
The Rationale of Powertype-based Metamodelling
to Underpin Software Development Methodologies

Brian Henderson-Sellers and Cesar Gonzalez-Perez
Department of Software Engineering
Faculty of Information Technology
University of Technology, Sydney
PO Box 123, Ultimo 2007, NSW

brian@it.uts.edu.au; cesargon@it.uts.edu.au

Abstract
Metamodelling provides a way of modelling the rules
underpinning not only modelling languages such as UML
but also processes. In the context of object-oriented
development, we evaluate the conceptual framework used
to reason about metamodelling from the different
perspectives of methodologist, method engineer and
software developer. We propose the use of clabjets and
powertype patterns as a solution to avoid the present
inconsistencies in the use of a strict metamodelling
multi-level hierarchy and demonstrate their efficacy in
providing a solid and improved framework for OO-based
process (and product) metamodelling.

Keywords: Metamodelling. Powertype. Software
development methodologies.

1 Introduction
We can define metamodelling as the subject dealing with
the creation, maintenance and application of metamodels ,
where a metamodel is defined as a model of a model
Atkinson and Kühne (2003). If this is accepted, then a
metamodel should contain the structure and, optionally,
behaviour necessary to represent some target model, as
any regular model contains the structure and, optionally,
behaviour necessary to represent some target system. That
is to say, a metamodel is a regular model in which the
subject under study happens to be a model rather than any
other kind of system Seidewitz (2003). Metamodels can, in
theory, represent any kind of model, but this paper focuses
on metamodels that represent conceptual models of
software systems and the processes necessary to construct
them.

The main objective of any conceptual model is to represent
some subject under study by discarding unnecessary detail
and keeping only the relevant information. Therefore, in
our chosen context, the main objective of a metamodel is
to represent a conceptual model of a software system and
the processes necessary to construct it. Such representation
===========================
Copyright © 2005, Australian Computer Society, Inc. This paper
appeared at the Second Asia-Pacific Conference on Conceptual
Modelling (APCCM2005), University of Newcastle, Newcastle,
Australia. Conferences in Research and Practice in Information
Technology, Vol. 43. Sven Hartmann and Markus Stumptner,
Eds. Reproduction for academic, not-for profit purposes
permitted provided this text is included.

must be faithful enough to be useful. When a metamodel
engineer constructs a metamodel, he/she must keep in
mind that this metamodel will be used for practical
purposes, so the quality of the representation embedded in
it must be optimal. In turn, what is good quality in a
metamodel and what is not is determined by the specific
usage for which the metamodel has been designed. In this
paper, we focus on metamodels designed to be used as
frameworks for the definition of software systems and
software processes. The main problem posed by
metamodelling is, therefore, how to find a way to
maximise the quality of a metamodel from the perspective
of its users. A metamodel that is theoretically elegant but
practically useless could be regarded as of poor quality.

The next section describes a conceptual context useful to
reason about metamodelling, which is used in Section 3 to
tackle the issue of solving the aforementioned problem.
Section 4 presents other alternatives to metamodelling and
shows how a powertype-based approach is superior.
Finally, Section 5 presents the conclusions.

2 A Conceptual Framework to Reason about
Metamodelling

Software developers do not interact with metamodels very
often. On the contrary, they work in a world of models,
documents, tools and lists of “to-do” tasks. During their
daily routine, software developers often execute tasks and
use tools to create and modify documents and models. All
these activities must be appropriately connected,
organized and planned in order to produce a working final
product on time and within budget. The body of
knowledge comprising the necessary guidance to achieve
this can be called a methodology or method (these terms
are used in this paper as synonyms). Methodologies
combine both product support (related to models and their
documentation) together with process support Rolland et
al. (1999). Therefore, we can say that methodologies guide
software developers in their daily work. This guidance is
given as a collection of specifications of the tasks and
products that software developers are supposed to be
concerned with; for exa mple, a given methodology might
describe the specific steps that should be taken in order to
obtain the requirements for a system, or list the sections
that any system requirements specification document
should contain. Software developers apply these
specifications to their jobs, thus following the
methodology.

7

It is easy to recognise that the specifications in a
methodology comprise a model of the work actually
performed by software developers. Also, when software
developers use this model as a guide in their daily work,
they are in fact enacting the model for the sake of a
specific project or endeavour. Enacting means, in this
context, creating a real instance of the model given by the
methodology. This instance, at least in theory, must
comply perfectly with the specifications provided by the
model. The quality of a methodology will be given by its
capability to generate useful instances.

There is a conceptual boundary between the methodology,
which specifies what must be done and how, and the
enacted instance of it, which actually does something.
Software developers cross this conceptual boundary when
enacting a methodology on a specific project. In order to
separate these conceptual levels, we will call a
methodology plus all the specifications contained in it the
method layer, and we will call specific instances of a
methodology, applied to specific projects or endeavours,
the project layer (Figure 1). The relationship between
these layers is one of representation: the method layer
represents (or models) the project layer so project layers
can be created from the method layer when necessary.

metamodelmetamodel

methodmethod

projectproject

represents

represents

Figure 1. The proposed metamodelling architecture.

