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Introduction. Let R be a Noetherian ring and I be a regular ideal in R.

(By ring we mean a commutative ring with unity, and by a regular ideal

we mean one that contains a nonzerodivisor.) Then the ideals of the form

In+1 :R I
n = {x ∈ R | xIn ⊆ In+1} increase with n. The union of this

family is an interesting ideal first studied by Ratliff and Rush in [RR]. Let

us denote:

Ĩ =
⋃
{In+1 :R I

n | n ≥ 1}.

Ratliff and Rush show in particular that Ĩ is the largest ideal for which, for

sufficiently large positive integers n, (Ĩ)n = In and hence that
˜̃
I = Ĩ. We

call regular ideals I for which I = Ĩ Ratliff–Rush ideals, and we call Ĩ the

Ratliff–Rush ideal associated with I. It is easy to see that an element a of

In+1 : In is integral over I, in the sense that there is an equation of the

form ak + b1a
k−1 + . . . + bk = 0, where bi ∈ I

i for i = 1, . . . , k. Therefore,

the ideal Ĩ is always between I and the integral closure I ′ of I, and hence

integrally closed ideals are Ratliff–Rush ideals. Ratliff and Rush observe

[RR, (2.3.4)] that the powers of an invertible ideal are Ratliff–Rush ideals,

so any principal ideal generated by a nonzerodivisor is a Ratliff–Rush ideal.

They also prove the interesting fact that for any regular ideal I of R, there

is a positive integer n such that for all k ≥ n, Ĩk = Ik [RR, (2.3.2)], i.e., all

sufficiently high powers of a regular ideal are Ratliff–Rush.

A regular ideal I is always a reduction of its associated Ratliff–Rush ideal

Ĩ, in the sense that I(Ĩ)n = (Ĩ)n+1 for some positive integer n. For the basic

facts on reductions and reduction numbers of ideals, we refer the reader to

[NR], [H1], and [H2]. In particular, if there is an element a of an ideal I

for which aIn = In+1 then aR is called a principal reduction of I and the

smallest n for which this equation holds is called the reduction number of

I. We will call a regular ideal I stable iff it has a principal reduction with

reduction number at most one, i.e., iff there is an element a of I for which
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aI = I2. (For a regular ideal in a one-dimensional local ring, this definition

is equivalent to that of Lipman [L, Definition 1.3 and Corollary 1.11].)

In Section 1 we discuss some general properties of Ratliff–Rush ideals,

consider the behavior of the Ratliff-Rush property with respect to certain

ideal and ring-theoretic operations, and try to indicate how one might deter-

mine whether or not a given ideal is Ratliff–Rush. Section 2 centers around

the fact that the associated Ratliff–Rush ideal Ĩ of a nonzero ideal I in a

Noetherian domain R can be realized as the contraction to R of the exten-

sion of I to an appropriate extension domain of R. This is especially useful

in the case where R is one-dimensional. We illustrate with a number of ex-

amples involving one-dimensional local domains. We show in Theorem 2.8

that every Ratliff–Rush ideal of a one-dimensional local domain R is either

principal or integrally closed iff there are no rings properly between R and

the integral closure of R. In [RR, (2.5)], a one-dimensional local domain

in which every ideal is either principal or integrally closed provides an ex-

ample where every nonzero ideal is Ratliff–Rush. In Example 2.10 (ii), we

give examples where every Ratliff–Rush ideal is either principal or integrally

closed, but there are nonzero ideals that are not Ratliff–Rush.

Motivated by another comment of Ratliff and Rush [RR, (2.5)], we clas-

sify in Section 3 the Noetherian domains in which every nonzero ideal is

Ratliff–Rush. It is easily seen that a Noetherian domain with this prop-

erty is of dimension at most one, and that the condition is preserved under

localization. We show in Theorem 3.9 that a one-dimensional local do-

main R with integral closure R′ has the property that every nonzero ideal

in R is Ratliff–Rush iff every nonzero ideal in R is stable, and that these

conditions are almost equivalent to the following: for every x ∈ R′, the

dimension of R[x]/MR[x] over R/M is at most two, and for every x, y ∈ R′,

the dimension of R[x, y]/MR[x, y] over R/M is at most three. If R′ is a

finitely generated R-module, then every nonzero ideal in R is Ratliff–Rush

is equivalent to R having multiplicity at most two, but an example of Sally

and Vasconcelos in [SV2, Example 5.4, page 335] shows that there exists a

one-dimensional local domain of multiplicity three in which every nonzero

ideal is stable. It follows from Theorem 3.3 of [R] that a one-dimensional

local domain (R,M) of multiplicity greater than two in which every nonzero

ideal is Ratliff–Rush satisfies a number of stringent conditions, which are

recalled and supplemented in Corollary 3.11 below.

Following the suggestion of Bass [B1, page 324], we use for examples
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and illustrations complete one-dimensional local domains of the form R =

k[[ts : s ∈ S]] consisting of formal power series in the indeterminate t with

coefficients from a field k and exponents from an additive submonoid S of

the nonnegative integers that contains all sufficiently large integers; and we

consider ideals in R generated by monomials tn. The minimal number of

generators of the maximal ideal of such an R is the minimal number of

generators of the monoid S. The multiplicity of R is the smallest positive

integer in S. The integral closure of R is k[[t]], so the integrally closed ideals

in R consist of all elements in R with order (= degree of the smallest-degree

nonzero term) greater than or equal to some integer. Any ideal I in R has a

principal reduction; if I is generated by monomials, then one such reduction

is tnR where n is the smallest order among the nonzero elements of I (also

called the order of the ideal I).

In the present paper, the rings under consideration will usually be integral

domains, so that all nonzero ideals are regular. Our use of the term local

ring includes the Noetherian hypothesis. We use ′ to denote integral closure

of a ring in its total quotient ring or integral closure of an ideal within its

ring (not within the total quotient ring).

1. General properties of Ratliff–Rush ideals.

(1.1) If I is a stable ideal in a Noetherian ring R, then I is Ratliff-Rush.

(For, given any positive integer n, let x ∈ In+1 : In; then xan ∈ xIn ⊆

In+1 = anI, and since a is a nonzerodivisor, we see that x ∈ I.) Since the

set of stable ideals is closed under product (for, if I2 = aI and J2 = bJ ,

then (IJ)2 = (ab)(IJ)), all powers of I are also Ratliff–Rush ideals. On the

other hand, if the regular ideal I in the Noetherian ring R has a reduction J

for which JI is Ratliff–Rush, then I has reduction number at most one with

respect to J . (For, if JIn = In+1, then (JI)n+k = (I2)n+k for all k ≥ 0, so

I2 ⊆ J̃I = JI ⊆ I2.) In particular, if I has a principal reduction aR and

aI is Ratliff–Rush, then I is stable and all powers of I are Ratliff-Rush.

