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Abstract

The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide
the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS)

will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot
be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the
RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (200,000 stars). We present a data-
driven re-analysis of 520,781 RAVE spectra using TheCannon. For red giants, we build our model using high-
fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-
giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature Teff,
surface gravity log g, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, andNi). We report
a total of 1,685,851 elemental abundances with a typical precision of 0.07dex, a substantial improvement over
previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-
dynamic analyses of the Milky Way ever produced.

Key words: stars: abundances – stars: fundamental parameters

1. Introduction

The Milky Way is considered to be our best laboratory for
understanding galaxy formation and evolution. This premise
hinges on the ability to precisely measure the astrometry and
chemistry for (many) individual stars, and to use those data to
infer the structure, kinematics, and chemical enrichment of the
Galaxy (e.g., Nordström et al. 2004; Schlaufman et al. 2009;
Casagrande et al. 2011; Deason et al. 2011; Casey et al. 2012,
2013, 2014b, 2014a; Ness et al. 2012, 2013a, 2013b; Boeche
et al. 2013; Kordopatis et al. 2015; Bovy et al. 2016). However,
these quantities are not known for even 1% of stars in the
Milky Way. Stellar distances are famously imprecise (e.g., van
Leeuwen 2007; Jofré et al. 2015; Mädler et al. 2016), proper
motions can be plagued by unquantified systematics from the

first epoch observations (e.g., Casey & Schlaufman 2015),
and stellar spectroscopists frequently report significantly
different chemical abundance patterns from the same spectrum
(Smiljanic et al. 2014). The impact these issues have on
scientific inferences cannot be understated. Imperfect astro-
metry or chemistry limits understanding in a number of sub-
fields in astrophysics, including the properties of exoplanet host
stars, the formation (and destruction) of star clusters, as well as
studies of stellar populations and Galactic structure, to name
a few.
The Gaia mission represents a critical step forward in

understanding the Galaxy. Gaia is primarily an astrometric
mission, and will provide precise positions, parallaxes and
proper motions for more than 109 stars in its final data release
in 2022. While this is a sample size about four orders of
magnitude larger than its predecessor Hipparcos, both
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astrometry and chemistry are required to fully characterize the
formation and evolution of the Milky Way. Gaia will also
provide radial velocities, stellar parameters, and chemical
abundances for a subset of brighter stars, but these measure-
ments will not be available in the first few data releases. Until
those abundances are available, astronomers seeking to
simultaneously use chemical and dynamical information are
reliant on ground-based spectroscopic surveys to complement
the available Gaia astrometry.

The first Gaia data release will include the Tycho-
Gaia Astrometric Solution (hereafter TGAS; Michalik
et al. 2015a, 2015b): positions, proper motions, and parallaxes
for approximately two million stars in the Tycho-2 (Høg et al.
2000) catalog. After cross-matching all major stellar spectro-
scopic surveys,22we found that the RAdial Velocity Experi-
ment (RAVE; Steinmetz et al. 2006) survey is expected to have
the largest overlap with the first Gaia data release: up to
264,276 stars. We used the Gaia universe model snapshot
(Robin et al. 2012) to estimate the precision in parallax and
proper motions that could be available in the first Gaia data
release (DR1) for stars in those overlap samples. Comparing
the expected precision to what is currently available, we further
found that the RAVE survey will benefit most from Gaia DR1:
the distances of 63% of stars in the RAVE–Gaia DR1 overlap
sample are expected to improve with the first Gaia data release,
and 47% of stars are likely to have better proper motions.
Although the Gaia universe model assumes end-of-mission
uncertainties—and does not account for systematics in the first
data release—this calculation still provides intuition for the
relative improvement that the first Gaia data release can make
to ground-based surveys. The expected improvements for
RAVE motivated us to examine what chemical abundances
were available from those data, and to evaluate whether we
could enable new chemo-dynamic studies by contributing to
the existing set of chemical abundances.

We briefly describe the RAVE data in Section 2, before
explaining our methods in Section 3. In Section 4,we outline a
number of validation experiments, includinginternal sanity
checks, comparisons with literature samples, and investigations
to ensure our results are consistent with expectations from
astrophysics. We discuss the implications of these comparisons
in Section 5, and conclude with instructions on how to access
our results electronically.

2. Data

RAVE is a magnitude-limited stellar spectroscopic survey of
the (nearby) Milky Way, principally designed to measure radial
velocities for up to 106 stars. Observations were conducted on
the 1.2m UK Schmidt telescope at the Australian Astronom-
ical Observatory23 from 2003 to 2013. A large 5°.7 field of
view and robotic fiber positioner made for very efficient
observing: spectra for up to 150 targets could be simulta-
neously acquired. When observations concluded in April 2013,
at least 520,781 useful spectra had been collected of more than
457,588 unique objects.

The target selection for RAVE is based on the I-band
apparent magnitude, 9<I<12, with a weak J−Ks>0.5

cut near the disk and bulge (J. Wojno et al. 2016, in
preparation). The I band was used for the target selection
because it has a good overlap with the wavelength range that
RAVE operates in: 8410–8795Å. The resolution and
wavelength coverage of RAVE is comparable to the Radial
Velocity Spectrometer on board the Gaia space telescope
(Munari et al. 2005; Kordopatis et al. 2011), and the
wavelength range overlaps with one of the key setups used
for the ground-based high-resolution Gaia-ESO survey
(Gilmore et al. 2012; Randich et al. 2013). The spectral
region includes the Ca II near-infrared triplet lines—strong
transitions that are dominated by pressure broadening—which
are visible even in metal-poor stars or spectra with very low
signal-to-noise (S/N) ratios. Atomic transitions of light-, α-,
and Fe-peak elements are also present, allowing for detailed
chemical abundance studies.
The exposure times for RAVE observations were optimized

to obtain radial velocities for as many stars as possible. Detailed
chemical abundances were always an important science goal
of the survey, but this was a secondary objective. For this reason,
the distribution of S/N in RAVE spectra is considerably
lower than other stellar spectroscopic surveys, where chemical
abundances are the primary motivation. The RAVE spectra have
an effective resolution of » 7500 and the distribution of S/N
peaks at ≈50pixel−1. For comparison, the GALAH survey (De
Silva et al. 2015)—which was specifically constructed for
detailed chemical abundance analyses—includes a wavelength
range about 2.5 times larger at resolution  » 28,000, and yet
the GALAH project still targets for S/N100 per resolution
element.
Despite the relatively low resolution and S/N of the spectra

compared to other surveys, the RAVE data releases have
provided excellent radial velocities, stellar atmospheric para-
meters (Teff, log g), and detailed chemical abundances (Steinmetz
et al. 2006; Zwitter et al. 2008; Boeche et al. 2011; Siebert et al.
2011; Kordopatis et al. 2013; Kunder et al. 2017). In this
work,we make use of spectra that has been reprocessed for the
fifth RAVE data release. These re-processing steps includea
detailed re-reduction of all the original data frames, with flux
variances propagated at every step; an updated continuum-
normalization procedure; as well as revised determinations of
stellar radial velocities and morphological classifications. At the
end of this processing for each survey observation,we were
provided withrest-frame wavelengths (without resampling),
continuum-normalized fluxes, 1σ uncertainties in the conti-
nuum-normalized flux values, as well as relevant metadata for
each observation. We refer the reader to the official fifth data
release paper of the RAVE survey, as presented by Kunder et al.
(2017), for more details of this re-processing.
Given the high-quality of the normalization performed by

the RAVE team, we chose not to re-normalize the spectra. Our
tests demonstrated that the procedure outlined in Kunder et al.
(2017) is sufficient for our analysis procedure. Therefore, there
were a limited number of pre-processing steps that we performed
before starting our analysis. First, we calculated inverse variance
arrays from the 1σ uncertainties provided, and then we re-
sampled the flux and inverse variance arrays onto a common
rest-wavelength map for all stars. Depending on the fiber used
and the stellar radial velocity, the range of rest-frame wavelength
values varied for each star. Given that fluxes were unavailable
in the edge pixels for most stars, we excluded pixels outside
of the rest-wavelength range of8423.2 Å�λ�8777.6Å. This

22 Specifically, we cross-matched the Tycho-2 catalog against the APOGEE
DR13 (Zasowski et al. 2013), Gaia-ESO internal DR4 (Gilmore et al. 2012;
Randich et al. 2013), GALAH internal DR1 (De Silva et al. 2015), LAMOST
DR1 (Cui et al. 2012), and RAVE DR4 (Kordopatis et al. 2013) catalogs.
23 Formerly, the Anglo-Australian Observatory.
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corresponds to about 30pixels excluded on either side of the
common wavelength array, leaving us with 945pixels per
spectrum for science.