A similar situation can be found between methodologies
and metamodels. When a method engineer creates a
methodology, they usually utilise a given metamodel from
which to create a specific instance, namely the
methodology. Metamodels, in this context, serve as
guidance to method engineers by providing a collection of
specifications that represent potential elements in the
methodology. For example, a metamodel can establish that
software process lifecycles can be composed of different
stages, and that models and documents can be created or
modified by tasks. When a method engineer creates a
specific methodology using this metamodel, they will
decide what specific stages will be included in the
lifecycle and what specific models and documents will be
created and modified by each possible task specification.
The method engineer is using the metamodel as a guide for
the construction of a methodology. This involves crossing
a new conceptual boundary between the metamodel and
the methodology created from it. To the already defined
method and project layers, we must add the metamodel
layer (top layer in Figure 1), comprised of a metamodel
and all the specifications contained in it. Consistent with

the well-established philosophical descriptions of levels of
abstraction (e.g. Gershenson 2002), layered architectures
similar to this are often used in software-focussed
metamodelling approaches such as SPEM OMG (2002b),
OPEN Firesmith and Henderson-Sellers (2002) or MOF
OMG (2002a) and underpin current initiatives in MDA
(see, for example, Kleppe et al. 2003).

Different people work at different layers, and relate to
them differently. Method engineers use metamodels (they
don’t change them, just use them) to create and extend
methodologies. Software developers use methodologies to
generate projects and software systems. Methodologies,
therefore, serve as a bridge between metamodels and
projects, and provide the only and indirect interaction
between a software developer working on a project and the
metamodel that was used to create the methodology being
followed.

We must make a final note before proceeding to introduce
and then solve a number of problems associated with
traditional metamodelling in the context of software
development, particularly object-oriented software
development. The discussion presented in this paper is
based on conventional object-oriented knowledge and
makes use of well-known object-oriented concepts and
mechanisms. We have adopted this approach, rather than
inventing new concepts and/or mechanisms, to ensure the
best degree of understandability and implementability
with existing technologies.

3 Solving the Metamodelling Problem
Since we have defined the problem of metamodelling
(how to optimize its quality for practical use) from a very
applied and pragmatic perspective, we will use the same
kind of perspective to reason about the problem and find a
way to solve it. This leads us to approach the problem from
the bottom, from the optimal result that is desirable, and
work towards the top, towards the definition of the best
metamodel that could possibly generate such a result.

3.1 The Software Developer’s Perspective
Software developers want a methodology that can be
easily enacted on a particular project. That means having a
methodology that provides appropriate specifications for
all the necessary components of a project, both
process-wise and product-wise, as noted above. Such
specifications would establish what things must be done,
how to do them, what products must be created and how
they are built. An excerpt from a simplistic fictional
methodology could read:

Requirements engineering must be gathered at the beginning
of the project, and a document titled Requirements
Specification prepared. Each requirement must be defined
using a code, a description and the list of user classes that
request it. Once the first draft of the requirements
specification document has been completed, it must be sent to
the users for their evaluation and sign-off. Many cycles of
user evaluation and amendment are possible, and the sent-on
and reception dates must be tracked. Once the document is
signed off, it will be given a version number of 1.0.

8

This methodology gives software developers a collection
of elements (such as requirements gathering, requirements
sign-off, requirement, document and user class), each of
which may have properties (documents have a title and a
version number, requirements have a code and a
description) and relationships to other elements (each
requirement can be related to one or more user classes). It
is easy to use a conventional object-oriented approach and
represent this structure as a class model (Figure 2). In our
example, we would have a Requirement class with Code
and Description attributes, a UserClass class with a Name
attribute and a RequirementsEngineering class with
relationships to DraftRequirementsDocument, Amend-
RequirementsDocument (with SentOnDate and
ReceptionDate attributes) and RequirementsSignOff
classes, to cite but a few.

The object-oriented approach is ideal because it allows the
software developers to see the methodology as a class
model from which they can instantiate objects. Although
the fictitious methodology described (and most real
methodologies, in fact) includes both process and product
aspects, a class model is appropriate to give a
homogeneous treatment to them all, in which temporal
constraints between process elements can be contractually
expressed by pre- and post-conditions (Graham 1995)1
rather than by an explicit sequence. In our example, the
Requirement, UserClass and RequirementsDocument
classes represent product aspects, while the
RequirementsEngineering and DraftRequirements
Document classes are examples of the process aspect. A
class model allows the methodology to express the
relationships between process and product using standard
OO relationships; in our example, the fact that a
requirements specification document is created and

1 Frequent alternatives include the use of other parts of the
UML, such as activity diagrams or variants such as the
workflow diagram in Störrle (2001); or a formal process
modelling language (PML), based, for instance, on Petri
nets (Bandinelli et al. 1993) or SDL (Podnar et al. 2000).

refined as a result of performing requirements engineering
is expressed by the relationships between Requirements-
Document and (a) Draft RequirementsDocument and (b)
AmendRequirementsDocument.

