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Abstract When designing unreinforced masonry

buildings, the wall stiffness and, consequently, the

masonry elastic and shear modulus E and G are

essential parameters. Current codes provide empirical

estimates of the masonry elastic modulus and a ratio

between the shear and elastic modulus, G/E. This

ratio, commonly taken as 0.4, is not based on scientific

evidence and there appears to be no consensus

concerning its value and influencing parameters,

meaning that current code standards might not accu-

rately portray the shear deformations of masonry

elements. To give the choice of the G/E ratio a

theoretical foundation, this paper presents closed-form

expressions for theG/E ratio of running-bond masonry

that capture the effects of finite joint thickness, finite

wall thickness and orthotropic block properties. Based

on the geometry of blocks and joints as well as their

elastic parameters, a validation of the developed

expression using 3D finite element analyses shows

good performance. For modern masonry typologies

with hollow clay bricks, a G/E ratio of 0.20–0.25 is

obtained. For historical masonry typologies, such as

dry stacked or mortared stone masonry, as well as solid

clay brick masonry, ratios between 0.30 and 0.40 are

computed.

Keywords Masonry � Shear modulus � Elastic
modulus � G/E ratio � Homogenization

1 Introduction

Unreinforced masonry buildings typically feature a

large number of walls and are therefore highly

redundant structures. The force distribution in such

systems is governed by the in-plane wall stiffness.

This parameter is also important in the seismic design

of unreinforced masonry buildings, as it strongly

influences the dynamic properties of the structure.

Overall, the stiffness depends on the wall geometry,

the wall static and kinematic boundary conditions, and

the elastic properties of the masonry, namely the

elastic, or Young’s, modulus E and the shear modulus

G. While it is rather straightforward to determine the

wall geometry and the loading conditions, the masonry

elastic modulus and, to an even greater extent, the

shear modulus, are affected by significant uncertain-

ties. To facilitate engineering work, design codes

generally provide estimates for the elastic modulus

and recommend the shear modulus be taken as 40% of

the elastic modulus, i.e. G=E ¼ 0:4 [1–5]. The

reported ratio, however, is mainly based on historic

practice rather than scientific evidence [5]. In fact, no
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experimental evidence exists to support this ratio [5],

and there is a lack of consensus in the scientific

community on its value and its influencing parameters

[6, 7]. Authors of in-plane wall tests instead suggest

values for G/E ranging from 0.1 to 0.25 [7, 8].

This paper aims at reducing the uncertainty sur-

rounding the G/E ratio by providing closed-form

expressions of this ratio for in-plane loaded masonry

walls with running-bond brick or block work. After

comparing the G/E values recommended in current

codes and the literature (Sect. 2) and reviewing

existing closed-form expressions from the literature

for the elastic properties of masonry (Sect. 3), we

conclude that the expression for the G/E ratio should

consider the following points: (1) The deformation of

the blocks along with the finite and varying thick-

nesses of the head and bed joints generally found in

mortared brick and stone masonry walls, which are not

able to be precisely described by commonly employed

‘interface-block’ models for masonry; (2) The influ-

ence of the out-of-plane deformation on the elastic

properties of the in-plane loaded masonry wall, or ‘3D

effect’, which is due to the finite thickness of the wall

and which 2D plane stress conditions often assumed in

the literature do not captured correctly; and (3) The

orthotropic properties of modern vertically-perforated

bricks, which are shown to affect the G/E ratio and

existing models do not consider.

Based on these observations, closed-form expres-

sions for E, G and the G/E ratio have been developed.

To consider the effect of the finite wall thickness and

orthotropic blocks on the masonry elastic properties, a

homogenization technique previously employed for

periodic running-bond masonry walls under plane

stress conditions and with deformable blocks and

joints of finite thickness [9] was adopted and extended

(Sect. 4). The use of orthotropic blocks is a novelty in

the application of homogenization to masonry that

allows for a more accurate analysis of modern hollow

brick and block masonry. The obtained expressions

were validated with 3D finite element (FEM) simula-

tions and compared to other existing formulations by

conducting a parametric study on the influence of the

geometric and elastic properties of blocks and joints

on the G/E ratio (Sect. 5). Additionally, the influence

of orthotropic blocks and of unfilled head joints was

studied (Sect. 6). Equations linking the block ortho-

tropic properties to the block void ratio were derived

and fed back into the analytical expression obtained

forG/E to study their influence on masonry properties.

The influence of unfilled head joints on the G/E ratio

was investigated by expressing it in terms of the head-

to-bed joint elastic modulus ratio. Finally, recommen-

dations for G/E ratios of commonly used masonry

typologies to be used in practical applications were

derived from the obtained expressions (Sect. 7).

2 Codes and literature

Figure 1 sums up the values for the ratio of shear-to-

elastic modulus suggested in codes and in the litera-

ture. For modern brick masonry walls, Part 1 of

Eurocode 6 [1], the Swiss standard SIA 266 [4], the

American masonry code TMS 402 [5], the pre-

standard FEMA 356 [2], and the New Zealand seismic

guidelines for the assessment of existing buildings

NZSEE [3] all propose a G/E ratio of 0.4. The

commentary [10] to the Italian technical standard NTC

08 [11] does not provide explicit values for G/E, but

gives ranges of values for E and G depending on the

masonry typology. Dividing the minimum and max-

imum values per typology leads to G/E ratios between

0.29 and 0.33 for dressed regular stone masonry, a

ratio of 0.33 for solid brick masonry with lime mortar,

of 0.25 for solid brick masonry with cement mortar,

and a ratio of 0.30 for vertically-perforated bricks,

both with filled and unfilled head joints.