3. Method

We chose to adopt a data-driven model for this analysis, in
contrast to the physics-based models used in RAVE data
releases to date. Specifically, we will use an implementation
of TheCannon (Ness et al. 2015, 2016). Although this choice
complicated the construction of our model (e.g., see
Section 3.2), a data-driven approach makes use of all
available information in the spectrum and lowers the S/N
at which systematic effects begin to dominate. In other
words, in the low S/N regime, a well-constructed data-driven
model will yield more precise labels24 (stellar parameters and
chemical abundances) than most physics-driven models.25

This is particularly relevant for the low-resolution RAVE
data analyzed here, because about half of the spectra have
S/N50 pixel−1.

There are two main analysis steps when using TheCannon:
the training step and the test step. We describe these stages in
the context of our model in the following section, and a more
thorough introduction can be found in Ness et al. (2015). We
make the following explicit assumptions about the RAVE
spectra and TheCannon:

1. We assume that any fiber- and time-dependent variations
in spectral resolution in the RAVE spectra are negligible.

2. The RAVE noise variances are approximately correct,
independent between pixels, and normally distributed.

3. We assume that the normalization procedure employed
by the RAVE pipeline is invariant with respect to the
labels we seek to measure (e.g., Teff, log g, or [Fe/H]),
and invariant with respect to the S/N. In other words, we
assume that the normalization procedure does not
produce different results for high S/N spectra compared
to low S/N spectra, nor does the normalization procedure
vary nonlinearly with respect to stellar parameters (e.g.,
[Fe/H]).

4. We assume that stars with similar labels (Teff, log g, and
abundances) have similar spectra.

5. A stellar spectrum is a smooth function of the label values
for that star, and we assume that the function is smooth
enough within a sub-space of the labels (e.g., the giant
branch or the main sequence) that it can be reasonably
approximated with a low-order polynomial in label space.

6. The training set (Section 3.2) has mean accurate labels for
most, but not all stars. That is to say that we do not
assume that every label in the training is accurate. We can
afford to have a small fraction of inaccurate labels; a few
obvious misclassifications in the training set are
affordable.

7. We assume that the training data are similar (in spectra)
to the test data where they overlap in label space, and we
assume that the training data span enough of the label
space to capture the variation in the test-set spectra.

3.1. The Model

Given our assumptions, the model we adopt is

vy ℓ e , 1jn n j jnq= +( ) · ( )

where yjn is the pseudo-continuum-normalized flux for star n at
wavelength pixel j, v ℓn( ) is the vectorizing function that takes
as input the K labels ℓn for star n and outputs functions of those
labels as a vector of length D>K, jq is a vector of length D of
parameters influencing the model at wavelength pixel j, and ejn
is the residual (noise). Here we will only consider vectorizing
functions with second-order polynomial expansions (e.g., Teff

2 ,
see Sections 3.3–3.5). The noise values ejn can be considered to
be drawn from a Gaussian distribution with zero mean and
variance sjn j

2 2s + , where jn
2s is the variance in flux yjn and sj

2

describes the excess variance at the jth wavelength pixel.
At the training step, we fix the K-lists of labels for the n

training set stars. At each wavelength pixel j, we then find the
parameters jq and sj

2 by optimizing the penalized likelihood
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where Λ is a regularization parameter, which we will set by
leave-one-out cross-validation in later sections, and Q q( ) is a
L1 regularizing function (e.g., see LASSO in Tibshirani 1996,
and related literature) that encourages q values to take on zero
values without breaking convexity (Casey et al. 2016b):
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Note that the d subscript here is zero-indexed; the function
Q q( ) does not act on the (first) θ0 coefficient, as this is a “pivot
point” (mean flux value) that we do not expect to diminish with
increasing regularization (e.g., see Equation (5)). In practice,
we first fix s 0j

2 = to make Equation (2) a convex optimization
problem, then we optimize for jq , before solving for sj

2.
The test step is where we fix the parameters s,j j

2q at all
wavelength pixels j, and optimize the K-list of labels ℓm for the
mth test-set star. Here the objective function is
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After optimizing Equation (4) for the mth star, we store the
covariance matrix mS for the labels ℓm, which provides us with
the formal errors on ℓm. The formal errors are expected to be
underestimated, and in Section 4 we judge the veracity of these
errors through validation experiments.

24 In order to dispel any (well founded) terminology confusion, we note that
throughout this Article we follow the terminology introduced by Ness et al.
(2015), where continuous values of stellar parameters and chemical abundances
are collectively described as stellar labels. This varies from the machine
learning literature where the term “label” is more frequently used to describe
discrete or categorical values. Here we have opted to follow the Ness et al.
(2015) terminology in order to be consistent with other papers making use of
TheCannon. Similarly, when we refer to a label misclassification, we
qualitatively refer to a scenario when a “significantly” incorrect label (from
The Truth) has been assigned. In other words, we will use the term label
misclassification as a qualitative description, not as a quantitative definition.
25 However, see Casey (2016a).
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3.2. The Training Set

We sought to construct a training set of stars across the main
sequence, the sub-giant branch, and the red giant branch. We
required stars with precisely measured effective temperature
Teff, surface gravity log g, and elemental abundances of O, Mg,
Si, Ca, Al, Fe, and Ni. This proved to be difficult because the
magnitude range of RAVE does not overlap substantially with
high-resolution spectroscopic surveys. The fourth internal data
release of the Gaia-ESO survey includes giant and main
sequence stars, but only 142 overlap with RAVE, which is too
small to be a useful training set for our purposes. The 13data
release from the Sloan Digital Sky Survey (SDSS Collabora-
tion et al. 2016) includes labels for APOGEE stars on the giant
branch and (uncalibrated values for) the mainsequence, but our
tests indicated that the APOGEE main sequence labels suffered
from significant systematic effects. A flat, then “up-turning”
main sequence is present, and the metallicity gradient trends in
the opposite direction with respect to log g on the main
sequence (i.e., metal-poor stars incorrectly sit above an
isochrone in a classical Hertzsprung–Russell diagram). If we
consider lower-resolution studies as potential training sets,
there are 2369 stars that overlap with LAMOST—of which
2213 have positive S/Ns in the g-band (snrg). However, the
labels are expectedly less precise given the lower resolution,
there are no elemental abundances available for the main
sequence stars,26and the LAMOST lower main sequence
suffers from the same systematic effects seen in the
APOGEE data.