Having a methodology expressed as a class model,
software developers can easily instantiate the classes in the
method layer in order to create objects in the project layer
(Figure 1). For example, an instance of Requirements-
Document is needed to represent and track the actual
requirements document that is created and maintained in a
given project. Similarly, a collection of instances of
UserClass will be used to represent the different user
classes of the system being constructed. From the process
side, an instance of RequirementsEngineering will be
created to represent and project manage the activity of
performing requirements engineering, and a collection of
instances of AmendRequirementsDocument will be
created to represent and project manage the successive
cycles of amendment to the requirements specification
document. Each of these instances will take values for the
attributes defined in the class model. For example, each
instance of UserClass will have a particular value for
Name, and each instance of AmendRequirements-
Document will have particular values for the SentOnDate
and ReceptionDate attributes (Figure 2). Links between
objects in the project layer will be defined from the
relationships specified in the method layer; for example, a
link between corresponding instances of Requirement and
UserClass will be created as an instance of the association
between these classes in the methodology that represents
the fact that one or more user classes can request a given
requirement. As an example involving product and process
elements, a link between each instance of Requirement
and a specific instance of AmendRequire mentsDocument
can be created to reflect the specific amendment cycle that
produced that specific requirement (Figure 3).

From the point of view of tools, having a methodology
expressed as a class model is also very convenient. Tools
used by software developers would implement the class
model defined by the methodology and allow users to
create instances of them. For example, a project

+Code
+Description

Requirement

+Name

UserClass

RequirementsEngineering

DraftRequirementsDocument

+SentOnDate
+ReceptionDate

AmendRequirementsDocument

+SignOffDate

RequirementsSignOff

1..*1..*  RequestedBy

1

1

1 0..*

1

1

RequirementsDocument

1

1

Creates

0..* 1

Amends

1

1

SignsOff

1..*

1

 Includes

0..1

0..*

Produces

+Title
+Version

Document

Figure 2. Class diagram of the methodology as seen by software developers.

9

management and tracking tool would allow a project
manager to instantiate Draft RequirementsDocument,
AmendRequirementsDocument and other process-related
classes to track the progress of the project. Similarly, a
modelling tool would allow a software designer to create
and maintain instances of the Requirements class and trace
each of them to the appropriate instance of Amend-
RequirementsDocument created by the project manager.

As a conclusion, and from the software developer’s
perspective, the method layer must be expressed as a class
model from which the appropriate project layer can be
created by using conventional instantiation mechanisms.

3.2 The Method Engineer’s Perspective
We have shown in the previous section how expressing a
methodology as a class model is appropriate, since it can
be used by instantiating the classes in it (which reside in
the method layer) to create objects in the project layer. We
could argue that, taking a similar approach, the best way of
expressing a metamodel is a class model in order that
objects in the method layer could be created by
instantiation. However, a fallacy lies here. If we gave
method engineers a metamodel expressed as a simple class
model, they would define methodologies as networks of
interconnected objects. But we have established in the
previous section that a methodology must be expressed as
a class model, not as a network of objects. A metamodel,
therefore, should be expressed in such a way that allows a
method engineer to derive classes from it and assemble
them together into a methodology. The process of
generating a methodology in this fashion, by creating a
collection of interrelated classes from a given metamodel,
involves crossing from the metamodel layer into the
method layer. However, this is not achieved though
conventional instantiation (as in the case of methodology

enactment) since the resulting entities must be classes
rather than objects. Two problems are thus established:
first of all, of what kind of entities should a metamodel be
composed, so that classes are represented by them?
Secondly, what mechanism (other than instantiation)
could be used to generate such classes from their
representation?

At this point, it is common in the literature to introduce the
concept of metaclass as being a class the instances of
which are classes themselves. This concept, although often
cited by many authors (OMG 2002a , 2003, for example) is
self-contradictory and should therefore discarded. If a
metaclass actually is a class, then all the characteristics
applicable to classes must also be applicable to
metaclasses; since the instances of classes are objects , then
the instances of metaclasses must be objects too, which
contradicts the definition. If a metaclass is, on the contrary,
not a class but a different kind of construct, it needs to be
properly characterised and described before making any
use of it, together with the mechanisms that allow it to be
“instantiated” into regular classes. This characterisation is
completely avoided by authors using the above-defined
concept of metaclass; instead, they just make up an
incoherent construct that looks like a class (because it is
easy to define it in the well-known terms of name,
attributes and relationships) but which generates
“instances” perfectly fitted to the authors’ needs without a
proper explanation. Such a construct, therefore, cannot be
a class, which also contradicts the definition. For all these
reasons, we prefer to define metaclass as a regular class
that happens to be in the metamodel layer. Since a
metaclass is just a class, all characteristics of classes also
apply to metaclasses. Actually, the meta- prefix can be
often dropped safely since it only denotes the location of
the class within the conceptual framework and not any
intrinsic property of the class itself.

Name = RegularUser

 : UserClass

Name = Administrator

 : UserClass Code = DBM001
Description = Backup the database.

 : Requirement

Code = USM003
Description = View user list.

