population.
From a theoretical point of view, this rate is difficult to derive,
first because the nature of the progenitors of SNIa events is still
an open question, and, second, because any theoretical rendi-
tion is highly model dependent. While in the literature there is a
general consensus that SNIa originate form the thermonuclear
explosion of carbon and Oxygen (CO) White Dwarfs (WD),
various evolutionary paths may lead to such event. Common to
all the models is the first part of the evolution, dealing with
a close binary system with a primary component less mas-
sive than ∼8 M⊙, so that it evolves into a CO WD. When the
secondary component expands and fills its Roche Lobe, the
primary may or may not accrete the matter shed by its com-
panion. If the accretion rate is approximately ∼10−7 M⊙/yr
(Nomoto 1982), the accreted matter burns on top of the WD,
the object remains confined within its Roche Lobe and grows
in mass (Whelan & Iben 1973). However, Iben & Tutukov
(1984) pointed out that in most cases the secondary expands
at such a high rate that the accretion rate exceeds the men-
tioned limit, implying that a common envelope (CE) forms
around the two stars. Orbiting inside the CE the two cores spi-
ral in, and orbital energy is transferred to the envelope which
is eventually lost. The system emerges form the CE phase as
a close double WD, which will merge due to the emission of
gravitational wave radiation. Another interesting possibility is
that, when subject to a large accretion rate, the WD develops
a strong radiative wind, to the effect of stabilizing the mass
transfer, thus allowing the WD to grow in mass, and eventu-
ally explode (Hachisu et al. 1996). Within all scenarios explo-
sion occurs either when the CO WD reaches the Chandrasekhar
mass and carbon deflagrates at the center (Chandra exploders),
or when a massive enough helium layer is accumulated on top
of the CO WD, so that helium detonates, inducing off center

carbon detonation (e.g. Woosley & Weaver 1994) before the
Chandrasekhar mass is reached (Sub-Chandra exploders).

Different arguments can be found in favor or against both
scenarios (e.g. Livio 2001), generally referred to as Single
Degenerate (SD) and Double Degenerate (DD), depending on
whether the SNIa precursor is a system with one or two WDs.
Briefly, the SD model is supported by the observational de-
tection of several classes of objects that can be considered as
potential SNIa precursors of the SD variety, i.e. Cataclysmic
Variables, Symbiotic Stars, and Supersoft X-Ray Sources
(Munari & Renzini 1992; Kenyon et al. 1993; Van den Heuvel
et al. 1992; Rappaport, Di Stefano & Smith 1994). Additional
support to the Cataclysmic Binaries channel came recently
from the detection of a candidate companion to Tycho’s su-
pernova (Ruiz-Lapuente et al. 2004). On the other hand, the
fine tuning of the mass accretion rate limits considerably the
volume in the parameter space for a successful SNIa explosion
in the SD model. As a consequence, it seems likely that only a
small fraction of events can be realized through this channels in
our galaxy (Fedorova et al. 2004; Han & Podsiadlowski 2004,
but see Hachisu et al. 1999, for a different point of view).

Several attempts have been made to establish the binary
frequency among White Dwarfs, and to determine the distri-
bution of total masses and periods of the binary systems, in
order to assess the likelihood of the DD channel as SNIa pro-
genitor (Robinson & Shafter 1987; Bragaglia et al. 1990; Foss
et al. 1991; Saffer et al. 1998; Maxted & Marsh 1999). To
date, the most comprehensive effort to find SNIa precursors
among DD systems is the SPY project (Napiwotzki et al. 2001),
whose results have been recently summarized in Napiwotzki
et al. (2004): many close DD systems have been found, with
one very good candidate SNIa precursor, with a total mass ex-
ceeding the Chandrasekhar limit and expected to merge within
a Hubble time. In addition, a few other systems come close to
qualify as SNIa precursors. In general, it seems that the masses
and period distributions of the binary WDs confirm the pre-
diction of the population synthesis models; according to these
models the DD evolutionary channel is able to provide enough
merging events to match the current SNIa rate measured in our
galaxy, which is similar to the typical SNIa rate in Spirals. On
the other hand, theoretical calculations show that the merging
of two massive WDs may lead to accretion induced collapse,
rather than to SNIa explosion (Saio & Nomoto 1998), so that
the ultimate fate of these candidates may be a neutron star.

The various models for the progenitors, SD or DD, un-
dergoing Chandra or Sub-Chandra explosions, correspond to
rather different temporal behavior of the SNIa rate (see e.g.
Fig. 2 in Yungelson & Livio 2000, hereafter YL). In the
current literature there are several examples of theoretical
computations of the SNIa rate performed with population
synthesis codes: starting from a primordial distributions of bi-
nary masses, mass ratios and separations, the computations fol-
low the evolution of the stellar systems under some prescrip-
tions for the mass exchange between the binary components,
to determine the final outcome (Tutukov & Yungelson 1994;
Yungelson et al. 1994; Ruiz-Lapuente et al. 1995; Han et al.
1995; Nelemans et al. 2001; De Donder & Vanbeveren 2003).
The results of these simulations depend on a variety of input
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parameters and assumptions, whose role is difficult to gauge,
so that they are not suited to easily explore the parameter space
for the SNIa progenitors’ models. In addition, the population
synthesis codes yield numerical outputs, which are difficult to
incorporate in codes which follow the evolution of galaxies or
of galaxy clusters. Indeed, most of the astrophysical applica-
tions of the SNIa rates in the literature are based either on the
analytical formulation by Greggio & Renzini (1983), or on
the parametrization proposed by Madau et al. (1998). However,
the former is derived only in the framework of the SD model;
the latter is a convenient mathematical expression, but it is only
marginally related to the physics of stellar evolution.

In this paper I provide relatively simple analytical formula-
tion for the SNIa rate, which allows us to identify the most crit-
ical parameters and should help restrict the choice among the
candidate precursors. Both the SD (Chandra and Sub-Chandra)
and the DD (only Chandra) models are considered, so as to pro-
vide a handy way for investigating on the impact of the different
SNIa models on astrophysical issues for which the SNIa rate is
important. Section 2 presents a coherent formalism to couple a
particular SNIa model with the star formation history of a sys-
tem. The analytic expressions for the SNIa rate for the SD and
DD models are derived in Sects. 3 and 4 respectively. Readers
mostly interested in the main results may skip these sections,
since a general description of the analytic fIa function appears
at the beginning of Sect. 5, where they are compared to the
predictions of population synthesis codes. In addition, Sect. 5
presents an attempt to constrain the SNIa progenitors from the
systematic trend of the SNIa rates with galaxy type. Finally,
some concluding remarks appear in Sect. 6. The mathematics
used to derive the analytic relation for the DD model is (mostly)
described in the Appendix, for an easier readability of the text.

2. Formalism

A convenient formulation of the SNIa rate to follow the evolu-
tion of stellar systems rests upon the definition of the distribu-
tion function of the delay times, i.e. the time elapsed between
the birth of a SNIa progenitor and its explosion. I indicate this
function with fIa(τ), defined in the range (τi, τx), respectively
the minimum and maximum possible delay times, and consider
fIa(τ) normalized to 1:

∫ τx

τi
fIa(τ) · dτ = 1. The minimum delay

time τi is the minimum evolutionary lifetime of the SNIa pre-
cursors: for the SD model this is the nuclear lifetime of the
most massive stars which produce a WD, that is an ∼8 M⊙ star,
which evolves off the MS in ∼0.04 Gyr. For the DD model,
τi could be appreciably larger than this because of the addi-
tional gravitational delay, i.e. the time taken by the DD system
to merge due to the gravitational wave radiation. The maximum
delay time τx is quite sensitive to the model for the SNIa pre-
cursor, as will be seen later. At this point I just notice that, if
elliptical galaxies formed the bulk of their stars in a short initial
burst, the maximum delay time of their inhabiting SNIa precur-
sors must be on the order of a Hubble time, or more.

At a given epoch t, the contribution to the SNIa rate from
progenitors with delay times in the range (τ, τ + dτ) is

dṅIa = ṅ⋆(t − τ) × AIa(t − τ) × fIa(τ) dτ (1)

where ṅ⋆(t − τ) is the birth rate at epoch (t − τ), and AIa is
the realization probability of the SNIa scenario from the stel-
lar generation born at (t − τ)1. In Eq. (1) I have considered the
possibility of variations of AIa during the galaxy evolution. For
example, one could expect larger realization probabilities of the
SNIa channel at higher metallicities because, during their evo-
lution, stars expand to larger radii (Greggio & Renzini 1990),
hence have a better chance to fill their Roche Lobe. In addi-
tion, at high metallicity the accretion onto the pre-supernova
WD could be more efficient (Hachisu et al. 1996), also imply-
ing larger values for AIa.

Following Tinsley (1980) notation:

ṅ⋆(t − τ) = ψ(t − τ) ×
∫ ms

mi

φ(m) dm (2)

where φ(m) is the initial mass function (IMF) by number,
and mi and ms are the lower and upper mass limits. As usual,
I adopt a power law IMF, with total mass normalized to 1, so
that the star formation rate (SFR) ψ is the mass that goes into
stars per unit time. It follows:

ṅ⋆(t − τ) = ψ(t − τ) × kα (3)

where kα, which is the number of stars per unit mass in one
stellar generation, depends on the IMF. For example, for a mass
distribution φ(m) ∝ m−α ranging from 0.1 to 120 M⊙, kα is
equal to 2.83 and 1.55, respectively for Salpeter (α = 2.35)
and Kroupa (2001) (α = 2.3 in m ≥ 0.5 M⊙ and α = 1.3 in
m ≤ 0.5 M⊙) IMFs.

By substituting Eqs. (3) into (1), and summing over all the
contributions from the past stellar generations, the SNIa rate at
epoch t is:

ṅIa(t) = kα ×

∫ min(t,τx)

τi

ψ(t − τ) AIa(t − τ) fIa(τ) dτ. (4)

This equation allows one to insert consistently the SNIa events
in codes which describe the evolution of galaxies, once the dis-
tribution of the delay times fIa and the fraction AIa are specified.
Notice that these are the only results of the modeling of binary
populations of SNIa precursors which impact on the evolution
of stellar systems. In other words, for the astrophysical appli-
cations, the particular prescriptions used in the population syn-
thesis codes are of limited interest, while most important is the
distribution function of the delay times and the total realization
probability of the SNIa scenario out of one stellar generation.

Equation (4) can be easily specified for a single generation
of stars by considering a star formation episode started at t = 0
and proceeded at a constant rate ψB for a very short time (∆tB).
In this case, the integrand function is non zero only in a narrow
age range around τ = t so that:

ṅIa(t) = kα · ψB · ∆tB · AIa(t = 0) · fIa(τ = t)

= kα · MB · AIa · fIa(t) (5)

where MB is the mass that went into stars in the burst. Thus
the SNIa rate following an instantaneous burst of star forma-

tion is proportional to the distribution function of the delay

1 If N⋆ is the number of stars born at epoch (t − τ), AIa × N⋆ is the
number of SNIa events produced by this stellar generation ever.
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times through a factor which is the product of the total stel-
lar mass formed in the burst, times the realization probability
of the SNIa scenario, times the number of stars per unit mass,
characteristic of the IMF.

2.1. Observational constraints

Equation (4) shows that the SNIa rate results from the convo-
lution of the distribution function of the delay times and the
SF history: in order to derive clues on the former from the ob-
served rates I consider a family of models, characterized by
a constant SFR (ψ0) starting at t = 0, and with variable dura-
tions (∆t). I also assume that early (late) type galaxies are repre-
sented by models with short (long) ∆t. Although the SF history
in real galaxies is much more complex than that, this schematic
description leads to interesting relations between the observed
SNIa rates and the key quantities AIa and fIa, which will not be
far from those that one can obtain with a thorough modeling of
the galaxy evolution.

For this family of models, the minimum delay time which
contributes to the rate at epoch t is either τi (i.e. the absolute
minimum delay of the SNIa progenitors), or the time elapsed
from the end of the burst: t − ∆t. Taking this into account, and
neglecting the temporal dependence of the factor AIa, Eq. (4)
becomes:

ṅIa(t) = kα · AIa · ψ0 ·

∫ min(t,τx)

max(τi ,t−∆t)
fIa(τ) dτ. (6)

The two options for the lower integration limit correspond to
two different regimes:

1. when τi > t − ∆t, i.e. t < τi + ∆t, we basically map the
SNIa rate while the SF is still ongoing;

2. when τi < t − ∆t, i.e. t > τi + ∆t, we get the SNIa rate after
the burst is completed.

The transition between regime 1) and 2) occurs at older ages
when the SF episode lasts longer (i.e. when ∆t is larger). For a
currently ongoing SF the transition has not yet occurred.

In regime 1), relevant for late type galaxies, the SNIa rate
is given by:

ṅL
Ia(t) = kα · AIa · ψ0 ·

∫ min(t,τx)

τi

fIa(τ) dτ (7)

showing that it increases with time, as systems with increas-
ingly longer delays contribute to the explosions, up to t = τx.
From then on the SNIa rate stays constant, and equal to

ṅL
Ia(t) = kα · AIa · ψ0 (8)

since fIa is normalized to 1. Notice that this expression is valid
only when ∆t ≥ τx, that is when the SF episode lasts long
enough to include all the possible delay times. In this case
the current SNIa rate gives indications on the realization prob-
ability AIa. For example, Cappellaro et al. (1999) report an
observed SNIa rate in late type galaxies of ≃0.2 SNu2, i.e.
0.2 · (LB/LB,⊙) × 10−12 events per year. Then, approximating

2 1 SNu is one event per century per 1010LB,⊙.

ψ0 with the ratio between the galaxy’s stellar mass (M) and its
age (t) Eq. (8) yields:

AIa ∼ 10−3 ×
0.2
kα
×

(

M

LB

)−1

× tGyr (9)

with LB in solar units. Notice that the massM in Eq. (9) cor-
responds to the integrated star formation rate, and then it dif-
fers from the actual galaxy stellar mass because of the gas re-
turned by the stars as they evolve. Using Maraston (1998, 2005)
simple stellar population models with solar metallicity, I find
that for a constant SFR the M/LB ratio at an age of 12 Gyr
is ∼2 or 1.5, respectively for a Salpeter and Kroupa IMF. By
inserting these values into Eq. (9) coupled with the appropri-
ate kα, I get AIa ∼ 5 × 10−4 or 10−3, respectively for Salpeter
and Kroupa IMF. Thus, one SNIa event is produced for every
2000 (1000) M⊙ of stars formed with a Salpeter (Kroupa) ini-
tial mass distribution. Although this is only a rough estimate,
it appears that the current rates measured in late type systems
require relatively small realization probabilities of the
SNIa channel. For comparison, the realization probability
of SNII, estimated as the fraction of stars more massive
than 8 M⊙ in a stellar population, is ∼0.003, 0.007 respectively
for Salpeter and Kroupa IMF. Therefore, out of a stellar popu-
lation of 1000 M⊙ roughly 1 SNIa, and 7 SNII are produced.

Considering now regime 2), relevant for early type galaxies,
as long as t < τx Eq. (6) yields:

ṅE
Ia(t) = kα · AIa · ψ0 · ∆t · 〈 fIa〉t−∆t,t

= kα · AIa · M · 〈 fIa〉t−∆t,t (10)

where 〈 fIa〉t−∆t,t is the average of the distribution function of the
delay times in the range (t − ∆t; t).