These constraints forced us to construct a heterogeneous
training set. Given previous successes in transferring high S/N
labels from APOGEE (Ness et al. 2015, 2016; Casey et al.
2016b; Ho et al. 2017), we chose to use the 1355 stars in
the APOGEE—RAVE overlap sample for giant star labels
in the training set. Of these, about 900 are giants according to
APOGEE. From this sample, we selected stars to havedeter-
minations in all abundances of interest ([X/H]>−5 for O,
Mg, Al, Si, Ca, Fe, and Ni); S/N of >200pixel−1 in APOGEE
and >25pixel−1 in RAVE; and we further required that the
ASPCAP did not report any peculiar flags (ASPCAP-

FLAG=0). These restrictions left us with 536 stars along the
giant branch, with metallicities ranging from [Fe/H]=−1.79
to 0.26. Intermediate tests with globular cluster members
showed that the metallicity range of the training set needed
to extend at least below [Fe/H]−2 in order for our catalog
to be practically useful. Without additional metal-poor stars,
the lowest metallicity labels reported by our model would
be around [Fe/H]≈−2, even for well studied stars with
[Fe/H]∼−4 (e.g., CD 38-245). For this reason, we supple-
mented our sample of APOGEE giant stars with 176 known
metal-poor giant stars observed by RAVE. The effective
temperature Teff, surface gravity log g,and iron abundance
[Fe/H] labels were adopted from Fulbright et al. (2010)
andRuchti et al. (2011). For this sample of metal-poor
stars, we assumed that the elemental abundances of O, Mg,
Al, Si, Ca, and Ni followed typical trends of Galactic chemi-
cal evolution: we asserted [Mg/Fe]=+0.4, [O/Fe]=+0.4,
[Al/Fe]=−0.5, [Ca/Fe]=+0.4, [Si/Fe]=+0.4, and
[Ni/Fe]=−0.25. We stress that this decision is made solely
to ensure that our overall metallicity scale reflects that of the

RAVE survey, down to [Fe/H]∼−4. Indeed, it is likely that
for most of these elements, these abundances cannot be
measured from RAVE spectra for ultra-metal-poor stars: the
atomic transitions in the RAVE spectral region are simply too
weak to influence the spectrum. For this reason, our adopted
abundances for these very metal-poor stars represent an
“anchor point” in order to ensure our overall metallicity scale
is correct. We do not recommend the use of our individual
abundance labels at [Fe/H]∼−4. We discuss this issue in
more detail in Section 5.
Assembling a suitable training set for the mainsequence and

sub-giant branch was less trivial. There are no spectroscopic
studies that extend the range of stellar types we are interested in
(e.g., FGKM-type stars), and which also have a large enough
sample size that overlaps with RAVE. Moreover, most of the
spectroscopic studies we considered also showed a flat lower
main sequence, a systematic consequence of the analysis
method adopted (see Bensby et al. 2014for adiscussion
on this issue). For these reasons, we chose to make use of the
K2/EPIC catalog (Huber et al. 2016) for the training set labels
on the main sequence and sub-giant branch. The K2/EPIC

catalog follows from the successful Kepler input catalog
(Brown et al. 2011), and provides probabilistic stellar
classifications for 138,600 stars in the K2 fields based on the
astrometric, asteroseismic, photometric, and spectroscopic
information available for every star. There are 4611 stars that
overlap between K2/EPIC and RAVE.
K2/EPIC differs from the Kepler input catalog because K2/

EPIC does not benefit from having narrow-band DDO51

photometry to aid dwarf/giant classification. Despite this
limitation, the labels in the K2/EPIC catalog have already
been shown to be accurate and trustworthy (Huber et al. 2016).
However, when the posteriors are wide (i.e., the quoted
confidence intervals are large) due to limited information
available, it is possible that a star has been misclassified. This is
most prevalent for sub-giants, where Huber et al. (2016) note
that ≈55%–70% of sub-giants are misclassified as dwarfs. The
probability of misclassification is usually quantified in the
uncertainties given for each star; most dwarfs that have a higher
possibility of being sub-giants have large confidence intervals.
Therefore, requiring low uncertainties will decrease the total
sample size, but in practice it removes most misclassifications.
The situation is far more favorable for dwarfs and giants. Only
1%–4% of giant stars are misclassified as dwarfs, and about 7%
of dwarfs are misclassified as giants. To summarize, the K2/

EPIC labels with narrow confidence intervals are usually of
high fidelity, and given that we have spectra, we can identify
any obvious misclassifications.
We sought to have a small overlap between our giant and

main sequence star training sets. Most of our giant training set
is encapsulated within 0<log g<3.5;however, there is a
sparse sampling of stars reaching to log g≈4. We required
log g>3.5 for the K2/EPIC main sequence/sub-giant star
training set, allowing for ≈0.5 dex of overlap between the two
training sets. We further employed the following quality
constraints on the K2/EPIC catalog: the upper and lower
confidence intervals in Teff must be below 150K; the upper and
lower confidence intervals in log g must be less than 0.15dex;
the S/N of the RAVE spectra must exceed 30pixel−1; and
Teff�6750 K. Unfortunately, these strict constraints removed
most metal-poor stars, which we later found to cause the test
labels to have under-predicted abundances for dwarfs of low

26 Abundance information is available for LAMOST stars from Ho et al.
(2017), but that sample contains only giant stars.
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metallicity. For this reason, we relaxed (ignored) those quality
constraints for stars with [Fe/H]<−1, and included an
additional 12 turn-off stars with −1.6[Fe/H]−2.1 from
Ruchti et al. (2011). After training a model based on main
sequence and giant stars (Section 3.1), we found we could
identify misclassifications by leave-one-out cross-validation.
However, we chose not to do this because the number of likely
misclassifications in the training set was negligible (≈1%), and
the improvement in main sequence test-set labels was minimal.
The distilled sample of the RAVE–K2/EPIC overlap catalog
contains 595 stars (583 of 4611 from K2/EPIC). The full
training set for each model (see the next sections) is shown in
Figure 1.

3.3. The Simple Model: A Three-label Model (Teff, log g, [Fe/
H]) for All Stars

We have constructed a justified training set for stars across
the main sequence, sub-giant, and red giant branch. However,
the lack of overlap between RAVE and other works have
resulted in a somewhat peculiar situation. Detailed abundances
are available from APOGEE for all giant stars in our
sample;however, only imprecise (but accurate on expectation)
metallicities are available from K2/EPIC for stars on the main
sequence and the sub-giant branch. Here we will construct a
simple model for all stars that only makes use of three labels
(Teff, log g, [Fe/H]), before we outline how we derive
abundances for giant branch stars. The complexity for this
model will be quadratic (Teff

2 is the highest term), where the
vectorizer v ℓn( ) expands as

v ℓ T g T g T
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We used no regularization (Λ= 0) for this model. After
training the model, we treated all 520,781 spectra as test-set
objects. In the left-hand panel of Figure 2,we show the
effective temperature Teff and surface gravity log g for all
spectra. The main sequence and red giant branch are clearly
visible. However, the details of stellar evolution are no longer

present: the sub-giant branch is not discernible, and there are a
number of systematic artifacts (over-densities) present in label
space. These artifacts disappear when we require additional
quality constraints (e.g., no peculiar morphological classifica-
tions), but the complexity of the Hertzsprung–Russell diagram
is still not present. Thus, we concluded that while this model
could be useful for deriving stellar classifications (e.g., F2-type
giant), the labels are too imprecise.
We chose to adopt separate models for the main sequence

and the red giant branch rather than switch to a single model
with higher complexity. This choice allowed us to derive stellar
parameters for stars on the main sequence and sub-giant
branch, as well as detailed elemental abundances for red giant
branch stars. However, adopting two separate models intro-
duces the challenge of how to combine the results from two
models, or how to assign one star as “belonging” to a single
model. In Section 3.6,we describe how we will use the simple
model introduced in this section to discriminate between results
from a three-label main sequence model in Section 3.4 and a
nine-label giant star model in Section 3.5.