(1.2) For a proper regular ideal I in the Noetherian ring R, we denote

by G(I) the graded ring (or form ring) R/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . . . All

powers of I are Ratliff–Rush ideals iff its positively graded ideal G(I)+ =

I/I2 ⊕ I2/I3 ⊕ . . . contains a nonzerodivisor. For, if G(I)+ contains a

nonzerodivisor, then G(I)+ is not contained in any associated prime of 0 in

G(I), and hence neither is I/I2. Hence for some positive integer s, there

exists a nonzerodivisor a∗ in Is/Is+1. If a is a preimage of a∗ in Is, then

In+ks : ak = In for all positive integers n, k, so In+ks : Iks = In for all n, k,
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and hence by [RR, (2.3.1)] all powers of I are Ratliff–Rush. Conversely, if

G(I)+ consists of zerodivisors, then G(I)+ is contained in some associated

prime of 0. Hence for some nonnegative integer s there exists a homogeneous

element a∗ in Is/Is+1 such that a∗G(I)+ = 0. If a is a preimage of a∗ in

Is and J = Is+1, then aJ ⊆ J2, so a ∈ J̃ − J . (In [Sh, Theorem 4], Shah

provides a proof for this fact in the case that (R,M) is quasi-unmixed local,

R/M is infinite, and I is M -primary.) In particular, these conditions hold

for the stable ideals of (1.1). Also, if I is generated by a regular sequence

(or more generally by a quasiregular sequence in the sense of Matsumura

[M, pages 124–125]), then since G(I) is (isomorphic to) a polynomial ring

over R/I with indeterminates the images of the generators, I and its powers

are Ratliff–Rush ideals; indeed, In+k : Ik = In for all positive integers n, k.

(1.3) If (R,M) is a Cohen–Macaulay local ring of positive dimension and

I is an M -primary ideal with reduction number at most one, then every

power of I is a Ratliff–Rush ideal. For, by [V, Lemma 1 and Theorem 1],

the graded ring G(I) is Cohen-Macaulay; in particular, G(I)+ contains a

nonzerodivisor, so I and all its powers are Ratliff–Rush ideals.

(1.4) Let (R,M) be a local ring and I a regular M -primary ideal. Since

Ĩ is the unique largest ideal in R with the property that (Ĩ)n = In for

sufficiently large n, in this setting Ĩ can be characterized as the unique

largest ideal containing I and having the same Hilbert polynomial PI(n)

(= length(R/In) for sufficiently large n) as I. If R is quasi-unmixed of

dimension d and R/M is infinite, it is shown in [Sh] that there exist unique

largest ideals Ik, k = 1, . . . , d, such that I ⊆ Id ⊆ . . . ⊆ I1 ⊆ I
′ (where I ′

denotes the integral closure of I) and the top k+1 coefficients of the Hilbert

polynomials of Ik agree with those of I. It follows from their maximality

that each of these coefficient ideals of I is a Ratliff–Rush ideal.

(1.5) Let R,S be Noetherian rings and f : R → S define S as an R-

algebra. Suppose I is a regular ideal inR such that IS is a Ratliff–Rush ideal

in S and I = f−1(IS). Then I is Ratliff–Rush in R. (For, if a ∈ In+1 :R I
n,

then f(a) ∈ (IS)n+1 :S I
n = (IS)n+1 :S (IS)

n, so f(a) ∈ IS because IS

is Ratliff–Rush, so a ∈ I.) In particular, if f : R → S is surjective, then

the preimage in R of a Ratliff–Rush ideal in S, if regular, is itself Ratliff–

Rush. The surjectivity hypothesis is necessary here: Example 1.6 below

shows that, in general, a nonzero ideal I in a Noetherian domain R may

be the contraction of a Ratliff–Rush ideal in a finitely generated birational

integral extension of R, and yet I is not a Ratliff–Rush ideal.
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Example 1.6. Let R = k[[t4, t5]], S = R[t6], and J = t11S. Then J is a

Ratliff–Rush ideal in S, but I = J ∩R = (t15, t16, t17)R is not Ratliff–Rush

since t18 ∈ R− I and I2 = (I + t18R)2.

(1.7) Let R, S, and f be as in (1.5). Suppose that S is flat over R. Then

for any regular ideal I in R, ĨS = ĨS, because (IS)n+1 :S (IS)
n = (In+1 :R

In)S [M, Theorem 7.4, page 48]. In particular, if I is Ratliff–Rush, then

so is IS. It follows that I is Ratliff–Rush iff IRP is Ratliff–Rush for every

prime ideal or every maximal ideal P of R [LM, Proposition 3.13, page 70]

[AM, Proposition 3.8, page 40]. In fact, I is Ratliff–Rush iff IRP is Ratliff–

Rush for every associated prime P of I [M, Exercise 6.4, page 42]. Now,

suppose S is faithfully flat over R (so f may be regarded as an inclusion);

then Ĩ = ĨS ∩ R for any regular ideal I in R, and IS is a Ratliff–Rush

ideal in S iff I is Ratliff–Rush in R. This follows because faithful flatness

assures that every ideal of R is the contraction of its extension to S [M,

Theorem 7.5, page 49].

(1.8) Let I be a regular ideal in a Noetherian ring R, and let a be an ele-

ment of Is−Is+1 such that the image a∗ of a in Is/Is+1 ⊆ G(I) is a nonzero-

divisor. (Thus, all powers of I are Ratliff–Rush ideals.) Then J = Is+1+aR

is also a Ratliff–Rush ideal. To see this, we note first that the hypothesis on

a∗ means that Ik+s : a = Ik for each positive integer k. Now since it is clear

that, for every nonnegative integer n, J ⊆ Jn+1 : Jn ⊆ Jn+1 : an, the result

will follow when we show that Jn+1 : an ⊆ J . We proceed by induction

on n, the case n = 0 being clear. So assume n > 0 and Jn : an−1 ⊆ J ,

and let x ∈ Jn+1 : an. Write anx =
∑n+1
j=0 a

jbj where bj ∈ (I
s+1)n+1−j .

Then since a(an−1x −
∑n+1
j=1 a

j−1bj) = b0 ∈ (I
s+1)n+1, the hypothesis on

a∗ shows that an−1x −
∑n+1
j=1 a

j−1bj ∈ I
(s+1)(n+1)−s ⊆ (Is+1)n, so that

(writing k = j − 1) we get an−1x ∈
∑n
k=0 a

k(Is+1)(n+1)−(k+1) + (Is+1)n =∑n
k=0 a

k(Is+1)n−k = Jn, and we see that x ∈ Jn : an−1 ⊆ J .

(1.9) If I, J are comaximal Ratliff–Rush ideals, then their product is

again Ratliff–Rush. For, since the powers of I are comaximal with the
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powers of J , so that products are intersections, we have:

(IJ)n+1 : (IJ)n = (In+1 ∩ Jn+1) : InJn

= ((In+1 : In) : Jn) ∩ ((Jn+1 : Jn) : In)

= (I : Jn) ∩ (J : In)

= (I : (I + Jn)) ∩ (J : (J + In))

= (I : R) ∩ (J : R)

= I ∩ J

= IJ .

(1.10) It should be noted that, although the process of passing from I to Ĩ

has some of the properties of a ∗-operation on ideals as described in [G, §32]

(or a ′-operation in [ZS, page 355]), it does not have all these properties. In

particular, let I be an ideal in a Noetherian domain R, and let a ∈ R. Then

it need not be the case that ãI = aĨ. Indeed, even if I and all its powers

are Ratliff–Rush and aR is a minimal reduction of I, then by (1.1) if the

reduction number of I is greater than one (i.e., I is not stable), aI will not

be Ratliff–Rush. Therefore the family of Ratliff–Rush ideals of an integral

domain is not closed, in general, under isomorphism. Nor is it closed under

intersection; in particular, I ⊆ J does not imply Ĩ ⊆ J̃ . The following

example exhibits both these phenomena. (We use the symbol < between

sets to denote proper inclusion.)