In the literature, the mentioned ratio of 0.4 was

already put into question by e.g. Mojsilovic [6] and

Tomaševič [7]. Mojsilovic [6] highlighted the impor-

tance of taking into account the orthotropic elastic

Fig. 1 Recommendations for the G/E ratio according to Part 1

of Eurocode 6 [1], the Swiss standard SIA 266 [4], the pre-

standard FEMA 356 [2], the American masonry code TMS 402

[5], the New Zealand guidelines NZSEE [3], the Italian

technical standard NTC 08 [11], Wilding and Beyer (WB18)

[12], and Tomaševič (T09) [7]
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properties of masonry in the evaluation of the G/

E ratio and proposed a simplified formula to be used in

the practice. Tomaševič [7] suggested a simple

approach for estimating the G/E ratio, which is

outlined in the following. If the masonry elastic

modulus E is determined from masonry compression

tests, the shear modulusG can be retrieved from shear-

compression tests by using the Timoshenko beam

theory with the previously determined elastic modulus

and the initial in-plane wall stiffness as inputs.

Following this approach for five tests and using an

effective wall stiffness, i.e. the secant wall stiffness

passing by the point corresponding to the first onset of

masonry cracking, aG/E ratio of 0.1 was proposed [7].

Wilding and Beyer [12] applied this approach to six

walls tested by Petry and Beyer [13], using the wall

stiffness between 5% and 15% the wall peak force,

which is more representative of the wall initial

stiffness, and obtained for five walls values around

0.25 and for one wall a value of 0.6. By applying a

factor of 0.75 between the effective and the initial wall

stiffness for modern hollow clay brick masonry [12],

the G/E ratio proposed by Tomaševič [7] would

correspond to 0.13 for the initial masonry properties.

Petry and Beyer [8] used a G/E ratio of 0.25 in the

validation of their beam element model.

3 Existing closed-form expressions for masonry

elastic properties

The number of works to be found in the literature on

obtaining the equivalent in-plane elastic properties of

masonry by means of homogenization, or averaging,

methods is significant, e.g. [14–25]. Many of them,

however, model the masonry as an assembly of

discrete blocks and interfaces. Only very few works

report closed-form expressions for E and G consider-

ing the blocks as deformable and the mortar joints of

finite thickness, see Taliercio [9] and the references

contained therein. Among these few works, those of

Pande et al. [26], Cecchi and Sab [27, 28], and

Taliercio [9] are selected for comparison with the

expressions derived in this paper (Sect. 5).

The work by Pande et al. [26] is selected since it

provides a simple two-step averaging procedure for

deriving the properties of masonry in closed-form both

under 2D plane stress and 3D stress conditions. The

masonry wall was approximated as a superposition of

layers stacked in the two in-plane wall directions. In

the first step, average properties of the layer repre-

senting the blocks and the layer representing the

mortar head joints were derived. In the second step, a

system containing alternating horizontal layers of the

equivalent material derived from the first step of the

procedure and bed joint mortar was solved in order to

obtain the masonry elastic properties. The expressions

obtained through this procedure were shown to depend

on the order of averaging the stacked layers [29]. In

this paper, only the original order of the steps is

considered. Its performance in predicting the masonry

properties under plane stress conditions has already

been investigated [9].

Cecchi and Sab [27] derived closed-form expres-

sions of the masonry elastic properties by means of an

asymptotic homogenization technique. In their work,

the homogenization problem was expressed and

solved as a function of three parameters: a scale

parameter expressing the ratio between the bed joint

thickness and the block height, a parameter herein

called ‘contrast’, representing the ratio between the

elastic moduli of mortar and blocks, and a further

parameter relative to the aspect ratio of the blocks.

Both plane strain and plane stress states were consid-

ered for the wall and analytical closed-form expres-

sions for E and G were provided based on the

assumption that the mortar joints are infinitely thin

compared to the block height. Cecchi and Sab [28],

extended the above technique to capture the effect of

the finite thickness of the wall on the masonry elastic

properties by considering blocks in plane stress state

and attributing a plane strain condition to the mortar,

see also Cecchi et al. [30]. The expressions derived in

this paper rely on the same hypothesis with regard to

the stress-deformation state of block and mortar

(Sect. 4) and, for this reason, the model by Cecchi

and Sab [27, 28] is considered for comparison.

Taliercio [9] derived closed-form expressions for

the masonry elastic properties of walls by using an

approach derived from Aboudi’s method of cells [31]

in conjunction with the homogenization theory. The

approach consists in subdividing the representative

volume element (RVE) of the masonry wall into

several sub-domains, or cells, and assuming polyno-

mial functions describing the displacement field inside

each cell. The homogenization problem is formulated

by applying to the RVE a compression and shear

deformation and computing the resulting stresses.
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From these, analytical expressions for E and G are

retrieved. Taliercio used two approaches to solve the

homogenization problem: the first, derived from the

original method of cells [31], consisted in solving the

problem by enforcing continuity of the stresses

between the cells; the second, in minimizing the

potential energy of the representative volume. Only

the second approach will be used for comparison, as it

was found to give more accurate results [9].

With respect to the above mentioned works

[26, 28], in [9] masonry was modeled under a 2D

plane stress condition. As shown in Sect. 4, the

formulations developed in this paper are built on

Taliercio’s approach [9]. For this reason, its expres-

sions are evaluated in the following for comparison.

Taliercio’s expressions are extended to capture the

effect of the finite wall thickness on the masonry

elastic properties. This is done by replacing the plane

stress state [9], and the generalized plane strain state of

the original method of the cells [31], by different

assumptions with regard to the stress-deformation

conditions for the in-plane loaded masonry. In addi-

tion, new formulations are introduced in order to

capture the influence of orthotropic blocks on the

masonry elastic properties.

4 Formulation of the G/E ratio

Expressions for the elastic properties E and G along

with the G/E ratio of masonry are developed by taking

into account the effect (1) of the deformation of the

blocks and the finite thickness of the mortar joints,

which can be different between the head and the bed

joints, (2) of the finite wall thickness, or ‘3D effect’,

and (3) of the orthotropic properties of the blocks on

the elastic properties of the in-plane loaded masonry.

The formulation builds on the homogenization tech-

nique proposed by Taliercio [9], but differs from this

latter with regard to the stress-deformation state

assumed inside the in-plane loaded wall (Sect. 4.1)

and the consideration of orthotropic block properties

in the model (Sects. 4.2, 4.3).