3.4. A Three-label Model (Teff, log g, [Fe/H])

for Unevolved Stars

We constructed a three-label quadratic model using only
main sequence and sub-giant stars. In order to set the
regularization hyperparameter Λ for this model, we trained
30 models with different regularization strengths, spaced
evenly in logarithmic steps between Λ=10−3 to Λ=103.
We then performed leave-one-out cross-validation for each
model. Specifically, for each star in the training set: we
removed the star; trained the model; and then inferred labels
from the removed star as if it was a test object. We also
performed leave-one-out cross-validation on an unregularized
(Λ= 0) model, which we will use as the basis for comparison.
For the unregularized case, we calculated the bias and root-
mean-square (rms) deviation between: the training set labels,
and the labels we derived by cross-validation, where one star
was removed at a time and the model was re-trained. We
repeated this calculation of bias and rms deviation for all 30
models with different regularization strengths Λ.
We show the percentage difference in the rms deviation of

the labels with respect to the unregularized model in Figure 3.
The upper and lower envelope represent the boundaries across
all labels, showing that with increasing regularization, the rms

Figure 1. Effective temperature Teff and surface gravity log g for all stars in the training sets. Stars are colored by their metallicity [Fe/H], and the three panels show
stars in the simple model (left panel; Section 3.3), the main sequence star model (middle panel; Section 3.4), and the giant star model (right panel; Section 3.5).
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decreased in all labels. We found similar improvements in the
biases;however, these were already minimal in the unregular-
ized case. The improvement in rms reaches a minimum value
near Λ=35.6 (≈101.5), where we achieve rms deviations that
are about 10% better than the unregularized case. Based on this
improvement,we set Λ=35.6 for this model. At this
regularization strength, the bias and rms values found by
leave-one-out cross-validation are, respectively: 38K and
256K for Teff, 0.05dex and 0.29dex for log g, with
0.03dex and 0.17dex for [Fe/H].

We note that while leave-one-out cross-validation has been
used to choose a justified regularization strength, it cannot be

used to find the optimal regularization strength across all
pixels. In the same sense, the regularization strength Λ could—
in principle—differ for each pixel and each label. A penalized
likelihood function of that description could qualitatively be
similar to a Bayesian hierarchical model with strong priors on
the spectral derivatives q being zero. Rather, in this case, we
have performed 30 iterations of leave-one-out cross-validation
and we have fixed one global Λ value based on the rms
improvement in our 30 pre-selected regularization strengths.
We inferred labels for all 520,781 RAVE spectra using this

regularized main sequence/sub-giant-star model; we made no
a priori decisions as to whether a star was likely a main
sequence/sub-giant star or not. The results for the entire survey
sample are shown in the center panel of Figure 2. The increased
density of solar-type stars is consistent with RAVE observing
stars in the local neighborhood, and the high number of turn-off
and main sequence stars relative to the sub-giant branch is
expected from the relative lifetimes of these evolutionary
phases. An over-density of stars near the base of the giant
branch is also present. This artifact is due to having giant stars
in the test set, but not in the training set, and the model is
(poorly) extrapolating outside the convex hull of the train-
ing set.

3.5. A Nine-label Model for Detailed Abundances
of Giant Stars

The red giant branch stars in our training set have stellar
parameters (Teff, log g) and up to 15 elemental abundances
from the ASPCAP (García Pérez et al. 2016). A subset of these
elements have atomic transitions in the RAVE wavelength
region: O I, Mg I, Al I, Si I, Ca II, Ti I, Fe I, and Ni I. However,
we excluded [Ti/H] from our abundance list because of
systematics in the ASPCAP [Ti/H] abundances (Holtzman
et al. 2015; Hawkins et al. 2016). Therefore, we are left with
nine labels in our giant star model: Teff, log g, and seven
elemental abundances.
Similar to Sections 3.3 and 3.4, we used a quadratic

vectorizer for the giant star model. Here the terms are expanded
in the same way as Equation (5), only with nine labels instead
of three. We set the regularization hyperparameter Λ in the
same way described in Section 3.4, using the same 30 trials of
Λ. The results are shown in Figure 3, where again the

Figure 2. Logarithmic density of effective temperature Teff and surface gravity log g for all 520,781 RAVE spectra, as derived using the simple model (left panel;
Section 3.3), the main sequence star model (center panel; Section 3.4), and the giant star model (right panel; Section 3.5). These panels demonstrate how a single
quadratic model is insufficient for all RAVE stars (left panel), and illustrate some of the systematic artifacts that can result from testing on stars outside of the training
set (center and right panel). These panels do not represent our final results, which are shown in Figure 7.

Figure 3. Percentage change in rms deviation between inferred and training
labels at different regularization strengths. The rms values were calculated by
leave-one-out cross-validation, and are shown with respect to an unregularized
model (Λ = 0). The points and solid line indicate the mean improvement across
all labels. The filled area represents the minimum and maximum improvements
over all labels. With increasing regularization strength, there is a minimum in
the rms deviation over all labels, which is where we set Λ for each model (see
thetext for details).
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enveloped region represents the minimum and maximum
change in rms label deviation with respect to the unregularized
case. At the point of maximum improvement near Λ=0.13
(≈10−0.9), the rms in all nine labels has decreased by up to
30%, with all labels showing an improvement >5%, and the
mean improvement over all labels is about 10%. Near
Λ≈10−0.9 to 10−0.3, the regularization also produces a
sparser matrix of q, with ≈20% more terms (mostly cross-
terms) having zero-valued entries. Based on the increased
model sparsity and decreasing rms deviation in the labels, we
adopt Λ=0.57 (10−0.25) for the giant star model. The bias in
labels from a regularized model with Λ=0.57 is negligible:
−0.3K in Teff, and <0.007dex in magnitude for log g and all
seven elemental abundances. The rms at this regularization
strength is 69K in Teff, 0.18dex in log g, and varies between
0.07–0.09 dex depending on the elemental abundance.

We inferred labels for all 520,781 RAVE spectra using this
model, again without regard for whether a star was likely a
giant or not. The results for all survey stars are summarized in
the right panel of Figure 2. The red clump is clearly visible and
in the expected location, without requiring any post-analysis
calibration. However, artifacts due to dwarf stars being present
in the test set, and not in the training set, are also present.

3.6. Deriving Joint Estimates from Multiple Models

We have derived labels for all 520,781 RAVE spectra using
the three models described in previous sections. The results
from our first model (Section 3.3)—which includes the main
sequence, sub-giant, and red giant branch—shows that a single
three-label quadratic model is too simple for the RAVE spectral
range. The other models have problemstoo: unrealistic over-
densities in label space show that the main sequence model and
the giant model make very poor extrapolations for stars outside
their respective training sets. For these reasons, we were forced
to exclude or severely penalize incorrect results from both
models. We emphasize that the choices here are entirely
heuristicand depart from interpreting TheCannon output
labels as the maxima of individual likelihood functions. Each
model produces estimates of the labels for a given star, and we
use those estimates to produce a unified estimate, but this joint
estimate is calculated by disregarding the probabilistic
attributes of individual estimates.

Before attempting to join the results from the models in
Sections 3.4 and 3.5, we excluded results in either model that
had a reduced 3

r
2c > . We further discarded stars with labels

that are outside the extent of the training set. Specifically for
the results from the giant model, we (conservatively) excluded
stars with derived log g>3.5, and for the results from the
main sequence model, we excluded sub-giant stars (log g< 4
and Teff< 5000 K) that were outside the two-dimensional (Teff,
log g) convex hull of the training set used for the main
sequence model. Unfortunately, these restrictions did not
remove all spurious results. The reason for this can be
explained with an example: consider that our giant star model
was trained with only giant stars but tested with both giant stars
and dwarf stars. Some classes of stars (e.g., metal-poor dwarfs)
can project into a region of label space that would suggest it is a
giant (e.g., a clump star). These objects could have relatively
low

r
2c values (e.g., 3

r
2c < ) and, in this example, they would

appear as bonafide red clump stars. These incorrect projections
are extrapolation errors in high dimensions that project to
“normal” parts of the label space in two dimensions. For these

reasons, we also made use of the simple model in Section 3.3 to
inform whether we should adopt results fromthe red giant
branch model,the main sequence/sub-giant model,or a linear
combination of the two.
In Figure 4, we show the differences in effective

temperature Teff and surface gravity log g betweenthe main
sequence model (Section 3.4) and the simple model
(Section 3.3),and the differences between the red giant