Example 1.11. Let R = k[[t3, t4]], where t is an indeterminate over the

field k, and let M = (t3, t4)R, the maximal ideal of R. Then since R ∼=

k[[x, y]]/(y3 − x4) and the graded ring of (x, y)k[[x, y]] in k[[x, y]] is (iso-

morphic to) k[x, y], it follows from [M, Exercise 14.3, page 115] or [Ku,

Lemma 5.3, page 150] that G(M) ∼= k[x, y]/(y3)k[x, y]. Thus G(M) is

Cohen-Macaulay, so G(M)+ contains a nonzerodivisor. It follows that

all the powers of M are Ratliff–Rush ideals. We have t8 ∈ t̃3M , since

(t3M)2 = M4, but t8 /∈ t3M , so t3M < t̃3M . Moreover, the ideal t8M =

(t11, t12)R = t3R∩t8R is an intersection of two principal (and hence Ratliff–

Rush) ideals of R, but t13 ∈ (t11, t12, t13)R− t8R ⊆ t̃8M − t8M .

(1.12) In certain cases, however, we can see that the product of a regular

principal ideal aR and a Ratliff–Rush ideal I is again Ratliff–Rush:

(1) Since stable ideals are closed under product, the product of two

stable ideals (one of which can be principal) is again Ratliff–Rush

by (1.1).
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(2) If aR is a “root-closed” ideal (i.e., bn ∈ anR implies b ∈ aR), then

for any Ratliff–Rush ideal I of R, aI is again Ratliff–Rush. (For, if

b ∈ ãI, say (bR + aI)n = (aI)n, then bn ∈ (aI)n ⊆ anR, so b = ar,

say; and (rR + I)n = In, so since I is Ratliff–Rush, r ∈ I and

b ∈ aI.) We remark that if a is a product of prime elements in a

Noetherian domain R, then aR is a root-closed ideal. Also nonzero

principal ideals in an integrally closed domain are integrally closed

and hence root-closed. Thus, in an integrally closed Noetherian

domain, the product of a nonzero principal ideal and a Ratliff–Rush

ideal is again Ratliff–Rush.

(3) On the other hand, for a nonzero ideal I and a nonzerodivisor a in R,

if aI is Ratliff–Rush, then I is Ratliff–Rush. For, if I is not Ratliff–

Rush, say I < In+1 : In, then aI < a(In+1 : In) ⊆ (aI)n+1 : (aI)n,

so aI is also not Ratliff–Rush.

(1.13) It would be interesting to have conditions on a Noetherian domain

R in order that the powers of any Ratliff–Rush ideal in R again be Ratliff–

Rush. By (1.2), this is equivalent to the condition that for each proper

Ratliff–Rush ideal I in R, the positively graded ideal G(I)+ of the graded

ring G(I) contains a nonzerodivisor. It would also be interesting to know

when the family of Ratliff–Rush ideals in R is closed under product, or when

every Ratliff–Rush ideal in R is stable. (By (1.1), if every Ratliff–Rush ideal

in R is stable, then the Ratliff–Rush ideals in R are closed under product.)

Lipman shows in [L, Theorem 2.2] that a one-dimensional local domain R

is an Arf ring iff every integrally closed ideal in R is stable, or equivalently

iff for every local ring S infinitely near to R the embedding dimension of S

is equal to the multiplicity of S. It would be interesting to know for which

Arf rings R it is the case that every Ratliff–Rush ideal in R is stable.

(1.14) Let (R,M) be a one-dimensional Cohen-Macaulay local ring and

let I be an M -primary ideal in R. Lipman in [L, Corollary 1.4] shows

that all sufficiently high powers of I are stable, and that In is stable iff

length(Is/Is+1) is the multiplicity of I for all s ≥ n [L, Corollary 1.6].

In particular, the maximal ideal M is stable iff the minimal number of

generators of the powers of M is constant.

(1.15) Let I be a regular ideal in a local ring R. Eakin and Sathaye [ES,

Corollary 1, page 446] show that the following statements are equivalent:

(i) Some power of I is stable. (ii) There is a bound on the number of

generators of powers of I. (iii) For some positive integer n, In can be
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generated by n elements. Sally and Vasconselos [SV2, proof of Theorem 3.4]

show that if both I and I2 are two-generated, then I is stable. Example 1.16

shows, however, that it can happen, that all powers of I are minimally

generated by three elements, and yet I is not stable or even Ratliff–Rush.

Example 1.16. Let R = k[[t3, t10, t11]] and I = (t9, t10, t14)R. Then Ĩ =

(t9, t10, t11)R, so I is not Ratliff–Rush. But all powers of I are minimally

generated by three elements.

(1.17) Let (R,M) be a one-dimensional local domain. We observe that

the fact thatM is stable does not imply that R is an Arf ring or that powers

of integrally closed ideals are necessarily Ratliff–Rush.

(i) InR = k[[t3, t7, t11]], we haveM2 = t3M , and the ideal I = (t6, t7, t11)R

is integrally closed, but it is not stable, since t14 ∈ I2 − t6I.

(ii) In R = k[[t4, t11, t17, t18]], we have M2 = t4M , and the ideal I =

(t11, t12, t17, t18)R is integrally closed, but I2 is not integrally closed or even

Ratliff–Rush, since t25I2 ⊂ I4, so t25 ∈ Ĩ2 − I2.

(1.18) The Briançon–Skoda theorem(s) [LS] state(s) that, under some

hypotheses of regularity, the integral closure of a certain power of an ideal

is contained in the ideal. Since the Ratliff–Rush ideal associated to an

ideal is contained in the integral closure, it follows that these hypothe-

ses also imply that the Ratliff–Rush ideal associated to that power is also

contained in the ideal. It would be interesting to have information more

generally on the smallest positive integer n such that Ĩn ⊆ I. If (R,M) is

a one-dimensional local domain having multiplicity e > 1, then by [SV2,

Proposition 2.2 and Theorem 2.5], for each nonzero ideal I of R, Ie−1 is

stable and hence Ratliff–Rush, so Ĩe−1 ⊆ I. But it is not true in general

for an ideal I of a one-dimensional local domain R that Ĩ2 ⊆ I: For exam-

ple, suppose R = k[[t5, t6]], M = (t5, t6)R (the maximal ideal of R), and

I = t5M = (t10, t11)R. Then t24 ∈M4 = Ĩ2, but t24 6∈ I.

(1.19) To see why it is natural to require that Ratliff–Rush ideals be

regular, we observe that the generator of a principal ideal in a nonzero

Noetherian ring satisfying the Ratliff–Rush condition is a nonzerodivisor:

It suffices to show this in localizations at maximal ideals containing the

principal ideal. So suppose a is a nonunit in a (Noetherian) local ring R

such that aR =
⋃
{an+1R :R a

nR | n ≥ 1} (so a 6= 0, because R 6= 0), and

that ab = 0. Then b ∈ a2R : aR = aR, say b = ab1. Since a
2b1 = 0, we see

that b1 ∈ a
3R : a2R = aR, say b1 = ab2. Continuing in this way, we see

that b ∈
⋂
{anR | n ≥ 1} = 0; so a is a nonzerodivisor.



THE RATLIFF–RUSH IDEALS IN A NOETHERIAN RING 9

2. The associated Ratliff–Rush ideal as a contraction. In this sec-

tion, R will always denote a Noetherian domain. We begin with some results

closely related to Corollary 3.10 of [MRR] and Theorem 2.4 of [MR].

Fact 2.1. Let I be a nonzero proper ideal in a Noetherian domain R. The

associated Ratliff–Rush ideal Ĩ of I is the contraction to R of the extension

of I to its “blowup” B(I) = {R[I/a]P | a ∈ I − 0, P ∈ Spec(R[I/a])} (i.e.,

Ĩ =
⋂
{IS∩R | S ∈ B(I)}, or equivalently Ĩ =

⋂
{IR[I/a]∩R | a ∈ I−0}).