4.1 Assumption on the stress-deformation state

When subjected to in-plane loading, masonry walls

undergo both in-plane and out-of-plane deformations

[29]. In masonry buildings the thickness of the walls is

far from being small (or large) compared to the size of

the blocks [32] and therefore none of the hypotheses of

plane stress (or plane strain) state applies a priori to the

wall middle plane [32–35]. In other words, the stress-

deformation state in masonry can neither be accurately

expressed using solely a plane stress nor only a plane

strain hypothesis for wall thicknesses used in the

practice. In order to seize the effect of the finite

thickness of the wall on its in-plane behaviour, several

research groups developed approaches taking into

account the actual 3D stress-deformation state of wall

[17, 19, 25, 35], or put forward descriptions based on a

generalized plane strain state on the wall middle plane

[32–34, 36–38].

The formulation proposed here builds on the

hypothesis of a plane stress state inside the blocks

and a plane strain state inside the joints. This

assumption allows mimicking the stress-deformation

state that is found in the wall middle plane (Fig. 2),

without the need of introducing the above mentioned

3D or generalized plane descriptions, which all add

new variables to the homogenization problem to be

solved. In [28, 30], this assumption was already used

while considering the joints as interfaces. In the

present work, the applicability of this approach is

extended to joints of finite thickness.

Observations based on finite element simulations

[29, 32, 33, 35, 39] and experimental results on

masonry under compression [40, 41] further justify

this assumption. Under in-plane vertical loading, the

mortar tends to expand more in the out-of-plane

direction than the block, the Poisson’s ratio of the

former being larger than the one of the latter. The bond

between mortar and the block, however, prevents the

mortar expansion, which results in a tri-axial com-

pression state inside the mortar and a bi-lateral tension

along with a vertical compression inside the block.

This state of lateral confinement in the joints may be

modelled by means of a plane strain condition, while a

plane stress condition applies for the blocks [28, 30].

As illustrated in Fig. 2, solving the homogenization

problem not for the 3D representative volume element

(RVE) of the wall, but for the 2D RVE of the wall

middle plane, represents a simplification in view of the

homogenization process, which, strictly speaking,

should start from a 3D RVE [27, 28, 35]. Considering

only the middle plane of the wall (Fig. 2), equilibrium

and compatibility conditions hold true even if different

stress-deformation states are assumed in blocks and
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joints. In fact, for reasons of symmetry, under in-plane

loading conditions the wall does not develop out-of-

plane displacements in its middle plane, neither in

plane strain nor the plane stress conditions. In the

following, it will be shown, by benchmarking the

results against 3D finite element simulations, that the

assumption made here with regard to the stress-

deformation state of the wall middle plane leads to a

very good estimation of the masonry elastic properties.

4.2 Derivation of the masonry elastic modulus E

Following Taliercio [9], the RVE is divided into six

cells representing the block along with the head and

bed joints, as shown in Fig. 3. The displacement fields

uix and uiy in the x- and y-directions inside each cell i of

the RVE, here denoted as microscopic, are provided

by means of polynomial functions describing the

deformed shape of the RVE under normal deformation

(Fig. 3):

masonry wall (3D RVE) wall middle plane (2D RVE) orthotropic homogenized 2D continuum 

simplification homogenizationmiddle plane

plane stress plane strain

Fig. 2 Procedure applied for deriving the equivalent elastic properties of an in-plane loaded masonry wall
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Taliercio [9] derived these functions, featuring the

polynomial coefficients U1, U2, W1, W2, W3, and the

quantities bB, bM, hB, hM capturing the block (B) and

mortar joint (M) geometry (Fig. 3).

The microscopic strains eixx, eiyy, eixy inside each

cell can be obtained by differentiating the correspond-

ing microscopic displacement field. The resulting

microscopic stresses inside the cells of the RVE

corresponding to mortar (i ¼ 2; . . .; 6) can be derived

by assigning an isotropic linear elastic constitutive law

to the the mortar:

rixx ¼ kM þ 2lMð Þeixx þ kMeiyy

riyy ¼ kMeixx þ kM þ 2lMð Þeiyy

rixy ¼ 2lMeixy;

ð2Þ

and by assuming the Lamé constants for a plane strain

state:

kM ¼
mMEM

ð1þ mMÞð1� 2mMÞ

lM ¼
EM

2 1þ mMð Þ
;

ð3Þ

where EM is the mortar elastic modulus and mM the

mortar Poisson’s ratio. The block is modelled as

orthotropic and its elastic properties are thus defined

by the elastic moduli in the horizontal and vertical

directions, EB;1 and EB;2, the Poisson’s ratios mB;12,

mB;21, and the shear modulus, GB. The shear modulus

cannot be directly related to the elastic moduli, as in

the isotropic case, and only the following relationship

holds: EB;1=mB;12 ¼ EB;2=mB;21. Assigning a plane

stress state inside the block leads to the following

stresses in cell 1 of the RVE:

r1xx ¼
EB;1

1� mB;12mB;21
e1xx þ mB;21e1yy
� �

r1yy ¼
EB;2

1� mB;21mB;12
mB;12e1xx þ e1yy
� �

r1xy ¼ 2GBe1xy:

ð4Þ

The macroscopic strains Exx, Eyy and Exy computed on

the RVE are obtained by integrating the microscopic

ones over the RVE volume V and result in [9]:

Exx ¼
1

V

Z

V

exxdV ¼
U1 þ U2

bB þ bM

Eyy ¼
1

V

Z

V

eyydV ¼ �
W1 þW3

hB þ hM

Exy ¼
1

V

Z

V

exydV ¼ 0:

ð5Þ

Setting W2 ¼ W1 so that the stresses and strains are

uniform over the cells of the RVE except for cells 5

and 6 [9], defining the difference between the potential

energy pm stored at the microscopic level and the

energy pM stored at the macroscopic level as
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P ¼
1

2V

Z

V

exxrxx þ 2exyrxy þ eyyryy
� �

dV

� ExxRxx þ 2ExyRxy þ EyyRyy

� �

;

ð6Þ

and differentiating this latter with respect to the

remaining coefficients U1, U2, W1, W3 leads to

expressions including the unknown macroscopic

stresses Rxx, Ryy, Rxy [9]. Plugging these expressions

into Eq. 5 results in relationships between the macro-

scopic stresses and strains. The equivalent, or homog-

enized, elastic moduli of masonry E, in the direction

perpendicular to the bed joints (y�direction), and Eh,

in the direction perpendicular to the head joints

(x�direction), are retrieved from said equations by

imposing a uni-axial stress state on the RVE:

Exx ¼
1

Eh

Rxx; for Ryy ¼ 0

Eyy ¼
1

E
Ryy; for Rxx ¼ 0:

ð7Þ

Solving the equations for the elastic moduli E and Eh,

the following closed-form expressions are obtained:

E ¼
2hðhB þ hMÞ

2

b aðcþ 3dÞ � ðe� f Þ2
� �

� g2ðcþ 3dÞ
ð8Þ

and

Eh ¼
2hðbB þ bMÞ

2

d ðc� dÞðaþ b� 2gÞ � ðe� f Þ2
� � ; ð9Þ

where:

h ¼ a bdðc� dÞ � e2ðcþ 3dÞ
� �

� b ce2 þ df ð2eþ f Þ
� �

þ 2egðeðcþ dÞ þ 2df Þ

� dg2ðc� dÞ þ e2ðe� f Þ2

ð10Þ

and

The parameters denoted with a entering the above

expressions are scale parameters [27] governing the

homogenized masonry properties:

aB ¼
hB

bB
aM ¼

hM

bM

ab ¼
bM

bB
ah ¼

hM

hB

aG ¼
GM

GB

aE ¼
EM

EB;2

aEB ¼
EB;1

EB;2
:

ð12Þ

The first four parameters, aB; aM; ab; ah, are related

to the geometry of the RVE, whereas the last three,

a ¼ �
96aba

2
BaEBahEB;2 2m2M þ mM � 1

� �

þ aEEB;2 aEBm
2
B;21 � 1

� �

a4bð8mM � 4Þ þ a3bð8� 16mMÞ þ a2b 32a2Ba
2
hðmM � 1Þ � 22mM þ 11

� �

þ ab �64a2Ba
2
hðmM � 1Þ � 6mM þ 3

� �

� 8a2Bahð2ah þ 3ÞðmM � 1Þ
� �

48abðab þ 1Þahðah þ 1Þh2BðmM þ 1Þð2mM � 1Þ aEBm
2
B21 � 1

� �

b ¼ �
aEEB;2 a2bð2mM � 1Þ þ abð3� 6mMÞ � 8a2Bahð2ah þ 3ÞðmM � 1Þ

� �

48abðab þ 1Þahðah þ 1Þh2BðmM þ 1Þð2mM � 1Þ

c ¼
EB;2 aEðmM � 1Þð4abah þ ab þ 1Þ aEBm

2
B;21 � 1

� �

� 4aH 2m2M þ mM � 1
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2ðab þ 1Þahðah þ 1Þh2BðmM þ 1Þð2mM � 1Þ aEBm
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2ahðah þ 1Þh2BðmM þ 1Þð2mM � 1Þ
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aBaEEB;2mM

2ðab þ 1Þðah þ 1Þh2BðmM þ 1Þð2mM � 1Þ

f ¼
�aBEB;2 aEBmB;21 mMð3aEmB;21 � 4Þ � 8m2M þ 4

� �

� 3aEmM
� �

2ðab þ 1Þðah þ 1Þh2BðmM þ 1Þð2mM � 1Þ aEBm
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� �
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aEEB;2 a3bð4mM � 2Þ þ a2bð5� 10mMÞ þ ab 16a2Ba

2
hðmM � 1Þ � 6mM þ 3

� �

� 8a2Bahð2ah þ 3ÞðmM � 1Þ
� �

48abðab þ 1Þahðah þ 1Þh2BðmM þ 1Þð2mM � 1Þ
:

ð11Þ
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aG; aE; aEB, are related to the material properties

of the block and the mortar. The first six parameters

are defined as in [9]; aEB is an additional parameter

herein introduced to capture the orthotropy of the

blocks.

4.3 Derivation of the masonry shear modulus G

The procedure for deriving the shear modulus of

masonry G is the same as for the derivation of the

elastic moduli E and Eh. A macroscopic shear

deformation is reproduced by the microscopic dis-

placement field inside the RVE shown in Fig. 3, and

its form is given by [9]:

u1x ¼
2U1y

hB

u1y ¼ 0

u2x ¼ u1x

u2y ¼
W1 x� bB

2

� �

bM

u3x ¼
y� hB

2

� �

ðU2 � U1Þ

hM
þ U1

u3y ¼ �
W2 y� hB

2

� �

hM

u4x ¼ u3x

u4y ¼ �u3y

u5x ¼ u3x

u5y ¼ �
W1 y� hB

2

� �

x� bBþbM
2

� �

� hM x� bB
2

� �� �

bMhM

u6x ¼ u3x

u6y ¼
W1x y� hB

2

� �

bMhM
:

ð13Þ

The microscopic strains eixy, microscopic stresses rixy,

macroscopic strains Exy and the potential energies pm
and pM are obtained in the same manner as when

computing the elastic moduli (see Eqs. 2–6). For the

macroscopic shear deformation, the macroscopic

strains are:

Exx ¼
1

V

Z

V

exxdV ¼ 0

Eyy ¼
1

V

Z

V

eyydV ¼ 0

Exy ¼
1

V

Z

V

exydV ¼
U1 þ U2

2ðhB þ hMÞ
þ

W2

bB þ bM
:

ð14Þ

Differentiating the difference in potential energy P

with respect to the newly defined polynomial coeffi-

cientsU1,U2,W1 andW2, settingW1 ¼ 2W2, inserting

the result into Eq. 14 and collecting all the terms

around Rxy leads to a closed-form expression for the

shear modulus G, which reads:

G ¼ aGGB 1þ
1� aG

aG þ ah þ abð1þ ahÞ 1� ð1�aGÞp
pþq

� �

0

@

1

A:

ð15Þ

The parameters a are defined by Eq. 12 while p and q

are additional parameters defined as

p ¼ ah 3þ ab 2� abð Þ 1þ 2a2M 1� m0M
� �� �� �

q ¼ 6aba
2
M 1� m0M
� �

;
ð16Þ

with

m0M ¼
mM

1� mM
:

The derivation shows that the orthotropy of the blocks

does not influence the form of the equations but enters

only through the shear modulus of the block GB

(Sect. 6). Moreover, replacing the term m0M in Eq. 16

with mM, Taliercio’s expression for G under plane

stress condition is obtained [9].

