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2 J. A. BERGSTRA AND J. V. TUCKER

1. Introduction

Measurements are made using some kind of gauge. To calibrate a gauge, one
chooses a unit and divides that unit into a number k of subunits of equal size.
Then a measurement is denoted by n whole units and m subunits or, in this case,
n m

k = (nk + m)/k subunits. Note that measurements are finite.
The set Q of rational numbers is a number system designed to denote measure-

ments. Most users make computations involving measurements. Hence, the set Q
of rational numbers is among the truly fundamental data types. The rationals are the
numbers with which we make finite computations in practice. Despite the fact they
have been known and used for over two millennia, they are somewhat neglected in
the modern theory of data types.

On the rationals, we calculate using standard operations such as the functions
+, −, ·,−1. Algebras made by equipping Q with some selection of operations we
call here rational arithmetics. The algebra (Q | 0, 1, +, −, ·,−1 ) is usually called
the field of rational numbers when the operations satisfy certain axioms.

In this article, we will model some rational arithmetics, including the field, as
abstract data types. Now, the rationals can be specified by the field axioms; indeed,
they are uniquely definable up to isomorphism as the prime subfield of characteristic
0. However, the field axioms contain a negative conditional formula for inverse,
which is difficult to apply and automate in formal reasoning. Specifically, we are
interested in finding equational specifications of rational arithmetics under initial
algebra semantics. Such equational axiomatisations allow simple term rewriting
systems for reasoning and computation. Surprisingly, after over 30 years of data
type theory, questions such as “Does there exist such an equational specification
without hidden functions of the field of rational numbers?” seem to be open.

According to our general theory of algebraic specifications for computable data
types (e.g., Bergstra and Tucker [1982; 1983; 1987; 1995]), since the common ratio-
nal arithmetics are computable algebras, they have various equational specifications
under both initial and final algebra semantics. Computable rational arithmetics even
have equational specifications that are also complete term rewriting systems (by
Bergstra and Tucker [1995]). However, these general specification theorems for
computable data types involve hidden functions and are based on equationally de-
finable enumerations of data. Recently, in Moss [2001], algebraic specifications
of the rationals were considered. Among several interesting observations, Moss
showed that there exists an equational specification with just one unary hidden
function. He used a special enumeration technique that reminds one of the general
methods of Bergstra and Tucker [1995], but is based on a remarkable enumeration
theorem for the rationals in Calkin and Wilf [2000]. He also gave specifications of
rational arithmetics with a modulus operator and with a floor.

Here we prove:

THEOREM 1.1. There exists a finite equational specification under initial alge-
bra semantics, without hidden functions, of the rational numbers with field opera-
tions that are all total.

Our axioms include the commutative ring axioms and some general rules for
inverses from which it can be deduced that

0−1 = 0.
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The Rational Numbers as an Abstract Data Type 3

This equation is also true of the hidden function specification in Moss [2001]. The
equation 0−1 = 0 occurs in several other places as well, for reasons of technical
convenience (e.g., Hodges [1993] and Harrison [1998]). Our proposed specification
includes a special axiom that codes a representation of an infinite subset of positive
rational numbers.

The pursuit of this result leads to a thorough axiomatic examination of the divis-
ibility operator, in which some interesting new axioms and models are discovered.
In particular, we introduce a class of commutative rings with interesting division
properties, which we call meadows.

The structure of the article is this: In Section 2, we give the basic equations that
define the rational arithmetic operations and define some of their properties. In
Section 3, we give two equational specifications of the rational field without hidden
functions, one recursive and infinite, and one finite. In Section 5, we give results
on fields and equational subtheories of fields, and on other rational arithmetics.
Finally, in Section 6, we discuss some open problems.

This article is the first of a series on equational specifications of the rational arith-
metics and their extensions, see Bergstra and Tucker [2006a; 2006b] and Bergstra
[2006], launched in 2005 by Bergstra and Tucker [2005]. It can be read as a se-
quel to Bergstra and Tucker [1987; 1995], which contains a literature survey and
the complementary general results. We use only the basic ideas of initial algebra
specification. However, with several unfamiliar axioms about the familiar inverse
operator in action, care is needed in verifying equations and other formulae.

We thank Kees Middelburg, Yoram Hirschfeld and an anonymous referee for
valuable comments on the subject.

2. Axioms for Rational Arithmetic

2.1. PRELIMINARIES ON ALGEBRAIC SPECIFICATIONS. We assume the reader is
familiar with using equations and conditional equations and initial algebra seman-
tics to specify data types. Some accounts of this are: Goguen et al. [1978], Meseguer
and Goguen [1985], and Wirsing [1990].

The theory of algebraic specifications is based on theories of universal algebras
(e.g., Wechler [1992] and Meinke and Tucker [1992]); computable and semicom-
putable algebras [Stoltenberg-Hansen and Tucker 1995]; and term rewriting [Klop
1992; Terese 2003].

We use standard notations: typically, we let � be a many sorted signature and
A a total � algebra. The class of all total � algebras is Alg(�) and the class of
all total � algebras satisfying all the axioms in a theory T is Alg(�, T ). The word
“algebra” will mean total algebra.

2.2. ALGEBRAIC SPECIFICATIONS OF THE RATIONALS. We will build our
specifications in stages. The primary signature � is simply that of the field of
rational numbers:

signature �
sorts field
operations
0: → field;
1 : → field;
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4 J. A. BERGSTRA AND J. V. TUCKER

+ : field × field → field;
− : field → field;
· : field × field → field;
−1 : field → field
end

The first set of eight axioms is that of a commutative ring with 1, which
establishes the standard properties of +, −, and ·. We will refer to these axioms
by CR1, . . . , CR8.

equations CR

(x + y) + z = x + (y + z)
x + y = y + x
x + 0 = x

x + (−x) = 0
(x · y) · z = x · (y · z)

x · y = y · x
x · 1 = x

x · (y + z) = x · y + x · z

end

Our first set SIP of axioms for −1 contain the following, which we call the
strong inverse properties. They are “strong” because they are equations involving
−1 without any guards, such as x �= 0:

equations SIP

(−x)−1 = −(x−1)
(x · y)−1 = x−1 · y−1

(x−1)−1 = x

end

We will refer to these axioms by SIP1, . . . ,SIP3. The set CR ∪ SIP of
equations and its extensions are our basic object of study. We will also need other
axioms, especially about −1.