Recall. B(I) is the set of elements minimal with respect to domination

among the local birational extensions S of R for which IS is principal.

Proof. Let x ∈ Ĩ, i.e., xIn ⊆ In+1 for some n. For each S in B(I), IS is

principal, say IS = aS for some a in I − 0. Thus, xanS ⊆ an+1S, and so

x ∈ aS = IS. Since S was any element of B(I), x is in the contraction of

the extension of I to its blowup.

Conversely, suppose x is in the contraction of I from its blowup. Take

a in I − 0; since x ∈ IR[I/a]P = aR[I/a]P for each P in Spec(R[I/a]),

x ∈ aR[I/a] [LM, Proposition 3.13, page 70] [AM, Proposition 3.8, page 40],

i.e., x = af(b1/a, . . . , bn/a, 1) where b1, . . . , bn is a generating set for I and

f is a homogeneous polynomial in n+1 variables over R, of degree n(a), say.

Multiplying both sides by an(a) shows xan(a) = af(b1, . . . , bn, a) ∈ I
n(a)+1.

Thus if m = n(b1) + . . .+ n(bn), we have xI
m ⊆ Im+1, i.e., x ∈ Ĩ. �

(2.2) For a more careful analysis of the Ratliff–Rush ideal Ĩ associated

to I, it is desirable to sharpen Fact 2.1 to get Ĩ to be contracted from one

affine piece of the blowup of I. In G(I), write a primary decomposition of

the zero ideal: 0 = q1 ∩ . . . ∩ qs ∩Q1 ∩ . . . ∩Qt, where the radicals of the

primary ideals Qi contain G(I)
+ and the radicals of the primary ideals qi

do not contain G(I)+. (Note that G(I)+ is not nilpotent in G(I), since the

powers of I properly descend. Hence there is at least one qi.) Then Ĩ is

the preimage in R of q1 ∩ . . .∩qs ∩R/I, where R/I is regarded as the 0-th

homogeneous piece of G(I). For, it is clear that Ĩ is the preimage in R of

the annihilator of (G(I)+)k for sufficiently large k; and for large k we have
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(G(I)+)k ⊆ Q1 ∩ . . . ∩Qt, so taking colons in G(I), we have

0 : (G(I)+)k = (q1 ∩ . . . ∩ qs ∩Q1 ∩ . . . ∩Qt) : (G(I)
+)k

=
(
q1 : (G(I)

+)k
)
∩ . . . ∩

(
qs : (G(I)

+)k
)

∩
(
Q1 : (G(I)

+)k
)
∩ . . . ∩

(
Qt : (G(I)

+)k
)

= q1 ∩ . . . ∩ qs ∩G(I)

= q1 ∩ . . . ∩ qs .

Since an ideal contained in a finite union of primes is contained in one

of them, for some positive integer n there exists an element a of In − In+1

for which the image a∗ in In/In+1 ⊆ G(I) is not in the radical of any

qi. Then as above 0 : (a
∗)k = q1 ∩ . . . ∩ qs for sufficiently large k. By

the description of Ĩ in terms of the qi’s, it follows that I
nk+1 : ak = Ĩ.

Therefore Ĩ = IR[In/a] ∩ R, the contraction of the extension of I to one

affine piece R[In/a] of the blowup B(In) = B(I). Also, if we let P vary

over the associated primes of IR[In/a], we see that Ĩ is the contraction to

R of the extension of I to a finite number of the local rings in B(I). (We

remark that the above condition on a is equivalent to the statement that a

is superficial of order n for I, in the sense of [ZS, page 285]. Our discussion

of an ideal in a Noetherian domain is similar to theirs of an open ideal in

a semilocal ring. Also, it is interesting to compare the realization of Ĩ as

the colon ideal Ink+1 : ak with the result of Shah in [S, Theorem 3]: If

(R,M) is a quasi-unmixed local ring of dimension d and I is an M -primary

ideal with associated coefficient ideals Ik, k = 1, . . . , d, as in (1.4), then

for a certain minimal reduction (x1, . . . , xd)R of a certain power I
n of I,

Ik = I
n : (x1, . . . , xk)R for each k = 1, . . . , d.)

(2.3) If I is a nonzero proper ideal of a one-dimensional local domain

(R,M), then the blowup B(I) has an especially nice form. The ideal I may

not have a principal reduction; but as noted in (1.14), some power In of

I is stable, so In does have a principal reduction, say aR. The blowup

B(In) = B(I) regarded as a model [ZS, page 116] is affine over R with

R[In/a] as ring of global sections, i.e., all the rings in this blowup are

localizations of the single affine piece R[In/a]. (This follows because if S is

a local ring between R and its field of fractions for which InS is principal,

then the fact that aR is a principal reduction of In implies InS = aS, and

hence that R[In/a] ⊆ S.) Thus, I or any power Ik of I is Ratliff–Rush iff it

is contracted from R[In/a]. In what follows, when we speak of the blowup

of a nonzero proper ideal of a one-dimensional local domain, we will mean
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this ring of global sections. We remark that if a suitably large power In of

I is taken so that In is stable, and if a in In is such that aIn = I2n, then

the blowup ring R[In/a] is the fractional R-ideal In/a, and the minimal

number of generators of In as an ideal in R is the same as the minimal

number of generators of R[In/a] as an R-module. Since the blowup of I

is a finitely generated R-module, it is a subring of the integral closure of

R. We also note that since the extension of I to its blowup has a principal

power, and the blowup is semilocal, the extension of I must be invertible

and therefore principal [Ka, Theorem 60, page 37]; it may not be possible,

however, to choose a generator from the elements of I if the residue field

R/M of R is finite and the integral closure R′ of R has more maximal ideals

than the cardinality of R/M . Indeed, I has a principal reduction iff IR′ is

generated by an element of I. (We remark that, in one of the power series

rings R described in the introduction, if an ideal I generated by monomials

has order n, then the blowup of I is formed by adjoining to R the elements

tm−n as tm varies over the other generators of I. In particular, if I has

order n and tn+1 ∈ I, then the blowup of I is the integral closure k[[t]] of

R, so Ĩ is the integral closure of I; cf. Corollary 2.7 below.)

The observations in the above paragraph imply the following:

Proposition 2.4. Let (R,M) be a one-dimensional local domain and let

R′ denote the integral closure of R. If I and J are stable ideals in R with

principal reductions aR and bR, respectively, and if I and J have the same

blowup, then I/a = R[I/a] = R[J/b] = J/b, so bI = aJ . Conversely, if

S is a subring of R′ containing R and finitely generated as an R-module,

say by 1, b1/a, . . . , bn/a where a, bi ∈ R, then S is the blowup of the stable

ideal (a, b1, . . . , bn)R. It follows that the subrings of R
′ containing R that

are finitely generated R-modules are in one-to-one correspondence with the

isomorphism classes of stable ideals of R. In particular, there are only

finitely many isomorphism classes of stable ideals of R iff there are only

finitely many subrings of R′ containing R that are finitely generated R-

modules.

Example 2.5. Suppose k is an infinite field and R = k[[t4, t5]]. For a ∈ k,

let Sa = R[t
2 + at3]. If a, b are distinct elements of k, then Sa ∩ Sb =

R, while Sa[Sb] = k[[t
2, t3]]. Therefore {Sa}a∈k is an infinite family of

distinct finitely generated R-subalgebras of k[[t]]. Hence there are infinitely

many isomorphism classes of stable ideals in R. On the other hand, if

S = k[[t3, t4]], the only rings properly between S and k[[t]] are the rings S[t5]
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and S[t2]. Hence there are (including nonzero principal ideals) precisely

four distinct isomorphism classes of stable ideals in S. The ring k[[t3, t4]] is

considered in more detail in Example 2.14 below.