5 Comparison with existing expressions

and parametric study on the G/E ratio

The formulation for the shear-to-elastic modulus ratio

G/E can be obtained by dividing the derived expres-

sions for E and G (Eqs. 8, 15). In Fig. 4, the

performance of the so-obtained formulation for the

G/E ratio of masonry is investigated by comparing it to

other expressions from the literature along with the

results from 2D and 3D FEM analyses. The expres-

sions considered for comparison are those introduced

in Sect. 3: ‘Pan3D’ by Pande et al. [26], ‘CeSa’ by
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Cecchi and Sab [27, 28], and ‘Tal’ by Taliercio [9].

The blocks are modelled as isotropic to meet the

assumption underlying these models. In the newly

derived expressions, ‘New’, this is obtained by setting

EB;1 ¼ EB;2 ¼ EB and mB;12 ¼ mB;21 ¼ mB. Moreover,

the head and the bed joints are modelled with the same

thickness and properties.

The FEM analyses are performed with the software

Abaqus using the plug-in for numerical homogeniza-

tion developed by Omairey et al. [42], suitably

modified to apply periodic boundary conditions in

the 2 in-plane directions only [29, 35]. Said version of

the plug-in has been validated by reproducing the

results of the numerical homogenization of a masonry

wall presented in [29]. For brevity, the validation is not

reported here.

The 2D simulations, ‘FEM2D’, are conducted on a

2D RVE using plane stress conditions. The 3D

simulations, ‘FEM3D’, are conducted on a 3D RVE

with varying thickness of 100, 200 and 400 mm. In the

following, only the results for a wall thickness of 200

mm are shown in the comparison, while supplemental

material to the paper reports the results of the analyses

for wall thicknesses of 100 mm and 400 mm (see

section ‘Reproducibility of the article content’). These

analyses show that in the case of relatively thin mortar

joints, the performance of the model remains the same,

no matter the wall thickness; for relatively thick joints,

the model performance increases with increasing wall

thickness. Only thicknesses of 200 mm and 400 mm

are considered of interest for the practice as 100 mm is

below the minimum wall thickness allowed by

currently used standards (see e.g. NTC [11]).

In the parametric study, the joint-to-block height

ratio hM=hB is varied along with the contrast EM=EB

(Fig. 4a), the block aspect ratio hB=bB (Fig. 4b), the

joint Poisson’s ratio mM (Fig. 4c) and the block

Poisson’s ratio mB (Fig. 4d), to study their influence

on the G/E ratio. The main influencing parameters

appear to be the contrast (a), the joint Poisson’s ratio

(c) and, generally, the joint-to-block height ratio

hM=hB. The G/E ratio shows a positive tendency with

(a) (b)

(c) (d)

Fig. 4 Validation and

parametric study on the

shear-to-elastic modulus

ratio G/E of masonry for

isotropic blocks and head

and bed joints of equal

thickness. Compared are:

2D and 3D FEM analyses,

‘FEM2D’ and ‘FEM3D’; the

expressions by Pande et al.

[26], ‘Pan3D’; by Cecchi

and Sab [27, 28], ‘CeSa’; by

Taliercio [9], ‘Tal’; and the

proposed expression, ‘New’
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regard to the first parameter, while it is the opposite

case for the last two. The block aspect ratio (b) and the

block Poisson’s ratio (d) appear to have a significantly

smaller effect.

For all studied configurations, there appears to be a

significant difference between the G/E ratio predicted

by the 2D and 3D models along with the correspond-

ing FEM analyses. As highlighted in the literature, 2D

FEM analyses based on the plane stress assumption

give lower values of E with respect to the 3D case

since they neglect the effect of the wall thickness [29].

On the contrary, 2D and 3D analyses give a shear

modulus that is basically the same [29]. This results in

higher G/E ratios for the 2D compared to the 3D

analyses. The difference obtained between 2D and 3D

analyses was previously observed to be as high as 4%

in [29]; a higher discrepancy was shown in [30].

Depending on the masonry configuration (Fig. 4), this

difference reaches here 35%, showing that a 2D plane

stress condition might not be accurate in describing the

stress-deformation state of masonry - even in the linear

range (c.f. [29]). As the difference between 2D and 3D

analyses is significant for nearly all the investigated

parameters, the 2D results are plotted in Fig. 4

continuously in grey, to highlight their secondary

nature concerning the parametric study.

The ‘Tal’ model corresponds very well to the

results of the 2D FEM analyses, while the ‘New’

model along with the other models, ‘Pan3D’ and

‘CeSa’, are close to the results of the 3D FEM

analyses. In order to understand which of the ‘Pan3D’,

‘CeSa’ and ‘New’ expressions performs best in

predicting the 3D FEM analyses, the relative error jej

is plotted in Fig. 4. This error is defined as the

difference between model prediction and ‘FEM3D’

result divided by the ‘FEM3D’ result. The comparison

between ‘Tal’, which is formulated for a 2D RVE, and

the 3D FEM analyses is included only for sake of the

reference. In general, the derived expression ‘New’

shows the best prediction of the G/E ratio, especially

for configurations where the other models show large

relative errors, i.e. with increasing joint-to-block

height ratio. The relative errors of the other formula-

tions reach, in fact, more than 15% for large hM=hB
ratios, while the error of the new expression stays

below 7% for all the studied configurations, except for

one in which the contrast is very low (Fig. 4a). The

agreement of ‘CeSa’ with the 3D FEM analyses

improves with decreasing joint-to-block height ratio

but reduces with increasing contrast. The different

performance of ‘CeSa’ and ‘New’ finds its justification

in the modelling of the joints. Although a plane strain

condition is used in both models, ‘CeSa’ models the

joints as zero-thickness interfaces. ‘Pan3D’ constantly

underestimates the G/E ratio, to a greater extent with

increasing hM=hB ratio.