After the burst is completed, the SNIa rate scales according
to the fIa function, and goes to zero at t = τx + ∆t. Early type
galaxies are currently in this age regime, so that their SNIa rate
yields information on the value of the distribution function of
the delay times at ages in the vicinity of the galactic age. This
constraint is better illustrated by constructing the ratio of the
SNIa rate in early and late type systems at the current epoch.
Dividing Eqs. (10) by (7), and considering the rates in SNu,
we get:

RSNu =
ṅE

Ia,SNu

ṅL
Ia,SNu

≃
(M/LB)E

(M/LB)L
×
〈 fIa〉t−∆t,t

〈 fIa〉τi,t

, (11)

having assumed that the IMF and the AIa factors are the same
in early and late type galaxies. According to Cappellaro et al.
(1999), the current epoch SNIa rate in early and late type sys-
tems is the same. This puts a constraint on the ratio between
the average values of the function fIa:

〈 fIa〉t−∆t,t

〈 fIa〉τi ,t

≃
(M/LB)L

(M/LB)E
·

Maraston (1998, 2005) models of simple stellar populations at
an age of 12 Gyr and solar metallicity have M/LB ∼ 13, 10
respectively for Salpeter and Kroupa IMF, again having con-
sidered the mass initially transformed into stars3. Combining

3 Notice that at 12 Gyr, ∼30% of the initial mass has been returned
to the interstellar medium by the evolving stars, for a Salpeter IMF.
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this estimate of theM/LB ratio for early type systems with the
values quoted above for the late type systems, it turns out that
the current SNIa rates indicate:

〈 fIa〉t−∆t,t

〈 fIa〉τi,t

∼ 0.15.

Thus the value of fIa at late delay times is substantially smaller
than its average value over the whole range (τi; t); in other
words, the distribution function of the delay times decreases

with time. This means that the majority of SNIa precursors are
relatively short lived.

It is worth emphasizing that if the distribution of the delay
times were flat (i.e. if young and old systems were equally effi-
cient in producing SNIa events), the observed ratio RSNu would
be of the order of 5–10, given the ratio of theM/LB values for
early and late type galaxies. Therefore, the fact that the fIa func-
tion must be decreasing with increasing delay time is a very
robust conclusion.

2.2. Stellar evolution predictions

The distribution function of the delay times and the realization
probability of the SNIa channel from a stellar generation can be
derived from the theory of the evolution of binary systems. As
mentioned in the Introduction, in the literature there are sev-
eral examples of the SNIa rate in stellar systems computed
with population synthesis techniques (see Yungelson 2004).
Typically, these models predict a fIa function characterized by
an early maximum, and a late epoch decline, while the real-
ization probability is indeed on the order of 10−3. However,
these results depend on the adopted parameters of the simula-
tions, like the star formation history, the distribution functions
of the separations and masses of the primordial binaries, and on
the specific prescriptions for the evolution during the hydrody-
namical phases of the mass transfer. Therefore, (i) the resulting
fIa functions are model dependent; (ii) the role of the various
input parameters on the output is far from straightforward.

On the other hand, on general grounds, Ciotti et al. (1991)
give a motivation for the late epoch decline related to the tem-
poral behavior of the clock of the explosions. Indeed, some
general considerations can be made which strongly character-
ize the shape of the distribution function of the delay times,
as I show in the following sections. I consider separately the
two main categories of SD and DD progenitors, and derive an-
alytical formulations for the fIa(τ) function, in the attempt of
clarifying the role of the important stellar evolution parameters.

3. Single degenerates

In the SD model, the clock of the supernova event is set by
the evolutionary lifetime of the secondary. A fit to Girardi
et al. (2000) solar metallicity tracks yields the following re-
lation between stellar mass (in M⊙) and Main Sequence (MS)

The return fraction is instead 45% if Kroupa IMF applies. Therefore,
the ratio between the current stellar mass and the blue luminosity pre-
dicted by the models is ∼9, 5 for the two IMFs.

Fig. 1. Evolutionary mass (solid line) and its derivative (dot-dashed
line) as a function of the MS lifetime (in years), for solar metallicity
tracks. The derivative (to be read on the right axis) drops by ∼4 orders
of magnitude as the MS lifetime increases from ∼40 Myr to ∼20 Gyr.
The dashed line represents the distribution function of the delay times
if the secondaries follow a Sapeter IMF (see text).

lifetime (τMS, in years), valid in the range (0.8 <∼ m2 <∼ 8) M⊙,
which corresponds to (0.04 <∼ τMS <∼ 25) Gyr:

log m2 = 0.0471 × (log τMS)2 − 1.2 × log τMS + 7.3. (12)

The total delay time is basically equal to the MS lifetime of
the secondary component of the binary system, the Post-MS
phase being in any case much shorter than the hydrogen burn-
ing lifetime. Therefore, for one stellar generation, the number
of explosions within (τ, τ + dτ) is proportional to the number of
binaries with secondary mass between m2 and m2 + dm2 such
that the evolutionary lifetime of m2 is τ:

f SD
Ia (τ) |dτ| ∝ n(m2) |dm2|, (13)

which implies:

f SD
Ia (τ) ∝ n(m2) · |ṁ2|. (14)

Figure 1 shows the evolutionary mass from Eq. (12) and its
derivative as a function of the delay time τ = τMS. The deriva-
tive is very well approximated by the power law |ṁ2| ∝ τ

−1.44

over the whole range from 40 Myr to >∼15 Gyr. In Eq. (14), as τ
increases, the factor |ṁ2| strongly decreases. However, longer
delay times correspond to smaller evolutionary masses m2,
and the final shape of the distribution function depends on the
distribution of secondary masses as well. The dashed line in
Fig. 1 shows the result obtained with a Salpeter distribution
n(m2) ∝ m−2.35

2 , clearly not steep enough to imply a f SD
Ia (τ) in-

creasing at late delay times4.
However, while the distribution function of the secondary

masses of primordial binaries could well be represented by

4 Since m2 ∝ τ
−0.3 at ages older than 1 Gyr, mass distributions as

steep as n(m2) ∝ m−4.5
2 are required in order to have a flat f SD

Ia at late τ.
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a Salpeter IMF, the distribution n(m2) in Eq. (14) refers
to the secondaries in systems which eventually give rise to

a SNIa event, and as such suffers from some limitations. This
is illustrated in the next section.

3.1. The distribution function of the secondary masses

The commonly adopted scheme in the population synthesis
computations deals with binary systems in which the pri-
maries follow a power law distribution with slope −α, and the
mass ratios q = m2/m1 follow a power law distribution with
a slope γ. Then, the number of binaries with primary masses
in (m1; m1 + dm1) and secondaries in (m2; m2 + dm2) is:

n(m1,m2) dm1 dm2 = n(m1) f (q) dm1 dq. (15)

The distribution function of the secondaries in SNIa progenitor
systems, is obtained by summing over all possible primaries,
ranging from a minimum value (m1,i) to 8 M⊙:

n(m2) ∝
∫ 8

m1,i

m
γ

2 m
−(α+γ+1)
1 dm1

∝ m−α2 ·
[

(

m2/m1,i
)α+γ
− (m2/8)α+γ

]

. (16)

The minimum mass for the primary (m1,i) is either equal to
m2 (as in any binary system), or more massive than this, if the
primary has to produce a sufficiently massive CO WD in order
to lead to a SNIa explosion. Thus:

m1,i = max
(

m2,m1,n
)

where m1,n is the mass of the primary following a specific con-
straint on the minimum mass of the CO WD. The restriction
of the integration to systems with primaries more massive than
m1,n has important consequences on the distribution function of
the delay times, and then, on the SNIa rate past a burst of SF,
as will be seen in the following. For Chandrasekhar explosions,
m1,n is derived by requiring that

mWD,n + ǫ · m2,e = 1.4 (17)

where mWD,n is the minimum acceptable mass for the WD, m2,e

is the envelope mass of the evolving secondary, and ǫ is an effi-
ciency parameter. In principle m2,e varies with the evolutionary
stage at which the second Roche Lobe Overflow (RLO) oc-
curs, and then depends on the separation of the binary system.
In practice, since the second mass transfer will not necessar-
ily occur with 100% efficiency, this detail can be neglected, to
consider a representative relation between m2 and m2,e. For ex-
ample, the results of case B RLO in Nelemans et al. (2001)
can be represented by the following relation between the initial
mass (m2) and its remnant (m2,c):

m2,c = max {0.3; 0.3 + 0.1 (m2 − 2) ; 0.5 + 0.15 (m2 − 4)} . (18)

By considering m2,e = m2 − m2,c it turns out that smaller sec-
ondaries typically have smaller envelopes to donate to their
WD companion. As a consequence, the minimum acceptable
WD mass mWD,n increases as m2 decreases, and so does the
mass of its progenitor m1,n. An additional lower limit on the

mass of the primary comes from the requirement that its rem-
nant should be a CO, rather then a helium, WD. Stars less mas-
sive than ∼2 M⊙ develop a degenerate helium core, and evolve
along the Red Giant Branch up to the helium flash, which oc-
curs when the stellar radius is of a few hundred R⊙ (see e.g.
Fig. 1 in Yungelson 2004). Therefore, these stars can provide
CO WDs only if the separation of the primordial binary ex-
ceeds ∼400 R⊙. Since the distribution function of the primor-
dial separations A0 scales as A−1

0 (see, e.g. Iben & Tutukov
1984) systems with a primary less massive than 2 M⊙ are much
more likely to produce a helium rather than a CO WD. For this
reason, the contribution to SNIa from systems with m1 smaller
than 2 M⊙ is neglected here, and I consider:

m1,n = max
{

2., 2. + 10.
(

mWD,n − 0.6
)}

(19)

where the relation between m1,n and its remnant mWD,n de-
scribes the results of case C RLO in Nelemans et al. (2001),
and represents very well the empirical determination of the
initial–final mass relation by Williams et al. (2004).

In summary, as m2 decreases, the lower limit of integra-
tion in Eq. (16) is first set to m1,i = m2, down to m2 = 2 M⊙;
then it stays constant and equal to 2 M⊙ until the minimum
WD mass for a successful SNIa event (mWD,n from Eq. (17))
becomes larger than 0.6 M⊙. From that point on, m1,i increases
with decreasing m2. At some value of m2, m1,i becomes equal
to 8 M⊙: this marks the minimum secondary mass suitable for
a successful SNIa event.

The scheme adopted in Greggio & Renzini (1983) is
slightly different from the one just described. It assumes that
the total mass of the primordial binary Mb follows a power law
with slope −α, and that the mass ratio µ = m2/Mb is distributed
according to f (µ) ∝ µγ. In this case:

n(m2) ∝
∫ Mb,s

Mb,i

m
γ

2 M
−(α+γ+1)
b dMb

∝ m−α2 ·
[

(

2m2/Mb,i
)α+γ
−

(

2m2/Mb,s
)α+γ

]

(20)

where Mb,s = 8 + m2 and Mb,i = m1,i + m2.
It is worth remarking that in the original formulation by

Greggio & Renzini (1983), Mb,i was required to be larger than
a minimum value (e.g. 3 M⊙) irrespectively of the mass of the
evolving secondary. This fixed limit does not describe the one
to one correspondence between the mass of the evolving sec-
ondary and delay time of the SNIa precursor. At given delay
time, the amount of mass that can be donated to the accreting
white dwarf is virtually fixed, which implies a minimum white
dwarf mass, in order to add up to the Chandrasekhar limit. A
revision of the Greggio & Renzini (1983) SNIa rate has been
presented in Greggio (1996).

Equations (16) and (20) are very similar, but not quite the
same. In both cases, the distribution function of the secondaries
follows a power law with slope −α, corrected by a factor which
describes the limitations imposed on the masses of the pri-
maries in order to secure the SNIa explosion. As τ increases,
m2 decreases and, as long as m1,i = m2, the correction factor in-
creases toward unity. As soon as m1,i becomes greater than m2,
the correction factor starts decreasing, due to the loss of sys-
tems with primary mass between m2 and m1,i.
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Fig. 2. The distribution function of the secondary masses in the
SD model, for Chandra exploders as obtained with Eqs. (16) and (20)
for selected values of the α and γ parameters. Solid lines have been
obtained with ǫ = 1, dashed lines with ǫ = 0.5 in Eq. (17). The black
curve shows the derivative of m2 on a linear scale (right axis).

Figure 2 shows the distribution (in arbitrary units) of the
secondaries in systems which lead to Chandrasekhar explo-
sions, under a variety of hypothesis for the power law slopes α
and γ, and for the two formulations given by Eqs. (16) and (20),
as labeled.

The distribution function of the secondaries in systems
which produce a SNIa is shaped after the behavior of the min-
imum mass for the primary as m2 decreases: it shows a first
abrupt change of the slope when m2 drops below 2 M⊙, that is
when m1,i is set to 2 M⊙ independently of m2. A second abrupt
change of the slope appears when the envelope mass of the
secondary is so small that m1,i > 2 M⊙ is required in order to
build up to the Chandrasekhar mass. From this point on, the dis-
tribution function of the secondaries steeply decreases as m1,i

increases. Smaller values for ǫ imply an earlier occurrence of
this regime, which in the illustrated case (ǫ = 0.5) appears soon
after m2 has gone below 2 M⊙.

For the same values of α and γ, the Greggio & Renzini
(1983) formulation (red curves) yields a larger fraction of sys-
tems with low secondary mass, compared to the formulation
generally adopted in the population synthesis codes. As a re-
sult it leads to comparatively larger rates at late epochs.

The distribution n(m2) also appears very sensitive to the α
and γ parameters. Most noticeably, the flatter γ, the larger the
fraction of systems with small secondaries. Figure 2 also shows
the time derivative of m2: the combination of the two factors
clearly produces an early maximum for the f SD

Ia function which
is given by Eq. (14).

3.2. The distribution function of the delay times

Figure 3 shows the resulting distribution function of the de-
lay times, with the same color and line coding as in Fig. 2.

Fig. 3. Distribution function of the delay times for the SD model for
the same choices of the parameters as in Fig. 2. In addition, the dot-
dashed lines show the distribution function for the Sub-Chandra mod-
els in the case (α, γ) = (2.35,1), using Eqs. (16) (blue) and (20) (red).

The two abrupt changes of the slope just reflect those appear-
ing in the n(m2) function. Figure 3 also shows the distribution
functions of the delay times expected for the Sub-Chandra ex-
ploders as dot-dashed lines. These are obtained from Eqs. (16)
and (20) with the following criterion for m1,i: a minimum
WD mass of 0.7 M⊙ is required to secure the explosion, along
the lines suggested by Woosley & Weaver (1994) models. This
corresponds to a minimum primary mass of 3 M⊙ (see the sec-
ond term of the RHS in Eq. (19)), so that the first cusp occurs
as early as 0.4 Gyr. In order to have a Sub-Chandra SNIa, a he-
lium layer of about 0.15 M⊙ needs to be accumulated on top of
the CO WD, which corresponds to (ǫ · m2,e) ≥ 0.15 M⊙. This
is a limit on m2 which implies that the single burst SNIa rate
for this model drops to zero at a delay time equal to the evo-
lutionary lifetime of such m2. Since the evolutionary mass at
15 Gyr is ∼0.9 M⊙, this limit is inactive for the whole Hubble
time, provided that ǫ >∼ 0.3, as is considered for Fig. 3.

The distribution function of the delay times for the
SD model is basically shaped according to the limits on the
mass of the primaries in systems which eventually produce
a SNIa. Four regimes can be identified:

1) Regime A, in which f SD
Ia shows an initial steep rise followed

by a mild decrease. In this regime m1,i = m2, implying that
at longer delay times there is an increasing range of m1

which contribute to the SNIa explosions. The (wide) maxi-
mum results from the interplay between n(m2) and |ṁ2|, the
latter being a decreasing function of τ.

