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THE RATIONAL HOMOLOGY OF TORIC VARIETIES

IS NOT A COMBINATORIAL INVARIANT

MARK McCONNELL

(Communicated by Frederick R. Cohen)

Abstract. We prove that the rational homology Betti numbers of a toric variety

with singularities are not necessarily determined by the combinatorial type of

the fan which defines it; that is, the homology is not determined by the partially

ordered set formed by the cones in the fan. We apply this result to the study of

convex polytopes, giving examples of two combinatorially equivalent polytopes

for which the associated toric varieties have different Betti numbers.

Our main result is that the rational homology Betti numbers of a toric variety

with singularities are not necessarily determined by the combinatorial type of

the fan which defines it; that is, the homology is not determined by the partially

ordered set formed by the cones in the fan. This holds in all dimensions n > 3 .

The result is in contrast with the following facts:

( 1 ) The rational homology Betti numbers of a nonsingular toric variety are

determined by the combinatorial type of the fan. The rational cohomo-

logy ring of nonsingular toric varieties played a central role in the proof

of McMullen's conjecture concerning the number of faces of simplicial

convex polytopes [SI, BL].

(2) The intersection homology Betti numbers of a singular toric variety are

determined by the combinatorial type of the fan. This fact provides

information about general rational convex polytopes [S2].

We give an algorithm (1.2-1.3) for computing the Betti numbers of a com-

plete toric variety of dimension three. We then give examples (1.4) of two

combinatorially equivalent polyhedra for which the associated toric varieties

have different Betti numbers. In §2 we prove the results in (1.2-1.3), and in §3

we conclude with a few remarks.

1. Statement of results

(1.1) Let a denote any closed convex rational polyhedral cone in R" which

does not contain a line. A (complete) fan X is a finite collection {au} which
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forms a rational polyhedral decomposition of R" .   Any aa G X is called a

face of X. Faces of dimension n are called chambers (denoted er) ; faces of

dimension one are called edges (denoted rf). The number of faces of dimension

m is denoted f . The complete, normal toric variety A = Xz is defined as in

[TEl,§1.2andD, §5].

Let PcR" be a convex polytope of dimension n , all of whose vertices are

rational, and which contains the origin in its interior. We construct a fan X^

by taking all the cones whose vertices are at the origin and which are generated

by the proper faces of P.

( 1.2) Now let X be a fan in dimension n = 3 . For each edge t( , let t¡ G Z3 c

Q3 be the unique vector (a ,ß ,y), with a, ß , y coprime, which generates

V
Consider the following diagram:

e  Q-e^—^©  q3
pairs r,Ccr, chambers a,

©   Q■ei-»Qr
edges r, "

Here the e¡} are a basis of an abstract vector space; the e¡ are interpreted

similarly. A is the obvious map e¡ >-> t¡. Á uses the incidence relations in X :

for each pair t. c a , A1 sends e* to the vector t¡ in the jth direct summand

Q . The vertical maps are natural projections: e, sends e.. to ei, and e2

is an augmentation map which adds up the vectors coming from the various

summands which form its domain.

The vertical maps extend uniquely to kernels:

0   —   ker^'    -*♦        ©     Q e¡J    £+        ©     Q3    —   0
pairs T,Co} chambers or,

(1.2.1) £i

0    —»    ker^ ®   Qei Q3 —►   0
edges r,

The number b = rank B is easily computed.

(1.3) Proposition. The Betti numbers bk = rank 77^. (A ; Q) of X are

1,    0,    fi-b-3,    Sf-f-b-6,    f,-3,    0,    1
for k = 0, ... ,6.

(1.4) Example. The standard rhombododecahedron P,  is the convex hull in

R   of the fourteen points whose coordinates are the columns of the matrix

(1.4.1)
10 0-1 0 0

0 10 0-1 0

0   0    1        0       0-1

i I I I      - L     - L     - L - L
22222222
I I I •_ I I L - L - I
22222222
I   _I    I   -i     1,1     1 _ 1
22222222
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Another rhombododecahedron P2 is the convex hull of the fourteen points

whose coordinates are the columns of

(1.4.2)

10-i-l        0        0 ^ it        i        I_2_I_2_I1U21UU5 2 52        32        3 2

01        0       0-1        02 I_3_I        I        I   _ L   _ 1u 5 2        5        2        3        2        3        2

00 0      Q _ 1 I _i      i-I      I  - I      L  - iUU152523232

Both of these polyhedra have twelve quadrilateral faces and twenty-four edges,

arranged as in the following Schlegel diagram (the numbers on the graph refer

to the columns of (1.4.1), (1.4.2)):

Thus the fans Xp .X^ are equivalent as partially ordered sets. But by the

algorithm of (1.2), the first fan yields a toric variety with Betti numbers

1,0,2,3,11 ,0,1 ,

while the second yields a toric variety with Betti numbers

1 ,0,1 ,2,11 ,0,1.

2. Proof of Proposition 1.3

Remark. In this paper, all homology groups have coefficients in Q.

2.1.    Lemma. The Betti numbers

b0,bx ,b4,b5,b6

of X are given by

1,    0,    /,-3,    0,    1;

moreover, b3 - b2 = 2f - f2 - 3.