In conclusion, the derived expressions for E and

G (‘New’) capture the effect of the finite joint

thickness and successfully extend the work of Talier-

cio [9] to model the influence of the 3D effect, i.e. the

effect of the limited wall thickness on the masonry

elastic properties and therefore also on its G/E ratio.

6 Influence of vertically-perforated blocks

and unfilled head joints

Modern masonry construction often makes use of

vertically-perforated blocks [42–45]. The perforation

leads to orthotropic block properties. The influence of

the perforation on the block properties is studied in

two steps: first, a numerical study varying the perfo-

ration pattern and the block void ratio is conducted and

empirical equations relating the resulting orthotropic

block properties to the block void ratio derived

(Sect. 6.1); second, said equations are plugged into

the closed-form expressions for E and G derived in

Sect. 4 and the influence of the block void ratio on the

masonry elastic properties is studied (Sect. 6.2). As a

further point (Sect. 6.3), the influence of unfilled head

joints, another practice adopted in modern masonry

construction [44], is studied. This is done by gradually

changing the ratio of head joint to bed joint elastic

modulus ratio.

6.1 Elastic properties of vertically-perforated

blocks

The development of the orthotropic elastic block

properties EB;1, EB;2, GB, mB;12 and mB;21, introduced in

Eq. 4, with varying block void ratio is derived by

means of FEM analyses conducted in Abaqus on a

block model of 190 mm height, 300 mm length and a

width of 195 mm (Fig. 5a). The void ratio e is defined

as the ratio of the volume of voids to the total block

volume. The homogenization plug-in by Omairey

et al. [42], modified to apply period boundary
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conditions in the 2 in-plane directions only [29, 35], is

used to compute the block elastic properties. Starting

from a two-hole block configuration representing

hollow concrete blocks, the block void ratio e is

decreased by increasing the number of holes in two

block directions 1 and 3, as defined in Fig. 5a. To

resemble real vertically-perforated blocks, a ratio of

two is kept between the hole number in the block

directions 1 and 3, and the internal web thickness tint is

decreased (first row of blocks in Fig. 5a). In order to

cover smaller void ratios, the number of holes is then

kept constant while the internal web thickness is

progressively increased (second row of blocks in

Fig. 5a). The external shell is 15 mm thick for all

blocks. Void ratios of less than 30%, which are clearly

too low and therefore outside the practical range, are

included only to visualise better the trends.

Expressions for the block elastic properties fitting

the FEM analyses results are plotted in Fig. 5b, c:

EB;1

Eq

¼ 1� e0:50
EB;2

Eq

¼ 1� e

mB;12 ¼
EB;1

EB;2
mB;21

mB;21

mq
¼ 1

GB

Gq

¼ 1� e0:56;

ð17Þ

(c)(b)

e = 73%

tint =12 mm

e = 62%

tint =11 mm
e = 55%

tint =10 mm

e = 49%

tint =9 mm

e = 3%

tint =22 mm

e = 7%

tint =19 mm

e = 14%

tint =16 mm
e = 22%

tint =13 mm

e = 31%

tint =10 mm

e = 45%

tint =8 mm

1

2

3

(a)

Fig. 5 a FEM models of vertically-perforated blocks used to

study the influence of the block void ratio on the block elastic

properties. b and c Influence of the block void ratio e on the

block elastic properties. Comparison between 3D FEM analyses

and the proposed Eq. 17
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where Eq, Gq and mq are the properties of the isotropic

material used for the blocks, such as concrete, clay,

mud, stone, etc., andGq ¼ Eq=ð2ð1þ mqÞÞ. For a solid

and therefore supposedly isotropic block, the block

moduli equal the material moduli. For increasing void

ratios, the block moduli reduce, with EB;2, the block

modulus parallel to the holes, showing an expected

linear decrease, and EB;1, the modulus perpendicular

to the holes, decreasing more strongly in a non-linear

fashion. Focusing on the ratios between the resulting

block shear modulus GB, the Poisson’s ratios mB;12,

mB;21 and the corresponding properties of the block

material,Gq and mq respectively, it can be noticed that,

while mB;21=mq is seemingly not influenced by the

block void ratio, GB=Gq and mB;12=mq reduce non-

linearly with e.

6.2 Influence of vertically-perforated blocks

on the masonry elastic properties

Equation 17 are plugged into Eqs. 8 and 15 of the

derived expressions for E and G in order to assess the

influence of the block perforation on the masonry

elastic properties. Figure 6a presents the development

of the G/E ratio with increasing block void ratio e,

illustrating that the ratio decreases with increasing

block void ratio. For void ratios of, e.g. 25, 50 and 70%

respectively, the G/E ratio decreases by about 10, 15

and 17% with respect to the value obtained for solid

blocks. This holds for the set of parameter investigated

in Fig. 6a. A further parametric study is included in

Fig. 6b, where it appears that an increase in block void

ratio leads to, first, a decrease in sensitivity of the G/

E ratio to the joint-to-block height ratio and, second, a

decrease of the G/E value which, for relatively thin

joints, can be 2 times larger than the 15% shown in

Fig. 6a. A decrease in sensitivity of theG/E ratio to the

contrast, which is not shown in the figure, is also found

for high void ratios.

6.3 Influence of unfilled head joints

on the masonry elastic properties

The expressions for E and G derived in Sect. 4 have

been obtained for head and bead joints sharing the

same elastic properties (Eqs. 8, 15). The approach

used for the derivation, however, allows for the

attribution of different elastic moduli to each cell of

the RVE. In this regard, assigning a different elastic

modulus to the head joints, namely EM;h to cells 2 and

5 of the RVE, and to the bed joints, namely EM;b to

cells 3, 4, 6, in Eqs. 2–5 enables the assessment of the

influence of partly or fully unfilled head joints on the

masonry elastic properties. The results of changing the

ratio EM;h=EM;b on the masonry G/E ratio are

presented in Fig. 7 for solid blocks and blocks with a

void ratio of 50%. For the investigated parameter set,

the G/E ratio increases from unfilled to filled head

joints, with about a 12% increase for solid blocks and a

10% increase for hollow blocks (Fig. 7a). Moreover,

the decrease in G/E ratio with increasing joint-to-

block height ratios already observed in Fig. 4 is more

pronounced when the head joints are unfilled rather

than when they are filled (Fig. 7b).