2) Regime B, which sets in when m2 falls below the mini-
mum primary mass suitable for the explosion. Such mini-
mum mass is chosen here equal to 2 and 3 M⊙ respectively
for Chandra and Sub-Chandra exploders. In Regime B, m1,i

is kept constant and equal to this minimum primary mass;
the distribution function of the delay times decreases with
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a steeper slope compared to Regime A, due to the loss of
systems with m2 ≤ m1 ≤ 2. It can be shown that in this
regime, the f SD

Ia function is mostly sensitive to the parame-
ter γ, according to log f SD

Ia ∝ τ
−1.44−0.3γ.

3) Regime C, starting when primaries more massive than 2 M⊙
are required in order to build up to the Chandrasekhar mass.
In Regime C, m1,i increases from 2 to 8 M⊙ as τ increases;
consequently f SD

Ia shows a steep decline. For Sub-Chandra
exploders Regime C does not exist.

4) Regime D, in which f SD
Ia = 0: this sets in when m1,i = 8 M⊙

is required to produce a Chandrasekhar explosion, or when
the envelope mass of m2 drops below the (0.15/ǫ) limit.
Regime D is not shown in Fig. 3. The value of τ at which
this regime sets in defines τx for the SD model.

For the Chandra exploders, the delay time at which Regime C
sets in varies with the efficiency of the accretion process. The
response of the CO WD to accretion crucially depends on the
accretion rate, as illustrated in Hachisu & Kato (2001). Only if
the accretion rate is in a small range around 10−7 M⊙/yr does
steady burning occur on top of the WD, so that the mass of
the donor is efficiently used to increase the mass of the WD.
For both lower and higher accretion rates, part of the donated
mass is lost, either following H-shell flashes (novae explosion),
for low accretion rates, or in a thick wind, for high accretion
rates. Therefore, the accretion efficiency, i.e. the ratio between
the accreted and the donated matter, is unlikely to be close to
unity, as adopted for the solid lines in Fig. 3. The lower the
accretion efficiency, the earlier regime C sets in, and regime B
is suppressed when ǫ <∼ 0.5, as shown by the dashed lines in
Fig. 3.

The shape of the f SD
Ia function derived here is quite general,

since it just reflects the product of the time derivative of the
evolutionary secondary mass, and the distribution n(m2).

4. Double degenerates

In the DD model, the first part of the close binary evolution
is the same as in the SD model, but, following the expansion
of the secondary component, a Common Envelope phase (CE)
sets in, eventually leading to the complete ejection of the CE it-
self. In this scenario, accretion on top of the WD, if any, is
neglected. The system emerges from the CE as a close binary
composed of two WDs, which are bound to eventually merge
due to the emission of gravitational wave radiation. If the to-
tal mass of the DD system exceeds the Chandrasekhar mass,
explosion occurs as a SNIa event. The delay time in this case is

τ = τn + τgw

where τn is the nuclear lifetime of the secondary, and τgw is the
gravitational delay (Landau & Lifshitz 1962):

τgw =
0.15 A4

(m1R + m2R) m1Rm2R
Gyr (21)

A, m1R and m2R being respectively the separation and compo-
nent masses of the DD system, in solar units.

To derive the distribution function of the delay times one
needs to map the distribution of the primordial systems in the

space (A0, m1, m2) into that of the final systems in the space (A,
m1R, m2R). Rather then performing Montecarlo simulations I
consider here some general aspects, with the aim of character-
izing the shape of the fIa function.

I restrict to systems with 2 ≤ m1,m2 ≤ 8, from which most
double CO WDs form, as argued in Sect. 3.1. Typically, the
WD mass of both components ranges between 0.6 and 1.2 M⊙
(see e.g. Eq. (19)), and τn ranges between 0.04 and 1 Gyr. The
gravitational delay spans a large range, depending on the fi-
nal separation: e.g., for a (0.7 + 0.7) M⊙ DD, τgw increases
from 0.014 to 18 Gyr when A goes from 0.5 to 3 R⊙. The distri-
bution function of the delay times will depend on the distribu-
tions of both τn and τgw, at least up to total delays of ∼few Gyr,
with early explosions provided by systems with short τn and

τgw. Since the maximum nuclear delay does not exceed∼1 Gyr,
at long τ the SNIa events will come from systems with long
gravitational delays, that is DDs with wide separations and low
masses.

4.1. The interplay of τn and τgw

The following useful approximation for the gravitational delay
is justified in Appendix A.1:

τgw = 0.6
A4

M3
DD

Gyr (22)

where MDD is the total mass of the DD system (again in solar
units). This formula results from considering the restrictions on
the masses of the two WD components. In this approximation
the gravitational delay does not explicitly depend on m2R. Since
τn only depends on m2, which is in tight correspondence with
m2R, the relation between the two timescales is very weak: ba-
sically, primordial systems with secondary mass m2 will evolve
into a family of SNIa precursors spanning a wide range in sep-
arations and total binary mass, that imply a wide range of grav-
itational delays.

The integrated distribution of the total delay times can now
be constructed: the contribution (dnn) of binaries with given τn

to the number of systems with total delay time shorter than τ
is proportional to the fraction of them which have τgw shorter
than (τ − τn). Indicating this quantity with g(τ, τn):

dnn = n(τn) · g(τ, τn) dτn (23)

where n(τn) is the distribution function of the nuclear
timescales, proportional to the f SD

Ia function described in
Sect. 3. The total number of systems with total delay time
shorter than τ is obtained by integrating the dnn contributions
over the relevant τn range:
∫ τ

0
n(τ)dτ =

∫ min(τn,x,τ)

τn,i

n(τn) g(τ, τn) dτn (24)

where τn,i and τn,x bracket the range of nuclear timescales of
the systems which end up in a successful SNIa event.

Let’s now indicate with n(τgw) the distribution function of
the gravitational delays of systems with a nuclear delay τn (i.e.
progeny of systems with a secondary mass m2 whose MS life-
time is equal to τn), and let τgw,i and τgw,x be the minimum and
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maximum gravitational delays of such systems. Formally, the
fraction of systems which, having a nuclear delay equal to τn,
have also a total delay shorter than τ varies with τ according to:

g(τ, τn) =























0 for τ ≤ τ1
∫ min(τgw,x,τ−τn)
τgw,i

n(τgw) dτgw for τ1 ≤ τ ≤ τ2

1 for τ ≥ τ2

(25)

with τ1 = τn + τgw,i and τ2 = τn + τgw,x. This equation merely
expresses that (i) systems with nuclear delay τn have a total de-
lay ranging between τn + τgw,i and τn + τgw,x; (ii) the total delay
of such systems scales according to the distribution function of
their gravitational delays.

The shape of n(τgw) will reflect the distribution of the fi-
nal separations and of the DD masses. The interesting range of
gravitational delays, which goes from ∼0.01 Gyr (i.e. on the
order of τn,i) to over the Hubble time, is populated by low mass
systems (MDD = 1.4 M⊙) with 0.5 <∼ A/R⊙ <∼ 2.8, and by high
mass systems (MDD = 2.4 M⊙) with 0.7 <∼ A/R⊙ <∼ 4.2. In
the next section the outcome of the close binary evolution is
examined in connection to the possibility of producing final
separations in the reference range 0.5 <∼ A/R⊙ <∼ 4.5, which
corresponds to the relevant range of gravitational delays, for
the full mass range of the DD systems.

4.2. Shrinkage during the mass transfer phases

The mass transfer phase in a close binary system may be dy-
namically stable or unstable: in the first case the outcome is
a wide system (occasionally wider than the primordial separa-
tion), and the secondary may have accreted some of the donor’s
envelope mass. In the second case, a CE occurs and (generally)
the system shrinks. The occurrence of one evolutionary chan-
nel rather than another depends on the configuration of the ini-
tial binary (e.g. the mass ratio at RLO, whether the envelope
of the donor is radiative or convective, and so on). Anyway,
the interesting systems are those which suffer a substantial de-
gree of shrinkage during their evolution: the initial separations
of the double CO WD progenitors range roughly from 100 to
1000 R⊙, so that the first RLO takes place at all (upper limit),
and that it does so after core helium exhaustion (lower limit),
when the star is on the Asymptotic Giant Branch. Thus, in or-
der to merge within a Hubble time, the binary evolution should
produce a total shrinkage on the order of ∼10−2, 10−3. This can
be accomplished through one or more CE phases.

The standard CE recipe (e.g. Webbink 1984) relates the ini-
tial and final values of the binary parameters by requiring that
the variation of the orbital energy is proportional to the binding
energy of the envelope of the donor:

md
i

(

md
i − md

f

)

R
= αce













md
f m

2Af
−

md
i m

2Ai













(26)

where md
i , md

f are the mass of the donor respectively before and
after the CE, m is the mass of the companion, Ai and Af are
the separations before and after the CE, R is the radius of the
donor at contact (i.e. the Roche Lobe radius). αce is a parameter
roughly describing the efficiency with which the orbital energy

of the binary is used to expel the CE5: when smaller than unity
the process is very inefficient, and the system emerges from the
CE with a small separation; when αce > 1 other energy sources,
besides the orbital one, are used to expel the CE. Typical values
considered in the literature, and supported by hydrodynamical
computations, range from αce = 0.5 to αce = 2 (Rasio & Livio
1996).

However, this formulation fails to explain the observed bi-
nary parameters of 3 double He WDs, and Nelemans et al.
(2000) propose an alternative equation for the first mass trans-
fer, which consists in a parametrization of the system’s angular
momentum loss:

Ji − Jf

Ji
= γCE

∆M

MB
(27)

where Ji, Jf are the initial and final angular momenta, ∆M is
the mass lost from the system (roughly equal to the donor’s
envelope mass), MB is the total mass of the binary before RLO,
and γCE is a parameter, for which Nelemans et al. (2000) find
a value of ≃1.5 by fitting the data. This formulation has been
recently shown to describe the properties of a larger sample of
binary WDs (Nelemans & Tout 2005).

Equation (26) leads to a dramatic shrinkage, the typ-
ical ratio between the separations after and before the
CE phase (Af/Ai) being on the order of a few 10−2; instead,
for systems with a high mass ratio q (=m2/m1), Eq. (27) leads
to modest shrinkage (Af/Ai ∼ 1). At low q, Eqs. (26) and (27)
yield similar values, and actually, Eq. (27) is only applicable at
relatively large q (see Appendix A.2). As for the second mass
transfer episode, Eq. (26) is generally adopted in the literature.
I have then explored the results of two different evolutionary
schemes: (i) the two successive RLO are regulated by Eq. (26);
(ii) the first mass transfer occurs according to Eq. (27) (when
applicable, see Appendix A.2 for a detailed description), while
the second mass transfer is regulated by Eq. (26). The evolu-
tionary scheme (i) corresponds to the prescriptions used by e.g.
Tutukov & Yungelson (1994), Ruiz-Lapuente & Canal (1998),
Han et al. (1995), Han (1998), Yungelson & Livio (2000); the
evolutionary scheme (ii) corresponds to the prescriptions used
in Nelemans et al. (2001).

The total shrinkage, that is the ratio (A/A0) between the
separation of the newborn DD system and the original separa-
tion of the binary, is shown in Fig. 4 as a function of the mass
of the secondary component in the primordial system: blue and
cyan dots refer to the (i), red and magenta dots to the (ii) evo-
lutionary schemes. At fixed m2 the points show the effect of
varying m1: the more massive m1 the smaller the A/A0 ratio.
The four panels show the effect of varying the parameters αce

and γCE in Eqs. (26) and (27). In order to gauge the effect of
mass loss through stellar wind, which may occur prior to the
CE phases, an additional parameter ( fen) has been considered,
such that the mass of the donor at each RLO is equal to a frac-
tion fen of its initial mass. The sensitivity of the final shrinkage
to this parameter proves significant.

5 Different formulations are found in the literature for Eq. (26), and
correspondingly different meanings for αce. I adopt here the formula-
tion in Nelemans et al. (2001), with the geometrical parameter λ = 1.
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Fig. 4. Exploration of the outcome of two mass transfer episodes in binaries with intermediate mass. The ratio between the separations of the
final DD and the primordial systems is plotted as a function of the initial mass of the secondary for systems with m1 ≥ m2. Equation (19), and
the Eggleton (1998) formula for the Roche Lobe radius have been used. Blue and cyan points result from the application of Eq. (26) to both
mass transfers; red and magenta points from applying either Eqs. (27) or (26) for the first mass transfer, depending on which of the two yields
the wider separation Af . At given m2, the larger m1 the smaller A/A0 is. Each panel is labeled with the adopted values for the parameters in
Eqs. (26) and (27). The results in the top-left panel are reproduced in the other panels as small dots for an easy comparison.

The two options lead to vastly different situations: for the
scheme (i) the A/A0 ratio appears confined in a narrow range,
around a mean value which depends on αce and fen. In addi-
tion, there is a clear trend of A/A0 decreasing as m2 increases.
Indeed, more energy is required to expel the more massive CE
in the more massive binaries. At fixed αce this implies that the
systems shrink more and end up with a smaller A/A0 ratios. The
(ii) prescriptions, instead, produce a wide range of A/A0 ratios
at almost every m2. This means that systems with the same m2

and A0 can end up very wide or very close depending on the
mass of the companion.

Turning now to consider the quantitative value of A/A0, the
three lines in Fig. 4 show the levels A/A0 = 5 × 10−4, 5 × 10−3,
5 × 10−2. Recalling that the initial separations of the double
CO WD progenitors range roughly from 100 to 1000 R⊙, such
levels correspond respectively to final separations of ≃0.05, 0.5
and 5 R⊙ for the initially closest systems; to A ≃ 0.5, 5 and
50 R⊙ for the initially widest ones. Inspection of Fig. 4 shows
that the evolutionary scheme (ii) is capable of producing fi-
nal separations in a very wide range, well including the range
0.5 R⊙ <∼ A <∼ 5 R⊙, leading to merging within a Hubble time.

On the contrary, the scheme (i) appears to produce very small
A/A0 ratios, so that only the initially widest binaries manage
to merge on timescales on the order of some Gyr. In addition,
the correlation between A/A0 and m2 implies that lower mass
systems have longer gravitational delays, as will be better illus-
trated in the next section.

It’s important to notice the high sensitivity of the A/A0 ra-
tio on the parameters (αce, fen, γCE); this, coupled with the high
sensitivity of τgw on A suggests that the results of the binary
evolution from the population synthesis codes are very depen-
dent of the exact recipe used. At the same time, the correspon-
dence between the (A0, m1, m2) and (A, m1R, m2R) is likely to be
rather loose, and even more so if a distribution of (αce, fen, γCE)
values is realized in nature. In this respect, it is worth recalling
that the computations here adopt a unique initial-final mass re-
lation, while in reality, at a given initial mass, the remnant mass
spans a (small) range, in relation to the precise point in the
evolution at which the mass transfer takes place. Therefore, for
each pair (m1, m2) there will be a distribution of A/A0, around
the corresponding point in Fig. 4.
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This exploration of the results of the CE phases suggests
to consider the two following extreme characterizations for the
n(τgw) function:

– either, irrespectively of m2, the close binary evolution pro-
duces a wide distribution of A and MDD, and these two vari-
ables are virtually independent;

– or the close binary evolution leads to a narrow distribution
of the A/A0 ratio, so that the initially closest binaries merge
in a short time, and the initially widest binaries tend to pop-
ulate the long τgw tail of the distribution. In addition, the
most massive binaries tend to end up with the smallest final
separation, hence merge more quickly.

The first characterization is more appropriate for the
scheme (ii) of evolution, and will be referred to as WIDE DDs;
the second, suggested by the results of the evolutionary
scheme (i), will be referred to as CLOSE DDs. Since both
schemes provide very small A/A0 ratios for some values of the
parameters of the primordial binary system, the minimum grav-
itational delay τgw,i is likely to be very short. The dependence
of the distribution function of the delay times on the parameter
τgw,i will be explored later, and only for the WIDE DD scheme.
The maximum gravitational delay τgw,x is instead an impor-
tant parameter for the characterization of the two schemes, as
shown in the next sections.