Later, we will add to CR ∪ SIP the restricted inverse law (Ril),

x · (x · x−1) = x ,

which, using commutativity and associativity, expresses that x · x−1 is 1 in the
presence of x .

Hirschfeld (Personal Communication 2006) has shown that equations SIP1 and
SIP2 are derivable from SIP3 using CR ∪Ril.

The standard axioms of a field simply add to CR the following: the general
inverse law (Gil)
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x �= 0 =⇒ x · x−1 = 1

and the axiom of separation (Sep)

0 �= 1.

Guarded versions of the equations of SIP—such as, x �= 0 =⇒ (x−1)−1 = x—can
be proved from Gil and Sep.

2.3. TOTALIZED FIELDS AND ALGEBRAS SATISFYING THE SPECIFICATIONS.
Let us consider the notion of a field in our setting. Let (�, Tfield) be the axiomatic
specification of fields, where

Tfield = CR ∪ Gil ∪ Sep.

The class Alg(�, Tfield) is the class of total algebras satisfying the axioms in Tfield.
For emphasis, we refer to these algebras as totalized fields.

For all totalized fields A ∈ Alg(�, Tfield) and all x ∈ A, the inverse x−1 is defined.
In particular, 0−1

A is defined. What can it be?
Now suppose 0−1

A = a for some a ∈ A. Then, we must expect that

0−1
A · 0A �= 1A.

To see this, note that a · 0A = 0A for all a in a ring (see Lemma 2.1(a) below). So
0−1

A · 0A = 0A and 0A �= 1A by Sep. Thus, at this stage, the actual value 0−1
A = a

can be anything. Choosing 0−1
A = a we may speak of an a-totalized field and, in

particular, when a = 0 of a 0-totalized field.
Now, the axiomatic theory of fields is one of the central topics in the model theory

of first order languages: it has shaped the subject and led to its best applications.
In model theory operations in signatures are invariably total. It is common to ax-
iomatise fields using a set of �2 sentences over the ring signature thus avoiding the
question of the totality of the inverse operation. However, with this ring signature,
the substructures are rings and not necessarily fields. Thus, axiomatisations based
on the field signature with the following axiom are also used (see, e.g., Hodges
[1993, p. 695])

0−1 = 0 ∧ x �= 0 =⇒ x · x−1 = 1.

In fact, 0 is a common choice for the value of 0−1. In automated reasoning, for
example, Harrison [1998] used 0−1 = 0 and observed that SIP1, SIP2 and SIP3 are
valid in the 0-totalised reals.

Our own interest will be in the specification CR ∪ SIP. Shortly, we shall show
that this specification will force the choice of 0−1 = 0.

The main �-algebra we are interested in is

Q0 = (Q | 0, 1, +, −, ·,−1 )

where the inverse is total

x−1 = 1/x if x �= 0;
= 0 if x = 0.
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6 J. A. BERGSTRA AND J. V. TUCKER

This total algebra satisfies the axioms of a field Tfield and is a 0-totalized field of
rationals.

Similarly, we can define the a-totalized field Qa of rationals where the inverse
is made total by 0−1 = a.

2.4. PROPERTIES. We will now derive some simple equational properties from
the axioms.

LEMMA 2.1. The following equations are provable from CR:
(a) 0 · x = 0.
(b) (−1) · x = −x.
(c) (−x) · y = −(x · y).
(d) −0 = 0.
(e) (−x) + (−y) = −(x + y).
(f) −(−x) = x.

PROOF
(a) We calculate:

0 + 0 = 0 by CR3
(0 + 0) · x = 0 · x multiplying both sides by x

0 · x + 0 · x = 0 · x by CR8 and CR6
(0 · x + 0 · x) + (−(0 · x)) = 0 · x + (−(0 · x)) adding to both sides
0 · x + (0 · x + (−(0 · x))) = 0 by CR1 and CR4

0 · x + 0 = 0 by CR4
0 · x = 0 by CR3.

(b) We calculate:

(−1) · x = (−1) · x + (x − x) by CR3 and CR4
= ((−1) · x + (x · 1)) − x by CR7 and CR1
= ((−1) · x + (1 · x)) − x by CR6
= ((−1) + 1) · x − x by CR8
= (1 + (−1)) · x − x by CR2
= 0 · x − x by CR4
= 0 − x by this Lemma clause (a)
= −x by CR3.

(c) We calculate:

(−x) · y = ((−1) · x) · y by this Lemma clause (b)
= (−1) · (x · y) by CR5
= −(x · y) by this Lemma clause (b).

(d) We calculate:

−0 = (−1) · 0 by this Lemma clause (b)
= 0 by this Lemma clause (a).
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(e) We calculate:

(−x) + (−y) = 0 + ((−x) + (−y)) by CR3
= (−(x + y) + (x + y)) + ((−x) + (−y)) by CR3
= −(x + y) + ((x + −x) + (y + −y)) by CR1 and CR2
= −(x + y) + (0 + 0) by CR4
= −(x + y) + 0 by CR3
= −(x + y) by CR3.

(f) We calculate:

−(−x) = 0 + −(−x) by CR3
= (x + (−x)) + −(−x) by CR4
= x + ((−x) + −(−x)) by CR1
= x + 0 by CR3
= x by CR3. �

We know from (a) that 0 = 0 · 0−1 is valid in a commutative ring. On adding the
axioms SIP to CR, we force a value for 0−1:

THEOREM 2.2. The following equation is provable from CR ∪ SIP:

0−1 = 0.

PROOF. First observe that:

0 = 0−1 + −(0−1) by CR4

= 0−1 + (−0)−1 by SIP1

= 0−1 + 0−1 by Lemma 2.1(d).

Now we calculate:

0−1 = (0−1 + 0−1)−1 by applying −1

= (1 · 0−1 + 1 · 0−1)−1 by CR6 and CR7

= ((1 + 1) · 0−1)−1 by CR8

= (1 + 1)−1 · (0−1)−1 by SIP2

= (1 + 1)−1 · 0 by SIP3
= 0 by Lemma 2.1(a) and CR2.