Proposition 2.6. Let I be a nonzero proper ideal of a one-dimensional

local domain R, and let S be the blowup of I. If T is an R-subalgebra of R′

such that InT ∩R ⊆ Ĩn for infinitely many positive integers n, then T ⊆ S.

Therefore, S is the unique maximal subring of the integral closure R′ of R

for which Ĩn = InS ∩R for each positive integer n,

Proof. It follows from Fact 2.1 that Ĩn = InS∩R for each positive integer n.

Let T be an R-subalgebra of R′ for which InT∩R ⊆ Ĩn for infinitely many n;

to see that T ⊆ S, it suffices to show this when T is finitely generated over

R. Let a be a generator of IS. Then a is in the Jacobson radical of S, so for

sufficiently large n, an is in the conductors of both T and S into R. Thus,

for some n, anT ⊆ InT ∩R ⊆ Ĩn = InS ∩R = anS ∩R = anS. Cancelling

an yields the result. �

In the proof of the following corollary, we use the fact that in a one-

dimensional Noetherian domain R, the integral closure I ′ of an ideal I is

the contraction to R of the extension of I to the integral closure R′ of R.

This follows from the fact that every ideal in the Dedekind domain R′ is

integrally closed.

Corollary 2.7. Let (R,M) be a one-dimensional local domain with integral

closure R′, and let I be a nonzero proper ideal of R. Then the following

conditions are equivalent:

(i) Ĩn = (In)′, the integral closure of In, for all positive integers n.

(ii) Ĩn = (In)′ for infinitely many n.

(iii) The blowup of I is R′.

In particular, R′ is a finitely generated R-module iff there exists a nonzero

proper ideal I such that Ĩn = (In)′ for infinitely many positive integers n, or

equivalently, such that all sufficiently high powers of I are integrally closed.

Proof. (i) ⇒ (ii): Clear. (ii) ⇒ (iii): Apply Proposition 2.6 and the above

remark. (iii) ⇒ (i): Apply the above remark. �

We remark that for R as in (2.7), the fact that an ideal I in R is integrally

closed, or even integrally closed and stable, does not imply that the blowup

of I is R′. For example, if R = k[[t3, t5, t7]], then the maximal ideal M =

(t3, t5, t7)R is integrally closed and stable, but the blowup ofM is k[[t2, t3]].
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Ratliff and Rush [RR, (2.5)] note that a domain in which every ideal is

either principal or integrally closed is one in which every nonzero ideal is

what we are calling a Ratliff-Rush ideal. The following corollary of Proposi-

tion 2.4 describes the one-dimensional local domains in which every Ratliff–

Rush ideal is either principal or integrally closed. But in Example 2.10 (ii)

below we show that this property does not imply that every ideal is either

principal or integrally closed.

Theorem 2.8. Let (R,M) be a one-dimensional local domain. Every Ratliff–

Rush ideal of R is either principal or integrally closed iff there are no rings

properly between R and its integral closure R′.

Proof. If there are no rings properly between R and R′, then since the

blowup of a nonprincipal ideal properly contains R, the blowup of a non-

principal Ratliff–Rush ideal must be R′, so by Corollary 2.7 the ideal is

integrally closed. Conversely, if there are nonzero elements a, b of R for

which R < R[a/b] < R′, then all but finitely many powers of the ideal

(a, b)R have associated Ratliff–Rush ideals that are neither principal (for,

no principal ideal can be contracted from a properly larger extension within

the field of fractions) nor integrally closed (by Corollary 2.7). �

(2.9) Suppose that (R,M) is a one-dimensional local domain and there

are no rings properly between R and its integral closure R′. Then R′ has

at most two maximal ideals; for, if R′ had three distinct maximal ideals

and x were taken to be in two of these maximal ideals but not the third,

then two of the maximal ideals in R′ would have the same intersection

M + xR[x] with R[x], but R[x] would have at least two maximal ideals,

so R[x] would be a ring properly between R and R′. Suppose first that

R′ has two maximal ideals. Then R′/MR′ has dimension 2 as a vector

space over R/M : For, if MR′ has primary decomposition MR′ = Q1 ∩Q2,

then R′/MR′ ∼= R′/Q1 ⊕ R
′/Q2; if either summand, say R

′/Q1, properly

contained its image ofR/M , then the preimageR+Q1 inR
′ ofR/M inR/Q1

would be a ring properly between R and R′. Therefore R has multiplicity

two [ZS, page 300], so by Corollary 3.6 below, it follows that every nonzero

ideal in R is a Ratliff–Rush ideal. Now suppose that R′ is local (and hence

a discrete rank-one valuation domain — which we abbreviate, as usual, by

DVR — with principal maximal ideal M ′) and the residue field R/M of R

is algebraically closed. Then the residue field of R′ is algebraic over and

hence equal to R/M . Thus, either (1) MR′ = M ′, and hence R = R′ by

Nakayama’s Lemma [M, Corollary, page 8]; or (2) MR′ = (M ′)2, for, if
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MR′ < (M ′)2, then R+(M ′)2 would be a ring properly between R and R′.

In the latter case R′/MR′ = R′/(M ′)2 again has dimension 2 as a vector

space over R/M (with basis the images of 1 and a generator of M ′), R

has multiplicity two [ZS, page 300], and every nonzero ideal in R is Ratliff–

Rush. On the other hand, as we illustrate in Example 2.10 (ii), if the residue

field of R is not algebraically closed, then the condition that every Ratliff–

Rush ideal in R be either principal or integrally closed does not restrict the

multiplicity of R and R may have nonzero ideals that are not Ratliff–Rush.

Examples 2.10. One-dimensional local domains R for which there are no

rings properly between R and its integral closure:

(i) Let k be any field and t be an indeterminate. Then the local rings of

the cusp k[t2, t3](t2,t3) and of the node k[t(t−1), t
2(t−1)](t(t−1),t2(t−1)) have

the desired properties. In these two examples, the ring has multiplicity two,

and every nonzero ideal in R is Ratliff–Rush.

(ii) For any integer n > 1 there is a finite algebraic field extension k ⊂ L

of degree n with no intermediate fields. For instance, k ⊂ L could be chosen

to be separable of degree n and such that the Galois group of the normal

closure of L over k is the symmetric group on n letters; since there are no

subgroups properly between the symmetric group on n letters and one of

its subgroups of index n, i.e., the stabilizing subroup of one of the letters,

there are no fields between k and L. Let t be an indeterminate over L.

Then the subring R of the power series ring L[[t]] consisting of those power

series with constant term in the smaller field k, i.e., R = k + tL[[t]], is a

domain with the desired property. In this case, the multiplicity of R is n

and if n > 2, there do exist nonzero ideals of R which are not Ratliff–Rush.

For if x ∈ L− k, then L = k(x), and I = (t, xt)R has the maximal ideal of

R as its associated Ratliff–Rush ideal, so x2t ∈ Ĩ − I.

(2.11) Suppose (R,M) is a one-dimensional local domain, I is a nonzero

proper ideal of R, and S is the blowup of I. From the result of Lipman men-

tioned in (1.14), all sufficiently high powers of I are stable. If In is stable

and aIn = I2n, then S = In/a and the minimal number of generators of In

is the same as the minimal number of generators of S as an R-module; by

Nakayama’s lemma, this is the vector space dimension of S/MS over R/M .