4.3. The distribution g (τ, τn)

The fraction of systems which, having a nuclear timescale τn

manage to merge within a timescale shorter than τgw = τ − τn

depends on the distribution of the gravitational delays. In this
section the expressions for the g(τ, τn) function are derived for
the WIDE DD and CLOSE DD schemes, based on the two dif-
ferent characterizations.

4.3.1. WIDE DDs

For the WIDE DD scheme the assumptions are:

– MDD and A are independent variables;
– the minimum gravitational delay τgw,i is independent of m2;
– the maximum gravitational delay τgw,x is larger than τ − τn

for all τn (at least for a total delay time up to the Hubble
time);

– the distribution function of the final separations follows a
power law: n(A) ∝ Aβa .

Under these conditions, in Appendix A.3 the following formula
is derived:

g(τ, τn) ∝















0 for τ ≤ τ1

f W
1,2

[

(τ − τn)β̃a − τ
β̃a

gw,i

]

for τ1 ≤ τ ≤ τ2
(28)

where β̃a = 0.25(1+βa), τ1 = τn + τgw,i, τ2 = τn + τgw,x and f W
1,2

is a function of τn, for which two cases are considered:

f W
1,2 =



















f W
1 = M̃

0.75+0.75βa

DD

f W
2 = M

1.75+0.75βa

DD,x − M
1.75+0.75βa

DD,n

(29)

Fig. 5. The g(τ, τn) function for WIDE DDs, with f W
1,2 = f W

1 , for
three values of the βa parameter. The functions, plotted on arbitrary
units, are shown for τ = 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 5, 7 and 10 Gyr.
A very small minimum gravitational delay τgw,i = 0.001 Gyr has been
used.

with

MDD,n = max(1.4,m2R + 0.6); MDD,x = m2R + 1.2;

M̃DD = 1.4 + (m2 − 2)/6

and m2R given by Eq. (19). The first case in Eq. (29) ap-
plies when there is a tight correlation between m2 and its
MDD progeny; the second applies when a wide distribution of
MDD is obtained from systems with the same m2.

Figure 5 illustrates the g(τ, τn) function (computed with the
f W
1 factor). In general, as τ increases, the g function increases

at every τn, since at longer delays more systems fulfill the con-
dition τgw + τn ≤ τ at each τn. At the same time, for increas-
ing τn the number of systems with total delay smaller than a
fixed τ decreases, partly because of the decrease of the range
of gravitational delays which fulfill the condition τgw ≤ τ − τn.
A more thorough explanation of the trend of the g function can
be found in Appendix A.3. For βa = −0.9 most DDs are born
with small separations, and the dependences on both τn and
τ are milder, since both the above mentioned effects are less
relevant. Conversely, when βa = +0.9 the distribution of the
gravitational delays is skewed toward the large τgw values: the
fraction of systems with total delay up to τ greatly increases
with τ, as systems with longer τgw are included.

It is worth pointing out that for βa < −1 the g function
is very sensitive to τgw,i. This regime corresponds to distribu-
tions n(A) highly peaked at the minimum separation, a possi-
bility that likely provides exceedingly small SNIa rates at late
epochs in early type galaxies.

4.3.2. CLOSE DDs

The distinctive features of the end product of the CLOSE DD

scheme of evolution appear to be that (i) the average A/A0 ra-
tio is very small; (ii) it is correlated with the mass of the sec-
ondary in the primordial system. As a result, the gravitational
delays can be very small even for the systems with maximum
primordial separation, especially for the most massive DDs.

Figure 6 shows the gravitational delay in this evolution-
ary scheme for systems born with A0 = 1000 R⊙, and having
adopted αce = 2 and fen = 0.9. Notice that these are about the
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Fig. 6. Exploration of the gravitational delay of DDs from systems
with a primordial separation of A0 = 1000 R⊙, evolved through
two CE phases regulated by Eq. (26), as a function of the MS life-
time of the secondary. Both ages are expressed in years. Circled dots
mark systems with MDD ≥ 1.4 M⊙. The dashed line shows the 15 Gyr
level; the arrows show the average shift which applies when, leaving
the other parameters unchanged, one adopts in turn different values
for fen, αce or A0 as specified.

widest interacting binaries: the components of systems born
with a larger A0 evolve as single stars, and do not provide SNIa,
at least in a Hubble time. In Fig. 6, for every m2 (i.e. τn), m1

is decreased from 8 to m2
6, leading to longer gravitational de-

lays (MDD = m1R + m2R decreases). The circled dots refer to
systems with MDD ≥ 1.4, and therefore suited to successful
SNIa events. The upper envelope of the gravitational delays of
the SNIa precursors is well represented by:

log τgw,x = min
(

−16.66 + 3.17 log τn; 6.02 + 0.52 log τn
)

(30)

with the delay times expressed in years. By varying the param-
eters αce and fen the linear regressions shift vertically, approx-
imately maintaining their slopes. The vertical arrows drawn in
Fig. 6 show the amount of this shift for the indicated value of
the parameters.

The locus τgw = 15 Gyr is shown as a dashed line in
Fig. 6: it appears that the possibility of realizing gravitational
delays as long as the Hubble time is related to a fine tuning
of the involved parameters, so that the shrinkage due to the
two CE phases is not too severe. The systematic increase of
the maximum gravitational delay with increasing nuclear life-
time of the secondary reflects the smaller shrink of systems
with smaller m2, which is related to the minor amount of en-
ergy required to expel a less massive CE. For the same reason,
at given m2, a less massive primary implies a smaller amount of
shrinkage at the first CE. Therefore, for the CLOSE DD scheme

6 Unlike for the WIDE DD scheme, it seems adequate to restrict
here to systems with m1R ≥ m2R.

Fig. 7. Illustration of how the τ⋆n point, defining the branching in the
CLOSE DD distribution of gravitational delays, shifts with increasing
total delay τ. The straight lines show the loci y = τ − τn for a few val-
ues of τ; the curve shows the locus τgw,x(τn): for illustrative purposes,
the relation log τgw,x = min[−16.66 + 3.17 log τn; 5.4 + 0.52 log τn] is
used. Delay times are in Gyr. The asterisk marks the branching oc-
curring at τn = τ

⋆
n . The shaded region shows the domain over which

g(τ,τn) = 1. The dashed lines indicate the total range of nuclear delays,
corresponding to the range of m2 considered here, i.e. from 8 to 2 M⊙.

it seems appropriate to adopt a parametrization which empha-
sizes the systematic depletion of systems with long τgw as τn

decreases, or the increase of the maximum gravitational delay
in systems with smaller secondary mass. For simplicity, I con-
sider directly τgw as the independent variable, and assume that
for each m2 the differential distribution of the gravitational de-
lays scales as n(τgw) ∝ τ

βg
gw between a minimum (τgw,i) and

a maximum value (τgw,x). Admittedly, this choice is rather ar-
bitrary; I just notice that, if the distribution of τgw is mainly
controlled by the distribution of A, one can write:

n(τgw)dτgw ∝ n(A)dA

which, in combination with the relations τgw ∝ A4 and n(A) ∝

Aβa becomes n(τgw) ∝ τ
βg
gw with βg = −0.75 + 0.25βa.

With this assumption, the fraction of systems which man-
age to merge within (τ-τn) is:

g(τ, τn) =







































0 for τ − τn ≤ τgw,i

(τ−τn)1+βg−τ
1+βg
gw,i

τ
1+βg
gw,x −τ

1+βg
gw,i

for τgw,i ≤ τ − τn ≤ τgw,x

1 for τ − τn ≥ τgw,x(τn)

(31)

where τgw,x is an increasing function of τn. It is further assumed
that the minimum gravitational delay τgw,i is independent of m2

and small (compared to τn,i), while the maximum gravitational
delay is correlated to τn via Eq. (30).

To better understand the behavior of the g function, Fig. 7
illustrates how the second branching in Eq. (31) varies as τn
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increases. The parallel straight lines show the y = τ − τn loci
for selected values of τ, ranging from 1 to ∼18 Gyr; the curve
is one example for the τgw,x locus (different from Eq. (30)
for illustrative purposes). The intercept between each straight
line and the τgw,x curve (in τn = τ

⋆
n ) defines the branching of

Eq. (31): at given τ, systems with τn shorter than τ⋆n have all
merged, while only a fraction of the systems with τn > τ

⋆
n

have already exploded7. Thus, over the shaded portion of the
plane, g(τ, τn) = 1, i.e. the fraction of systems which, having a
nuclear delay τn, merge within a total delay τ is constant and
equal to 1. Clearly, at long total delays, the area in the parame-
ter space over which systems have already merged widens, and
only those with long τn, and therefore long τgw, still give a vari-
able contribution. When τ ≥ τn,x + τgw,x(τn,x), g(τ, τn) = 1 for
whatever τn, that is for all the SNIa precursors. Thus, in this
scheme, the maximum delay time of the whole DD population
from an instantaneous burst of SF is τx = τn,x + τgw,x(τn,x).

By varying the parameters of the close binary evolution
(e.g. αce, fen) the τgw,x(τn) locus shifts. If evolution leads to
systems which are all very close, the maximum gravitational
delay will be small, and soon τx will be reached, at which point
the distribution function of the delay times for the CLOSE DDs
drops to 0.

4.4. The distribution function of the delay times

for DDs

The distribution function of the delay times for the DDs is ob-
tained by computing the derivative of Eq. (24):

f DD
Ia (τ) =

d
dτ

∫ min(τn,x,τ)

τn,i

n(τn) g(τ, τn) dτn (32)

where n(τn) is the distribution function of the nuclear delays
of the SNIa progenitors, that is the f SD

Ia function derived in
Sect. 3.2.

Equation (32) is solved by applying the Leibniz integral
rule, as shown in Appendix A.4. The final function is:

f DD
Ia (τ) ∝

∫ min(τn,x,τ)

τn,i

n(τn) S W(τ, τn) dτn for WIDE DDs (33)

f DD
Ia (τ) ∝

∫ min(τn,x,τ)

τn,inf

n(τn) S C(τ, τn) dτn for CLOSE DDs (34)

complemented with

f DD
Ia (τ) = 0 for τ ≤ τi and for τ ≥ τx (35)

where

S W(τ, τn) =



















f W
1,2(τ − τn)−0.75+0.25βa for τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i

(36)

S C(τ, τn) =



















(τ−τn)βg

τ
1+βg
gw,x −τ

1+βg
gw,i

for τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i

(37)

7 Notice that for τ ≤ τn,i + τgw,x(τn,i) there’s no intersection between
the two loci: in this range, the total delay considered is so short that
g(τ, τn) < 1 even for the shortest τn. This regime is not visible in Fig. 7
because, for the chosen relation, τn,i + τgw,x(τn,i) = 0.07 Gyr.

τn,inf =



















τn,i for τ < τn,i + τgw,x(τn,i)

τ⋆n for τ ≥ τn,i + τgw,x(τn,i)
(38)

and with the following meaning of the symbols:

– τn,i, τn,x: respectively the nuclear timescales of the most
and least massive secondary in the SNIa progenitors’ binary
systems; if m2 ranges between 8 and 2 M⊙, τn,i ≃ 0.04 Gyr
and τn,x ≃ 1 Gyr;

– τgw,i, τgw,x: respectively the minimum and maximum gravi-
tational delay of SNIa DD precursors, originated from sys-
tems with given m2; τgw,i is assumed independent of m2;
τgw,x is assumed (i) larger than the Hubble time for all
SNIa precursors in the WIDE DD scheme, (ii) correlated
with τn as given by e.g. Eq. (30) in the CLOSE DD scheme;

– τ⋆n is the solution of the equation τ − τn = τgw,x(τn), i.e. the
minimum τn which contributes to the explosions at epoch
τ, which increases with τ (see Fig. 7);

– τi: the minimum total delay time (τi = τn,i + τgw,i), assumed
to be independent of m2;

– τx: the maximum total delay time, larger than the Hubble
time for the WIDE DD; equal to the maximum delay of
the least massive SNIa progenitor for the CLOSE DD: τx =

τn,x + τgw,x(τn,x);
– f W

1,2: the term describing the dependence on the mass of the
DD systems, given by Eq. (29);

– βa, βg: the exponents of the power law distributions
adopted respectively for the final separations in the
WIDE DD scheme, and for the gravitational delays in the
CLOSE DD scheme; a flat distribution of A corresponds to
βa = 0, and βg in the vicinity of −0.75 (if MDD varies in a
small range).

In addition, the (α, γ) parameters need to be specified, in order
to compute the distribution of the nuclear delays. In the models
shown here, I have considered α = 2.35 and γ = 1: the depen-
dence of n(τn) on these parameters is modest for nuclear delays
up to ∼1 Gyr (see Fig. 3).

In both Eqs. (33) and (34) at each total delay τ, the
f DD
Ia function results from the sum of the contributions from

systems with a range of m2, and each contribution is propor-
tional to a power of (τ − τn), the latter being just the gravi-
tational delay of the progeny of systems born with secondary
mass m2, which end up in a SNIa event at epoch τ.

The two equations correspond to different characterizations
of SNIa precursors: Eq. (33) separately accounts for the sen-
sitivity of the gravitational delay from the total mass of the
DD systems (through the factor f W

1,2), and from the distribution
function of the separations (through βa). At the same time, it
assumes that at any τ up to the Hubble time, SNIa explosions
come from all systems with τn ≤ τn,x. On the contrary, Eq. (34)
emphasizes the systematics of the range of the gravitational de-
lays as m2 (and hence τn) varies: at each τ, only systems with
τn ≥ τ

⋆
n contribute to the explosions, since those systems with

shorter nuclear timescales have a too short maximum gravita-
tional delay.

Neither of the two relations will strictly apply in nature, but
they can be used to investigate on the general shape of the dis-
tribution function of the delay times in two extreme situations
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for what concerns the product of the Common Envelope evolu-
tion. As an illustration, Fig. 8 shows the distribution function of
the delay times for the DD model for one specific choice of the
parameters, as labeled. For comparison, the distribution func-
tion of the SD systems is also plotted. I recall here that fIa(τ) is
proportional to the SNIa rate following an instantaneous burst
of SF.

Similar to the case of the SD model, the distribution func-
tion f DD

Ia (τ) appears characterized by three regimes: first a
rapid increase, followed by a slow decrease or a wide maxi-
mum, and finally a late epoch, pronounced decline. This shape
can be viewed as a modification of the f SD

Ia function: for the
DD model, early explosions are given by systems with short
τn AND short τgw; the flat portion corresponds to those epochs
at which the SNIa events come from many combinations of
τn and τgw; at late epochs we are left with systems with long
τgw. Notice that when τ is large compared to τn,x Eq. (33) can
be approximated as f DD

Ia (τ) ∝ τ−0.75+0.25βa : compared to the
SD model, this decline rate is considerably mild, and basically
controlled by the dependence of the gravitational delay on the
final separation A. A late epoch increase of f DD

Ia can be realized
only if βa is large and positive, corresponding to n(A) distribu-
tions highly skewed toward large values of the final separations,
which is very unlikely.

With respect to the WIDE DD, the CLOSE DD scheme
yields a distribution of the delay times which is steeper both at
the intermediate and at the late epochs. This reflects the relative
paucity of systems with long τgw in this scheme of evolution.
However, in spite of the very different assumptions, the overall
behavior of the fIa functions in Fig. 8 look similar. In Sect. 5,
the difference between the models will be better quantified, by
considering the distribution function of the delay times suitably
normalized.