2.5. EQUATIONAL SUBTHEORIES OF FIELDS. Given the three axioms of SIP,
one might ask: What is wrong with the unguarded equation x · x−1 = 1? It is easy
to show that it contradicts Sep, that is,

CR ∪{x · x−1 = 1} 	 0 = 1.

So we must try other equations for inverse. The axiom Ril implies a wider context
for inverse.

LEMMA 2.3. CR ∪ SIP ∪Ril 	 u · x · y = u =⇒ u · x · x−1 = u.
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8 J. A. BERGSTRA AND J. V. TUCKER

PROOF. We calculate:

u · x · x−1 = (u · x · y) · x · x−1 by premiss

= u · y · x · x · x−1 by commutativity
= u · y · x by Ril
= u by premiss. �

Let us show that the equational specifications are (almost) subtheories of Tfield =
CR ∪ Gil ∪ Sep. First, we need this cancelation lemma:

LEMMA 2.4. Tfield 	 x · y = 1 ∧ x · z = 1 → y = z.

PROOF. If x · y = 1, then x �= 0. Multiply both assumptions by x−1 and we have
x−1 · x · y = x−1 and x−1 · x · z = x−1. So, using Gil for x �= 0, we have 1 · y = x−1

and 1 · z = x−1. By CR7, we have y = x−1 = z. �

LEMMA 2.5. Tfield ∪ {0−1 = 0} 	 SIP and Tfield ∪ {0−1 = 0} 	 Ril.

PROOF. Consider the three axioms of SIP in turn.
(1) (−x)−1 = −(x−1). If x = 0, then the equation is true trivially. Suppose x �= 0

and so −x �= 0. We calculate:

1 = (−x) · (−x)−1 by Gil

= (−1 · x) · (−x)−1 by Lemma 2.1(b)

= x · −1 · (−x)−1 by CR6

= x · −(−x)−1 by Lemma 2.1(b).

By Gil, we also have 1 = x · x−1. So,

x−1 = −(−x)−1 by Cancellation Lemma 2.4

−(x−1) = −(−(−x)−1) by applying −
= (−x)−1 by Lemma 2.1(f).

(2) (x · y)−1 = x−1 · y−1. If x = 0 or y = 0, then the equation is true trivially. If
x �= 0 and y �= 0, then x · y �= 0. By Gil, we have

(x · y) · (x · y)−1 = 1

and by the axioms of CR

(x · y) · x−1 · y−1 = 1 · 1 = 1.

Thus, by cancellation, (x · y)−1 = x−1 · y−1.
(3) (x−1)−1 = x . If x = 0, then the equation is true trivially. If x �= 0, then

x−1 �= 0. By Gil, we have

(x−1) · (x−1)−1 = 1 and (x−1) · x = 1.

By cancellation, (x−1)−1 = x .
The derivation of Ril is obvious. �
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Notice that for any closed equation, Tfield 	 t = s implies Tfield ∪ {0−1 = 0} 	
t = s, which is trivial as 	 is monotonic.

3. Initial Algebra Specification

We give two algebraic specifications of the rationals, one infinite and one finite.

3.1. A RECURSIVE EQUATIONAL SPECIFICATION. Let us define the numerals
over � by 0 = 0 and n + 1 = n + 1. We denote 0, 1, 1 + 1, (1 + 1) + 1, . . . by
0, 1, 2, 3, . . . . Now we define a set I of closed �-equations between numerals by

I = {n · (n)−1 = 1 | n > 0}.
THEOREM 3.1. There exists a recursive equational initial algebra specification

(�, CR ∪ SIP ∪ I ), without hidden functions, of the totalised field Q0 of rational
numbers, that is,

T (�, CR ∪ SIP ∪ I ) ∼= Q0.

PROOF. Clearly, the specification I is decidable. Note that, by inspection,

Q0 |= CR ∪ SIP ∪ I .

By initiality, there exists a unique �-homomorphism φ : T (�, CR ∪ SIP ∪ I )
→ Q0.

As Q0 is �-minimal, we know that φ is surjective. Thus, to complete the proof,
we must show that φ is also injective.

Consider Q0. The domain Q of Q0 can be represented as follows:

Q = {0} ∪ { n
m | n > 0, m > 0, gcd(n, m) = 1

}
∪ { − n

m | n > 0, m > 0, gcd(n, m) = 1
}
.

We use this representation to calculate the values of φ on certain equivalence classes
of terms in T (�, CR ∪ SIP ∪ I ):

LEMMA 3.2. The following hold:
φ([0]) = 0
φ([1]) = 1
φ([n]) = n
φ([n−1]) = 1

n
φ([n · m−1]) = n

m , providing gcd(n, m) = 1.
φ([−(n · m−1)]) = − n

m , providing gcd(n, m) = 1.

PROOF. Cases (i) and (ii) are obvious since φ preserves constants. Case (iii)
is shown by induction on n. Case (iv) is shown by induction on n and uses the
interpretation of −1. The last two cases are based on

φ([n · m−1]) =
{

φ([n])
φ([m]) if gcd(n, m) = 1;
n:gcd(n,m)
m:gcd(n,m) otherwise

where we use: to denote division on natural numbers. �
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These observations suggest the following definition and lemma. Let

T R = {0} ∪ {n · m−1 | n > 0, m > 0, gcd(n, m) = 1}
∪ {−(n · m−1) | n > 0, m > 0, gcd(n, m) = 1}.

LEMMA 3.3. The set TR is a transversal for the equivalence relation ≡CR∪SIP∪I ,
that is, each equivalence class contains one and only one element of TR.

Before we prove Lemma 3.3, let us note that it is enough to prove φ is injective.
For suppose

φ([t]) = φ([t ′]).

Then, by Lemma 3.3, we know that [t] = [r ] and [t ′] = [r ′] for unique r, r ′ ∈ TR.
Thus,

φ([r ]) = φ([r ′]).

But, by Lemma 3.2, we know that φ([r ]) and φ([r ′]) have values in the normal form
of n

m , or − n
m , provided gcd(n, m) = 1, etc. This happens if, and only if, r = r ′ and

hence if, and only if, [t] = [t ′].
It remains to prove the Lemma 3.3 as follows:
PROOF. Let E = CR ∪ SI P ∪ I . We have to show that:

(1) for each closed term t ∈ T (�) there is some u ∈ T R such that E 	 t = u;
(2) for any closed terms k, l ∈ T R, if E 	 k = l then k ≡ l.