 : Requirement

 : RequirementsEngineering

 : DraftRequirementsDocument
Title = My System's Reqs.
Version

 : RequirementsDocument

Duration = 11 days
SentOnDate = 5-May-04
ReceptionDate = 16-May-04

 : AmendRequirementsDocument

Duration = 14 days
SentOnDate = 28-May-04
ReceptionDate = 11-Jun-04

 : AmendRequirementsDocument

SignOffDate = 18-Jun-04

 : RequirementsSignOff

Figure 3. A sample fragment of a project layer, instantiated from the methodology shown in Figure 2.

10

Once we have discarded the above (standard) concept of
metaclass, the answer to our questions (of what kind of
entities should a metamodel be constructed so that classes
are represented by them, and what mechanism should be
used to generate such classes from their representation)
comes too easily: the simplest way to represent a class is
another class. The subtyping mechanism of conventional
object-orientation allows a class to be a more general or
more abstract version of another class. Since we need a
metamodel that makes a good model of (i.e. represents)
any potential methodology that could be derived from it,
and a model involves precisely the removal of unnecessary
details to keep only the relevant information, expressing
the metamodel as a set of abstract classes and using
subtyping as the mechanism to cross the conceptual
boundary and generate a methodology layer is perfect. On
the one hand, it does not introduce strange artefacts such as
metaclasses, staying understandable and easy to
implement with current technologies; on the other hand, it
allows for the generation of concrete classes in the
methodology layer from an abstract model, which is
exactly what method engineers want. Interestingly, this
has parallels with white-box frameworks, which consist of
abstract classes from which the software developer creates
subclasses for the project in hand.

For example, a method engineer could want to express that
each requirements document amendment task modifies a
specific requirements specification document. Using the
metamodel classes Task and Document as a starting point
(Figure 4), the method engineer would create a subtype of
Task called AmendRequirementsDocument and a subtype
of Document called RequirementsDocument. The method
engineer could then link both classes together using an
association with the appropriate cardinalities. These
classes, part of the generated methodology, form the
foundation from which software developers will be able to
instantiate actual project-level elements, i.e. specific tasks
that amend specific requirements documents.

+Duration

Task

+SentOnDate
+ReceptionDate

AmendRequirementsDocument

+Title
+Version

Document

RequirementsDocument

0..* 1

Amends

Figure 4. Using abstract classes to represent methodology
elements.

We can conclude that expressing metamodels as abstract
class models and using subtyping as a generation
mechanism is, therefore, a potentially good option.

3.3 Putting It All Together
Expressing metamodels as class models, however, has
some interesting consequences. Firstly, the metamodel
layer provides type information for the project layer rather
than for the method layer. Elements in the project layer are
instances of elements in the method layer, which in turn
are subtypes of elements in the metamodel layer. From the
definition of subtyping, then, elements in the project layer
are also instances of elements in the metamodel layer.

Although classes in the metamodel represent classes in the
methodology, they do it by subtyping, not by instantiation.
This is easy to see by looking at how attributes in
metamodel classes are used. Consider an attribute
Duration of a class Task in the metamodel (Figure 5).
Some classes in the methodology (such as Write
MethodCode) would specialise from Task, inheriting
Duration. When enacted on a project, instances of
WriteMethodCode would take values for Duration. We
can see how instances in the project layer are
type-conformant with classes in both method and
metamodel layers (which makes sense, by definition of
subtyping).

project

method

metamodel+Duration

Task

WriteMethodCode

Duration = 3 days

 : WriteMethodCode

«instanceOf»

Figure 5. Representing a metamodel as a class model which can
be specialised into the method layer allows attributes and

associations take values in the project layer.

The result of this is that no element in the metamodel layer
can provide type information for any element in the
method layer, i.e. it is not possible for a methodology
element to take values or links for any attributes or
relationships, since they are classes and not instances.

However, attaching actual data to elements in the
methodology layer is useful and even necessary. For
example, a method engineer could want to state the
purpose of each kind of task that can be potentially
performed on a project. Tasks directed at writing code for
class methods would have a purpose of “write source code
that implements the contract specified by the operation
definition”, while tasks for amending requirements
specification documents would have a purpose of “mo dify
the requirements specification document so that it reflects
the accepted change requests submitted by stakeholders”.
These properties do not belong to each code writing or
requirements document amending task, but to each of
these task kinds; all requirements document amending
classes have the same purpose, namely “modify the
requirements specification document so that it reflects the
accepted change requests submitted by stakeholders”. This
is a property of a set of potential tasks, i.e. all tasks that
aim to amend requirements documents. The method
engineer needs a mechanism to give specific values to sets
of project layer elements, such as the set of tasks described
above. In conventional object-orientation, a set of objects
can be mo delled by a class. Thus, a property for which

11

every object of the set will have a value is easily mo delled
as an attribute of that class. Therefore, and continuing with
our example, we can say that the metamodel should
provide a class representing the different kinds of tasks
that can appear in a project, and that class would have an
attribute named, in our exa mple, Purpose. Such a class can
be named, for example, TaskKind, since there is some
semblance to the notion of categorization (e.g. Pirotte et al.
1994, Martin and Odell 1995). Instances of TaskKind will
live in the method layer, representing kinds of tasks that
can potentially occur in the project layer. For example, the
method engineer could create two instances of TaskKind
(Figure 6): one, with the name “WriteMethodCode” and
purpose “write source code that implements the contract
specified by the operation definition”, and another one,
named “AmendRequirementsDocument” and with the
purpose “modify the requirements specification document
so that it reflects the accepted change requests submitted
by stakeholders”.

project

method

metamodel+Name
+Purpose

TaskKind

Name = WriteMethodCode
Purpose = Write source code...