For the DD model, at τ = 1 Gyr there is a cusp: mathemati-
cally this is due to the discontinuity of the S W and S C functions,
coupled with the upper limit of integration for f DD

Ia . In practice,
the cusp occurs at the epoch at which the systems with small-
est m2 start contributing to the SNIa rate, that is τ = τn,x +

τgw,i. After this epoch, increasing τ corresponds to include sys-
tems with longer τgw but NOT longer τn. The prominence of
the cusp is related to the βa,(βg) exponents which control the
n(τgw) distribution toward the minimum τgw,i.

Finally, the different scheme used to compute the distribu-
tion function of m2, i.e. whether using Eqs. (16) or (20) has
a very modest impact on the final f DD

Ia (τ) function. As for the
SD model, the use of the Greggio & Renzini (1983) scheme
yields a relatively larger rate at late epochs.

4.5. Dependence on key parameters

I turn now to consider the dependence of the function f DD
Ia on

the several parameters that need to be specified.
Both the upper and the lower limits to the mass of the sec-

ondary component in the SNIa progenitor systems are subject
to some uncertainty, which reflects on the parameters τn,i and
τn,x. The most massive CO DD systems come from progenitors
in which both components are ∼8 M⊙ stars; if these systems

manage to produce a SNIa event, τn,i is about 0.04 Gyr. As
mentioned in the introduction, though, the ultimate fate of a
double CO WD might be an accretion induced collapse, rather
than a central carbon deflagration, depending on the modalities
of accretion (e.g. the accretion rate and the angular momentum
deposition on the WD). This question is highly debated in the
current literature (e.g. Piersanti et al. 2003; and Saio & Nomoto
2004), to the aim of establishing the likelihood of the DD chan-
nel as SNIa precursors in general. However, notice that if the
occurrence of the accretion induced collapse depends on the
mass of the DD components, the DD channel remains a valid
SNIa progenitor, but τn,i changes to become the nuclear life-
time of the most massive secondary in a system which avoids
the accretion induced collapse. Since in the current literature
there’s no claim of this effect, this possibility is neglected here,
and all the models adopt τn,i = 0.04 Gyr. As already mentioned,
most double CO WDs come from systems with m2 greater than
2 M⊙, so that a reasonable value for τn,x is 1 Gyr. However, the
likelihood of a successful explosions may well be decreasing
as m2 approaches this limit, due to the requirement that MDD

exceeds the Chandrasekhar mass. Therefore, τn,x is treated as a
parameter, and I show here the results obtained with τn,x = 0.4,
0.6 and 1 Gyr, corresponding to a lower limit to m2 in SNIa pro-
genitors of ∼3, 2.5 and 2 M⊙, respectively.

Given the high degree of shrinkage which is obtained when
applying the standard CE recipe, the lower limit to the gravita-
tional delay (τgw,i) is likely to be very small. For this reason I
adopt here a nominal value of τgw,i = 0.001 Gyr in most com-
putations. However, the minimum gravitational delay could
be larger, especially for systems with high initial mass ratio,
if e.g. Nelemans et al. (2001) scheme of evolution applies.
Thus, I explore the sensitivity of the results on τgw,i only for
the WIDE DD scheme, adopting a very large value of τgw,i =

0.1 Gyr. For the CLOSE DD scheme the critical gravitational
timescale is instead τgw,x: e.g. low values of αce produce a max-
imum gravitational delay shorter than the Hubble time even for
the lowest mass systems (see Fig. 6). Two options for the rela-
tion τgw,x(τn) are considered.

Without specific population synthesis computations, little
can be said about the βa and the βg parameters. Since the dis-
tribution of the separations in primordial binaries is typically
taken to scale as n(A0) ∝ A−1

0 (e.g. Iben & Tutukov 1984;
Han 1998; Nelemans et al. 2001), I consider the three values
βa = −0.9, 0,+0.9 which correspond to assuming that, as a re-
sult of evolution, the distribution of the separations (i) remains
basically unchanged; (ii) flattens off, so that any value of A is
equally probable; (iii) changes slope, so that more DD systems
are found with large A. The values of the βg parameter explored
here are related to the three βa values via βg = −0.75 + 0.25βa

(see Sect. 4.3.2), and are βg = −0.975, 0.75,−0.525. Notice
that, since most combinations of (MDD, A) lead to short τgw,
positive values for βg or even a flat distribution of the gravita-
tional delays are extremely unlikely.

Figure 9 illustrates the dependence of f DD
Ia (τ) on the pa-

rameters related to the timescales (left panels), and on those
related to the distribution of the separations (right panels). The
left panels show how the late epoch decline starts at τ = τn,x +

τgw,i, as argued in the previous section. The more massive is the
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Fig. 8. Illustration of the distribution function of the delay times in
the DD model for the labeled values of the parameters. The red lines
show the result for the CLOSE DD scheme; the blue and green for
the WIDE DD scheme, respectively when MDD is strongly and mildly
correlated with m2. Equation (30) has been used for τgw,x(τn). For com-
parison, the magenta curves show the distribution function of the delay
times in the SD model, for Chandrasekhar explosions. In all models
the distribution of the nuclear delays is derived with α = 2.35 and
γ = 1.

lower limit to m2 of the SNIa progenitors’, the larger is the frac-
tion of early explosions, i.e. the shorter will be the timescale for
the release of the bulk of the nucleosynthetic products to the in-
terstellar medium. If SNIas come mostly from DDs which are
born with relatively wide separations, such that τgw,i is large,
the distribution function of the delay times behaves like the
magenta curve in the lower left panel: the first explosion oc-
curs at τ = τn,i + τgw,i, after which the rate increases rapidly up
to the start of the late epoch decline. The magenta curve in the
top left panel shows instead what happens if the close binary
evolution produces a large degree of shrinkage: the f DD

Ia func-
tion is more skewed toward short delays, and it does not pro-
vide systems with delays longer than τn,x + τgw,x(τn,x). This
illustrates the potential difficulty of accounting for SNIa in
Elliptical galaxies, if the close binary evolution produces too
close DDs.

The right panels in Fig. 9 show instead how the distribu-
tion function of the delay times depends on βa and on βg in
the special case of τn,x = 0.4 Gyr and τgw,i = 1 Myr. In general,
f DD
Ia appears to be fairly sensitive to these exponents, with more

early explosions as the distribution function of the separations
of the DDs is more populated at the low A end.

5. Discussion

Very schematically, the distribution function of the delay
times of SNIa progenitors derived in the previous sections

Fig. 9. Sensitivity of the distribution function of the delay times for
DD progenitors on various parameters. The top panels refer to the
CLOSE DD scheme, the bottom panels to the WIDE DD scheme of
evolution. The left panels show the dependence on the τn,x parameter,
with the color encoding as labeled. In addition, the magenta line in
the top panel has been obtained with τgw,x(τn) as given by Eq. (30)
decreased by 0.6 Dex, mimicking the effect of lower αce. The magenta
line in the bottom panel shows instead the effect of adopting τgw,i =

0.1 Gyr in the WIDE DD scheme. In all other models τgw,i = 1 Myr
is used. The right panels show the effect of varying βa and βg. The
dotted lines in the bottom panels show the results of using f W

1,2 = f W
2 in

the computation of f DDW
Ia . All curves have been computed with n(τn)

derived from Eq. (16) with (α, γ) = (2.35, 1).

for both Single and Double Degenerate models is charac-
terized by:

– an early steep rise;
– an intermediate phase, hereafter referred to as the wide

maximum;
– a decline phase.

The minimum and maximum delay times, the duration of the
intermediate phase, and the slopes of the intermediate and late
phases are different for the Single and the Double Degenerate
progenitors, and are controlled by a few key parameters.

For the SD progenitors, the minimum delay time is equal to
the MS lifetime of the most massive secondary in the primor-
dial binary producing a SNIa event; the wide maximum phase
lasts until a delay time equal to the MS lifetime of the least mas-
sive primary evolving into a CO WD suitable as SNIa precur-
sor; the decline phase becomes very steep at late epochs, if the
requirement of building up to the Chandrasekhar mass limits
the SNIa progenitors to systems with more massive primaries
in combination with less massive secondaries. In the decline
phase, the slope of the fIa function depends on the IMF, and on
the distribution of the mass ratios. In particular, the flatter the
distribution of the mass ratios, the larger the fraction of systems
with long delays, at fixed IMF slope. For the Chandrasekhar
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exploders, the maximum delay is equal to the MS lifetime of
the secondary whose envelope is massive enough to ensure
that the most massive CO WD reaches the Chandrasekhar limit
upon accretion. For the Sub-Chandra exploders, the maximum
delay is equal to the MS lifetime of the secondary with a mas-
sive enough envelope to provide the minimum layer for helium
ignition on top of the companion. Both these constraints de-
pend upon the efficiency of the accretion process.

For the DD progenitors, the minimum delay time is equal to
the MS lifetime of the most massive secondary in a SNIa pro-
genitor system, plus the minimum gravitational delay; the wide
maximum phase lasts up to a delay equal to the MS lifetime of
the least massive secondary in a SNIa progenitor system, again
plus the minimum gravitational delay. The slope of the decline
phase is sensitive to the distribution function of the separation
of the DD systems at birth. In addition, the overall distribution
function of the delay times is steeper if a correlation exists such
that the more massive binaries merge on a shorter timescale
than the less massive ones, due to a more pronounced shrink-
ing of the system. This happens in the standard treatment of the
CE evolution (CLOSE DD scheme). Finally, the maximum de-
lay time for the DDs is basically equal to the gravitational delay
of the least massive and widest DD progenitor: if the CE stages
were to induce a high degree of shrinking, the maximum delay
could well be shorter than the Hubble time.

5.1. Comparison with the results of populations

synthesis codes

These fIa functions have been derived with the aim of provid-
ing a general characterization of the distribution function of
the delay times for the various potential SNIa progenitors, and
a number of convenient, though astrophysically motivated, ap-
proximations have been introduced. It is thus very important
to compare the general shape of these functions to the results
of the population synthesis codes, which follow the individual
evolution of close binaries in detail. Unfortunately, the distribu-
tion of the delay times of the SNIa events, or equivalently the
SNIa rate following an instantaneous burst of Star Formation
(see Eq. (5)), is not commonly found in the literature. Most au-
thors rather quote the current SNIa rate in the Galaxy, which,
following Eq. (8), gives information on the total realization
probability of the Ia channel (i.e. AIa), but not on the shape of
the fIa function. The most suitable paper to perform a detailed
comparison between the analytic functions presented here and
the results of a population synthesis code is the one by YL.

Figure 2 in YL shows the SNIa rate following an instan-
taneous burst of Star Formation. Four types of precursors ap-
pear in this figure: the DD-Ch, i.e. Chandrasekhar Double
Degenerate exploders; the SG-Ch, produced by the evolution-
ary path of the SD-Chandra considered here; the He-ELD and
SG-ELD, which are two flavors of the Sub-Chandra Single
Degenerate channel, the difference being that the former come
from systems with m2 greater than 2.5 M⊙, which donate he-
lium to the degenerate companion, while the latter are sys-
tems in which m2 is smaller than 2.5 M⊙

8, which donate H,

8 To be precise, YL quote a secondary mass below (2–3 M⊙).

converted to helium of top of the CO WD. The He-ELD and
SG-ELD can be viewed as two complementary paths building
up into the broad Sub-Chandra category considered here.

The numerical simulations follow the evolution of one sin-
gle population of binaries, which evolve through mutually ex-
clusive channels; the fIa functions presented here, instead, are
thought of as alternative to each other, for the total stellar popu-
lation. One could consider a scenario in which SNIa come from
different channels, and construct a composite analytic distribu-
tion function of the delay times by properly assigning the var-
ious key parameters, and the realization probabilities of each
channel. I prefer to avoid this approach and perform the com-
parison between the results presented here and YL’s by taking
into account the different mass ranges which evolve into the
different channels.

Reading off Fig. 2 in YL, the rate for the DD-Ch exploders
starts at a delay time of Log t ≃ 7.4, reaches a maximum
shortly before 0.1 Gyr, and then drops; for delays in excess of
about 0.3 Gyr the trend is close to a power law with a slope
of ∼−1.2. At 10 Gyr, the rate has dropped of 2.2 Dex with
respect to its value at maximum. YL state that in their simu-
lations, the SNIas typically come from binaries with primary
components in the range between 4 and 10 M⊙, and that the
DD-Ch channel applies to the systems with secondaries more
massive than 4 M⊙. The upper limit on m1 is larger than the
8 M⊙ adopted here because the evolution in a close binary can
prevent C ignition before the loss of the envelope in stars less
massive than∼10 M⊙ (Iben & Tutukov 1984). The evolutionary
lifetime of a 10 M⊙ star (with solar metallicity) is about 25 Myr,
which is also the delay time at which the first DD-Ch events
appear to occur; the lifetime of a 4 M⊙ star is about 0.18 Gyr,
close to the duration of the peak in the YL DD-Ch curve. Since
YL adopt a description of the evolution during both CE phases
similar to Eq. (26), the analogue of their DD-Ch case would be
a CLOSE DD model with τi = 0.025 Gyr and τn,x = 0.18 Gyr,
while nothing can be said about the adequate value of the βg pa-
rameter. Using Eq. (30) with such short τn,x, the maximum
gravitational delay is much shorter than the Hubble time; on
the other hand, as illustrated in Fig. 6, τgw,x is very sensitive
to the various parameters used to describe the CE evolution.
In order to compare the analytic function for the DD model to
YL results I consider a relation for τgw,x obtained from Eq. (30)
plus a zero point shift of −0.6, so as to recover maximum de-
lays exceeding the Hubble time for the less massive SNIa pro-
genitors. This case is shown in Fig. 10 for three values of the
βg parameter. It can be seen that the analytic fIa functions are
very similar to the DD-Ch curves in YL; in particular, the case
with βg = −0.75 is very well approximated by a power law with
a slope of −1.27 for τ >∼ 0.5 Gyr, and at 10 Gyr its fIa is 2.7 Dex
lower than its maximum value. This is a remarkable similarity,

given the completely different ways in which the two functions

have been obtained. Notice that in the range 8.7 < log t < 9.5
the match is better than this, since the analytic curves steepen
when approaching the maximum delay time.

It is worth to point out that the fIa functions for the
CLOSE DD scenario are also in broad agreement with the
SNIa rate following an instantaneous burst of star formation
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Fig. 10. Distribution function of the delay times for DD progenitors
for a choice of parameters which represent the DD-Ch evolutionary
channel in YL. See text for more details.

for other renditions of the DD scenario (Tutukov & Yungelson
1994; Ruiz-Lapuente & Canal 1998).

The similarity between the analytic and numerical func-
tions for the SD, Sub-Chandra cases is much less apparent;
still the differences can be understood in terms of different
mass ranges populating this channel. After a steep rise, start-
ing at log t = 7.5 (close to the MS lifetime of an 8 M⊙ star),
the rate from the He–ELD channel has a wide maximum, fol-
lowed by a rather abrupt drop, which sets in at about 0.5 Gyr.
The latter is the evolutionary lifetime of a ∼2.7 M⊙ star, not
far from the least massive secondary populating this channel,
i.e. 2.5 M⊙. Systems with lower secondary mass do evolve on
a longer timescale, but do not go through the He-ELD chan-
nel. On the other hand, the rate from the SG-ELD exploders
starts at a delay time of 0.6 Gyr, in correspondence to the life-
time of the most massive secondary which evolves through
this channel. The rate rapidly reaches a maximum and then
starts declining with a trend close to a power law with a slope
of −1.6. At a delay time of ∼5.6 Gyr the rate drops dramat-
ically. For comparison, the slope after the wide maximum of
the blue, dot-dashed f SD

Ia curve in Fig. 3 is ≃−1.7. It is tanta-
lizing to conclude that the analytic formulation presented here
for the Sub-Chandra exploders reproduces the general trend of
the He-ELD + SG-ELD channels in YL, with the late dramatic
drop possibly related to inefficient accretion from low mass
secondaries.