The proof of (1) is by induction on the structure of term t and requires a large
case analysis based on the leading function symbol of t in � and possible normal
forms for subterms in TR. We give one of the induction cases for illustration:

Case: Multiplication t = r · s.
By induction, both r and s are provably equivalent to elements of TR. We take

the following subcase: suppose

(�, E) 	 r = n · m−1 and E 	 s = −(k · l−1).

Now,

(�, E) 	 r · s = n · m−1 · −(k · l−1) by substitution

	 r · s = n · m−1 · (−1) · (k · l−1) by CR6 and CR7

	 r · s = (−1) · n · m−1 · k · l−1 by CR8

	 r · s = (−1) · (n · k) · (m−1 · l−1) by SIP2

	 r · s = (−1) · (n · k) · (m · l)−1 by SIP3

	 r · s = (−1) · (n.k) · (m.l)−1 by SIP3

	 r · s = −(n.k) · (m.l)−1 by SIP3.
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Now let u = gcd(n.k, m.l). If u = 1, then we are done. Suppose that n.k = u.p
and m.l = u.q and so gcd(p, q) = 1. Then we continue rewriting:

(�, E) 	 r · s = −(u.p) · (u.q)−1 by definition

	 r · s = −(u · p) · (u · q)−1 by Lemma 3.4

	 r · s = −(u · u−1)(p · q−1) by CR6 and SIP2

	 r · s = −p · q−1 by equations of I.

The term −p ·q−1 is of the required form because gcd(p, q) = 1. The following
is an easy induction.

LEMMA 3.4. For any p, q ∈ N we have

(�, E) 	 p + q = p + q
(�, E) 	 p.q = p · q
(�, E) 	 −p = −p.

The proof of uniqueness condition (2) is easy: Suppose k �= l. Then they have
different interpretations in Q0 under φ. This means that they cannot be proved equal
by the axioms CR ∪ SIP ∪ I since Q0 satisfies these axioms.

This completes the proof of Lemma 3.3 and hence the proof of Theorem 3.1. �

3.2. A FINITE EQUATIONAL SPECIFICATION. We first introduce an operation:

Definition 3.5. Z (x) = 1 − x · x−1.

The operator “measures” the difference between x · x−1 and 1. Clearly,

Z (x) = 0 ⇔ x · x−1 = 1.

The operator has many useful properties. For example, the set I of closed equa-
tions used in Section 3.1 can be written

I = {Z (n) = 0 | n > 0}.
The operator Z is a function that is definable by a term over the field signature. It
is used to simplify notations and calculations below. It does not count as a hidden
function as it can be simply removed from all specifications by expanding its explicit
definition.

Recall Lagrange’s Theorem that every natural number can be represented as
the sum of four squares (see Dickson [1952, pp. 275–303]). We define a special
equation L (for Lagrange):

Z (1 + x2 + y2 + z2 + u2) = 0.

L expresses that for a large collection of numbers (in particular, those q which can
be written as 1 plus the sum of four squares) q · q−1 equals 1.

THEOREM 3.6. There exists a finite equational initial algebra specification,
without hidden functions, of the totalised field Q0 of rational numbers; in particular,
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12 J. A. BERGSTRA AND J. V. TUCKER

T (�, CR ∪ SIP ∪ L) ∼= Q0.

PROOF. First, note that, by inspection,

Q0 |= CR ∪ SIP ∪ L .

We know that CR and SIP are valid in Q0. To see that L is valid, note that (1+ x2 +
y2 + z2 +w2) is always positive and never 0. Since Q0 |= x �= 0 =⇒ x · x−1 = 1,
we conclude that L is valid.

By initiality, there exists a unique �-homomorphism φ : T (�, CR∪SIP∪ L) →
Q0.

As Q0 is �-minimal, we know that φ is surjective. Thus, to complete the proof,
we must show that φ is also injective.

On the other hand, recalling the recursive set I of numerals Section 3.1, we know
that

L 	 I .

This is because for each n ∈ N we can choose some x, y, z, w such that n =
1 + x2 + y2 + z2 + w2. Therefore,

T (�, CR ∪ SIP ∪ L) |= CR ∪ SIP ∪ I .

By initiality, there exists a unique �-homomorphism φ : T (�, CR ∪ SIP ∪ I ) →
T (�, CR ∪ SIP ∪ L). But, by Theorem 3.1, T (�, CR ∪ SIP ∪ I ) ∼= Q0 and so there
is a �-homomorphism ψ : Q0 → T (�, CR ∪ SIP ∪ L). Thus, by minimality, we
have φ is a �-isomorphism with ψ as its inverse and T (�, CR ∪ SIP ∪ L) ∼= Q0.

�

4. A Simpler Specification using the Modulus Function

Consider the algebra Q0 of rational numbers expanded with the modulus function
| | and let this be denoted

Q0,| | = (Q | 0, 1, +, −, ·,−1 , | |).
We will give an equational specification of this algebra. The following two sets

of equations can be added to CR ∪ SIP. The first specifies the modulus operator
on the rational numbers.

equations MOD

|0| = 0
|1| = 1

| − x | = |x |
|x · y| = |x | · |y|
|x−1| = (|x |)−1

|1 + (|x |)| = 1 + |x |
end
The second guarantees the existence of proper inverses for sufficiently many

closed terms.
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equations Modril

Z (1 + |x |) = 0

end

To get used to the axioms for | |, we prove a simple lemma of use later:

LEMMA 4.1. For each k ∈ N, CR ∪ MOD 	 |k| = k.

PROOF. By induction on k.
Basis, k = 0: We calculate:

|0| = |0| by definition of 0
= 0 by MOD1
= 0 by definition of 0.

Induction step, k + 1, Assume as induction hypothesis that |k| = k. We calculate:

k + 1 = k + 1 by definition of k + 1
= 1 + k by commutativity CR2
= 1 + |k| by induction hypothesis
= |1 + |k|| by MOD6
= |1 + k| by induction hypothesis
= |k + 1| by CR2 and the definition of k + 1. �

THEOREM 4.2. The initial algebra T (� ∪ {||}, CR ∪ SIP ∪ MOD ∪ Modril) is
isomorphic to the algebra Q0,| | of rational numbers.