 : TaskKind

Name = AmendRequirementsDocument
Purpose = Modify the requirements...

 : TaskKind

«instanceOf» «instanceOf»

Figure 6. The metamodel must provide some classes that can be
used to instantiate objects in the method layer carrying the

appropriate information.

We have established in Section 3.2 that a metamodel is
used by a method engineer for creating subclasses of the
metamodel classes, and assembling them into a
methodology. However, we are saying now that the
method engineer can instantiate some classes in the
metamodel into objects residing in the method layer.
Following our examples so far, a method engineer would
create the WriteMethodCode methodology class as a
subtype of metamodel class Task, and also the “Write-
MethodCode” methodology object as an instance of
metamodel class TaskKind. From an intuitive point of
view, both methodology elements, class and object,
represent the same thing, i.e. tasks that aim to amend a
requirements document by incorporating accepted changes.
The class version of this concept inherits its attributes and
relationships from the Task class in the metamodel and
will allow its instances (in the project layer) to take values
and links for them. The object version of the concept, on
the other hand, takes values and links from the attributes
and relationships of its class, namely TaskKind in the
metamodel. The Duration attribute in the Task class gets
inherited by the WriteMethodCode class and takes specific
values for each instance of WriteMethodCode in the
project layer. From the object side, we can visualise how

the Purpose attribute of class Task in the metamodel takes
the value “write source code that implements the contract
specified by the operation definition” in object “Write-
MethodCode” in the method layer.

In order to refer to an entity that exhibits both a class facet
and an object facet, Pirotte et al. (1994) refer to it as a
“two-faceted construct”, whereas Atkinson (1998) or
Atkinson and Kühne (2000a) coin the term “clabject”..
This idea of a two-faceted construct or clabject is perfect
for our needs, since it nicely models a single concept being
modelled simultaneously as a class and as an object.
Rather than seeing the WriteMethodCode class and the
“WriteMethodCode” object as separate entities in the
method layer, we can look at them as a single entity, a
clabject, named #WriteMethodCode. As such,
#WriteMethodCode will exhibit a class facet (with a name
and possibly some attributes and relationships) plus an
object facet (with values and links). The class facet of a
method-level clabject, as we have explained before, is a
subtype of a metamodel class (Task in our example), while
the object facet in the same clabject is an instance of a
different metamodel class (TaskKind in our example – see
Figure 7).

method

project

metamodel

WriteMethodCode
Name = WriteMethodCode
Purpose = Write source code...

 : TaskKind

+Name
+Purpose

TaskKind

+Duration

Task

«instanceOf»

#WriteMethodCode

Figure 7. A clabject is composed of a class and an object in the
method layer that represent the same concept. In this diagram, the
clabject is represented as a labelled dashed rectangle around the

component class and object boxes.

It is crucial to understand that these two metamodel classes,
the one from which the object facet of a clabject is
instantiated and the one from which the class facet of the
same clabject is specialised (TaskKind and Task), are
different classes, with different sets of attributes and
relationships. In our example, TaskKind has attributes
Name and Purpose, while Task has attribute Duration.
However, it is true that both classes are closely related. In
fact, one of them (TaskKind in our exa mple) represents
groups of instances of the other (Task in our example);
while instances of Task are real tasks, instances of
TaskKind are sets of tasks that share some common
property (i.e. being of the same kind). In this sense,
TaskKind’s instances partition the set of instances of Task.
Pirotte et al. (1994) described this in the database literature
as “materialization” and, in object technology, Martin and
Odell (1992) and Odell (1994) described it as a

12

“powertype” to denote a type that represents subtypes of
another type. Odell’s original definition is not completely
appropriate, however, since it states that a powertype P of
a type T is a type the instances of which are subtypes of T.
Following an argument similar to the one that we used
with the concept of metaclass (see Section 3.2), we can see
that an instance of a class must be an object, while a
subtype of a class is another class. Therefore, they cannot
be the same entity, as noted also by Dahchour and Pirotte
(2002). The introduction of clabjects comes to the rescue,
since we can re -state Odell’s definition and define a
powertype P of type T as a type the instances of which are
object facets in clabjects of which the class facets are
subtypes of T. In our example, TaskKind is a powertype of
Task, since instances of TaskKind are the object facets or
clabjects of which the class facets are subtypes of Task
(Figure 8). The composite entity formed by a type in the
metamodel, called the partitioned type (such as Task) plus
its powertype (TaskKind in our example) can be called a
powertype pattern . The powertype pattern composed of
Task and TaskKind can be written as Task/TaskKind or, in
short, Task/*Kind. This combination, we note, has strong
similarities with the materialization relationship of Pirotte
et al. (1994) and Dahchour and Pirotte (2002). In both
cases, the two classes, and only these two, belong to the
metamodel/conceptual model layer.

method

project

metamodel+Duration

Task

WriteMethodCode

+Name
+Purpose

TaskKind

Name = WriteMethodCode
Purpose = Write source code...