It is worth noticing that these results might,

however, not show the full impact of unfilled head

joints on the wall initial stiffness, as the used

homogenization approach does not capture the influ-

ence of the relative rotations between the blocks. In a

(a) (b)
Fig. 6 Influence of the

block void ratio on the

shear-to-elastic modulus

ratio. Head and bed joints of

equal thickness
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masonry wall with unfilled head joints loaded in shear

and compression, the blocks undergo larger relative

rotations leading to a further decrease in the wall

stiffness. In order to seize this effect, a homogeniza-

tion technique in the framework of a micropolar

continuum theory could be used [22–24, 45–48]. The

effect of the relative block rotations on the overall wall

stiffness is found to become important when the size of

the block is large compared to the size of the wall, i.e.

for walls with effective lengths smaller than 7 to 5

times the block size [23, 24]. In most walls found in

masonry buildings this effect is therefore supposed to

be rather limited.

7 Practical recommendations for the G/E ratio

The expressions for the masonry elastic properties

obtained in this paper are used, first, to test the values

for the G/E ratio proposed in the codes and the

literature (Sect. 7.1), and, second, to propose new

values of said ratio for different masonry typologies

(Sect. 7.2).

7.1 Comparison with codes and literature

As shown in Sects. 5 and 6, the shear-to-elastic

modulus ratio G/E is influenced by the geometric

and material parameters of the masonry wall and, for

many configurations, this ratio differs from the value

of 0.4 currently recommended by the codes [1–5].

The values for the G/E ratio vary quite significantly

from a lower bound of about 0.15 to an upper bound of

about 0.45. The upper bound value, along with the

standardized value of 0.4, is reached only in the case of

solid blocks and in the limit for increasingly thin

mortar joints, that is for e ¼ 0 and hM=hB ! 0, which

corresponds to the case of dry stacked masonry [27].

The range of 0.25–0.33 derived from the values for

E andG proposed in the commentary [10] to the Italian

technical standard NTC 08 [11] is more within the

range of the obtained values, even though the standard

does not capture the influence of parameters such as

the block or joint Poisson’s ratio, the contrast, the

block aspect ratio and the joint-to-block height ratio on

the G/E ratio highlighted in the previous sections. The

ratio of 0.13 calculated in Sect. 2 based on the

proposal by Tomazevic [7] is close to the lower bound

of the value of 0.15. However, as visible from Fig. 4,

such a low value is only reached for very thick mortar

joints, with hM=hB[ 0:25, i.e. about five times thicker

than the joints in the walls tested by Tomazevic [7]. As

already indicated in Sect. 2, the source of such low

experimental value forG/E can be related to the fact of

correlating G to the wall stiffness measured at the

onset of visible cracking, which may give aG/E that is

approximately two times lower than the value that the

expressions developed in this paper would predict for

those tests.

Figure 8 compares the G/E ratio derived from

the obtained expressions with the G/E ratios

obtained by other authors for shear-compression

tests on modern hollow clay brick masonry walls

[13]. For these tests, a ratio of G=E ¼ 0:25 was put

forward [8, 12]. In those tests, the blocks dimensions

were hB ¼ 190 mm, bB ¼ 300 mm [13],

(a) (b)
Fig. 7 Influence of the

head-to-bed joint elastic

modulus ratio on the shear-

to-elastic modulus ratio.

Head and bed joints of equal

Poisson’s ratio and equal

thickness
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corresponding to hB=bB ¼ 0:63. Head and bed joints

were of equal thickness, bM ¼ hM, varying between 10

and 12 mm [13] which corresponds to

hM=hB ¼ 0:053� 0:063. EB;2, the brick elastic mod-

ulus perpendicular to the bed joints, is calculated as

EB;2 ¼ 140fB;c ¼ 4900 MPa, with fB;c ¼ 35 MPa as

the block compressive strength [13]. Assuming EB;2

and knowing that E ¼ 3550 MPa is the mean value

obtained from simple compression tests made on

masonry wallettes [13], EM ¼ 616 MPa is obtained

when the mean of hM, 11 mm, is used. This

corresponds to EM=EB;2 ¼ 0:13. The void ratio of

the vertically-perforated clay bricks is estimated at

55%, based on a photo of the brick [13], from which

Eq ¼ 10889 MPa is obtained by Eq. 17. mq ¼ mB;21 is

set equal to the masonry Poisson’s ratio of 0.2 [13],

and, since mM is not available [13], a range of values

between 0.30 and 0.40 is tested. Plugging these values

into the derived expression for E and G, G/E ratios

between 0.24 and 0.26 are obtained (Fig. 8). This is in

agreement with the average ratio of 0.25 deduced from

the tests [8, 12]. The expressions predict G=E ¼0.25

for mM ¼ 0:35, which is a reasonable value for a mortar

Poisson’s ratio.

7.2 Recommendations for different masonry

typologies

Values for G/E ratios are given for the following

masonry typologies, listed from the most historical to

the most recent one (Table 1): dry-stacked and

mortared stone masonry made of dressed regular

blocks; brick masonry made of clay and calcium

silicate solid blocks and cement- and lime-based

mortar; brick masonry made of hollow, or vertically-

perforated, calcium silicate and clay blocks, the latter

being with filled or unfilled head joints, and cement-

based or thin layer mortar. The recommended values

are derived by plugging into the analytical expressions

for E and G typical values for the mortar-to-block

elastic modulus ratio (contrast), the joint-to-block

height ratio, the block aspect ratio and the block void

ratio. These are all easily determinable parameters that

allow for a better estimation of the G/E ratio in the

practice. In order to account for uncertainties on the

mortar Poisson’s ratio, which has a large impact on the

G/E ratio and is not easily determinable from tests, the

values for G/E provided in the table are rounded to

0.05.

As discussed in Sect. 7.1, the case of dry stacked

masonry can be retrieved as the limit value for very

thin joints and very stiff blocks [27], albeit without

taking into account the complex contact phenomena at

the block-to-block interface possibly influencing the

elastic properties of this masonry typology as well. At

this limit, according to the model, the G/E ratio

depends on the block Poisson ratio only (Fig. 4).