PROOF. The proof follows the pattern of earlier theorems (Theorems 3.1 and
3.6). For notational convenience, let

E = CR ∪ SIP ∪ MOD ∪ Modril.

The equations in E are valid in Q0,| |. Thus, by initiality, there exists a unique
� ∪ {| |}-homomorphism

ψ : T (� ∪ {| |}, E) → Q0,| |.

As Q0,| | is � ∪ {| |}-minimal, we know that ψ is surjective. Thus, to complete the
proof, we must show that ψ is also injective.

The carrier of Q0,| | is the same as Q0 and is

Q = {0} ∪ { n
m | n > 0, m > 0, gcd(n, m) = 1

}
∪ { − n

m | n > 0, m > 0, gcd(n, m) = 1
}
.

This suggests that we should use the previous transversal

T R = {0} ∪ {n · m−1 | n > 0, m > 0, gcd(n, m) = 1}
∪ {−(n · m−1) | n > 0, m > 0, gcd(n, m) = 1}.

as a transversal for T (� ∪ {| |}, E). Following the pattern of Theorem 3.1, we can
prove new versions of the evaluation and transversal Lemmas 3.2 and 3.3.
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14 J. A. BERGSTRA AND J. V. TUCKER

First, we generalize the numeral notation for the naturals to a notation for the
rationals. For each r ∈ Q, we define

r = 0 if r = 0;

= n · m−1 if r = n
m

and n > 0, m > 0, gcd(n, m) = 1

= −(n · m−1) if r = − n
m

and n > 0, m > 0, gcd(n, m) = 1

Thus, with this notation, T R = {r | r ∈ Q}.
LEMMA 4.3. The � ∪{| |} homomorphism ψ satisfies ψ([r ]) = r for all r ∈ Q.

PROOF. This follows the same arguments as the proof of Lemma 3.2. Note clauses
(i), (v) and (vi). �

LEMMA 4.4. The set TR is a transversal for the equivalence relation ≡E on
T (� ∪ {| |}).

Suppose we have proved this fact, then we can conclude the proof of the theorem
as follows. If

ψ([t]) = ψ([t ′]),

then, by Lemma 4.4, there exist r , r ′ ∈ TR such that

E 	 t = r and E 	 t ′ = r ′.

Thus,

ψ([r ]) = ψ([r ′]).

Now, by Lemma 4.3,

ψ([r ]) = r and ψ([r ′]) = r ′.

Thus,

r = r ′.

Since TR is a transveral, this happens if, and only if, the terms

r = r ′

and hence [r ] = [r ′] and [t] = [t ′].

It remains to prove Lemma 4.4. We note the following.

LEMMA 4.5. CR ∪ MOD ∪ Modril 	 I

PROOF. We can write the set I as

I = {Z (n) = 0 | n > 0}
and so prove, by induction on n > 0, that CR ∪ MOD ∪ Modril 	 Z (n) = 0.
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Basis n = 1. We calculate:

Z (1) = Z (1 + 0) by CR3 and the definition of 0
= Z (1 + |0|) by MOD1
= 0 by Modril.

Induction Step n = k + 1. We calculate:

Z (k + 1) = Z (k + 1) by the definition of k + 1
= Z (1 + k) by CR2
= Z (1 + |k|) by Lemma 4.1
= 0 by Modril. �

We can show that for every term t ∈ T (� ∪ {| |}) there is an r ∈ T R such that
E 	 t = r . Notice that by Lemma 4.5, and Lemma 3.3, we know that for all terms
t not containing | |, t ∈ T (�), E 	 t = r .

We prove the transversal lemma by induction on the height Ht(t) of terms t ∈
T (� ∪ {| |}).

Basis. Ht(t) = 0. Then t = 0 or t = 1 and we are done.
Induction Step, Ht(t) = k + 1. Suppose that the lemma is true for terms of

height lower than Ht(t) = k and consider a term of height k. There are five cases
corresponding to the operations. We consider two for illustration.

Case t = s + s ′. By induction,

E 	 s = r and E 	 s ′ = r ′

for r , r ′ ∈ T R. Thus,

E 	 s + s ′ = r + r ′.

Now r + r ′ does not contain | | and so reduces to some element in TR.
Case t = |s|. This is the interesting case. By induction, E 	 s = r . There are

three subcases.
If r = 0, then t = |r | = |0| = 0 by MOD1.
If r = n · m−1, then

t = |n · m−1| by definition

= |n| · |m−1| by MOD4

= |n| · |m|−1 by MOD5

= n · m−1 by Lemma 4.1.

If r = −(n · m−1), then

t = | − (n · m−1)| by the definition

= n · m−1 by MOD3. �

Journal of the ACM, Vol. 54, No. 2, Article 7, Publication date: April 2007.



16 J. A. BERGSTRA AND J. V. TUCKER

The specification CR ∪ SIP ∪ MOD ∪ Modril of the rational numbers is simpler
than the specification CR ∪ SIP ∪ L because it does not depend on (somewhat)
sophisticated number theory.

5. Specifications of Totalized Fields and Other Rational Arithmetics

5.1. ON THE EQUATIONAL THEORY OF TOTALIZED FIELDS. It has long been
known that the class of totalised fields is not a variety, that is, is not definable by
equations over the field signature. The argument is based on the fact that the class
of totalised fields is not closed under products (compare Birkhoff’s Theorem, see,
e.g., Meinke and Tucker [1992]).

We can rephrase and reprove this elementary fact in the present setting as follows:

LEMMA 5.1. There is no set E of equations over the signature � of fields that
is logically equivalent with CR ∪ SIP ∪ Sep ∪ Gil.

PROOF. Assume the contrary and suppose that there is such a set of equations E
such that Alg(�, E) = Alg(�, CR ∪ SIP ∪ Sep ∪ Gil). Consider the initial algebra
I (�, E) of E . Now because the �-algebra Q0 of rational numbers is a model of
E , we know that

I (�, E) |= ¬(1 + 1 = 0).

To see this, note that if 1 + 1 = 0 was valid in the initial model I (�, E) in then
it would be valid under every homomorphism and, in particular, would be valid in
Q0, which it is not.