 : TaskKind

«instanceOf»

#WriteMethodCode

Figure 8. A powertype pattern in the metamodel layer and the
clabject generated from it. The relationship between the
powertype (TaskKind) and the partitioned type (Task) is

indicated here by a dashed line with a bullet end on the side of the
powertype.

From the point of view of tools, clabjects are incredibly
powerful and, at the same time, easy to implement. They
are powerful because of their dual existence, by virtue of
which the object facet can be stored (as any other object) in
a database or manipulated by the tool, while the class facet
can be used by the tool as a template to create instances.
They are easy to implement because they are made of
conventional concepts (namely, classes and objects)
almost certainly considered by all tool developers and do
not require the introduction of new constructs.

Finally, we might note that, although most of the classes in
a metamodel will be likely involved in powertype patterns
(either as powertypes or partitioned types), some classes

will stand on their own. These classes can be instantiated
by a method engineer into objects in the method layer, but
they cannot be formally transmitted down to the project
layer. These classes, which we call resources
González-Pérez and Henderson-Sellers (2005), represent
elements in the methodology that are used by software
developers without being instantiated, but only as
reference or guideline. For example, a notation and a
bibliographic re ference about a method element are both
method-level entities of value to software developers but
do not have object counterparts in the project layer.
Method-level entities that are instantiated into project
elements (i.e. class facets of clabjects) are called templates
González-Pérez and Henderson-Sellers (2005).

3.4 Usage
A powertype-based metamodelling framework is
composed of a metamodel layer made of powertype
patterns and some stand-alone resource classes. Each
powertype pattern, in turn, is composed of a template class
(powertype) plus a class representing an element in the
project (partitioned type). This is the approach also
followed by the Australian Standard AS4651-2004
“Standard Metamodel for Software Development
Methodologies” SA (2004).

An example of resource is Notation (with attributes Name
and Description), while an example of a powertype pattern
is Task/*Kind, in which TaskKind (with attributes Name
and Purpose) is the template class and Task (with attribute
Duration) represents project elements.

A method engineer would use the metamodel by creating
clabjects and objects. Clabjects will be created from
powertype patterns, by instantiating the template class into
the object facet of the clabject and specialising the project
class into the class facet of the same clabject. This
combination of instantiation and subtyping is also the
essence of the materialization relationship proposed by
Pirotte et al. (1994). Objects will be created by regular
instantiation of resource classes.

Following our example, Task/*Kind could be instantiated
into the #WriteMethodCode clabject, composed of the
WriteMethodCode class facet (which inherits attribute
Duration from Task) plus the “WriteMethodCode” object
facet (which takes values Name = “WriteMethodCode”
and Purpose = “write source code that implements the
contract specified by the operation definition” from
TaskKind). Also, resource class Notation could be
instantiated into object “UML”, with values Name =
“UML” and some appropriate text for Description (Figure
9).

A software developer would use the methodology by
creating objects from the class facets of clabjects and by
referring to the object facets of clabjects and to resource
objects for additional information.

In the example shown in Figure 9, the class Write-
MethodCode (class facet of the corresponding clabject) is
instantiated into object WMC1 (which takes value
Duration = 2.5 hours). Also, the object “WriteMethod-
Code” (the object facet of the same clabject) can be

13

consulted for guidance. Finally, the object “UML” can
also be consulted as necessary when using that notation.

method

project

metamodel

#WriteMethodCode

+Duration

Task

WriteMethodCode

+Name
+Purpose

TaskKind

Name = WriteMethodCode
Purpose = Write source code...

 : TaskKind

«instanceOf»

Duration = 2.5 hours

WMC1 : WriteMethodCode

«instanceOf»

+Name
+Description

Notation

Name = UML
Description = The Unified...

 : Notation

«instanceOf»

Figure 9. Example of the interactions between metamodel,
method and project layers. Powertype patterns (Task/*Kind) and
clabjects (#WriteMethodCode) are shown, as well as a resource

element (object with Name = “UML”) and a project-level
element (object named WMC1).

4 Other Approaches

4.1 The Strict Metamodelling Paradigm
Most of the current metamodelling alternatives use a
similar approach, often called the “strict metamodelling
paradigm”: elements in any of the layers must be instances
of elements in the layer immediately above, bar the top one,
which is often described as “self-referencing”, i.e. it is an
instance of itself. The metamodels of UML OMG (2003),
SPEM OMG (2002b) and OPEN Firesmith and
Henderson-Sellers (2002) use this conceptualization, and
Atkinson and Kühne explic itly advocate it in Atkinson and
Kühne (2000b, 2002, 2003). Although these share a
layered architecture with our approach, the self-imposed
need of having only “instance-of” relationships crossing
layer boundaries make them of dubious utility in
real-world situations in which round-trip modelling (from
the metamodel to the project and back) and comprehensive
tool usage are present. In our view, this self-imposed
limitation, although commonly accepted unchallenged,
has its origins in a poor interpretation of the concept of
“representation”. Since the mid 1980s, when the ANSI
X3.138 “Information Resource Dictionary System”
standard ANSI (1989) was developed, each layer in a
metamodelling architecture was defined as a
representation of the layer immediately below. The
concept of representation admits many implementations
(through instantiation, specialisation, interface realisation,
etc.), but most existing metamodelling approaches have
chosen to equate it with instantiation (see e.g. discussion in
Pirotte et al. (1994)), an approach that has become an
unchallenged standard in OO modelling. The benefits of
considering other means of representation, such as
specialisation, are well demo nstrated in this paper.