Therefore, for all sufficiently large n, the minimal number of generators of

In = Ĩn is the cardinality of S/MS as a vector space over R/M . We remark

that this stable value is always at least as large as the minimal number of

generators of I. For, the minimal numbers of generators of I and of the
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R-module S do not change if we change the base ring R by tensoring with

a faithfully flat extension; and as discussed in (3.3) below, there is a faith-

fully flat extension R(X) of R for which IR(X) has a principal reduction

fR(X). Since the blowup S⊗RR(X) now has the form R(X)[IR(X)/f ], it

is generated as an R(X)-algebra by one fewer than the minimal number of

generators of I. If S properly contains R, i.e., if the ideal I is not principal,

then the number of generators for S as an R-module is at least one greater

than the number of generators of S as an R-algebra. (For, since any set of

preimages in S of an R/M -basis for S/MS is a generating set for S as an

R-module, 1 is an element of a minimal generating set for S.) Therefore the

minimal number of generators of I is less than or equal to this stable value

of the minimal number of generators of high powers of I. As is illustrated in

Example 2.12, it can happen that a given element of I is part of a minimal

generating set for I but not part of a minimal generating set for Ĩ.

Example 2.12. Let R = k[[t4, t5, t11]] and I = (t8, t9, t15)R. Then the

blowup of I is k[[t]], so Ĩ = (t8, t9, t10, t11)R is the integral closure of I.

Thus, t15 is part of a minimal generating set for I but is not part of a

minimal generating set for Ĩ.

General Example 2.13. Let (R,M) be a one-dimensional Gorenstein local

domain that is not integrally closed, and let K be its field of fractions. Then

M :K M = {x ∈ K : xM ⊆M} = {x ∈ K : xM ⊆ R} =M
−1

is a ring, the unique minimal overring of R in K. Since R is Gorenstein,

every nonzero fractional ideal of R is reflexive [B2, Theorem 6.3, page 18],

so there are no R-modules between R and M−1. Thus, the length of the

R-module M−1/M is 2, and M−1 has at most two maximal ideals. Let

I be an ideal in R having blowup M−1; then we can choose an element

a ∈ I such that aM−1 = IM−1. Since the blowup M−1 of I properly

contains R, I is not principal, so we have aR < I ⊆ aM−1, and since

there are no R-modules between R and M−1, there are none between aR

and aM−1, so I = aM−1. Thus, the ideals of R having blowup M−1 are

precisely the unique minimal overideals of principal ideals, i.e., the ideals

of the form aM−1, a ∈ M − 0; these ideals are two-generated, and since

(aM−1)2 = a(aM−1), they are stable, their associated graded rings are

Cohen–Macaulay, and all their powers are Ratliff–Rush.

For instance, if R is the Gorenstein ring k[[t4, t5, t6]] and I = (t4, t11)R,

then I is the unique minimal overideal of t4R, so G(I) is Cohen–Macaulay

and I and its powers are Ratliff–Rush.
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Example 2.14. We show that every Ratliff–Rush ideal I in R = k[[t3, t4]]

has the property that its powers are Ratliff–Rush. The unique minimal

overring of R is R[t5] and by General Example 2.13 the ideals of R that have

blowup R[t5] are stable. Since the ring R[t5] = k[[t3, t4, t5]] also has a unique

minimal overring R[t2] inside k[[t]] (even though R[t5] is not Gorenstein),

it remains to examine the Ratliff–Rush ideals with blowup R[t2] and with

blowup R[t]. The powers of the maximal idealM of R are readily seen to be

integrally closed and hence Ratliff–Rush. Indeed, although M is not stable,

Mn is stable for n ≥ 2, since for any integer r ≥ 6, the integrally closed

ideal (tr, tr+1, tr+2)R is stable. The only nonzero proper integrally closed

ideal whose blowup is not k[[t]] is (t4, t6)R and this ideal is stable. The

Ratliff–Rush ideals having blowup R[t2] = k[[t2, t3]] = S are contractions

of principal ideals of S. A nonzero proper principal ideal in S is of the

form (tn + atn+1)S for some integer n ≥ 2 and a ∈ k. If n ≥ 6, then the

contraction of this principal ideal of S to R is (tn+ atn+1, tn+2)R, and this

ideal in R is stable. The contraction to R of (t3+at4)S is (t3+at4, t8+at9)R;

this ideal is stable because its blowup is R[t5], as noted above. If a 6= 0, then

(t4+at5)S∩R = (t6, t7, t8)R =M2, a stable ideal, while t4S∩R = (t4, t6)R

again a stable ideal. Finally, (t5 + at6)S ∩ R = (t7, t8, t9)R, an integrally

closed stable ideal in R. We conclude that every Ratliff–Rush ideal in R

has the property that its powers are again Ratliff–Rush.

3. Noetherian domains in which every nonzero ideal is Ratliff–

Rush. Ratliff and Rush [RR, (2.4)] prove that every nonzero ideal in a

Dedekind domain is what we are calling a Ratliff–Rush ideal. They also

[RR, Remark 2.5] express interest in classifying the Noetherian domains in

which every nonzero ideal is a Ratliff–Rush ideal. This interest motivated

the next sequence of results. We show first that a domain with this property

has dimension at most one.

Proposition 3.1. Let R be a Noetherian domain. If every nonzero ideal

in R is Ratliff–Rush, then the dimension of R is at most one.

Proof. Suppose R has dimension at least two; let (x, y)R be an ideal of

height two, and set I = (x4, x3y, xy3, y4)R. By [Ku, Chapter V, Theo-

rem 4.14], {x, y} is an independent set, so x2y2 6∈ I. But I2 = ((x, y)R)8,

so x2y2 ∈ Ĩ; i.e., I is not a Ratliff–Rush ideal. �

By (1.7) and (1.9), a one-dimensional Noetherian domain R has the prop-

erty that every nonzero ideal in R is Ratliff–Rush iff for each maximal ideal
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M of R, RM has this property. So in this section we usually assume that

the domain is local.

Proposition 3.2. Let R be a one-dimensional local domain. If R has

an ideal I some power of which requires a different minimal number of

generators than I itself, then R has a nonzero ideal that is not Ratliff–Rush.

Proof. Suppose that Is requires a different number of generators than I.

Let S be the blowup of I and a be in S such that IS = aS. Since a is in

the Jacobson radical of S, for some large n, an is in the conductor of S into

R. Now anIs and an+s−1I also have blowup S, and they have the same

extension to S and hence the same associated Ratliff–Rush ideal Ĩn+s. But

since they require different numbers of generators, they are not both equal

to Ĩn+s. �

(3.3) In Proposition 3.2 we were showing the existence of an ideal that

is not Ratliff–Rush. When trying to show that a given ideal in a local

domain is Ratliff–Rush, we may assume that the residue field is infinite (and

hence that every ideal has a minimal reduction generated by analytically

independent elements). This is justified by a standard construction: If

(R,M) is a local domain andX is an indeterminate, then R(X) = R[X]M [X]

is a faithfully flat extension of R with infinite residue field (R/M)(X). A

given ideal in R is Ratliff–Rush iff its extension to R(X) is Ratliff–Rush,

by (1.7). Thus, if every nonzero ideal in R(X) is Ratliff–Rush, then the

same is true in R. We could not apply this construction in the proof of

Proposition 3.2 because even if the ideal I of the hypothesis is replaced by

IR(X), the ideals anIsR(X) and an+s−1IR(X) may not be extended from

R, so their contractions to R may be Ratliff–Rush even if they are not.