Now, by assumption, I (�, E) |= CR ∪ SIP ∪ Sep ∪ Gil and this implies

I (�, E) |= Z (1 + 1) = 0.

But the prime totalized field Z2 of characteristic 2 is also a model of CR ∪ SIP ∪
Sep ∪ Gil. By initiality, here is an unique homomorphism φ : I (�, E) → Z2 and,
being a minimal structure, Z2 must be a homomorphic image of I (�, E). Now since
Z (x) is a term, φZ (a) = Z (φ(a)) for all a ∈ A and φ(Z (1 + 1)) = Z (φ(1 + 1)) =
Z (φ(1)+φ(1)) = Z (1+1). In Z2, we have 1+1 = 0, which implies Z (1+1) = 1.
Thus, the unique homomorphism φ maps Z (1+1) = 0 in I (�, E) to Z (1+1) = 1
in Z2, which is impossible for a homomorphism since the algebras satisfy Sep. (In
fact, more generally all homomorphisms between fields must be injective.) This is
a contradiction. �

Using a similar argument one can prove that there is no conditional equational
theory C E over the signature � of fields which is equivalent to CR ∪ SIP ∪ Sep ∪
Gil in first order logic.

5.2. THE RESTRICTED INVERSE LAW. Recall Ril is

x · (x · x−1) = x .

In the presence of CR ∪ SIP, another way of writing Ril is as follows:

Z (x) · x = 0.

Journal of the ACM, Vol. 54, No. 2, Article 7, Publication date: April 2007.



The Rational Numbers as an Abstract Data Type 17

We will now use the equational specification (�, CR ∪ SIP ∪ Ril). If one restricts
attention to the closed equations over �, an interesting positive result is found
(Theorem 5.6).

Now Ril is derivable from CR ∪ SIP ∪ Sep ∪ Gil and for that reason CR ∪ SIP ∪
Ril is a weaker theory than CR ∪ SIP ∪ Sep ∪ Gil. Of course, the key point is that
CR ∪ SIP ∪ Ril is an equational theory over � in which inverses are possible.

To illustrate further the implications of Ril, here is a listing of identities that can
easily be proved from CR ∪ SIP ∪ Ril:

LEMMA 5.2. The following equations can be proved from CR ∪ SIP ∪ Ril

Z (0) = 1
Z (1) = 0

Z (x) · Z (x) = Z (x)
(Z (x))−1 = Z (x)

(1 − Z (x)) · (1 − Z (x)) = 1 − Z (x)
(1 − Z (x))−1 = 1 − Z (x).

PROOF. Equations (1) and (2) are obvious in any commutative ring. The other
cases are calculations; we do the remaining cases.

Consider Z (x) · Z (x) = Z (x).

Z (x) · Z (x) = (1 − x · x−1) · (1 − x · x−1)

= 1 − x · x−1 − x · x−1 + (x · x−1) · (x · x−1)

= 1 − x · x−1 − x · x−1 + (x · x−1 · x) · x−1

= 1 − x · x−1 − x · x−1 + x · x−1 by Ril

= 1 − x · x−1

= Z (x).

Consider Z (x)−1 = Z (x).

Z (x)−1 = Z (x)−1 · (Z (x)−1 · Z (x)) by Ril

= (Z (x) · Z (x))−1 · Z (x) by SIP

= Z (x)−1 · Z (x) by above

= Z (x)−1 · Z (x) · Z (x) by above
= Z (x).

Consider (1 − Z (x)) · (1 − Z (x)) = 1 − Z (x).

(1 − Z (x)) · (1 − Z (x)) = 1 − Z (x) − Z (x) + Z (x) · Z (x) by expansion
= 1 − Z (x) − Z (x) + Z (x) by above
= 1 − Z (x).
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18 J. A. BERGSTRA AND J. V. TUCKER

Consider (1 − Z (x))−1 = 1 − Z (x).

(1 − Z (x))−1 = (1 − (1 − x · x−1))−1 by expansion

= (x · x−1)−1

= x−1 · (x−1)−1 by CR

= x−1 · x by CR

= x · x−1

= (1 − (1 − x · x−1))
= 1 − Z (x). �

LEMMA 5.3. Let p, q be different prime numbers. Then

CR ∪ SIP ∪ Ril 	 Z (p) · Z (q) = 0.

PROOF. Let a, b ∈ Z be such that 1 = a · p+b·q. There are different cases of which
we will do one. Assume a = n and b = −m for n, m ∈ N. Then 1 = n · p − m · q .
We calculate:

Z (p) = Z (p) · 1 by multiplying

= Z (p) · (n · p − m · q) by substituting

= Z (p) · n · p − Z (p) · m · q by SIP

= Z (p) · p · n − Z (p) · q · m by above

= 0 · n − Z (p) · q · m by Ril

= Z (p) · q · −m.

By Lemma 2.3, we have Z (p) = Z (p) · q · q−1. Thus, Z (p) · (1 − q · q−1) = 0 and
this is Z (p) · Z (q) = 0.

LEMMA 5.4. For each prime p and closed term t ∈ �, there is a unique natural
number n < p such that

CR ∪ SIP ∪ Ril 	 Z (p) · t = Z (p) · n.

PROOF. This is proved by an induction on the structure of t .
Basis. If t ≡ k then write k = n + p · l for natural numbers n and l with n < p.

Now

Z (p) · k = Z (p) · n + p · l by substitution

= Z (p) · n + Z (p) · p · l by CR

= Z (p) · n by Ril.

Induction Step. There are four cases corresponding with +, −, ·,−1 of which we
will do one for illustration.
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Let t ≡ r−1 then we calculate:

Z (p) · t = Z (p) · r−1 by substitution

= Z (p) · Z (p) · r−1 by Lemma 5.2

= Z (p) · (Z (p))−1 · r−1 by Lemma 5.2

= Z (p) · (Z (p) · r )−1 by SIP

= Z (p) · (Z (p) · n)−1 by induction

= Z (p) · (Z (p))−1 · n−1 by SIP

= Z (p) · n−1 by Lemma 5.2

= Z (p) · m with m < p such that m = n−1 mod p.

