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The ray form of Newton’s law of motion

James Evans

Department of Physics, University of Puget Sound, Tacoma, Washington 98416
(Received 9 April 1992; accepted 19 September 1992)

Through the use of the optical-mechanical analogy, Newton’s law of motion may be cast into the
same form as the equation for the ray in the geometrical optics of gradient-index media. The
resulting equation is called the ray form of Newton’s law of motion. The same equation may be
derived by taking the geometrical optics limit of quantum mechanics. The ray form of Newton’s
law of motion is derived in three different ways and is applied in the solution of several problems.

I. INTRODUCTION

One may express the optical-mechanical analogy in sev-
eral different forms. In Hamilton’s original formulation'*
of the analogy, both mechanics and geometrical optics
were couched in terms of the theory of the characteristic
function. Mechanics and geometrical optics met, as it were,
in rather high and difficult terrain.

There do exist, however, more elementary formulations
of the optical-mechanical analogy. For example, it is pos-
sible’ to cast the equation governing the optical ray into
the form F=ma. The advantage of such a formulation is
that techniques and strategles familiar from mechanics are
immediately applicable in the realm of geometrical optics.*

In this article, we pursue the opposite course. We derive
an equation for the trajectory of a particle which takes on
the form of the standard equation for the ray in geometri-
cal optics. We discuss the meaning of the equation and
show how it may be applied to solve a number of problems
in mechanics.

II. THE RAY FORM OF NEWTON’S LAW OF
MOTION

A, First derivation

Igl geometrical optics, a frequently used equation for the
ray™’ is

d ([ dx . .
Vn=£ (n E)’ (geometrical optics), (1)
where x is the position of a point on the ray, ds is the
element of arc length along the ray, and n(x) is the index
of refraction, which is a function of position. This differ-
ential equation may be integrated—either exactly, if the
function n(x) is simple enough, or numerically—to obtain
the shape of the ray.

We shall now write down the corresponding equation for
the trajectory of a particle in classical mechanics. Equation
(1) can be derived in geometrical optics by applying the
calculus of variations to Fermat’s principle

SJ (n/c)ds=0, (geometrical optics). (2)

8 denotes a variation of the integral produced by a varia-
tion of the path of integration between two fixed points in
space. ¢ is the speed of light in vacuum. Thus ¢/n is the
speed of light. The analogous principle in mechanics is
Maupertuis’ principle

8fmv ds=0, (particle mechanics). (3)
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m is the mass of a particle and v(x) is the particle’s speed
(=]v|), considered to be a function of its position alone.
The rules governing the variation of the integral are the
same as for Fermat’s principle. By comparison of Eq. (2)
and Eq. (3), it is clear that we may pass over from geo-
metrical optics to point-particle mechanics by the tran-
scription’

n/c=mv.

This transcription applies whenever the force on the par-
ticle is derivable from a potential that depends on the po-
sition alone Thus we may immediately write down for
mechanics®

ds

Equations (4) and (1) are of perfectly similar form. How-
ever, Eq. (4) can be simplified if we note that dx/ds is a
unit vector tangent to the trajectory,’ i.e., in the direction
of v. Thus we have

vv=dV/dSQ

This we shall call the ray form of Newton’s law of motion.

d [ dx
Vo=— (v—) (particle mechanics). 4)

(particle mechanics). (5)

B. Second derivation

The ray form of Newton’s law of motion may also be
derived easily from straightforward mechanical principles.
We begin with Newton’s law of motion in the form

—VU=mdv/dt,

where the potential energy U is the difference between the
total energy and the kinetic energy

U=E—mv¥/2.
Upon substitution for U, we have
dv dvds

And thus
Vv=dv/ds,
as just obtained by use of the optical-mechanical analogy.

C. Third derivation

We begin again with the central equation [Eq. (1)] of
geometrical optics, but express it in terms of the wave
number k rather than the index of refraction (n=ck/w,
where o is the angular frequency). Thus
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Vi d kdx
2 (e8)

Equation (6) is most familiar in the context of geometrical
optics, but it is in fact far more general. As mentioned
already, Eq. (6) can be derived by applymg the calculus of
variations to Fermat’s principle [Eq. (2)].”® Thus, a ray is
a path of integration that makes the value of the Fermat
integral stationary against small variations in the shape of
the path. Physically, the ray may be considered to result
from constructive interference of the disturbances propa-
gated along a bundle of closely neighboring virtual paths.
Fermat’s principle must therefore apply in “the geometri-
cal optics limit” to any wave disturbance that obeys the
principle of superposition. In particular, Eq. (6) must ap-
ply to the matter waves of quantum mechanics. That is,
Eq. (6) is also the differential equation for the classical
trajectory of a material particle: the particle trajectory is
the “ray,” in the short-wavelength limit of quantum me-
chanics. To apply Eq. (6), which is very general, to the
particular case of mechanics, we use the de Broglie relation

mv=7#Kk, €]

where # is Planck’s constant divided by 2. When Eq. (7)
is used to replace k by v in Eq. (6) we 1mmed1ately obtain
Eq. (5), the ray form of Newton’s law of motion.’