Finally, the rate for the SG-Ch channel is indeed very dif-
ferent from the analogue analytic f SD

Ia functions in Fig. 3.
However, as stated by YL, only systems with m2 lower than
2.5 M⊙ evolve along this path, the more massive secondaries
becoming either a DD-Ch, or a He-ELD. Therefore, the late
start of the rate for this channel is understood in terms of

a late τn,i; the rapid drop at delays in excess of 1 Gyr could
instead reflect a low accretion efficiency. Actually, the compari-
son of the predictions for the Single Degenerate Chandrasekhar
channel is particularly difficult because of the different ap-
proaches, as anticipated above: the systems evolving through
the SG-Ch channel are clearly a minority in the population syn-
thesis code.

The general conclusion is that the analytic distribution
function of the delay times presented here can provide an ex-
cellent match to the results of the population synthesis codes,
once the appropriate mass ranges and evolutionary timescales
are assumed for the individual evolutionary paths. Obviously,
the numerical simulations also estimate the realization proba-
bility of the various channels, and the total realization probabil-
ity of the Ia event, that is the AIa factor. There’s no attempt here
at evaluating this factor, which can either be taken from obser-
vational estimates, following Eq. (8), or from the population
synthesis results.

The analytic approach offers several advantages, most
notably:

(i) an easy way to explore the consequences on the evolution
of stellar systems of the various candidates, viewed as al-
ternative SNIa progenitors;

(ii) it has a built in parametrization of the key properties of
the alternative candidates, i.e. mass ranges, IMF and dis-
tribution of the mass ratios, distribution of the separations
of the DD systems;

(iii) a flexible tool to build up an overall distribution of the de-
lay times by mixing the different analytic fIa functions,
weighted by the relative contribution of the individual
channels to the total realization probability, as astrophysi-
cal considerations may suggest.

5.2. Comparison between different SNIa candidates

For a meaningful comparison of the distribution functions of
the delay times from the various potential SNIa progenitors it
is necessary to normalize the fIa functions. Among the var-
ious possibilities, a convenient normalization is to consider
∫ τx

τi
fIa(τ) · dτ = 1 (see Sect. 2): in this way, the specific

SNIa rate at the current epoch in a system which formed its
stars in an initial star formation episode of duration ∆t is given
by (see Eq. (10)):

ṅE
Ia(t)

M
= kα · AIa · 〈 fIa〉t−∆t,t (39)

where 〈 fIa〉t−∆t,t is the average of the normalized distribution
function of the delay times over the age range of the stars
in the system, and AIa is the realization probability of the
SNIa scenario. I recall here that kα depends on the IMF, and is
equal to 1.55, 2.83 respectively for Kroupa and Salpeter IMFs.
Figure 11 shows some selected cases of the analytic distri-
bution functions normalized to 1 in the range between 0 and
12 Gyr. Although the maximum delay for the different can-
didates plotted here is larger than 12 Gyr, most distributions
steepen enough at late times that the fraction of SNIa explo-
sions at delay times exceeding 12 Gyr is negligible. In the
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attempt of showing a wide range of possible solutions, the plot-
ted cases adopt the following parameters:

(i) for the SD models, the solid lines have been computed with
γ = 1, the dashed lines with γ = 0.005; the latter choice
enhances the relative number of low mass secondaries (see
Fig. 2);

(ii) for the DD models, the solid lines have been computed
with βa = 0, βg = −0.75; the dashed lines with βa = +0.9,
βg = −0.975 for the WIDE DDs and the CLOSE DDs re-
spectively. The latter cases are meant to illustrate the wide
range of decline rates allowed by these options.

For a given realization probability of the SNIa event (AIa)
all models plotted in Fig. 11 provide the same total number
of SNIa within 12 Gyr from a burst of SF of given total mass,
but the events are differently distributed in time. Although for
all of the models most of the events occur within the first 1 Gyr,
in the WIDE DD scheme the explosions are more evenly spread
over the whole 12 Gyr range. Both the CLOSE DDs and the
SD Sub-Chandra model yield an age distribution of the events
very skewed at the early epochs; the SD-Chandra model ex-
hibits a dramatic drop at late epochs, related to the requirement
of building up to the Chandrasekhar mass by accreting the en-
velope of low mass secondaries.

The models in Fig. 11 can be compared to the observed
SNIa rate per unit mass in elliptical galaxies measured by
Mannucci et al. (2005, hereafter M2005), which is quoted
of 0.044 (+0.016)(−0.014) SNuM, or 0.044(+0.016)(−0.014)×
10−3 events per M⊙ per Gyr. If 10% of the stars in the mass
range from 3 to 8 M⊙ end up as SNIa, the factor (kα AIa) is
about (2, 3) × 10−3 respectively for Salpeter and Kroupa IMF.
Adopting kα AIa = 2.5 × 10−3, and inserting (ṅE

Ia(t)/M) =
0.044 × 10−3, Eq. (39) yields 〈 fIa〉t−∆t,t = 0.0176 Gyr−1, which
is the level indicated by the black line in Fig. 11. The dashed
region shows the upper and lower limit relative to the range
of the SNIa rate quoted by M2005 for E/S0 galaxies. For a
larger realization probability of the SNIa event, following ei-
ther from a wider range of progenitor masses, or from a larger
probability of the SNIa channel within a given mass range, the
observational constraint shifts downward.

The intercept between the theoretical fIa functions and the
observational constraint yields the average age which the stars
in early type galaxies should have in order to reproduce the
data. So, e.g. the SD-Chandra model is able to fit the data if
either the stellar population in Es is young, or if the realization
probability of the SNIa scenario is larger than what adopted.
Both the age of the stars in Es and the kαAIa factors are uncer-
tain; therefore Fig. 11 does not allow us to draw stringent con-
clusions about the best model for SNIa precursors. However,
the figure shows the interplay between the various quantities.

At 12 Gyr the SD models with γ = 1 fall short by about
one order of magnitude with respect to the level indicated by
the observations. The mismatch is more severe for the Chandra
case. Such a big discrepancy is difficult to recover either by
increasing the realization probability of the SNIa scenario, or
by invoking a younger age for Ellipticals: on the one hand the
black level in Fig. 11 already assumes that an important frac-
tion of stars (i.e. ≃10%) in the suitable mass range end up as

SNIa. On the other hand, M2005 data refers to a sample of
more than 2000 early type objects, and the spectrophotometric
properties of this class of galaxies strongly suggest that they are
old (see e.g. Renzini 1999; Peebles 2002). The only possibil-
ity to reconcile the SD model with the SNIa rate in ellipticals
seems to be that of assuming a very low γ (dashed curves), so
that the distribution of the secondaries is maximally populated
at the low mass end. Even so, an accretion efficiency close to
100% is required for the SD-Chandra models to meet the ob-
servations, which seems unlikely, as argued in Sect. 3.2.

The DD models more easily account for the observations,
provided that gravitational delays as long as the Hubble time
are realized, i.e. the common envelope phases do not lead to a
too severe shrinking of the DD systems. The steepest fIa func-
tion (CLOSE DD with τn,x = 0.4 Gyr and βg =−0.975) fall short
by a factor of ∼5 with respect to the observational limit, and
are thus unfavored. Notice that the mild slope of the fIa func-
tion from intermediate ages onward, implies that assuming a
younger age for Ellipticals does not efficiently improve the
fit for this kind of models. The illustration clearly shows that
lower AIa and/or older ages for ellipticals are accommodated
with WIDE DD models.

The normalization chosen for Fig. 11 corresponds to as-
suming that all models, with the same realization probability,
yield the same total number of SNIa out of a stellar generation
of unit mass (and therefore the same chemical enrichment). In
a different approach, Fig. 12 shows the models normalized to
their value at 10 Gyr: this corresponds to forcing all of them
to fit the current SNIa rate in Es with an average stellar age of
10 Gyr, albeit with different values for the factor kαAIa. The re-
alization probabilities required by this normalization are of the
order of 10−2 for the SD models, of 10−3 for the DD models,
but there is a noticeable dependence of the AIa factors on the
various parameters defining the models, including the formal-
ism to describe the binary population (i.e. whether Eqs. (16)
or (20) are used). Only the SD-Chandra models with low ǫ do
require a totally unrealistic realization probability, correspond-
ing to >∼100% of the stars with mass between 2 and 8 M⊙, and
will not be considered further. Once normalized in this way,
the various models correspond to dramatically different evo-
lution over cosmic time of the SNIa rate from a burst of SF
(notice that the rate is plotted on a logarithmic scale). This
property offers an important tool to discriminate among the
models by looking at the impact on the large scales, like the
Iron Mass-to-Light ratio in Clusters of galaxies, the evolution
with redshift of the SNIa rate in Ellipticals, and the systematic
trend of the SNIa rate with galaxy type (Greggio 2005). The
latter point is addressed in the following section.

To conclude this section, Fig. 13 shows the cumulative
number of SNIa explosions as a function of age for an instan-
taneous burst of SF, normalized to the total number of events
within 12 Gyr. This figure illustrates another distinctive charac-
teristic of the various SNIa models: the time scale over which
50% of the total SNIa explosions from an instantaneous burst
of SF have occurred. This timescale can be taken as indicative
of the typical delay with which the Fe from SNIa is released
to the Interstellar Medium, thereby decreasing its α/Fe ratio.
Within the explored range of models such timescales varies
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Fig. 11. Distribution function of the delay times for SD and for
DD progenitors as labeled. The plotted functions have been normal-
ized to 1 in the range τ ≤ 12 Gyr, and the normalization constant is
in units of Gyr−1. For the all models the distribution function of the
secondaries has been derived using Eq. (16) with α = 2.35. See text
for more details.

Fig. 12. Distribution functions of the delay times for the same models
shown in Fig. 11 with the same color and line coding. The functions
are here normalized to give the same value at 10 Gyr in order to illus-
trate the different early epoch behavior of models which reproduce the
current SNIa rate in Ellipticals.

between 0.3 and 3 Gyr going from the steepest CLOSE DD

case, to the flattest WIDE DD case. The SD-Chandra model
with γ = 0.005 (green dashed line) has a typical timescale
of ≃1 Gyr, which is often taken as a reference value
to infer the formation timescale of systems exhibiting an

Fig. 13. Cumulative number of SNIa explosions following an instanta-
neous burst of SF for the same models shown in Fig. 11, with the same
color and line coding. In particular, the dashed blue and cyan lines are
especially flat WIDE DD cases; the dashed red and magenta lines are
especially steep CLOSE DD models.

α/Fe overabundance. Figure 13 emphasizes that such timescale
does depends on the SNIa model, namely it is longer the flatter
the distribution of the delay times of the SNIa progenitors is.
The estimated formation timescales, then, remain uncertain by
a factor of a few, modulo the actual SNIa channel that domi-
nates in nature.

5.3. SNIa rate in different galaxy types

As anticipated in the previous section, the large differences of
the SNIa rate temporal behavior typical of the various mod-
els translate into a different trend of the SNIa rate as a func-
tion of the galaxy type, thereby offering a tool to discriminate
among the potential progenitors. This has already been out-
lined in Sect. 2, where the Cappellaro et al. (1999) data have
been shown to indicate that the ratio between the fIa value at
late delay times and its average value over the whole range of
delay times (up to the Hubble time) should be ≃0.15. For the
analytic functions, the quantity 〈 fIa〉10,12

〈 fIa〉0,12
is equal to 0.02 (0.03),

0.05 (0.08) respectively for the SD Chandra (Sub-Chandra)
models with γ = 1 and 0.005; equal to 0.07 and 0.15 for the
CLOSE DDs with τn,x = 0.4, 1 (and βg = −0.75); while it is
≃0.23 for the WIDE DDs with a flat distribution of the sep-
arations (βa = 0). Therefore, the ratio between the SNIa rate
in Ellipticals and Spirals indicates that the Single Degenerate
model underestimates the current rate in early type galaxies,
with respect to the rate in late types, a result of its fast decline
at late times.

This constraint has been derived considering a schematic
description of the star formation history in early and late
type galaxies, and by using a theoretical value for the
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M/LB ratio in the two galaxy types. A much better constraint
on the SNIa model progenitors can be built upon the recent re-
sults by M2005, by considering the trend of the SNIa rate per

unit galaxy mass with the parent galaxy type. In fact, Eq. (4)
can be written as:

ṅIa(t)
M
= kα · AIa · 〈 fIa〉ψ(t) (40)

where 〈 fIa〉ψ(t) is the average of the distribution function of the
delay times weighted by the star formation rate over the galaxy
lifetime, and where the integral of the SFR has been approxi-
mated with the galaxy (stellar mass)M9. Equation (40) clearly
shows that the trend of the SNIa rate with galaxy type reflects
the systematics of the their star formation histories. Given that
fIa is a decreasing function of the delay time, the younger sys-
tems will have a higher SNIa rate per unit mass, by an amount
which depends on the shape of the fIa function. The correlation
in M2005 can be interpreted as the result of Eq. (40), where the
different SF histories imply both a different SNIa rate per unit
mass, and a different B − K color.

Figures 14 and 15 show the M2005 observed correlation,
and the theoretical predictions for the various SNIa models,
computed as follows. To describe the SF history in the various
galaxy types I have considered four families of models:

(1) old burst models, characterized by a constant SFR within a
starting epoch t = 0 and ending epoch tB = 0.5, 1, 1.5 and
2 Gyr;

(2) exponentially decreasing models, all starting at epoch t = 0

and with different e-folding times tSF: ψ(t) = e−
t

tSF with
tSF = 1, 3, 5, 7, 9, 11 Gyr;

(3) exponentially increasing models: all starting at epoch t = 0

and with a different characteristic time τ⋆: ψ(t) = e−
12−t
τ⋆

with τ⋆ = 8, 6, 4, 3, 2, 1 Gyr. These models correspond to
a sequence of age distributions all peaked at 12 Gyr, and
decreasing e-folding age, so that the lower τ⋆ the younger
the average age of the stellar population;

(4) young burst models, characterized by a constant SFR
within a starting epoch t⋆ = 9.5, 10, 10.5, 11 Gyr and all
ending at t = 12 Gyr.

In addition, a model with a constant SFR over the whole range
of 12 Gyr has been computed. The considered range of SF his-
tories appears to encompass the range of B − K colors of the
galaxies in M2005 sample. The composite colors have been
computed using Girardi et al. (2000) simple stellar popula-
tion models with solar metallicity. The bluest and reddest bin
in M2005 are defined as lower and upper limits only (i.e.
B − K < 2.6 and B − K > 4.1); here they have been speci-
fied so that they are close to the bluest and the reddest model
stellar population. The point type in Figs. 14 and 15 encodes
the SF history: burst models are plotted as circles; exponen-
tial models as crosses, each family (2 and 3 described above)
connected by a line. The solitary dot shows the model with
a constant SF rate over 12 Gyr.

9 As pointed out in Sect. 2, the actual stellar mass in a galaxy can be
≈30 (45)% lower than the integrated SFR for Salpeter (Kroupa) IMF,
due to the mass return from dying stars.