That the number n is unique follows from an inspection of the prime field of
characteristic p. In that field Z (p) equals 1 while different numerals n1 and n2 with
n1 and n2 both below p have different interpretations.

By inspection, we can check the following refinement of the statement of the
lemma.

COROLLARY 5.5. Let val0
p(t) the value of term t in the totalised field K 0

p. The
unique number n is val0

p(t). Therefore, we have

CR ∪ SIP ∪ Ril 	 Z (p) · t = Z (p) · val0
p(t).

The following theorem states that the equational subtheory T 0
field can prove all the

closed identities that are true in all fields.

THEOREM 5.6. For any closed terms t, t ′ ∈ T (�), we have

T 0
field 	 t = t ′ implies CR ∪ SIP ∪ Ril 	 t = t ′

Recall that if Tfield 	 t = t ′ then T 0
field 	 t = t ′.

PROOF. The proof is rather involved with many calculations needed to establish
canonical forms. The canonical forms depend on the characteristics of the totalized
fields.

Let pn represent an enumeration of the primes in increasing order, starting with
p0 = 2. Then, we define the following special terms:

G1 = 1, G2 = 1 − Z (p1), Gn+1 = Gn · (1 − Z (pn)).

For each n, the term Gn equals 0 in any prime field K 0
pn

with characteristic pn or
less. For all n, the term Gn equals 1 in any field of characteristic 0 and, in particular,
in the totalized field of rational numbers.

LEMMA 5.7. For all n, we have:
(i) Gn = 1 − Z (p1) − · · · − Z (pn−1).
(ii) Gn · Z (pn) = Z (pn)

(iii) if n ≤ m, then Gm · Gn = Gm
(iv) if k < pn, then Gn · k · k−1 = Gn.

PROOF. Exercise.
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Using these G terms the following lemma can be stated:

LEMMA 5.8. For each closed term t over �, there is a unique term r ∈ T R
such that CR ∪ SIP ∪ Ril 	 Gn · t = Gn · r .

PROOF. The proof uses induction of the structure of terms. We give the case of
addition in the induction step. Let t ≡ r + s and assume that

CR ∪ SIP ∪ Ril 	 Gn · r = Gn · r ′ and CR ∪ SIP ∪ Ril 	 Gm · s = Gm · s ′

with r ′, s ′ ∈ T R. Now there is a case distinction on the possible forms of r ′ and s ′.
Let r ′ ≡ k · l−1 and s ′ ≡ u · v−1. Take i larger than m and n such that pi exceeds

both l and v . Now CR ∪ SIP ∪ Ril proves

Gi · t = Gi · (r + s) = Gi · r + Gi · s

= Gi · k · l−1 + Gi · u · v−1

= Gi · v · v−1 · k · l−1 + Gi · l · l−1 · u · v−1

= Gi · (v · k · v−1 · l−1 + l · u · l−1 · v−1)

= Gi · (v · k + l · u) · (l · v)−1

= Gi · v · k + l · u · (l · v)−1

= Gi · k ′ · (l ′)−1.

If k ′ and l ′ are not relatively prime, they share a prime factor q = p j . In particular:
k ′ = q · k ′′ and l ′ = q · l ′′. Let h = max(i, j) then CR ∪ SIP ∪ Ril 	 Gi ′ · t =
Gi ′ · k ′′ · l ′′. By repeating the removal of shared prime factors until no more exist
the required representation is obtained. That the representation is unique follows
from its interpretation in the prime field of characteristic 0. �

The following defines the canonical terms:

LEMMA 5.9. Let t ∈ T (�). Suppose that

CR ∪ SIP ∪ Ril 	 Gn · t = Gn · val0
0(t).

Then, for all m > n,

CR ∪ SIP ∪ Ril 	 t = ∑m−1
i=1 Z (pi ) · val0

pi
(t) + Gm · val0

0(t).

PROOF. We begin with a lemma.

LEMMA 5.10. For each n ∈ N,

CR ∪ SIP ∪ Ril 	 Gn · t = Z (pn) · val0
pn

(t) + Gn+1 · t .

Journal of the ACM, Vol. 54, No. 2, Article 7, Publication date: April 2007.



The Rational Numbers as an Abstract Data Type 21

PROOF. This is a calculation:

Gn · t = (Z (pn) + (1 − Z (pn))) · Gn · t by CR

= Z (pn) · Gn · t + (1 − Z (pn)) · Gn · t by CR

= Z (pn) · Gn · t + Gn+1 · t by definition

= Gn · Z (pn) · t + Gn+1 · t by CR

= Gn · Z (pn) · val0
pn

(t) + Gn+1 · t by Corollary 5.5

= Z (pn) · val0
pn

(t) + Gn+1 · t by Lemma 5.7. �

Now we choose k ∈ N such that CR ∪ SIP ∪ Ril 	 Gk · t = Gk · r for some
r ∈ T R. Then we may expand the formula as follows:

t = G1 · t because G1 = 1
and CR

= Z (p1) · val0
p1

(t) + G2 · t by Lemma 5.10

= Z (p1) · val0
p1

(t) + Z (p2) · val0
p2

(t) + G3 · t by Lemma 5.10

= Z (p1) · val0
p1

(t) + · · · + Z (pk−1) · val0
pk−1

(t) + Gk · t by repeated use of

Lemma 5.10

= Z (p1) · val0
p1

(t) + · · · + Z (pk−1) · val0
pk−1

(t) + Gk · r by choice of k.

This completes the proof of the Lemma 5.9 �
Finally, we can complete the proof of Theorem 5.6. Assume that

T 0
field 	 t = s

for any closed terms t, s ∈ T (�). We choose n, m such that

CR ∪ SIP ∪ Ril 	 Gn · t = Gn · val0
0(t)

CR ∪ SIP ∪ Ril 	 Gm · s = Gm · val0
0(s).

Take k = max(n, m). Then, by Canonical Term Lemma 5.9,

CR ∪ SIP ∪ Ril 	 t = ∑k
i=1 Z (pi ) · val0

pi
(t) + Gk · val0

0(t)

CR ∪ SIP ∪ Ril 	 s = ∑k
i=1 Z (pi ) · val0

pi
(s) + Gk · val0

0(s).