Corollary 3.4. If R is a one-dimensional local domain for which the em-

bedding dimension is less than its multiplicity, then R has a nonzero ideal

that is not Ratliff–Rush.

Proof. The embedding dimension of R is the minimal number of generators

of its maximal ideal M , while the multiplicity of R is the minimal number

of generators of high powers of M . �

(3.5) Let R be a one-dimensional local domain with integral closure

R′, and consider the following conditions on R: (a) R has multiplicity at

most two. (b) Every ideal can be generated by two elements. (c) Every

nonzero ideal is stable. Sally and Vasconcelos have shown that:
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(a) ⇔ (b) [SV1, Proposition 2.1];

(b) ⇒ (c) [SV2, Proposition 2.6];

and if R′ is finitely generated over R, then (c) ⇒ (b) also [SV1, Theo-

rem 2.4];

but (c) ; (b) [SV2, Example 5.4].

In their example R has multiplicity three, and the completion of R has

nonzero nilpotent elements (which is always the case if R′ is not finitely

generated over R). The implication (a) ⇒ (c) and (1.1) above show that:

Corollary 3.6. Let R be a local domain of dimension one and multiplicity

at most two. Then every nonzero ideal of R is a Ratliff–Rush ideal.

Example 3.7. Let R = k[[t2, t5]]; then by Corollary 3.6, every nonzero ideal

in R is Ratliff–Rush. But the ideal I = (t4, t7)R is neither principal nor

integrally closed. (The cube of the element t5 is in the cube of I, but t5 6∈ I.)

The existence of such an ideal I in this ring R follows from Theorem 2.8,

since the ring k[[t2, t3]] is properly between R and R′ = k[[t]].

(3.8) It can happen that a one-dimensional local domain (R,M) has mul-

tiplicity two and yet the integral closure R′ of R is not a finitely generated

R-module. An easy way to construct such an example is to begin with the

field k = Z/2Z, and choose y in the formal power series ring k[[x]] such that

y has positive order and x and y are algebraically independent over k. (It is

easy to see by a cardinality argument that the transcendence degree of the

field of fractions k((x)) of k[[x]] over k is infinite and even uncountable.)

We have that k(x, y2) ⊂ k(x, y) is a purely inseparable field extension of

degree two. Let V = k[[x]] ∩ k(x, y2), and W = k[[x]] ∩ k(x, y). Then

V ⊂ W are DVR’s with k(x, y2) and k(x, y) as fields of fractions, and W

is the integral closure of V in k(x, y). Moreover, the maximal ideal xV of

V extends to generate the maximal ideal in W , and V and W both have

residue field k, the residue field of k[[x]]. Therefore, W is not a finitely

generated V -module, for if it were, Nakayama’s lemma would imply that

V = W . Let R = V [y]. Then R is a one-dimensional local domain of mul-

tiplicity two such that the integral closure R′ = W of R is not a finitely

generated R-module. (In this example, the R-subalgebras of R′ are linearly

ordered with respect to inclusion [GH, Example 2.22].)

We finish by showing that, in a one-dimensional local domain, the prop-

erty that every nonzero ideal is Ratliff–Rush implies the apparently stronger

property that every nonzero ideal is stable; and we show that these prop-

erties impose stringent conditions on a local domain of multiplicity greater
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than two. We are grateful to Roger Wiegand, who showed us reference

[H] and pointed out the necessity of adding the last part to conditions (c)

and (d).

Theorem 3.9. Let (R,M) be a one-dimensional local domain, and R′ be

its integral closure. Then the following conditions are equivalent:

(a) Every nonzero ideal in R is stable; i.e. R is a stable domain in the

sense of [L], [SV1], [SV2].

(b) Every nonzero ideal in R is Ratliff–Rush.

(c) Every R-submodule of R′ that contains R is a ring, and R′/MR′ is

not isomorphic to a direct product of three copies of Z/2Z.

(d) For every x in R′, dimR/M (R[x]/MR[x]) ≤ 2, for every x, y in R
′,

dimR/M (R[x, y]/MR[x, y]) ≤ 3, and R
′/MR′ is not isomorphic to a direct

product of three copies of Z/2Z.

Moreover, if these conditions hold and S is any ring between R and its field

of fractions, then every nonzero ideal in S is stable and hence Ratliff–Rush.

Proof. (a) ⇒ (b) by (1.1).

(b)⇒ (a) : Assume there is a nonzero ideal I inR that is not stable. Then

by (1.1), I does not have a principal reduction, i.e., the principal ideal IR′

is not generated by an element of I. By induction on the minimal number of

generators of I, we can find a two-generated ideal J contained in I that has

no principal reduction. Then J2 is also two-generated by Proposition 3.2,

so by the proof of [SV2, Theorem 3.4], J is stable, a contradiction.

To show that (c) and (d) are equivalent, we prove:

Sublemma 3.9.1. For (R,M) a quasilocal ring and R′ an integral exten-

sion ring of R, the following conditions are equivalent:

(c ′) Every R-submodule of R′ that contains R is a ring.

(d ′) For every x in R′, dimR/M (R[x]/MR[x]) ≤ 2, and for every x, y in

R′, dimR/M (R[x, y]/MR[x, y]) ≤ 3.

Proof. (c′) ⇒ (d′) : For x in R′, R + Rx = R[x]; and for x, y in R′,

R+Rx+Ry = R[x, y].

(d′)⇒ (c′) : It suffices to show that, for x, y ∈ R′, R+Rx+Ry = R[x, y].

The first part of condition (d′) implies that x2 ∈ R + Rx + MR[x], so

R[x] = R+Rx+MR[x], and hence by Nakayama’s lemma, R[x] = R+Rx.

Similarly R[y] = R+Ry. Thus, if y ∈ R[x] or x ∈ R[y], then R+Rx+Ry =

R[x, y]; so suppose neither of these holds. Then the images of 1, x, y in

R[x, y]/MR[x, y] are linearly independent over R/M , so the second part of
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condition (d′) and another application of Nakayama’s lemma implies that

R[x, y] = R+Rx+Ry in this case. �

Now we complete the proof of Theorem 3.9.

(a) ⇒ (c) : By [R, Theorem 2.4], (a) implies (c′) and the condition that

R′ has at most two maximal ideals. It follows from the latter condition that

R′/MR′ cannot be isomorphic to Z/2Z × Z/2Z× Z/2Z.

(c) ⇒ (a) : By (c′) and [H, Lemma 5, page 146], for any R-subalgebra

S of R′ that is finitely generated over R, either S/MS has R/M -dimension

at most two (and hence S has at most two maximal ideals) or S/MS ∼=

Z/2Z×Z/2Z×Z/2Z. If the latter alternative were to hold for some S, then

all the finitely generated R-subalgebras T between S and R′ would have

at least three maximal ideals, so that T/MT ∼= Z/2Z× Z/2Z× Z/2Z, and

hence R′/MR′ ∼= Z/2Z × Z/2Z × Z/2Z, a contradiction. Hence R′ has at

most two maximal ideals. By [R, Theorem 2.4], R is stable.

Finally, suppose conditions (a)–(d) hold and J is a nonzero ideal in a ring

S between R and its field of fractions. If J = (x1, . . . xn)S, choose a nonzero

a ∈ R so that ax1, . . . , axn ∈ R and let I = (ax1, . . . , axn)R. Since every

nonzero ideal in R is stable, there exists b ∈ I such that bI = I2. Thus,

baJ = bIS = I2S = a2J2, and since b/a ∈ J , we see that J is stable. �

Example 3.10. Let F be a field of characteristic two, and let x, y be ele-

ments of a field extension that are algebraically independent over F . Let

R′ = F (x, y)[[t]] and R = {f(t) ∈ R′ : f(0) ∈ F (x2, y2)}. Then by The-

orem 3.9, R has ideals that are not Ratliff–Rush. But we contend that

every nonzero two-generated ideal in R is stable and hence Ratliff–Rush.