Only two reasons come to mind why restricting the
interactions between layers to strict “instance-of”
relationships could be acceptable. On the one hand, it is
easier and quicker to implement tools that are based on a
simplistic interaction model. However, if our motivations
go beyond selling tools as quickly as possible, we should

look for more rigorous approaches. On the other hand,
once a large and inflexible standards body such as the
OMG has adopted a given approach, many authors find it
easier to follow it unquestioningly, even if it is flawed,
than to try to fix it.

Looking into the specific problems of the strict
metamo delling paradigm, the major issue is the following.
Metamodels are given as class mo dels (see UML, SPEM
or OPEN, for exa mple), and methodologies are
supposedly constructed from them by method engineers
through instantiation of metamodel classes. Once
methodologies are constructed, they are used by software
developers by, again, instantiating classes in the
methodology into objects in the project. This poses a
contradiction: methodologies must be composed of classes
(so software developers can instantiate them into project
objects), but the result of instantiating a metamodel is a
collection of objects, not classes. Where do the classes
come from? Most of the metamodelling standards and
guides reviewed by us make no mention of this, simply
assuming that objects will turn into classes magically.
Neither are the implications of this, especially with regard
to attributes and associations, explored.

In addition, the strict metamodelling paradigm advocates
metamodels that only represent the method layer, saying
nothing about the project layer. Following their approach,
there is no way in which a metamodel can exert control on
how the project layer will be organised. In a
powertype-based metamodelling approach, partitioned
types represent entities in the project layer, while
powertypes represent entities in the method layer. This is
called dual representation. Characteristics of both method
and project elements can be defined in the metamodel and
transmitted down the specialisation and instantiation
hierarchies, thus achieving a degree of control over both
method and project that cannot be obtained using strict
metamodelling alternatives.

The strict metamodelling paradigm, in this light, reflects a
desire for a simple world. Unfortunately, the real world is
not that simple. The strict metamodelling paradigm offers
an oversimplified solution that cannot cope with the real
needs of the real world.

4.2 Potency and Deep Instantiation
As an alternative to the problem derived from the strict
metamodelling approach for software development
approaches (outlined in Section 4.1), Atkinson and Kühne
have proposed the concepts of potency and deep
instantiation as a means to transmit features (attributes and
relationships) beyond a simple level in a specialisation
hierarchy Atkinson and Kühne (2001). In this, traditional
OO instantiation is seen as a special case (to be called
shallow instantiation) of a more generic mechanism called
deep instantiation, which operates between clabjects rather
than between classes and objects. When a clabject is
created by instantiation from another clabject, potency
determines how features are transmitted. For features with
potency > 0, a feature is created in the instance with its
potency decremented by 1. When the potency of a feature
becomes zero, we have a “value”, i.e. a slot in the case of
attributes and a link in the case of associations. This

14

contrasts to the traditional OO approach, in which a feature
of a class is “converted” into a value of an object whenever
the class is instantiated. For example, consider a class Task
with an attribute Duration. Usually, instances of Task will
be objects with a specific value for Duration. Using deep
instantiation, we could assign a potency of 2 to Duration,
so instances of Task will actually “inherit” the Duration
attribute as is, not getting a value. Such instances of tasks
would be clabjects, in which the potency of Duration
would be decremented to 1. Instances of these instances
would take values for Duration, since its potency would
reach zero.

The results of applying deep instantiation can be shown to
be equivalent to those from powertype metamodelling as
described here. The difference is that, in deep instantiation,
a single class is present in the metamodel layer for each
conceptual entity in the modelling domain. While this
could be regarded as simpler than the dual classes of both
powertyping and materialization, this duality permits more
explicit (and arguably more understandable) modelling of
a class and its categorization characteristics.

5 Conclusions
This paper has presented the rationale behind
powertype-based metamodelling and shown how this
approach emerges naturally when metamodelling is
considered in its entirety and within its intended usage
framework. The perspectives of software developers
(users of methodologies) and method engineers (users of
metamodels and creators of methodologies) are different,
and both must be supported. Both communities manage
different concepts that are, nevertheless, closely related.
Powertype-based metamodelling (and also the
materialization relationship) acknowledges this fact by
making use of pairs of classes to model method-level
concepts (such as TaskKind) and project-level concepts
(such as Task). It has been shown how each of these pairs
composes a powertype pattern that ties together both
concepts and, at the same time, allows for independent
usage. A metamodel mainly defined as a collection of
powertype patterns, such as the Standard Metamodel for
Software Development Methodologies SA (2004), is used
by method engineers creating clabjects in the method layer,
each clabject being a derivation of a given powertype
pattern. The class and object facets of the clabject
represent the same concepts for different communities and
usages: the class facet, a subtype of the partitioned type in
the powertype pattern, is useful for the software developer
to instantiate project-level objects from, while the object
facet, an instance of the powertype in the powertype
pattern, is useful for the method engineer (and associated
tools) to characterise the methodology as necessary.
Characteristics of other alternatives have also been
discussed, showing how the flexibility and degree of
control provided by a powertype-based approach cannot
be matched by these other methods.