Figure 4. Normalized differences in effective temperature Teff and surface
gravity log g between the main sequence model and the simple model (top
panel), and the giant model and the simple model (bottom panel). The density
scaling is logarithmic, and the differences in Teff and log g are scaled to make
them approximately isotropic (see thetext for details). The peak at (0, 0)
represents good agreement between the simple model and comparison model,
whereas the over-densities elsewhere are a consequence of testing the model on
stars very different fromthe training set (e.g., dwarf stars tested on a model
trained with only giant stars).
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branch model (Section 3.5) and the simple model
(Section 3.3). We have scaled the differences in Teff and
log g to make the central peak near (0, 0) to be approximately
isotropic by setting 90 KTeffd = for the main sequence model,

50 KTeffd = for the giant model, and 0.15 dexglogd = for both
models. It is important to note that these δ values do not
represent any kind of intrinsic uncertainty or precision: they
are merely normalization factors. Empirically, we found that
adopting substantially different scaling factors (e.g., a
relative factor of two change) would produce clear incon-
sistencies in our results (e.g., sub-giants being misclassified
as giants). Thus while the normalization factors are likely
sensitive at the 100% level, our tests suggested thatthey were
not sensitive within the ≈30% level (e.g., 120 K and 65 K,
respectively). Therefore, we chose these factors empirically
to make the distributions in Figure 4 approximately isotropic,
and to some extent, comparable. We also note that these
normalization factors are comparable to the rms scatter in the
training sets of the giant model and the main sequence model,
which qualitatively describes why differences with respect to
the simple model become approximately isotropic when
scaled with these normalization factors. In Figure 4, the stars
within the peak at (0, 0) represent objects where the simple
model and the comparison model both report similar labels.
The artifacts seen in the Hertzsprung–Russell diagrams in
Figure 2 are also present in Figure 4 as over-densities far
away from the central peak. Therefore, we can adopt the
scaled distance in labels Teff and log g from the simple model
to the main sequence model dms,

d
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We calculate weighted errors of ℓ̂ in the same manner. In
Figure 5, we show the mean relative weight wms/(wms+wgiant)

within each two-dimensional hexagonal bin of Teffˆ and gloĝ .
Hereafter, when we refer to labels (e.g., Teff), we refer to those
from the joint estimate ℓ̂ , not individual estimates from separate
models. For giant stars the relative weight of the main sequence
model is zero, and vice-versa for main sequence stars. The
relative weights smoothly transition from 0 to 1 on the sub-
giant branch near glog 3.5» , in the training set overlap region
of both models. For abundance labels in the giant model that
are not in the main sequence model (e.g., [O/H], [Mg/H]), we
only report abundances for objects if wms<0.05.
The weighted labels for all stars are shown as normalized

histograms in Figure 6. The normalization in each axis is
arbitrary, since main sequence stars do not have detailed
abundances here, there are fewer stars with—for example, [Ni/
H] labels—than there are stars with Teff labels. The [X/H]

abundance distributions peak near solar values, and the peaks
in the Teff and log g histograms are consistent with our
expectations from astrophysics: the bulk of clump stars is
visible for cool giant stars (log g≈ 2.5 and Teff≈ 4750 K), and
the increase in turn-off stars at Teff≈6000 K is expected given
the longer timescales for the turn-off.
The weighted Teff and log g values for stars meeting different

S/N constraints are shown in Figure 7, both in logarithmic
density and mean metallicity. The artifacts from individual
models are no longer apparent, and the complete structure of
the Hertzsprung–Russell diagram is visible. However, there are
a number of caveats introduced by the decisions we have made
on how to combine estimates from multiple models. We
discuss these issues in detail in Section 5.

4. Validation Experiments

In addition to the cross-validation tests that we have
previously described, we have conducted a number of internal
and external validation experiments to test the validity of our
results. We will begin by describing internal validation tests
based on repeat observations, before evaluating our accuracy
based on high-resolution literature comparisons.

4.1. Internal Validation

4.1.1. Repeat Observations

The RAVE survey performed repeat observations for 43,918
stars with time intervals ranging from a few hours to up to four
years. This timing was constructed to be quasi-logarithmic such

Figure 5. Mean relative main sequence model weight wms/(wms + wgiant) at
each hexagonal bin of weighted effective temperature Teff and surface gravity
log g. The relative weighting illustrates how only results from the main
sequence model are adopted for unevolved stars, and there is a gradual
transition to using results from the giant model, before only results from the
giant model are used for evolved stars.
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that spectroscopic binaries could be optimally identified. Most
of the stars that were observed multiple times were only
observed twice, with 13 visits being the maximum number of
observations for any target. These repeat observations allow us
to quantify the level of (in)correctness in our formal errors.

We calculated all possible pair-wise differences between the
labels we derived from multiple visits. If RAVE observed a star
H times, there are H H2 2-! ( )! possible a-to-b pair-wise
combinations where we can calculate the difference between
the derived label (for example, log g) over the quadrature sum
of their formal errors g glog loga b g a g blog ,

2
log ,

2s s- +( ) .
If our derived labels were unbiased and our formal errors were
correct, the distribution of these pair-wise comparisons would
be well-represented by a Gaussian distribution with zero mean
and variance of unity. However, our formal errors are likely to
be underestimated, and therefore we introduce a systematic
error floor for each label, which is added in quadrature to every
observation, such that (for example, log g),

g glog log

2
. 11g

a b

g a g b g

log

log ,
2

log ,
2

log ,floor
2

h
s s s

=
-

+ +
( )

We increased the minimum label error until the variance of
the η distribution approximately reached unity. We found the
minimum error in Teff to be 70K, 0.12dex in log g, and varied
between 0.06 and 0.08dex for individual elements. The
minimum errors are given with the distributions of η for each

label in Figure 8. These minimum values form part of our error
model, such that they have been added in quadrature with the
formal errors; the quoted label errors in our catalog include
these minimum errors.

4.1.2. Precision as a Function of S/N

We further used the repeat observations in RAVE to build
intuition for the label precision that was achievable as a
function of S/N. Specifically, we stacked all spectra for a
given star by summing the fluxes weighted by the inverse
variances, then treated the stacked spectra as normal survey
stars. We inferred labels for the stacked spectra using all three
models, and derived a joint estimate as per Section 3.6. The
labels we inferred from each stacked spectrum then served as
a basis of comparison for the labels we derived from the
individual visit spectra of the same star, which are of lower
S/Ns.
In Figure 9, we show the rms difference in labels between

the stacked spectra and single visit, binned by the S/N of the
individual visit spectrum. Here we only show stars where the
stacked spectrum had S/N>100 pixel−1 to ensure that our
baseline comparisons were in a region where we are
dominated by systematic uncertainties. The precision in all
labels tends to flatten out past S/N>40 pixel−1, and the
precision at high S/N is comparable to the minimum error
floors we adopted in Section 4.1.1. The median S/N of RAVE

Figure 6. Normalized histograms showing the derived labels for all RAVE stars after combining labels from the main sequence and giant star models. Only results
meeting our quality constraints are shown (see Section 5). The abundance labels peak near solar values, and the over-densities in Teff and log g labels is expected given
the longer phases of the giant branch clump and turn-off.
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spectra is 50pixel−1, at which point our abundance precision
is about 0.07dex, varying a few tenths of a dex between
different elements.