D. Discussion

Equation (5) may at first glance seem almost an iden-
tity, a near tautology. But it is not: It is merely concise.
The first derivation shows that Eq. (5) is a particularly
simple expression of the optical-mechanical analogy: me-
chanics takes on the form of the central equation of geo-
metrical optics. The second derivation shows that Eq. (5)
is equivalent to Newton’s law of motion when the force
may be derived from a velocity-independent potential. The
third derivation shows that Eq. (5) succinctly expresses
classical mechanics as the short-wavelength limit of wave
mechanics.

For a given particle, with fixed energy E, the speed v
appearing on the left side of Eq. (5) is to be thought of as
a function of position. Imagine an ensemble of identical
particles, all with same energy E, moving in an externally
produced field. The speed of any one of the particles, at any
point in space, depends only on its position x. That is, we
characterize the field of influence in which the particle
moves by the function v(E,x), rather than by U(x). The
left side of the equation thus represents the influence of the
external world, and the right side represents the response
of the particle. In words, the equation states that the
change in velocity per unit distance traveled is equal to the
gradient of the speed function.

III. SOME APPLICATIONS

The meaning of Eq. (5) can be made clearest by dem-
onstrating its use in the solution of concrete problems. Ev-
ery formulation of mechanics will be found well suited to
some applications and workable but clumsy for others. The
problems below can, of course, all be solved by other
means. These problems have been selected because they
illuminate essential features of the ray approach to me-
chanics and because they can be solved with special ease
using this approach.
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Fig. 1. A particle with initial velocity v, is deflected through angle 8 while
traveling through a parallel-plate capacitor.

A, Uniform circular motion

Let a particle be moving on a circle of radius r at con-
stant speed v. Consider an infinitesmal arc ds of the circle,
which subtends a central angle d8. While the particle is
moving along ds, its velocity vector v rotates through the
same angle d6, thus producing a change in velocity dv. In
the usual way, we invoke the similarity of two triangles: a
triangle in coordinate space with two long sides r and a
short side ds, and a triangle in velocity space with two long
sides v and a short side |dv|. The similarity of the triangles
leads immediately to

dvi v 8

ds|—r’ (8)
The direction of dv/ds is towards the center of the circle.
This is the kinematic relation that expresses uniform cir-
cular motion. It contains no physics. (It is equivalent to
a=uv*/r, where a is the acceleration.) To put in the physics,
we use the ray form of Newton’s law of motion, Eq. (5),
and thus obtain

|Vv|=v/r, 9

which is the dynamical condltlon for uniform circular mo-
tion (e(lulvalent to F=mv /r, where F is the centripetal
force).!? The direction of Vv is radially inwards towards
the center of the circle.

B. Example involving evaluation of the speed gradient

Problem: A particle is traveling at speed v in a circular
orbit of radius 7 about the center of the Earth. At a point
on the orbit, the particle encounters a (perfectly elastic)
barrier set at a 45° angle to the direction of motion. The
particle is reflected radially downward towards the center
of the Earth. By how much does the particle’s speed
change in the first meter of fall?

Solution: The circular orbit is characterized by Eq. (9);
thus, the magnitude of the speed gradient is known at ra-
dius 7. Since the value of the gradient does not change
sensibly in only 1 m, the particle’s change in speed in the
1-m fall is

Av=(v/r) X1 meter. (10)

C. Example involving approximate evaluations of both
Vv and dv/ds

Problem: An electron with speed vy enters a region of
uniform electric field as shown in Fig. 1. The field is pro-
vided by a parallel plate capacitor of width L and plate
separation d, with d € L. The electron enters the field near
the top plate and its initial line of motion is parallel to the
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Fig. 2. A particle, initially in a circular orbit about a force center, is sent
into a higher circular orbit by means of two reflections.

plates. It is desired to use the capacitor field to deflect the
electron through a small angle §. What is the minimum
possible plate separation d?

Solution: The electron emerges from the capacitor with
velocity v, as shown in the figure. The change in velocity
Av is perpendicular to the original line of motion and its
magnitude is vy tan 6. Because d € L, the distance traveled
by the electron between the plates is essentially L. Thus the
magnitude of the right-hand side of Eq. (5) is"

|dv/ds| ~v, tan 6/L. (11)

The left-hand side of Eq. (5) may be evaluated as follows.
The gradient of the speed is entirely in the vertical direc-
tion. The speed changes by (v—uv,) as the particle falls
through a vertical distance d. Thus

|Vv| == (U—Uo)/d
=[(v3+0} tan? 6)"2 —up1/d

=~y tan? 6/(2d). (12)

Setting the right sides of Eq. (11) and Eq. (12) equal to
one another immediately gives

d~(L/2)tan 6, (13)

the minimum plate separation that will allow deflection
through angle 0.