Proof. This follows directly from a spectral sequence for the cohomology of

A found in [D, Theorem 12.2], together with the results [D, 12.7.1, 12.9,

12.10].   D

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RATIONAL HOMOLOGY OF TORIC VARIETIES 989

Remark. To prove Proposition 1.3, it thus suffices to compute b2. The rest of

§2 is devoted to this problem.

(2.2) We recall that to each a G X corresponds an affine open set Xa c A

(denoted X& in [D, §5]). If we let X¡ = (J{Aff | codim a > i}, then A is

naturally stratified in such a way that A/\A(+1 is the collection of strata of real

dimension 2/ [D, §5.7]; that is,

*i\XM =        II       S«
{a\ codim a=i)

where Sa is the connected stratum X \X,,, .

(2.3) Ht(X;Q) is computed by the spectral sequence arising from the filtration

by complements of strata—that is, the filtration A = A0 D A, d A2 d A3 d

0. (More precisely, we filter by complements of tubular neighborhoods of the

strata, so that the complements are closed sets.) We have

(2.3.i;

Eq+k,q - Hk(Xq 'Xq+0

=    0    Hk{Xa,Xa\Sa) by excision
codim a=q

=*Hk(X).

The fact is that this E   looks like

(2.3.2)

B,

e3

*eai

Q°2

Q

Q°<

G3 G* Qa\

where A and F are dx differentials, and B is a d2 differential (to be used

later).

Remarks. (1) We will not give a full proof that (2.3.2) is correct, since we

will only need to use parts of the diagram. What we need will be proved

in (2.4)-(2.7).

(2) The El term is a combinatorial invariant. The E2 term is an invariant

except in E5.,, which is one of the boxes we will not need to study in this

paper. (It can be shown that E2 , = IH4(X) = H2(X), where 777° denotes

intersection homology in perversity 0.) The rank of B is not an invariant, in

spite of the fact that the dimensions of its source and target are invariants.

(2.4)    Lemma. The top three rows (q>\) of (2.3.1) are as shown in (2.3.2).

Proof. Choose er e X, with codimc = q, q > 1 . The points of Sa are

manifold points in A when (7 = 2,3 and are Q-homology manifold points
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when q = 1 (as can be seen by the methods of [TE1, p. 19]). The methods

of [AMRT, §1.1] show there is no monodromy in the links of these strata. The

result follows easily, using the fact that Sa = (C*)q .   a

(2.5) Let Tm denote the m -torus S} x • • • x S . We fix an identification

of A3 s (C*)3 with R3 x T3, following [AMRT, §1.1] and [F]. Viewing T3 as

R3/Z3, we see that the line R • tl. c R3 induces a closed 1-cycle li c T3.

Lemma. The map A in (2.3.2) is the same as A in (1.2.1) for a suitable choice

of basis.

Proof. In (2.3.2), domain^ = E\ 2 = ©edges T, 772(AT , Ar \ST ). As in (2.4),

this is isomorphic to ©T HQ(ST), which we write as ©T Q • ei where {e¡} is

a basis of an abstract vector space.

By the methods of [AMRT, §1.1 or F], the link of St- at any x G St¡ will lie

in A3 as a copy of t¡c T . Since ti is a coprime integer vector, the coefficients

of t¡ in a standard basis of 77, ( T ) are the components of ti. Thus, in both

(2.3.2) and (1.2.1), A sends e\ to t¡.   D

(2.6) Lemma. The map F in (2.3.2) is surjective.

Proof. This follows exactly as in the smooth case (see [D, §12]).     □

(2.7) Lemma. The group G3 in (2.3.2) can be identified as kerA' in (1.2.1).

Also, E2 0 = 0.

Proof. The proof is an exercise in algebraic topology. The identification of G3

with kerA1 follows as in (2.5).   D

(2.8) We can now complete the proof of Proposition 1.3. We have shown that,

when the spectral sequence converges, all of H2(x) will live in the box E'4X>2 ; it

will be the cokernel of a d2 differential B: G3 —> ker<4 . But G3 = kerA', and

one checks (referring to (2.5) and (2.7)) that this B is the same as the naturally

induced map B of (1.2.1). Thus b2 = (f - 3) - b.   a

3. Remarks

(3.1) Fix a class S? of fans X of a given combinatorial type. Since the

bk are determined by a rank condition, there is a Zariski open set (i.e., com-

plement of a proper subvariety) in S? where the fans have a certain list of

Betti numbers (the generic values of the Betti numbers). There are degener-

acy loci where the fans yield other lists. This holds in all dimensions n > 3.

(3.2) Fix X of dimension n = 3. Let 0 be a collection of faces 6 G X of

dimension two such that, for every t( e X, there is a chamber cr.(i) and a face

6k(i e 8 such that x¡ C cr {/) and 6k{¡) C erj(/). This depends only on the poset

structure of X. Let N0 be the minimum, over all possible such collections 0,

of #(0). It can be shown that b2 < Ne for all fans of the same combinatorial
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type as X. We do not know when this bound is sharp, or whether every value

of ¿»2 between the generic value and Ne is attained as X varies within a given

combinatorial type.
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