Since T 0
field 	 t = s, the values of these closed terms in all prime fields are identical,

that is, for all pi , val0
pi

(t) = val0
pi

(s) and val0
0(t) = val0

0(s). Thus, the expansions
on the right-hand side are identical and so we have

CR ∪ SIP ∪ Ril 	 t = s. �
The initial algebra of CR is the integers. However, we note that

COROLLARY 5.11. The initial algebra of CR ∪ SIP ∪ Ril is a computable
algebra but it is not an integral domain.
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PROOF. It is easy to check that the completeness proof for closed term equations
(Theorem 5.6) also provides the decidability of their derivability. In any integral
domain, we have x · y = 0 implies x = 0 or y = 0. Let x = Z (2) and let
y = 1− Z (2). We calculate: CR∪SIP∪ 	 Z(2) · (1−Z(2)) = Z(2)−Z(2) ·Z(2) =
Z(2) − Z(2) = 0. Thus, for these choices, x · y = 0 in the initial meadow. But both
x and y are not equal to 0 in the initial meadow because, under homomorphisms,
x �= 0 and y �= 0 in prime fields with different characteristics 2 and 0.

The algebras that are models of CR ∪ SIP ∪ Ril have nice properties, in spite of
not being fields nor even integral domains. We have the following proposal for a
name, derived from their connection with fields:

Definition 5.12. A model of CR ∪ SIP ∪ Ril is called a meadow.

All fields are clearly meadows but not conversely (as the initial meadow is not a
field). In fact, the theorem proves a normal form theorem for meadows.

6. Concluding Remarks

6.1. OPEN PROBLEMS. The rational numbers are not well understood compu-
tationally or logically, even in the case of equational logic, possibly the simplest
logic. We failed to obtain answers to the following problems:

PROBLEM 6.1. Does the totalized field Q0 of rational numbers have a decidable
equational theory?

In connection with algebraic specifications, the following is related to Prob-
lem 6.1. In fact, its positive solution would, by general specification theory, solve
Problem 6.1.

PROBLEM 6.2. Does the totalized field Q0 have a finite basis, that is, an ω-
complete equational initial algebra specification?

The following problem is quite basic:

PROBLEM 6.3. Is there a finite equational specification of the totalised field Q0,
without hidden functions, which constitutes a complete term rewriting system?

We know from our Bergstra and Tucker [1995] that there exists such a specifi-
cation with hidden functions.

Equations over Q0 are called diophantine equations, just as equations over the
integers are. We do not know the answer to this question:

PROBLEM 6.4. Does the totalized field Q0 of rational numbers have
a decidable diophantine theory, that is, can one decide whether or not
∃x1, . . . , xn[t1(x1, . . . , xn) = t2(x1, . . . , xn)]?

If the diophantine theory of the totalized field of rationals is decidable (Problem
6.4), then the diophantine theory of the ring of rationals is also decidable (as it is
the syntactic subtheory without division), and this latter question is a long standing
open problem. Perhaps it is easier to show that Problem 6.4 is undecidable.
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The specifications we have presented lead to questions, for instance:

PROBLEM 6.5. Does the specification CR ∪ SIP admit Knuth–Bendix
completion?

Questions proliferate as one reflects on the number of algebras based on rational
numbers.

PROBLEM 6.6. Is there a finite equational specification of the algebra Q0(i) of
complex rational numbers, without hidden functions?

It is in fact possible to provide an initial algebra specification using the complex
conjugate cc as an hidden function: see Bergstra and Tucker [2006a]. In the matter
of term rewriting, we do not know the answer to this question:

PROBLEM 6.7. Is there a finite equational specification of the algebra Q0(i , cc),
(without further hidden functions), which constitutes a complete term rewriting
system?

Although there seems to be little work with this precise focus (e.g., Contejean
et al. [1997]), a great deal is known about computable fields (see Stoltenberg-Hansen
and Tucker [1999b]).

6.2. RELATED AND FUTURE WORK. It seems to us that an important task for
the theory of algebraic specifications—and for formal methods in general—is
this:

PROBLEM 6.8. To create a comprehensive theory of computing, specifying and
reasoning with systems based on continuous data. Ideally, the theory should inte-
grate discrete and continuous data.

At present, this is a huge and complicated task because computation, specifica-
tion and verification on continuous data are all active research areas with disparate
agendas. In fact, the task is a challenge in the special case of real numbers. The
existing algebraic specification literature on the reals is limited. One of the earliest
attempts at an axiomatic specification of any data type was the study of computer
reals in van Wijngaarden [1966]. In Roggenbach et al. [2004], there is an axiom-
atization designed for the algebraic specification language CASL. In Tucker and
Zucker [2002], there is a specification using infinite terms.

There is some progress on the question: Can all computable functions on contin-
uous data be algebraically specified? In Tucker and Zucker [2005], it is shown that
a computably approximable function on a complete metric algebra can be specified
by a form of conditional equations. In fact it is shown there is one universal set of
equations that can specify all computably approximable functions. (See Tucker and
Zucker [2004] for the compact case and Tucker and Zucker [2005] for the general
case.) There are many notions of computable function on the real numbers: see
Tucker and Zucker [2000].

Obviously, technically, the specification theory of rational arithmetics is a basic
subject for these tasks. If the rational numbers are the data type for measuring in
units and subunits then the real numbers can be seen as the data type for the process
of measuring to arbitrary accuracy, the measuring procedures being modeled by
Cauchy sequences.
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Our specification CR ∪ SIP draws attention to division by zero. Division by zero
has been studied by Setzer [1997] in which he proposed the concept of wheels,
a sophisticated modification of integral domains with constants for infinity and
undefined, and division by zero with 0−1 = ∞. Setzer’s idea has been taken up in
Carlström [2004].

For algebraic specification there is a great interest in limited types of first order
formulae that are “close” to equations. Of course, conditional equations are an
important example since they have initial models; another example of formulae are
multi-equations studied by Adamek et al. [2002].

The problem is connected to many others such as the algebraic approaches to
numerical software for scientific simulation, in Haveraaen [2000] and Haveraaen
et al. [2005], and to 3D and 4D volume graphics, in Chen and Tucker [2000]. In fact,
it is not an uncommon view that the problem of integrating discrete and continuous
computation is a barrier to progress in computer science and its application.
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