4.2. External Validation

4.2.1. Comparison with RAVE DR4

We cross-matched our results against the official fourth
RAVE data release (Kordopatis et al. 2013) as an initial point
of external comparison (Figure 10). In order to provide a fair
comparison, we only show stars that meet a number of quality
flags in both samples. Our constraints require that the S/N
exceeds 10pixel−1, and 3

r
2c < . For this comparison, we

further required thatthe QK flag from Kordopatis et al. (2013)
is zero, indicating thatno problems were reported by the
pipeline; T 4000 KDReff, 4 > ; the error in radial velocity e_HRV
is <8kms−1; and the three principal morphological flags c1,
c2, c3, from Matijevič et al. (2012) all indicate “n” for a
normal FGK-type star. There is good agreement in Teff, with a
bias and rms of just 4K and 240K, respectively. The offset in
log g on the giant branch between this study and Kordopatis
et al. (2013) has been noted in other studies (e.g., APOGEE),
and this issue has been minimized in the fifth RAVE data
release by correcting log g values with a calibration sample
consisting of asteroseismic targets and the Gaia benchmark
stars. There is also a slight discrepancy in the log g values
along the mainsequence, where our work tends to taper down
toward higher log g values at cooler temperatures, and the
RAVE DR4 sample tends to have a slightly flatter lower main
sequence. This difference is not likely to have a very

significant effect on the detailed abundance or spectro-
photometric distance determinations between these studies
(Binney et al. 2014).

4.2.2. Comparisons with Reddy, Bensby, and Valenti & Fischer

We searched the literature for studies that overlap with
RAVE, and which base their analysis on high-resolution, high
S/N spectra. We found four notable studies with a sufficient
level of overlap: the Milky Way disk studies by Reddy et al.
(2003, 2006) and Bensby et al. (2014), as well as the Valenti &
Fischer (2005) work on exoplanet host star candidates. These
studies perform a careful (manual; expert) analysis using
extremely high-resolution, high-S/N spectra, and make use of
Hipparcos parallaxes where possible. Most of the stars in these
samples are main sequence or sub-giant stars. Therefore, these
works constitute an excellent comparison to evaluate the
accuracy of our results on the main sequence and sub-giant
branch.
In Figure 11,we show Hertzsprung–Russell diagrams for

the RAVE stars that overlap with these studies. We only
include stars with 3

r
2c < and S/N>10 pixel−1, though the

latter cut removed only a few stars because the average S/N
in the RAVE spectra for these stars is relatively high (50
pixel−1). The literature data points in Figure 11 are linked to
our derived labels for the same stars, illustrating good
qualitative agreement across the turn-off and sub-giant branch
in all studies. If we treat all three studies as a single point of
comparison, the bias between our work and these studies
is −89K in Teff, just −0.06dex in log g, and −0.03dex in
[Fe/H] (see Figure 12). The rms deviationsin labels are

Figure 7. Effective temperature Teff and surface gravity log g for RAVE stars after combining labels from the main sequence and giant star models. Only results
meeting our quality constraints are shown (see Section 5). The top three panels show logarithmic density, and bins in the bottom three panels are colored by the
median metallicity in each bin.
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237K, 0.30dex, and 0.15dex, respectively. When consider-
ing the relative information content available in RAVE
(945 pixels in the near-infrared with  » 7500) compared
to these literature studies that use Hipparcos parallaxes where
possible, and base their inferences on spectra with resolving
power  between 40,000 to 110,000, and S/N exceeding
150, we consider the agreement to be very satisfactory.
Indeed, given the metallicity precision available in the RAVE-
on catalog, these results will likely be useful for future studies
based on exoplanet host star properties (e.g., the Transiting
Exoplanet Survey Satellite, TESS27).

4.2.3. Comparison with the Gaia-ESO Survey

There are 142 stars that overlap between RAVE and the
fourth internal data release of the Gaia-ESO survey. These are a
mix of main sequence, sub-giant,and red giant branch stars.
About half (67) of the sample were acquired with the UVES
instrument—the other with the GIRAFFE spectrograph—and
the S/N of the Gaia-ESO spectra peaks at ≈140 pixel−1.
Despite most of these stars having relatively low S/N in RAVE
(≈25 pixel−1), there is good agreement in with Gaia-ESO and
the RAVE-on stellar parameters (Figure 13). The rms in
effective temperature, surface gravity, and metallicity is 233K,
0.37dex, and 0.17dex, respectively.
Based on this comparison, we find no evidence for a

systematic offset in metallicities between stars on the
mainsequence and those on the giant branch. This is a crucial

Figure 8. Distribution of differences in label estimates from multiple visits, divided by the quadrature sum of their formal errors, and a minimum error value for each
observation. If our measurements were unbiased and our errors were representative, no minimum error floor would be required and the distribution of η would by
normally distributed with zero mean and unity variance. We increased the error floor for each label until the variance in the distribution of η approximately reached
unity. Derived error floors are shown for each label.

27 At present, however, there are just ≈30 stars in RAVE that overlap with the
compilations of exoplanet host star properties listed at exoplanets.org
and exoplanets.eu.
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observation, as the metallicities for stars in our main sequence
training set have a principally different source than those on the
giant branch. We cannot make these same inferences based on
other surveys, like APOGEE, because (1) APOGEE stars
formed part of the training set, and (2) they do not include main
sequence stars. Even if we found good agreement between
K2/EPIC and APOGEE metallicities, this would not be
informative, because APOGEE is the source of metallicity for
many stars on the giant branch in the K2/EPIC sample.
Therefore, although this is a qualitative comparison only, it is

reassuring that there is no obvious systematic difference between
the metallicities of main sequence and giant branch stars.
The metallicity agreement between this work and Gaia-ESO

extends down to low metallicity, near [Fe/H]≈−1.5. The
scatter increases for the few stars in the overlap sample with
[Fe/H]<−1, in the regime where the influence from atomic
transitions of these elements becomes very small in RAVE
spectra. Moreover, these particular stars have lower S/Ns,
which is reflected in the larger uncertainties reported for these
metallicities.

Figure 9. The rms deviation of labels for repeated observations in the test set. The rms deviation is binned as a function of the S/N of the individual visit spectra. The
precision flattens out at S/N40 pixel−1, where our results become systematics-limited.

Figure 10. Stellar parameter (Teff, log g, [Fe/H]) comparison between the fourth RAVE data release (Kordopatis et al. 2013) and this work. Here we show the
“calibrated” metallicity (column c_M_H_K) from the RAVE survey. Only stars meeting quality constraints in both studies are shown (see thetext for details).
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The fourth internal data release of the Gaia-ESO includes
detailed chemical abundances of up to 45species (≈32 elements
at different ionization stages). This provides us with an
independent validation for our detailed abundances on the giant
branch. These comparisons are shown in Figure 14, where
markers are colored by the S/N of the RAVE spectrum. The
number of stars available in each abundance comparison varies
due to what is available in the Gaia-ESO data release, which is

itself a function of the instrument used, the spectral type, and other
factors. The absolute bias for individual elements varies from as
low as 0.06dex ([Al, Mg/H]) to as high as 0.26dex ([Si/H]),
where we overestimate [Si/H] abundances relative to the Gaia-
ESO survey. The large bias in [Si/H] is likely a consequence of an
offset between [Si/H] abundances in Gaia-ESO and APOGEE,
the source of our training set for giant star abundances. The rms
deviation in each label is small for stars with [X/H]>−0.5,

Figure 11. Hertsprung–Russell diagrams of stars in common between this work and that of Bensby et al. (2014), Reddy et al. (2003, 2006), andValenti & Fischer
(2005). Stars are colored by the metallicity of each study. Circles indicate literature markers in the first three panels, and the linked triangles indicate RAVE-on
parameters for the same object. This figure illustrates the good qualitative agreement in the shape of the turn-off and sub-giant branch.

Figure 12. Stellar parameter (Teff, log g, [Fe/H]) comparisons for stars in common between this work and “gold standard” studies that use high-resolution, high S/N
spectra and Hipparcos parallaxes where available: Bensby et al. (2014), Reddy et al. (2003, 2006), and Valenti & Fischer (2005). Stars are colored by the S/N of the
RAVE spectra.