The theoretical rates have been normalized so as to repro-
duce the observed values in the reddest galaxies with a SFH
given by the old burst model with a duration of 2 Gyr; con-
sequently, the normalization implies different realization prob-
abilities of the SNIa event for the different models. The val-
ues for AIa required by this normalization, having adopted
a Kroupa IMF and Eq. (16) for the distribution function of the
secondaries, are labeled in the figure. AIa is the number fraction
of SNIa events out of a stellar generation, and should be com-
pared to the number fraction of stars in a mass range which can
lead to the event, e.g. 3 ≤ m/M⊙ ≤ 8. For Kroupa IMF, 20%
of the stars fall in this mass range, and therefore the normaliza-
tion requires that in the WIDE DD scenario, approximately 3%
of the stars in the suitable mass range should end up as SNIa.
For the CLOSE DD scenario the analogous fraction is around
∼10%. The dependence of these figures on the parameters for
the DD model can be appreciated from the values labeled in
Fig. 14; for Salpeter IMF, the required fraction of SNIa events
from the same mass range is smaller by a factor of ∼0.6. It
can be noticed that choosing any other old burst model, or the
oldest exponentially decreasing model, would not change the

normalization.
It appears that the both families of DD models do fit well

the observational data when the choice of the parameters is
such to provide an intermediate shape of the distribution func-
tion of the delay times. The CLOSE DDs yield a too steep evo-
lution of the SNIa rate per unit mass with galaxy color, for a
low βg and a short τn,x; similarly, the WIDE DDs give a too flat
relation if βa is large, as well as τn,x. This comparison does not
necessarily favor the WIDE or the CLOSE DDs; rather it points
to a moderate solution: either relatively flat CLOSE DDs or
relatively steep WIDE DDs.

Figure 15 shows the analogous results for the SD models.
The left panel clearly shows that, with the standard choice of
the parameters (i.e. n(m2) as in the population synthesis com-
putations, α = 2.35 and γ = 1) both Chandra and Sub-Chandra
exploders imply a too large increase of the SNIa rate per unit
mass going from early to late type galaxies. The right panel
shows the results for a choice of the parameters aimed at im-
proving the match between the SD model and the observations.
When using Eq. (20) to describe n(m2) the agreement is bet-
ter (green and magenta points), but is seems that only with
a very low value of γ (i.e. if all the mass ratios q = m2/m1

are equally probable) can the SD model be reconciled with
the observations. In this case, the normalization to the rate in
the reddest galaxies implies that ∼10% of all stars born with
2 ≤ m/M⊙ ≤ 8 should end up as SNIa of the SD Chandra va-
riety; alternatively ∼12% of all stars born with 3 ≤ m/M⊙ ≤ 8
should end up as SD Sub-Chandra SNIa.

The comparison between the M2005 data and the theoret-
ical models does not definitely rule out any of the alternative
progenitors, but puts constraints on the key parameters within
the various families. The precise values of these parameters
are subject to some uncertainty. M2005 convert their observed
SNIa rate per unit luminosity into a rate per unit mass by us-
ing the results from the galaxy models by Bell & de Jong
(2001), which are much more complicated than the SF histo-
ries considered here. This introduces a (small) inconsistency
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Fig. 14. Comparison between Double Degenerate model predictions and observations of the SNIa rate per unit mass as a function of the color
of the parent galaxy. The data from M2005 paper are plotted as black dots, with their quoted error bars, and connected with a solid line. The
9 panels show the trend with B − K as a tracer of SF history (see text) of CLOSE DD (blue) and WIDE DD (red) models: from left to right the
minimum secondary mass in SNIa progenitor systems decreases, and its MS lifetime τn,x increases; from top to bottom the slope in the decline
phase varies as indicated in the central panels, reflecting different distribution functions of the DD separations. Also labeled are the realization
probabilities required by the different models in order to reproduce the current rate in the reddest galaxies. All models adopt α = 2.35 and
γ = 1, and both options for the distribution function of the secondaries, i.e. Eqs. (16) and (20) are displayed. The minimum gravitational delay
is assumed to be negligible; the maximum gravitational delay for the CLOSE DDs follows Eq. (30). The two options for the WIDE DD case,
i.e. f W

1,2 = f W
1 and f W

2 in Eq. (36) give the same results, and indeed are both plotted in of the various panels.

between the models and the data. Another caveat concerns the
approximation of the galaxy mass with the integrated SF rate,
which affects the zero point (by not more than a factor of 2),
and the slope of the theoretical trend. Both these approxima-
tions, however, hardly affect the major conclusion that indicates
that

(i) the distribution function of the delay times should drop
by a factor of ≈100 from its early peak to its value at
10 Gyr;

(ii) in principle all candidates can reproduce the observed
trend of the SNIa rate per unit mass with galaxy color, with
an adequate combination of the key parameters. However,
the SD channel seem to require quite some fine tuning; in
particular the Chandra model is viable only if the accretion
efficiency is very large, which appears unlikely.

Fig. 15. Comparison between Single Degenerate model predictions
and M2005. The point type encodes the SFH, as in Fig. 14. All models
adopt α = 2.35; other parameters are labeled. The curves have been
obtained adopting Eq. (16) (left) and Eq. (20) (right panel). The green
and magenta loci show the results for γ = 1.
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6. Summary and concluding remarks

In this paper I have presented a straightforward formalism to
relate the rate of SNIa events in stellar systems to their star
formation history through two fundamental characteristic of
the SNIa progenitor model: the realization probability of the
SNIa scenario from a single age stellar population AIa, and the
distribution function of the delay times fIa(τ), which is pro-
portional to the SNIa rate past an instantaneous burst of star
formation.

The various models for the SNIa progenitors correspond to
different values for AIa, and to different shapes of the fIa func-
tion. No attempt is made here to give a theoretical value for AIa,
which can be derived either from the numerical realizations in
population synthesis models, or directly from the observations.
The latter suggest AIa on the order of 10−3 (see Sect. 2.1). A
more precise estimate could be derived with a detailed mod-
eling of the star formation in late type galaxies, and with a
robust assessment of the IMF. For the fIa function instead,
the paper presents analytical formulations to describe the most
popular SNIa progenitor models. It is shown that some param-
eters play a key role in shaping the distribution function of the
delay times, most notably: the mass range of the secondaries in
systems which provide SNIa events; the minimum mass of the
primary which yields a massive enough CO WD to ensure
the explosion, and the efficiency of accretion on top of it, for
the SD model; the distribution of the separations of the DD sys-
tems at their birth. In addition, it is found that the algorithm
adopted to describe the distribution of the stellar masses in bi-
naries has an important impact on the slope of the fIa function
for the SD model.

In all of the three scenarios (SD Chandra and Sub-Chandra,
and DD Chandra) the distribution function of the delay times is
characterized by a steep, early rise, so that the maximum rate is
reached soon after the first SNIa explodes. For the SD model,
this reflects the behavior of the clock (ṁ2) which describes how
the rate of change of the evolutionary mass decreases as the
delay time increases. The quantity |ṁ2| drops so fast to pre-
vail over the increase of the number of SNIa precursors as the
delay time increases. For the DD model, the clock has an addi-
tional contribution from the gravitational delay; still the early
steep rise is present because most DD systems have a short τgw,
given that a wide range of masses and separations correspond
to a short gravitational delay. Therefore, the property of the
distribution function of the delay times to reach its maximum
shortly after the first event occurs has a very robust justification.
As repeatedly said, following an instantaneous burst of SF, the
epoch of the first event is equal to the MS lifetime of the most
massive secondary (τn,i), for the SD model, plus the minimum
gravitational delay (τgw,i), for the DD model. There’s no appar-
ent reason to consider an upper limit for m2 in SNIa progenitor
systems smaller than the most massive primary which provides
a CO WD (i.e. an ∼8 M⊙ star). This implies τn,i ≃ 0.04 Gyr.
As shown in Fig. 4, even in the WIDE DD scheme the bi-
nary WDs can emerge from the CE with a very small sepa-
ration, so that also τgw,i is likely to be very short. Therefore,
in the context of the binary evolution, it seems very hard to
accommodate a shape for the distribution of the delay times

similar to the one that according to Strolger et al. (2004) best
explains the redshift dependence of the SNIa rates measured in
GOODs, i.e. a Gaussian distribution centered on τ ∼ 3−4 Gyr.
Such a distribution could be obtained if SNIa events were pro-
duced only by systems with m2 in the vicinity of 1.3 M⊙, for
the SD model, or by DD systems born with a separation of
about 2.5 R⊙ (but notice that a little spread of the binary mass
implies anyway a large spread of delays). Both hypothesis are
very contrived. Furthermore, a Gaussian distribution would not
meet the constraint on the fIa function derived from the trend
of the SNIa rate with parent galaxy type, like in M2005.

The analytical functions derived in this paper compare very
well to the results of the population synthesis codes in the lit-
erature, and especially to those in Yungelson & Livio (2000),
when taking into account the appropriate mass ranges and kind
of progenitor. The Monte Carlo simulations follow the evolu-
tion of a population of binaries, which evolve through mutually
exclusive channels, according to the response of the system to
the mass exchange phases. The remarkable similarity between
the analytic functions derived here and the numerical results
suggests that the shape of fIa is mainly determined by the mass
ranges and general characteristics of the clock of the explosion,
while the details of the response of the individual systems to the
RLO events are of lesser importance.

Once put on the same formalism, the various models for the
SNIa progenitors can be compared to the relevant observations
in order to judge which one best accounts for the data. The
most direct observational counterpart of the fIa functions is the
redshift dependence of the SNIa rate in elliptical galaxies (per
unit galaxy mass), due to the fact that the bulk of their stars
formed at very early epoch, and the single burst is a reason-
able approximation. Along this line, Maoz & Gal-Yam (2004)
have compared the SNIa rate in galaxy clusters at redshift be-
tween 0 and 1 to the family of fIa functions proposed by Madau
et al. (1998), reaching the conclusion that the average delay
time of SNIa precursors ought to be ≤2 Gyr. The notion of a
typical delay time for the SNIa precursors has very little jus-
tification in the context of stellar evolution in binaries, since a
wide range of delay times is produced by any kind of progeni-
tor. Rather, the slow increase of the SNIa rate with redshift re-
ported in Maoz & Gal-Yam (2004) would favor the DD model,
perhaps better of the WIDE DD variety. With the progress of
the Cluster SN surveys (see e.g. Maoz 2005) it will be pos-
sible to further investigate the redshift dependence of the rate
of SNIa in Elliptical galaxies, and come to stronger conclu-
sions. A less direct, but definitely complementary and effective
approach to constrain the SNIa progenitor model is attempted
here, by considering the predicted trend of the SNIa rate (per
unit mass) with the parent galaxy type (see also Della Valle &
Livio 1994; Ruiz-Lapuente et al. 1995). The M2005 data sug-
gest that the DD channel is favored with respect to the SD chan-
nel, and that the distribution of the separations of the DD sys-
tems should be such to produce a moderate decline of the
fIa function at late times. The SD model is not completely ruled
out by this comparison, but it requires (i) a flat distribution of
the mass ratios and (ii) accretion efficiencies close to 100%.
This can be accomplished only if the matter is accreted and
burned on top of the WD at the same pace, so as to avoid either
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expansion beyond the Roche Lobe (and the formation of a
Common Envelope), or the accumulation of a Hydrogen layer
which is eventually ignited under degenerate conditions (so that
a Nova explosion occurs). Even in the Hachisu et al. (1996) sce-
nario part of the accreted matter is lost by the system in a stellar
wind.

The various models for the SNIa progenitors have different
impact on the large scales; some preliminary considerations are
in Greggio (2005), while more detailed investigations will be
presented elsewhere. Here I just remark a few points.

Once normalized to reproduce the current SNIa rate in
Ellipticals, the SD model corresponds to a large Fe mass to
light ratio in Cluster of Galaxies (see Fig. 13; and Greggio
2005). A detailed study of the expected Fe mass to light ra-
tio in galaxy clusters as a function of the various possible pro-
genitors, and its evolution with redshift will allow us to better
constrain the SNIa model and the contribution of SNIa to the Fe
in the intracluster medium.

The timescale over which, following an instantaneous burst
of SF, half of the Fe is released to the interstellar medium
varies between ∼0.3 to 3 Gyr for the wide variety of SNIa pro-
genitor models considered here. Accordingly, the formation
timescale of systems which exhibit an enhancement of α ele-
ments with respect to Fe is rather uncertain, and depends on
the SNIa model. Quantitatively, the actual constraint on the
formation timescales also varies with the duration of the star
formation episode in the system (Matteucci & Recchi 2001).
Preliminary computations show that, in a star forming system,
such timescale may range between 1 and several Gyr. This
problem will be discussed in a forthcoming paper.

The evolution of the gas flows in Ellipticals depends on the
balance between the rate of mass return and the SNIa rate, past
a burst of SF. The former scales with time as ∝t−1.3, while,
at delay times greater than ∼1 Gyr, the fIa functions scale as
∝t−s with s ∼ −1 for the DD WIDE, ∼−1.2 for the DD CLOSE,
∼−1.6 for the SD Sub-Chandra. Therefore, it appears that the
secular evolution of the SNIa rate past a burst of SF is critically
close to the evolution of the rate of mass return, and that the
fate of the gas in Ellipticals is very sensitive to the SNIa pro-
genitor’s model. It is also worth noticing that the shape of the
fIa function is different from a simple power law, as is adopted
in Ciotti et al. (1991) to model the gas flows in ellipticals. In
particular, the presence of the wide maximum phase at interme-
diate epochs will impact on the dynamical evolution of the gas.

In this paper, the emphasis has been put on the intercompar-
ison of the various models for the SNIa progenitor. Actually,
all different channels could contribute to the SNIa events, each
with its own probability, as in the realizations of the population
synthesis models. Some diversities of the observational prop-
erties of SNIa have been found in the literature, which support
this notion (e.g. Branch 2004; Benetti et al. 2005). In particu-
lar the different luminosity at maximum, and the different de-
cline rate of the light curve, as measured by the the ∆m15 pa-
rameter of Phillips (1993), of the events in early and late type
galaxies (Della Valle & Panagia 1992; van den Bergh & Pazder
1992; Hamuy et al. 1996; Garnavich & Gallagher 2005) could
be related to different typical progenitors. If both the Single
and Double Degenerate channels are at work with similar total

realization probabilities, in early type galaxies the DD explo-
sions should prevail over SD events, since the distribution func-
tion of the delay times of the latter declines fast. In late type
galaxies, instead, all channels should contribute to the current
rate, with a larger proportion of SNIa from the SD channel, due
to their high rate at early epochs. The formalism presented in
this paper allows a straightforward exploration of the effect of
a mixture of progenitors, e.g. by varying the relative AIa real-
ization probabilities. Eventually, it will be possible to constrain
the mixture of progenitors by modeling the evolution of the
SNIa rate in galaxies of different types, and considering as well
all the other consequences on the large scales.
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Appendix A: Equations used to derive

the fDD

Ia
(τ) function

A.1. An approximate relation for the gravitational delay

The gravitational delay time is given by:

τgw =
0.15A4

(m1R + m2R)m1Rm2R
Gyr. (A.1)

The mass dependent term can be written as

f = M2
DD · m2R − m2

2R · MDD

with MDD = m1R + m2R, i.e. the total mass of the DD sys-
tem. Given that WD masses range between 0.6 and 1.2 M⊙,
MDD goes from 1.2 to 2.4 M⊙. f is a family of parabolas, both
viewed as a function of m2R, and of MDD. These families are
shown in Fig. (A.1). Each parabola in panel (a) has an abso-
lute maximum in m2R = 0.5MDD, of fmax = 0.25 · M3

DD. This
locus is drawn in panel (a) as the dashed line, and in panel (b)
as the uppermost thick curve. Not all combinations of (MDD,
m2R) are acceptable, and the shaded area in the two panels show
the allowed parameter space. In addition to the vertical limits
1.4 ≤ MDD/M⊙ ≤ 2.4, and 0.6 ≤ m2R/M⊙ ≤ 1.2, it is further
required that m1R(=MDD − m2R) ranges between 0.6 M⊙ and
1.2 M⊙. The more restrictive criterion m2R ≤ m1R ≤ 1.2 M⊙ is
unnecessary. Notice that, occasionally, the evolution in Close
Binaries produces m1R < m2R (even though, by definition,
m1 ≥ m2), e.g. in some cases of conservative RLO when the
secondary may become more massive than the original pri-
mary, thereafter leaving a more massive WD remnant.