Equation (13) can, of course, be derived by other
means. In the present context, it underscores an important
feature of Eq. (5): The derivatives on the left-hand side are
derivatives of the scalar », while the derivative on the right-
hand side is a derivative of the vector v. This, in essence, is
the source of the vital 1/2 in Eq. (13).

D. Example involving integration of the speed gradient

Problem: A particle is in uniform circular motion (speed
vo and radius ry) about a force center O located at the
center of the circular orbit. The nature of the force law is
unknown. However, whenever the particle is deflected by
elastic reflection through two 90° turns (as in Fig. 2), it is
always found that the new orbit also involves uniform cir-
cular motion about the same center, but at a new radius 7.
Find the speed v in the new orbit. Also determine 7,,,,, the
largest distance from O that can be attained in this manner.
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Solution: Given the initial orbit parameters, r, and v,
uniform circular motion is possible at every r. So, by Eq.

(9),
(14)

The minus sign indicates explicitly that the direction of Vv
is inwards towards O. A simple integration gives

v=k/r,

where k is a constant of integration. Since this relation
must also be satisfied by the initial orbit, k=uvyry. So the
speed v in the new orbit of radius r is

V=u7p/7. (15)

. The maximum distance 7,,, from O that is attainable by
elastic reflection of the particle is clearly infinite. For we
have v—0 as 7r— . Thus, given that the particle is in
uniform circular motion at one radius, a circular orbit is
possible at any radius without modification of the particle’s
energy. (In working this problem, it was not necessary to
determine the form of the potential energy function. But
because many readers will be happier with U(r) than with
v(r), we will add that it turns out U « —r~2. That is, the
situation described in the problem implies an inverse-cube
attractive force.!*

This problem may, of course, be worked out from the
beginning by other methods. The reader is encouraged to
try an alternative solution, starting, say, from mv*/r=dU/
dr, then using conservation of energy. This solution is sub-
stantially longer than the one presented above.

1V. CONCLUSION

Equation (5), the ray form of Newton’s law of motion,
illustrates the optical-mechanical analogy at an elementary
level and reveals Newtonian dynamics as the geometrical
optics limit of wave mechanics. On the practical side, Eq.
(5) can be of use in solving certain kinds of mechanics
problems—usually problems in which a time description is
not required. Equation (5) therefore constitutes one more
tool that may be added to the mechanics tool kit. The
utility of Eq. (5) is not terribly great, however, because of
the inconvenience that often attaches to the use of the arc
length as an independent variable. Indeed, the advantages
of the familiar F=ma approach over Eq. (5) point the
way to an important lesson for geometrical optics: the “F
=ma” formulation of geometrical optics'® has significant
practical advantages over the traditional textbook formu-
lation based on Eq. (1). The ray form of Newton’s law of
motion is therefore likely to be of most use in instruction as
a means of illustrating the connections between optics and
classical mechanics, as well as between classical mechanics
and wave mechanics.

'W. R. Hamilton, “On a general method of expressing the paths of light,
and of the planets, by the coefficients of a characteristic function,”
Dublin University Review (1833), pp. 795-826; reprinted in: The
Mathematical Papers of Sir William Rowan Hamilton, 3 Vols., edited
by A. W. Conway et al. (Cambridge University, Cambridge, 1931~
1967), Vol. 1, pp. 311-332.
For an excellent summary of Hamilton’s work in mechanics and in
geometrical optics, see T. L. Hankins, Sir William Rowan Hamilton
(Johns Hopkins, Baltimore, 1980), pp. 61-87, 181-198.
31. Evans and M. Rosenquist, “‘F=ma’ optics,” Am. J. Phys. 54, 876~
883 (1986).
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“For another example, see T. Sekiguchi and K. B. Wolf, “The Hamil-
tonian formulation of optics,” Am. J. Phys. 55, 830835 (1987). The
“Hamiltonian formulation” of the title refers not to Hamilton’s formu-
lation of geometrical optics, but to the use of equations in geometrical
optics that resemble Hamilton’s equations in dynamics.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford,
1980), pp. 101-132.