For, if the element f(t) of R has order n as a power series in t, then

tn+1R′ ⊆ f(t)R. Hence if I is a nonzero two-generated ideal in R, then

I = (f(t), g(t))R where f(t), g(t) are power series of the same order, say n.

Let a, b be the leading coefficients (i.e., the coefficients of tn) in f(t), g(t)

respectively; then a2/b2 ∈ F (x2, y2), so f2, g2 are associates in R, and hence

I2 = (f2, fg)R = fI.

Corollary 3.11. Let (R,M) be a one-dimensional local domain with mul-

tiplicity e > 2, and let R′ be the integral closure of R. Assume that the

conditions of Theorem 3.9 hold. Then

(1) R′ is local, i.e., a DVR,

(2) the residue field of R′ is (isomorphic to) R/M (under the canonical

map of R′ onto its residue field),
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(3) R′ is not finitely generated as an R-algebra, and

(4) for each R-subalgebra S of R′, the square of the (unique) maximal

ideal of S is contained in MS.

Conversely, if conditions (1), (2) and (4) hold (without hypothesis on the

multiplicity), then R is a stable domain.

Proof. Statements (1), (2), and (3) are precisely statements (b), (d), and

(a) of Theorem 3.3 of [R]. For (4), we use condition (d) of Theorem 3.9:

Denote R/M by k, and suppose (4) fails, i.e., the unique maximal ideal N

in the k-algebra S = S/MS = k ⊕ N does not satisfy N
2
= 0, i.e., there

are elements x, y of N for which xy 6= 0. Now if y ∈ xS, then x2 6= 0, so

a preimage x in S of x violates (d); so we may assume that y 6∈ xS and

x 6∈ yS. We show that preimages x, y in S of x, y violate (d) by showing

that x, y, xy are k-linearly independent: Suppose a, b, c are elements of k

for which ax + by + cxy = 0. If a 6= 0, then a + cy is a unit in S, so

x = −(a+ cy)−1byS ∈ yS, a contradiction; and similarly b = 0, so cxy = 0

and hence c = 0 also.

Finally, suppose that conditions (1), (2) and (4) hold, and let x, y ∈ R′.

By (2) we may assume that x, y are in the (unique, by (1)) maximal ideals

of R[x] and R[x, y], so all monomials in x or in x, y of degree at least 2

are in MR[x] or MR[x, y]. Hence R[x] = R + Rx +MR[x] and R[x, y] =

R+Rx+Ry +MR[x, y]; so (d) of Theorem 3.9 holds. �

(3.12) The example of Sally and Vasconcelos [SV2, Example 5.4] sug-

gests the question: Is there a stable one-dimensional local domain of each

(finite) multiplicity? The answer is affirmative: Sally and Vasconcelos need

only the construction of Ferrand and Raynaud [FR, Proposition 3.1, as

modified in Remarques 3.7 (i)] in which the free module L has rank two;

but Ferrand and Raynaud’s construction also applies in the case where the

free module L is of rank n for any positive integer n. This construction

yields a one-dimensional local domain R of which the completion R̂ is (iso-

morphic to) k[[x, y1, . . . , yn]] where k is a field of characteristic two and

((y1, . . . , yn)R̂)
2 = 0. Since R̂ is a stable ring, it follows from (1.7) that R

is a stable domain. And the multiplicity of R and R̂ is n+ 1.

(3.13) Under the hypotheses of Corollary 3.11, it follows from (4) that the

extension MR′ of the maximal ideal M of R is either the maximal ideal M ′

of R′ or (M ′)2; and in the example of Sally and Vasconcelos MR′ = M ′.

(For a finitely generated R-subalgebra S of R′, MS cannot be the maximal

ideal of S by Nakayama’s lemma.) So it seemed natural to ask whether
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it is always true that MR′ = M ′. Craig Huneke has shown us that the

answer is affirmative and kindly agreed to allow us to include his proof for

this fact. Suppose that (R,M) is a one-dimensional stable local domain of

multiplicity e > 2, with integral closure (R′,M ′) and completion (R̂, M̂).

Since R′ is local but not a finitely generated R-module, R̂ has nonzero

prime nilradical N [N, Exercise 1, page 122], and every regular ideal in R̂

is stable. Since R̂/N is complete, its integral closure is local and a finitely

generated module over it; and it is a stable domain, so by Corollary 3.11 its

multiplicity is at most two. The inclusion of R into R′ induces a map of R̂

into the completion of R′ (which is again a DVR) with kernel N , and this

map is surjective iff MR′ =M ′, or equivalently iff the multiplicity of R̂/N

is one. The next proposition (applied to R̂) shows that the multiplicity

cannot be two, so MR′ =M ′.

Proposition 3.14. (Huneke) Let (R,M) be a one-dimensional Cohen–

Macaulay local ring in which every regular ideal is stable, the nilradical N

is prime, the multiplicity of R/N is two, and the integral closure of R/N is

local with residue field isomorphic to that of R under the map induced by

inclusion. Then N = 0.

Proof. Assume by way of contradiction that N 6= 0. Let v be the valuation

(with value group Z) associated to the integral closure of R/N , and pick

x, y in M so that their images x, y in R/N generate M/N , v(x) = 2, and

v(y) = 2n+ 1 is odd. Then xR is a reduction of M (since M/N is integral

over x(R/N)) with reduction number one [H1, Remark (3), page 504]. Note

that (xn, y)R∩N ⊆MN ; for, if xna+ yb ∈ N , then by passing to R/N we

see that a, b ∈M , so xna+ yb ∈M2 ∩N ⊆ xR ∩N = xN ⊆MN .

Let z1, . . . , zk be a minimal basis for N . Then x
nR is a reduction of

each of the ideals (xn, y, zi)R and of (x
n, y,N)R (again because integralness

lifts from R/N) with reduction number one. Thus, yN ⊆ xnR ∩ N =

xnN , since N is prime; so there are elements aij of R for which yzi =

xn(
∑
j aijzj). Since (y − aiix

n)zi ∈ ((x
n, y, zi)R)

2 = xn(xn, y, zi)R and

xn is a nonzerodivisor, we see that
∑
j 6=i aijzj ∈ (x

n, y, zi)R. We next

observe that, for j 6= i, aij ∈ M : Assume for example that ai1 6∈ M . Then

z1 ∈ (z2, . . . , zk)R + (x
n, y)R, and since (xn, y)R ∩ N ⊆ MN as noted

above, we have z1 ∈ (z2, . . . , zk)R +MN , contradicting the minimality of

the basis z1, . . . , zk of N .

Now by the determinant trick [LM, Lemma 2.22, page 47], the determi-

nant of the k × k matrix y(δij) − x
n(aij) annihilates N , so the fact that
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R is Cohen–Macaulay implies that the image of this matrix over R/N has

determinant zero. But an entry on the main diagonal of this matrix has

smaller v-value than any of the other entries in its row and column, so the

product along the main diagonal has strictly smaller v-value than any of the

other terms in this determinant. Hence this determinant cannot be zero,

giving the desired contradiction. �

We would like to express our gratitude to Roger Wiegand and to the

referee, who informed us of the existence of [R] and whose suggestions

greatly improved the paper.
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