Figure 13. Stellar parameter (Teff, log g, [Fe/H]) comparison between the fourth internal data release from the Gaia-ESO surveyand this work. The number of stars in
each panel are shown, as well as the bias and rms deviation in each label. Stars are colored by the S/N of the RAVE spectra. Most of the Gaia-ESO/RAVE overlap
stars have relatively low S/N in RAVE, near ≈30 pixel−1.
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before increasing at lower metallicities. If we consider all stars, the
smallest abundance rms we see with respect to Gaia-ESO is
0.16dex for [Ca/H] and [Al/H]. The increasing rms at low
metallicity is likely a consequence of multiple factors, namely,
inaccurate abundance labels for metal-poor stars (Section 3.2);
only weak, blended lines being available in RAVE, which cease
to be visible in hot and/or metal-poor stars; and to a lesser extent,
low S/N for those particular stars being compared. Unfortunately,
not all of these factors are represented by the quoted errors in each
label. For these reasons, although it affects only a small number of
stars, we recommend caution when using individual abundances
for very metal-poor giant stars in our sample.

4.2.4. Comparison with the RAVE DR4 Calibration Sample

The fourth RAVE data release made use of a number of
high-resolution studies to verify the accuracy of their derived
stellar atmospheric parameters. These samples include main
sequence stars and giant stars, with a particular focus to include
metal-poor stars to identify (and correct) any deviations at low
metallicities. We refer the reader to Kordopatis et al. (2013) for
the full compilation of literature sources. Although the stellar
atmospheric parameters in this compilation come from multiple
(heterogeneous) sources, we find generally good agreement
with these works (Figure 15). However, we note that some
reservation is warranted when evaluating this comparison, as

Figure 14. Detailed chemical abundances in the fourth internal data release from the Gaia-ESO survey compared to this work. The number of stars shown in each
panel is indicated, and the bias and rms deviations are shown. Stars are colored by the S/N of the RAVE spectra.

Figure 15. Stellar parameter (Teff, log g, [Fe/H]) comparison with the literature calibration sources used by Kordopatis et al. (2013) and Kunder et al. (2017). Stars are
colored by the S/N of the RAVE spectra. Note that this comparison is for illustrative purposes only: it is not an indication of independent agreement with the literature
because some metal-poor stars in this literature sample were used in the construction of our training set (see the text for details).
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some of the metal-poor stars in this calibration sample formed
part of our training set.

4.3. Astrophysical Validation

4.3.1. Globular Clusters

After verifying that our atmospheric parameters and
abundances are comparable with high-resolution studies, here
we verify that our results are consistent with expectations from
astrophysics. In the RAVE survey, Anguiano et al. (2015)
identified 70 stars with positions and radial velocities that are
consistent with being members of globular clusters: 49 stars
belonging to NGC5139 (ωCentauri), 11 members of the
retrograde globular cluster NGC3201, and 10 members of
NGC362. In addition, Kunder et al. (2014) compiled 12 stars
thought to belong to NGC1851, and a further 10 stars in
NGC6752. We refer the reader to those studies for details
regarding the membership selection.

In Figure 16, we show our effective temperature Teff and
surface gravity log g for these prescribed globular cluster
members. The right-hand panels indicate measurements made
in this work, and for comparison purposes we have included
the results from the fourth RAVE data release in the left-hand
panels. We show representative PARSEC isochrones (Bressan
et al. 2012) in all panels, where the isochrone ages and
metallicities are adopted from Kunder et al. (2017), Marín-
Franch et al. (2009), and the Harris (1996, accessed 6
September 2016) catalog of globular cluster properties. The
globular cluster with the highest number of members is
NGC5139 (ω-Centauri), where we find a significant metallicity
spread that is consistent with high-resolution studies (Carretta
et al. 2009, 2013; Marino et al. 2011). Based on the pre-defined
membership criteria, we find the mean metallicity of ω-
Centauri to be [Fe/H]=−0.85. However, it is clear that the
membership criteria could be improved with our revised
metallicities and detailed chemical abundances. Indeed, our
individual abundance labels could be further used to identify
globular cluster members—at least, of relatively metal-rich
clusters—that are now tidally disrupted (Anguiano et al. 2016;
Kuzma et al. 2016; Navin et al. 2016), even for stars with low
S/Ns.

4.3.2. Open Clusters

Using positions, proper motions, and metallicities from the
RAVE survey (i.e., not ours, such that they can be used as
comparison), we identify ∼160 probable members of four open
clusters that were observed by RAVE. Specifically, we identify
78 potential Pleiades members, 26 candidates in the Hyades,
another 13 in IC4561, and 30 stars in the solar-metallicity open
cluster M67. We show the effective temperature Teff and
surface gravity log g for these cluster candidates in Figure 17.
The isochrones are sourced from Bressan et al. (2012), with
cluster properties adopted from Kharchenko et al. (2013).

We find good agreement between our atmospheric parameters
(right-hand panels) and the isochrones shown. The position of
the red clump in IC4651 and M67 are perfectly matched to the
isochrone, and the Hyades main sequence is in good agreement
down to T 4000 Keff » . Similarly, we find consistency with the
literature and our metallicity scale. We find the mean metallicity
of M67 stars to be [Fe/H]=−0.02±0.03 dex, in excellent
agreement with the expected [Fe/H]=0.00 value (not

accounting for atomic diffusion). We further find the Hyades
mean metallicity to be [Fe/H]=0.07±0.09 dex, consistent
with Paulson et al. (2003): [Fe/H]≈0.13. For IC4651 from 13
stars we find a mean [Fe/H]=0.15±0.03 dex, matching the
high-resolution, high-S/N study of Pasquini et al. (2004), where
they find [Fe/H]=0.10±0.03 dex. Finally, from 78 stars, we
find the mean metallicity of the Pleiades to be [Fe/H]=
−0.02±0.01 dex, in very good agreement with the [Fe/H]=
−0.034±0.024 dex measurement reported by Friel &
Boesgaard (1990).
Despite the discrepancies between the isochrone and our

derived labels for stars in the Pleiades, we have made no
attempt to refine the membership selection in any of the
aforementioned clusters. We note, however, that the same
discrepancy with the isochrone appears present in the fourth
RAVE data release Kordopatis et al. (2013).

5. Discussion

We have performed an independent re-analysis of 520,781
RAVE spectra, having derived atmospheric parameters (Teff,
log g, [Fe/H]) for all stars, as well as detailed chemical
abundances for red giant branch stars. When combined
with the TGAS sample, these results amount to a powerful
compendium for chemo-dynamic studies of the Milky Way.
However, all statistical inferences—in any study—are
crucially reliant on assumptions, and any number of decisions
that can be called into question. Our analysis, and our results,
are no different. Inferences based on these results should
recognize those caveats, and acknowledge that these results
are subject to our explicit assumptions, some of which are
provably incorrect.
One of these assumptions is that the noise in individual

pixels is independent (between adjacent pixels). The descrip-
tion of the data reduction in the fifth RAVE data release paper
(Kunder et al. 2017) shows that this assumption is incorrect.
The noise in neighboring pixels is correlated in two ways: first,
due to the oversampling by the CCD pixels in the spectro-
graph’s point-spread function, and due to a three-pixel boxcar
smoothing that was later applied to the data. While it is unlikely
that our assumption of pixel independence violates any of our
results, it explains in part why our original errors were
underestimated. However, there are other assumptions made
that potentially have more serious consequences on the validity
or utility of our results.
For practical purposes, we adopted separate models: one for

the giant branch and one for the main sequence. A third model
was used to derive relative weights for which results to use.
The relative weighting we have used does not have any formal
interpretation as a likelihood or belief (in any sense): it was
introduced for practical reasons to identify systematic errors
and combine results for multiple models. Because the relative
weights have no formal interpretation, it is reasonable to
consider this method is as ad hoc as any other approach. The
relative weighting has no warranty to be (formally) correct, and
therefore may introduce inconsistencies or systematic errors
rather than minimizing them. While Bayesian model averaging
(e.g., Hoeting et al. 1999, and similar methods) represent more
formal and considered approaches to weighting—or deciding
between—multiple models, these approaches were not con-
sidered here due in part to their higher computational cost.
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If we only consider the results from individual models, there
are a number of cautionary remarks that stem from the
construction of the training set. The labels for red giant branch

stars primarily come from APOGEE, where previous successes
with TheCannon have demonstrated that APOGEE labels
based on high S/N data can be of high fidelity (Ness et al.
2015, 2016; Casey et al. 2016b; Ho et al. 2017). However, the
lack of metal-poor stars in the APOGEE/RAVE overlap
sample produced a tapering-off in the test set—where no stars
had reliably reported metallicities below that of the training set
—which forced us to construct a heterogeneous training set.
The metal-poor stars included in this sample are from high-
resolution studies (Fulbright et al. 2010; Ruchti et al. 2011), but
it is not known if the stellar parameters are of high fidelity
because we have a limited number of quality statistics

Figure 16. Effective temperature Teff and surface gravity log g for globular
cluster members identified by Kunder et al. (2014) andAnguiano et al. (2015).
Left-hand panels indicate results from the fourth RAVE data release (Kordopatis
et al. 2013), and the right-hand panels show results from this work. A
representative isochrone is shown for each cluster (Bressan et al. 2012).