M. V. Kiein, Optics (Wiley, New York, 1970), pp. 29-31.

This transcription constitutes only a part of the complete optical-
mechanical analogy. It suffices for the present discussion, which is
concerned only with the shape of the particle trajectory. If we also
wish to consider the time development of the motion, we complete the
analogy by means of the transcription optical action=>time. Thus, the
light progresses in action along its ray in the same way that the me-
chanical particle progresses in time along its trajectory. See J. Evans,
“Simple forms for equations of rays in gradient-index lenses,” Am. J.
Phys. 58, 773-778 (1990), p. 774.

$For the special case of particles of zero total energy, Eq. (4) can be
written in the form YUY2= (d/ds)[U"*(dx/ds)], where U(x) is the
potential energy. See J. A. Arnaud, “Analogy between optical rays and
nonrelativistic particle trajectories: A comment,” Am. J. Phys. 44,
1067-1069 (1976). However, we shall stick to Eq. (4), which is more
general.

Sdx/ds=(dx/dt)(dt/ds) =v/v. The optical equation [Eq. (1)] corre-
sponding to Eq. (4) can be simplified in a similar way. The optical
counterpart of Eq. (5) is Vn=d(un)/ds, where u is a unit vector
tangent to the ray. See Ref. 6, p. 30.

10See, for example, Ref. 3, p. 877.

"For a derivation of the familiar form of Newton’s law of motion di-
rectly from Fermat’s principle, see M. Rosenquist and J. Evans, “The
classical limit of quantum mechanics from Fermat’s principle and the
de Broglie relation,” Am. J. Phys. 56, 881-882 (1988).

’The two equations derived in this paragraph can also be obtained by
simple manipulations of a=v%/r and |VU|=mv*/r. But the whole
point, and most of the fun, is to derive them in the spirit of geometrical
optics, i.e., thinking in terms of s rather than ¢,

3Neither Vv nor dv/ds is really constant in this situation. However,
because | Av| <vy, both are approximately constant.

!4This may be shown as follows. Because the particle may escape to
infinity with zero speed, its energy is zero under the usual convention,
so U= —mv?/2. Then, upon substitution of Eq. (15), we have U(r)
= —cr~?%, where the constant ¢ may be expressed in terms of the initial
orbit parameters as c=muiry/2.

5References 3 and 7.

Electrostatic field bounds for model dielectric configurations

Thomas J. Wilcox?

Ocean Technology Department, TRW Space and Technology Group, One Space Park, Redondo Beach,

California 90278

(Received 16 March 1992; accepted 27 September 1992)

The normal component of an electric field near a convex shaped object of zero net charge and
dielectric constant € embedded in a vacuum with an asymptotically uniform electric field has an
upper bound (€/€;) | Ey|, where € is the vacuum permittivity, and E; is the asymptotic field.
This limit may be closely approached in the vicinity of regions of high surface curvature.

I. INTRODUCTION

The shape and intensity of electric fields present near a
dielectric object in an asymptotically uniform electric field
E, is a problem of considerable interest from both didactic
and practical viewpoints. Many graduate level courses in
classical electrodynamics begin with a discussion of electric
fields and potentials near a variety of simple-shaped objects
(spheres and cylinders). The mathematical problem in-
volves solving Laplace’s equation (V2®=0) subject to var-
ious boundary conditions. If the dielectric shape falls into
one of several simple categories and the coordinate system
is suitably chosen, then Laplace’s equation will be separa-
ble and the solution can be written in “closed form.” This
generally means that it conforms to one of a relatively
small number of functions studied and cataloged in the
19th century or earlier which comprise a major part of the
standard mathematical repertoire of graduate students of
physics.

In all, there exist eleven separable coordinate systems for
Laplace’s equation in three dimensions.'! Of these the most
involved are ellipsoidal coordinates. The problem of a di-
electric ellipsoid suspended in a vacuum within an asymp-
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totically uniform electric field is a particularly interesting
example since in addition to being the most complex case
which is solvable in closed form,>” it appears to illustrate
the characteristic behavior of fields under much more gen-
eral circumstances. The maximum field strength (Eg,,)
which can occur in this case is given by (e/¢€p) | Eg| and is
directed normal to the surface of the ellipsoid whose major
axis is aligned with the asymptotic field E,. Here € and ¢,
are the dielectric constants of the ellipsoid medium and
vacuum, respectively. The limit E,,, will be approached in
the case of a highly elongated needle or “surfboard” shape,
just outside the regions of maximum surface curvature.

It is of interest to ask whether it is possible to show that
this simple expression really does constitute a limit for the
maximum E field without restriction to one of the standard
“solvable” shapes. The fact that this simple expression for
E,,, turns out to be a valid limit for convex dielectric
shapes generally has considerable practical significance as a
bound on field enhancement that may provide a point of
electrical discharge formation in the initiation of arcs. By
way of contrast, it is well-known that very high electric
fields can be found near regions of high surface curvature
in the case of conducting surfaces. The E;,, limit may also
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