The loci m1R = 0.6 M⊙ and m1R = 1.2 M⊙ are shown in
Fig. A.1: along each parabola, only the portion included be-
tween the two loci is acceptable. Basically, at given MDD we
exclude those values of m2R which imply m1R < 0.6 M⊙, which
is a He WD; similarly, we exclude those values of m2R which
imply m1R > 1.2 M⊙, taken here as the upper limit to the mass
of a WD.

As clearly visible in panel b) of Fig. A.1, the term f is much
more sensitive to MDD rather than to m2R, and there is an almost
one to one correspondence between MDD and f over the whole
parameter space of double CO WDs. In the computations pre-
sented here I approximate the function f with its maximum
value of 0.25 · M3

DD, which is the upper envelope of the family
of parabolas in panel (b). This approximation leads to Eq. (22).

A.2. Shrinkage following the RLO

Given the uncertainty of the results of the Common Envelope
evolution I have considered two alternatives. In one case, both
mass transfer phases are regulated through the standard CE
Eq. (26), which results into:

Af

Ai
= 0.5αce

md
f m

md
i













md
i − md

f

rL
+ 0.5αce m













−1

(A.2)

where md indicates the mass of the donor, A indicates the sep-
aration of the system, and the subscripts i and f refer to before

Fig. A.1. Mass dependent term of τgw plotted versus m2R for selected
values of MDD (panel a)), and plotted versus MDD for selected values
of m2R (panel b)). The dashed curve in panel a) connects the maxima
of the parabolas. Along this line m2R = m1R. The shaded area delimits
the parameter space of SNIa producers.

and after the RLO, respectively. Further, m is the mass of the
companion, and rL is the Roche Lobe radius in units of the
initial separation, which is adopted from Eggleton (1998), and
is generally ∼0.4−0.5. The blue and cyan dots in Fig. 4 result
from the twofold application of this equation, first with

md
i = fen· m1, m = m2, and md

f = m1R as given by Eq. (19);
second with

md
i = fen· m2, m = m1R, and md

f = m2R as given by Eq. (19).
In the alternative evolutionary scheme, the first mass transfer is
considered parametrized by the Envelope Ejection relation in
Nelemans et al. (2001), reported here as Eq. (27). Since, in the
same notation adopted above:

Ji = md
i m

√

GAi

md
i + m

, Jf = md
f m

√

GAf

md
f + m

∆M = md
i − md

f , MB = md
i + m.

it follows

Af

Ai
=













md
i

md
f













2
md

f + m

md
i + m













1 − γ
md

i − md
f

md
i + m













2

· (A.3)

Equation (A.3) is applicable if

γ
md

i − md
f

md
i + m

≤ 1

otherwise the system would loose more than 100% of
its original angular momentum. With a little algebra, the



L. Greggio: The rates of type Ia supernovae. I., Online Material p 3

last relation becomes:

m

md
i

≥ q̃ = γ













1 −
md

f

md
i













− 1

that is a lower limit to the mass ratio of the system at RLO.
Typically, the quantity (md

f /m
d
i ) (which is the core mass frac-

tion of the donor at RLO) ranges between 0.15 to 0.25 for
md

i between 8 and 2 M⊙. Then, q̃ ≃ 0.2, 0.4, 0.6 for γ =
1.5, 1.75, 2. Close to this lower limit, the Af/Ai ratio from
Eq. (A.3) becomes very small, and indeed smaller than that
given by Eq. (A.2).

The red and magenta points in Fig. 4 are generated with the
following prescriptions: similar to Nelemans et al. (2001), the
first mass transfer results into a shrinkage given by Eq. (A.2)
if the mass ratio is smaller than q̃, or the maximum Af/Ai from
Eqs. (A.2) and (A.3) if the mass ratio is larger than q̃. At the
second mass transfer, Eq. (A.2) is applied.

The product of the two Af/Ai ratios resulting from the first
and the second mass transfer phases naturally equals the ratio
between the final and the original separation of the close bi-
nary (A/A0) plotted in Fig. 4.

A.3. Function g (τ, τn) for WIDE DDs

In this section I derive an expression for the fraction of systems
which, having a nuclear delay τn, have a total delay smaller
than τ for the WIDE DD evolutionary scenario. Under the as-
sumptions that the total binary mass (MDD) and the separation
of the DD system (A) are independent variables, the contribu-
tion to gravitational delay τgw from systems with separations in
the range (A, A+dA) is:

dn(τgw, A) = n(A) n(MDD) dA dMDD (A.4)

where n(A) and n(MDD) are the distribution functions of the
separations and total binary mass of the progeny of sys-
tems born with a secondary mass whose nuclear timescale is
equal to τn, and the variables combine so that τgw = 0.6 A4

M3
DD

.

It follows:

n(τgw)dτgw = dτgw

∫ Ax

An

n(A) n(MDD)

∣

∣

∣

∣

∣

∣

∂MDD

∂τgw

∣

∣

∣

∣

∣

∣

dA (A.5)

where An and Ax define the range of separations which lead to
the same gravitational delay τgw. Given the relation between
gravitational delay, DD mass and separation, An and Ax are di-
rectly related to the minimum and maximum MDD:

An =
M0.75

DD,nτ
0.25
gw

0.60.25
, Ax =

M0.75
DD,xτ

0.25
gw

0.60.25
·

Figure A.2 shows plausible limits for MDD, illustrating that the
heavier m2 is, the heavier its MDD progeny. To proceed, for-
mulations for n(A) and n(MDD) need to be specified: since the
WIDE DD case is meant to describe a situation in which the
evolution produces DDs in a wide range of separations, and
since the relevant range of final separations is rather narrow
(from 0.5 to 4.5 R⊙), as a convenient parametrization I adopt:

n(A) ∝ Aβa . (A.6)

Fig. A.2. Limits for the total mass of the DD systems produced by
primordial binaries with secondary mass m2, leaving a remnant m2R.
The line labeled M̃DD is used in the computations to explore the effect
of a tight correlation between m2 and its progeny MDD.

As for the distribution of the DD masses, I explore the conse-
quences of two extreme assumptions:

(1) all values are equally probable: n(MDD) = const. within

MDD,n = max (1.4,m2R + 0.6) ; MDD,x = m2R + 1.2

with m2R given by Eq. (19);
(2) the distribution is peaked around the value10 (see Fig. A.2):

M̃DD = 1.4 + (m2 − 2)/6.

With respect to case (1), notice that, although one could
enforce MDD,n = 2m2R, there are evolutionary paths which
could lead to m2R > m1R, e.g. when after the Ist RLO the
separation is larger than the primordial one.

Case (2) corresponds to assuming that there is a tight corre-
spondence between m2 and the mass of the DD system, so that,
at any m2 (i.e. τn), MDD is specified, and the distribution of the
gravitational delays of systems with given τn is:

n(τgw)dτgw ∝ n(A)dA with A = (M̃DD)0.75τ0.25
gw /0.6

0.25.

With some algebra, Eq. (A.5) yields (for βa � −1):

n(τgw) ∝ f W
1,2 · τ

0.25βa−0.75
gw (A.7)

where

f W
1 ∝ M̃

0.75+0.75βa

DD (A.8)

for a narrow distribution of MDD around M̃DD, while

f W
2 ∝ M

1.75+0.75βa

DD,x − M
1.75+0.75βa

DD,n (A.9)

for a wide distribution of MDD.

10 This arbitrary relation is used just to explore the effect of a sys-
tematic decrease of MDD as m2 decreases.
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Fig. A.3. Lower panel: factors in the RHS of Eq. (A.10) for a flat dis-
tribution of A. The dashed lines show the τ dependent term and are
labeled with the τ value in Gyr. Notice how, as τ increases toward
τn,x = 1 Gyr the baseline on τn increases, while for τ > 1 the curves
just shift upward. Upper panel: resulting g function in arbitrary units.
Solid (dotted) lines result from using Eq. (A.10) with f W

1 ( f W
2 ).

Inserting Eqs. (A.7) in (25), the g(τ, τn) function is de-
rived as:

g(τ, τn) ∝















0 for τ≤ τ1

f W
1,2

[

(τ − τn)β̃a − τ
β̃a

gw,i

)]

for τ1 ≤ τ ≤ τ2
(A.10)

with β̃a = 0.25(1+βa), τ1 = τn+τgw,i, τ2 = τn+τgw,x, and where
the third branch has been neglected because it is assumed that
the maximum gravitational delay is larger than the Hubble time
for every τn.

The number of systems which have a nuclear delay τn and
a total delay up to τ is proportional to two factors: one ( f W

1,2) de-
scribing the systematics with MDD, the other scaling with the
width of the parameter space in τgw. The dependence on the
distribution of the separations appears in the exponents of both
factors. The lower panel of Fig. A.3 illustrates these two fac-
tors for βa = 0, which corresponds to a flat distribution of final

separations. The τ dependent quantity11 (dashed lines) is larger
when the total delay is larger: more systems merge within a
longer total delay. At fixed τ, this factor decreases for increas-
ing τn, as the available range in τgw decreases. At long total
delay times this effect becomes less important, since the upper
limit to τn is of 1 Gyr only. The solid and the dotted lines in the
lower panel of Fig. A.3 show respectively the f W

1 and f W
2 fac-

tors, which account for the systematics of the gravitational de-
lay with the nuclear delay: longer τn correspond to lower m2,
and then to less massive MDD. At fixed A, systems with lower
MDD are diluted over a larger τgw range: this effect is reflected
on the decreasing f W

1,2 factors with increasing τn, and is more
pronounced for f W

2 because of the additional systematics with
the range (MDD,x − MDD,n), which gets smaller as τn increases
(see Fig. A.2).

The upper panel in Fig. A.3 shows the resulting (non-
normalized12) function g(τ, τn) for the two considered distri-
butions of MDD. By construction, the g functions are zero for
τn ≥ τ−τgw,i (see Eq. (A.10)). The fraction of systems within a
given total delay time τ decreases as τn increases, a dependence
which is more pronounced when the variation in the range of
MDD with m2 is accounted for (i.e. when using f W

2 ). At any
τn the fraction of systems with a delay time smaller than τ in-
creases with τ. The variation of g with τn and τ depends on the
distribution function of the final separations A, as discussed in
Sect. 4.3 and illustrated in Fig. 5.

A.4. The differential distribution function of the delay

times

It its generic form, the Leibniz integral rule is:

d
dz

∫ b(z)

a(z)
f (z, x)dx =

∫ b(z)

a(z)

∂ f

∂z
dx + f (z, b)

db

dz
− f (z, a)

da

dz
·

This can be applied to Eq. (32), with

z = τ x = τn f (z, x) = n(τn) · g(τ, τn)

a = τn,i b = min(τx, τ).

Let’s consider in turn the three additive terms at the right hand
side of the Leibniz rule. The last term is equal to:

−[n(τn)g(τ, τn)]τn=τn,i

dτn,i

dτ
= 0

because τn,i is constant.
The second term is equal to:

[n(τn)g(τ, τn)]τn=min(τn,x,τ)
d min(τn,x, τ)

dτ
= 0

because

(i) in τ ≥ τn,x: dτn,x

dτ = 0 since τn,x is constant;

11 A small value of τgw,i = 0.001 Gyr has been used in this figure.
12 A proper definition requires g(τgw,x+τn, τn) = 1 at every τn, which

is a relation between τgw,x and τn. Since for the WIDE DD scheme
we consider τ < τgw,x for every τn the normalization factor is not
important.



L. Greggio: The rates of type Ia supernovae. I., Online Material p 5

(ii) in τ ≤ τn,x: g(τ, τn = τ) = 0 by construction, since the
g function is null in τn ≥ τ − τgw,i (see Eq. (25)).

Therefore, only the first term is left:

f DD
Ia (τ) =

∫ min(τn,x,τ)

τn,i

n(τn)
∂g

∂τ
dτn. (A.11)

The g(τ, τn) function is continuous (see Eq. (25)) and thus its
derivative can be computed in all its points. However, the func-
tion presents cusps in τ = τn + τgw,i and in τ = τn + τgw,x, where
the derivative will not be continuous.

Equation (A.10) (WIDE DDs) can be written as:

g(τ, τn)∝

{

0 for τn ≥ τ − τgw,i

f W
1,2

[

(τ − τn)0.25(1+βa) − τ
0.25(1+βa)
gw,i

]

for τn ≤ τ − τgw,i

for delay times up to the Hubble time. Upon derivation this
equation yields:

∂g

∂τ
∝

{

f W
1,2 (τ − τn)−0.75+0.25βa for τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i.
(A.12)

Inserting Eqs. (A.12) into (A.11) the distribution function
of the delay times for the double degenerate systems in the
WIDE DD evolutionary scheme is obtained as:

f DD
Ia (τ) ∝

∫ min(τn,x,τ)

τn,i

n(τn) S W(τ, τn) dτn (A.13)

with

S W(τ, τn) =

{

f W
1,2 (τ − τn)−0.75+0.25βa for τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i.

For the CLOSE DD formulation, it’s convenient to notice that
the third branch in Eq. (31) requires τ ≥ τn + τgw,x(τn),
and therefore exists only if the total delay time considered is
sufficiently long: τ ≥ τn,i + τgw,x(τn,i). Therefore, I re-write
Eq. (31) as:
− if τ ≤ τn,i + τgw,x(τn,i):

g(τ, τn) =



















(τ−τn)1+βg−τ
1+βg
gw,i

τ
1+βg
gw,x −τ

1+βg
gw,i

for τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i

(A.14)

− if τ ≥ τn,i + τn,x(τn,i):

g(τ, τn) =































1 for τn ≤ τ
⋆
n

(τ−τn)1+βg−τ
1+βg
gw,i

τ
1+βg
gw,x −τ

1+βg
gw,i

for τ⋆n ≤ τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i

(A.15)

where τ⋆n is the solution of the equation τ = τn + τgw,x(τn). The
derivative is then:
− if τ ≤ τn,i + τgw,x(τn,i):

∂g

∂τ
∝















(τ−τn)βg

τ
1+βg
gw,x −τ

1+βg
gw,i

for τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i

− if τ ≥ τn,i + τn,x(τn,i):

∂g

∂τ
∝



























0 for τn ≤ τ
⋆
n

(τ−τn)βg

τ
1+βg
gw,x −τ

1+βg
gw,i

for τ⋆n ≤ τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i.

The last two equations can be written in a compact form as:

∂g

∂τ
∝

{

f C(τ, τn) for τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i

with

f C(τ, τn) =































for τ < τn,i + τgw,x(τn,i):
(τ−τn)βg

τ
1+βg
gw,x −τ

1+βg
gw,i

for τ ≥ τn,i + τgw,x(τn,i):















0 for τn ≤ τ
⋆
n

(τ−τn)βg

τ
1+βg
gw,x −τ

1+βg
gw,i

for τn ≥ τ
⋆
n .

Inserting the last two equations into Eq. (A.11), and splitting
the integration over τn in two parts, one from τn,i to τ⋆n and the
other from τ⋆n to the upper limit (min(τn,x, τ)), the distribution
of the delay times is obtained as:

f DD
Ia (τ) =

∫ min(τn,x,τ)

τn,inf

n(τn) S C(τ, τn) dτn (A.16)

with

S C(τ, τn) =















(τ−τn)βg

τ
1+βg
gw,x −τ

1+βg
gw,i

for τn ≤ τ − τgw,i

0 for τn ≥ τ − τgw,i

(A.17)

and

τn,inf =

{

τn,i for τ < τn,i + τgw,x(τn,i)
τ⋆n for τ ≥ τn,i + τgw,x(τn,i).

(A.18)