Taking mB ¼ 0:15 from uni-axial simple compression

tests carried out on stone specimens and measured at

the specimen mid-height [49], a ratio of 0.42 is

obtained, which is finally rounded to 0.40.

A very low contrast, e.g. EM=EB ¼ 0:01, is also

representative of mortared stone masonry, composed

of solid blocks whose stiffness is rather high com-

pared to the lime-based mortar generally used in

historical construction [49, 50]. For this typology,

mB ¼ 0:15 and mM ¼ 0:3, as well as a block aspect ratio
of 0.5 is assumed. The joint thickness typically varies

between 0.01 and 0.1, for which the G/E ratio ranges

between 0.32 and 0.26. A value of 0.30 is therefore

recommended.

Solid brick masonry is characterized by a higher

contrast than stone masonry. In the absence of

indications on the EM=EB ratio, the fc;M=fc;B ratio is

Fig. 8 Comparison between G/E values predicted by the

obtained expressions and code and literature provisions for

hollow clay brick, cement-based mortar and filled head joint

masonry walls tested by Petry and Beyer [13]: Part 1 of

Eurocode 6 [1] (EC6), SIA 266 [4], FEMA 356 [2], TMS 402

[5], NZSEE [3], the value derived from the Italian technical

standard NTC 08 [10, 11] for vertically-perforated blocks

(NTCvp) and the value deduced byWilding and Beyer [12] from

the tests (WB18)
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used to obtained typical values for this typology. For

clay and calcium silicate bricks, EM=EB ¼ 0:1 and 0.3
respectively [51]. Moreover, the joint thickness can be

as high as 0.1 times the block thickness, while the

block aspect ratio is usually around 0.25 and 0.3

respectively [51]. Using mB ¼ 0:20 and mM ¼ 0:3,

G=E ¼ 0:33 and 0.37 are obtained, which are rounded

to 0.35 and 0.40. Setting EM=EB to 0.01 and keeping

the other values unchanged, the case of solid clay

bricks with lime-based mortar, which is also used in

historical construction, is obtained, with G=E ¼ 0:28
rounded to 0.30.

Hollow bricks usually have a void ratio of about

50% and, when used with general purpose or light-

weight mortar, a joint thickness of roughly 0.06 times

the block height [7, 13]. The EM=EB ratio is typically

about 0.1 and the block aspect ratio is between 0.63

and 1 [7, 13]. For these values, and using mB ¼ 0:20

and mM ¼ 0:3,G/E ratios around 0.25 are obtained. For

hollow bricks with unfilled head joints the ratio

decreases to 0.20. The use of thin layer mortar bed

joints for this typology makes theG/E ratio increase to

0.25. The same ratio is found for perforated calcium

silicate bricks.

8 Conclusions

This paper studies the ratio between the shear and

elastic modulus G/E of in-plane loaded unreinforced

masonry walls. Currently, design codes provide values

based on historic convenience rather than scientific

evidence. To improve the situation, analytical expres-

sions for the elastic and shear moduli E and G of

running-bond masonry walls were derived and vali-

dated against 3D FEM analyses.

Parametric studies using these expressions and

assuming solid isotropic blocks show that theG/E ratio

strongly depends on the joint-to-block elastic modulus

ratio, the joint-to-block height ratio, and the joint

Poisson’s ratio, while only showing a limited depen-

dency on the block aspect ratio and the block Poisson’s

ratio. Furthermore, investigating the effect of ortho-

tropic vertically-perforated blocks and unfilled head

joints on the masonry elastic properties shows that an

increasing block void ratio can decrease the G/E ratio

up to 30%, and unfilled head joints can decrease the

ratio by about 15%. The studies show that the G/

E ratio of 0.4 currently included in most international

codes is too high for most masonry typologies. As a

result, the shear deformations of masonry elements

tend to be underestimated. The expressions derived in

this paper allow for the accurate estimation of the

elastic parameters E andG of masonry as well as itsG/

E ratio for different masonry configurations. Practical

values for the G/E ratio are provided by these

expressions based on the masonry typology classically

found in existing buildings. The resulting G/E ratios

vary, depending on the masonry typology, between

0.20 and 0.40.

Table 1 Proposed values for the G/E ratio for different masonry typologies

Masonry typology Void ratio

e (%)

Contrast

EM=EB

Joint thickness

hM=hB

Block aspect

hB=bB

G/E

Dressed regular dry stacked stone masonry 0 \ 0.01 ! 0 0.25–1 0.40

Dressed regular mortared stone masonry 0 0.01 0.01–0.1 0.5 0.30

Solid clay brick masonry, lime mortar 0 0.01 0.1 0.25 0.30

Solid clay brick masonry, cement mortar 0 0.1 0.1 0.25 0.35

Solid calcium silicate brick masonry 0 0.3 0.1 0.3 0.40

Perforated calcium silicate brick masonry 50 0.3 0.1 0.63–1 0.25

Hollow clay brick masonry 50 0.1 0.06 0.63–1 0.25

Hollow clay brick masonry, unfilled head joints 50 0.1 0.06 0.63–1 0.20

Hollow clay brick masonry, unfilled head joints, thin

mortar bed joints

50 0.1 0.01 0.63–1 0.25
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9 Reproducibility of the article content

Figures 1, 4, 5b, c, 6, 7 and 8 as well as the values

provided in Table 1 of this paper can be reproduced

with the code provided at the following link: https://

doi.org/10.5281/zenodo.2590596. The files include:

the implementation of all the presented analytical

expressions for E and G, the results and input files

from the 2D and 3D FEM analyses, the analytical

expressions of the ‘Pan3D’ model, and an additional

numerical study of the influence of varying RVE

thicknesses on the accuracy of the introduced model.
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Architects, Zürich, Switzerland

5. TMS 402 (2008) Building code requirements for masonry

structures. The Masonry Society, Boulder, Colorado

6. Mojsilovic N (2005) A discussion of masonry characteris-

tics derived from compression tests. In 10th Canadian

masonry symposium, vol 1, Alberta
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