6 Acknowledgements
The authors wish to thank the Australian Research Council
(grant numbers DP0211675 and DP0451213) for financial
support for this work. This is Contribution number 04/29

of the Centre for Object Technology Applications and
Research.

7 References
ANSI (1989): Information Resource Dictionary System,

X3.138, American National Standards Institute.
Atkinson, C. (1998): Supporting and applying the UML

conceptual framework. In «UML» 1998: Beyond
the Notation, Vol. 1618. BÉZIVIN, J. and
MULLER, P.-A. (eds). Springer-Verlag, Berlin,
21-36.

Atkinson, C. and Kühne, T. (2000a): Meta-level
independent modelling. In International
Workshop on Model Engineering at 14th
European Conference on Object-Oriented
Programming.

Atkinson, C. and Kühne, T. (2000b): Strict profiles: why
and how. In «UML» 2000: Advancing the
Standard , Vol. 1939. EVANS, A., KENT, S. and
SELIC, B. (eds). Springer-Verlag, Berlin,
309-322.

Atkinson, C. and Kühne, T. (2001): The essence of
multilevel metamodelling. In «UML» 2001:
Modeling Languages, Concepts and Tools, Vol.
2185. GOGOLLA , M. and KOBRYN, C. (eds).
Springer-Verlag, Berlin, 19-33.

Atkinson, C. and Kühne, T. (2002): Rearchitecting the
UML infrastructure. ACM Transactions on
Modeling and Computer Simulation, 12(4).
290-321

Atkinson, C. and Kühne, T. (2003): Model-driven
development: a metamodeling foundation. IEEE
Software, 20(5), 36-41.

Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M. and
Picco, G. P. (1993): Modeling and Improving an
Industrial Software Process. IEEE Transactions
on Software Engineering, 21(5): 440-453.

Dahchour, M. and Pirotte, A. (2002): Materialization and
its metaclass implementation. IEEE Transactions
on Knowledge and Data Engineering, 14(5):
1078-1094.

Firesmith, D.G. and Henderson-Sellers, B. (2002): The
OPEN Process Framework. London, Addison-
Wesley

Gershenson, C. (2002): Complex philosophy. Procs. First
Biennial Seminar on the Philosophical,
Methodological & Epistemological Implications
of Complexity Theory. La Habana, Cuba

González-Pérez, C.A. and Henderson-Sellers, B. (2005):
Templates and resources in software
development methodologies. Journal of Object
Technology, [in press, May/June 2005 issue].

Graham, I. (1995): A non-procedural process model for
object-oriented software development. Report on
Object Analysis and Design, 1(5): 10-11.

Kleppe, A., Warmer, J. and Bast, W. (2003): MDA
Explained: The Model Driven Architecture -
Practice and Promise. Reading, MA, Addison-
Wesley.

15

Martin, J. and Odell, J.J. (1992): Object-Oriented Analysis
and Design. Englewood Cliffs, NJ., Prentice-
Hall.

Martin, J. and Odell, J.J. (1995): Object-Oriented Methods:
A Foundation. Englewood Cliffs, NJ., Prentice-
Hall.

Odell, J.J. (1994): Power types. Journal of Object-
Oriented Programming, 7(2): 8-12.

OMG (2002a): Meta Object Facility (MOF) Specification,
formal/2002-04-03, Object Management Group.

OMG (2002b): Software Process Engineering Metamodel
Specification, formal/2002-11-14, Object
Management Group.

OMG (2003): Unified Modelling Language Specification,
formal/03-03-01, Object Management Group.

Pirotte, A., Zimányi, E., Massart, D. and Yakusheva, T.
(1994): Materialization: a powerful and
ubiquitous abstraction pattern. In 20th
International Conference on Very Large Data
Bases. BOCCA, J., JARKE, M. and ZANIOLO,
C. (eds). 630-641.

Podnar, I., Mikac, B. and Caric, A. (2000): SDL based
approach to software process modeling. In
EWSPT 2000. CONRADI, R. (ed). Berlin,
Springer-Verlag.

Rolland, C., Prakash, N. and Benjamen, A. (1999): A
multi-model v iew of process modelling.
Requirements Engineering Journal, 4(4):
169-187.

SA (2004): Standard Metamodel for Software
Development Methodologies, AS 4651-2004,
Standards Australia.

Seidewitz, E. (2003): What models mean. IEEE Software,
20(5): 26-31.

Störrle, H. (2001): Describing process p atterns with UML.
In Software Process Technology, Vol. LNCS
2077, Berlin, Springer-Verlag, 173-181.

16