Figure 17. Effective temperature Teff and surface gravity log g for open cluster
members identified by Kunder et al. (2017). Left-hand panels indicate results
from the fourth RAVE data release (Kordopatis et al. 2013), and the right-hand
panels show results from this work. A representative isochrone is shown for
each cluster (Bressan et al. 2012).
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available. Moreover, there is no guarantee that the stellar
parameters or abundances are on the same scale as APOGEE
(and good reasons to believe they will not be; see Smiljanic
et al. 2014).

If the metallicities of metal-poor giant stars were on the same
scale as the APOGEE abundances, there is a larger issue in
verifying that the main sequence metallicities and giant branch
metallicities are on the same scale. The training set for the main
sequence stars includes metallicities from a variety of sources,
including LAMOST, and the fourth RAVE data release. Even
on expectation value, there is no straightforward manner to
ensure that the main sequence model and the red giant branch
model produce metallicities on the same scale. We see no
systematic offset in metallicities of dwarf and giant stars that
overlap between RAVE and the Gaia-ESO survey, suggesting
that if there is a systematic offset, it must be small.
Nevertheless, these are only verification checks based on
<1% of the data, and there is currently insufficient data for us
to prove both models are on the same abundance scale.

For some of the most metal-poor giant stars in RAVE, we
know the abundances are not on the same scale as APOGEE,
because we were forced to adopt abundances for specific
elements when they were unavailable. Although we sought to
adopt the mean level of Galactic chemical enrichment at a
given overall metallicity, this is not a representative abundance.
Even if that is the mean enrichment at that Galactic metallicity,
there is no requirement for zero abundance spread. More
fundamentally, we are incorrectly asserting that the element
must be detectable in the photosphere of the star. There may be
no transition that is detectable in that star, even with zero noise,
because it is too weak to have any effect on the spectrum. In the
most optimistic case, this could be considered to be forcing the
model to make use of correlated information between
abundances. In a more representative (pessimistic) case, we
are simply invoking what all abundances should be at low
metallicity.

This choice is reflected in the abundances of the test set.
While we do recover trustworthy metallicities for ultra-metal-
poor ([Fe/H]−4) stars like CD-38245, the individual
abundances for all extremely metal-poor stars aggregate (in
[X/Fe] space; Figure 18) at the assumed abundances for the
metal-poor stars in our sample. Thus, while the overall
metallicities appear reliable, the individual abundances for
extremely metal-poor stars in the test set cannot be considered
trustworthy in any sense. For this reason, we have updated the
electronic catalog to discard these results as erroneous.

In Section 3, we assumed that any fiber- or time-dependent
variations in the RAVE spectra are negligible. This is
provably incorrect. Indeed, Kordopatis et al. (2013) note that
the effective resolution of RAVE spectra varies from
6500 8500< < , and that the effective resolution is a
function of temperature variations, fiber-to-fiber variations,
and thus position on the CCD (Steinmetz et al. 2006). For this
reason,we ought to expect our derived stellar parameters or
abundances to be correlated either with the fiber number, with
the observation date, or both. If significant, the trend could
produce systematically offset stellar abundances solely due to
the fiber used. Kordopatis et al. (2013) conclude that
resolution-based effects on the RAVE stellar parameters
should be a second-order effect. We have not seen evidence of
these resolution-based correlations in our results;however,

we have only performed cursory (non-exhaustive) experi-
ments to investigate this issue.
We have shown some potential outcomes when the test-set

spectra differ significantly from the spectra in the training set.
Test-set spectra that are “unusual” from the training set can be
projected as peculiar artifacts in label space. In other words,
unusual spectra can appear as “clumps” in regions of parameter
space that we could consider as being normal (e.g., an over-
density of solar-type stars). We addressed this issue for the
main sequence and giant models by using a third model
(Section 3.3) to calculate relative weights. However, spectra
that are unusual from the training set used in the simple model
could still project as systematic artifacts in label space.
Indeed, there are two known artifacts in our data that are

relevant to this discussion. The first is a small over-density at

Figure 18. Detailed chemical abundances ([X/Fe]) for giant stars in RAVE-on
with respect to [Fe/H], showing the Galactic chemical evolution derived for
each element. Bin densities are scaled logarithmically. Note that the y-axis
limits vary for each panel;however, for clarity,we show the scaled-solar
position by dashed lines, and have common tick mark spacing on the y-axis for
all panels. Only stars meeting our quality constraints are shown (see Section 5).
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the base of the giant branch, which is likely a consequence of
joining the nine-label and three-label models. The second has
an astrophysical origin: there are no hot stars (Teff> 8000 K)

present in our training set, yet there are many in the RAVE
survey. However, the RAVE pre-processing pipeline (SPARV;
Steinmetz et al. 2006; Zwitter et al. 2008) performs template
matching against grids of cool and hot stars, and therefore
we can use that information to identify hot stars. In Figure 19,
we show our derived effective temperatures Teff and surface
gravities log g, where each hexagonal bin is colored by the
maximum temperature reported by SPARV for any star in that
bin. We show the maximum temperature reported by SPARV to
demonstrate that hot stars project into a single clump in our
label space—near the turn-off—in a region where we may
otherwise be deceived into thinking the observed over-density
is consistent with expectations from astrophysics.

This line of reasoning extends to spectra with other peculiar
characteristics (e.g., chromospheric emission), and for these
reasons we recommend the use of additional metadata to
investigate possible artifacts. In our catalog, we have included a
column containing a boolean flag to indicate whether the labels
pass very weak quality constraints. Specifically, we flag results
as failing our quality constraints if SPARV indicates a
Teff>8000 K, or if 3

r
2c > , or if S/N<10 pixel−1. These

quality constraints represent the minimum acceptable condi-
tions and should not be taken verbatim: judicious use of the
morphological classifications (Matijevič et al. 2012) or
additional metadata from the RAVE pre-processing pipelines
is strongly encouraged.

We have presented a comprehensive collection of precise
stellar abundances for stars in the first Gaia data release. In total,
we derive stellar atmospheric parameters for 441,397 stars, and
report more than 1.69 million abundances. Despite the caveats
and limitations discussed here, our validation experiments and
comparisons with high-resolution spectroscopic studies suggests
that our results have sufficient accuracy and precision to be
useful for chemo-dynamic studies that become imminently

feasible only in the era of Gaia data. We are optimistic that the
RAVE-on catalog will advance understanding of the Milky
Way’s formation and evolution.

5.1. Access the Results Electronically

Source code for this project is available at https://www.
github.com/AnnieJumpCannon/rave, and this document was
compiled from revision hash 7cafdd5 in that repository.
Derived labels, associated errors, and relevant metadata are
available electronically from Zenodo (Casey et al. 2016c) at
10.5281/zenodo.154381, or from the RAVE online database.
Please note that it is a condition of using these results that the
RAVE data release by Kunder et al. (2017) must also be cited,
as the work presented here would not have been possible
without the tireless efforts of the entire RAVE collaboration,
past and present.
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