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Summary. A modification of the ray method including diffraction is outlined. 
The study is designed for the computation of  the wavefields in 3-D inhomo- 
geneous media containing such structural elements as pinch-outs, vertical and 
oblique contacts. faults and so on. The approach is based on the theory of 
edge waves. The total wavefield is considered as the superposition o f t w o  parts. 
The first part is described by the ray method. It has discontinuities because of 
its shadow boundaries. The second part is a superposition of two types of 
diffracted waves, caused by the edges and vertices of interfaces. This part 
smooths away the above-mentioned discontinuities, so that the total wave- 
field is a continuous one. The effects of multiple diffraction are considered. 
Of special importance is a mathematical form of  amplitudes of  diffracted 
waves, described with unified functions of eikonals. In fact, it allows all 
additional computations to be considered by finding the  eikonals of 
diffracted waves. 

1 Introduction 

Of special importance for seismology is the ray method that allows wavefields to be 
computed efficiently in 3-D inhomogeneous media far from the source (Babich & Alekseyev 
1958; Karal & Keller 1959; ferveny, Molotkov & Psenc'ik 1977, etc.). However, the method 
gives only the components of  the wavefields connected with the energy flux along the ray 
tubes but not diffusion through their side walls. If the main part of the wavefield is formed 
by diffusion, it cannot be described by the ray method. The desire to adopt this method in 
similar situation has resulted in various modifications (Babich & Buldyrev 1972: Popov 
198 1 ; eerveny 1983; Kennett 1984, etc.). 

In the present paper a modification of the ray method for 3-D inhomogeneous block 
media is considered. The structural elements of interfaces in this type of media have sharp 
edges, the so-called diffracting edges (for example, the lines of pinch-outs vertical and 
oblique contacts of  interfaces, faults and so on). The ray method does not give a continuous 
description of the wavefields in this type of media because of shadow boundaries. The main 
idea of the present modification is to smooth away the above discontinuities by the 
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36 
diffracted waves, scattering by  the edges of interfaces, in such a way that the  total wavefield 
is continuous. From a physical viewpoint, it is the same thing as to  add the diffusion that is 
not considered b y  the ray method (Fock 1965). This principle is well-known in the classic 
theory o f  diffraction (Born & Wolf 1968) and in its modern modifications (Claerbout 1976; 
Trorey 1977; Hilterman 1982;  Fertig & MulYer 1979, etc.). However, there were no universal 
formulae t o  use t h e  above-mentioned idea for improving the ray method. 

The very core of the present approach is connected with the so-called boundary layer 
approximation. It allows us to put right the results of  the ray method only within the 
neighbourhood ot' the shadow boundaries. It is just this kind of  approximation that makes 
the final formulae universal and simple. The simplest way o f  getting these formulae is shown 
in this paper. It is based on assumptions concerning the analytic properties of the wavefields, 
but not the dynamic equations in any case. If a wave velocity is constant, the same formulae 
can be derived by the parabolic equation method or by an asymptotic analysis of the 
Kirchhoff integral. The formulae for the edge waves can be derived from a solution of  the 
more general diffraction problem for the wedge-sharped structures as well. For details on 
this subject, see Klem-Musatov (1980, 1981a, b)  and Aizenberg (1982). 

Note that in the future monochromatic wavefields of  an angular frequency w will be 
considered. A time factor exp(- iwt)  with i2 = -1, where t is time, is omitted for con- 
venience. Theoretical seismograms can be also computed in the time domain by the appli- 
cation of  the  Fourier transform. 

K.  D. Klern-Musatov and A .  M.  Aizenberg 

2 Ray method 

First of all, let us recollect the basic principles of the ray method. The model of  the medium 
is considered as a combination of domains and interfaces. The functions, describing physical 
properties within the domains, are continuous and slowly changeable. A surface formed by  
points of  discontinuity o f  any above functions is called an interface. The point of  the inter- 
face is considered as a regular one if the above surface is continuous together with its first 
and second tangential derivatives. A part of the interface is considered as a regular one if any 
of  its points is regular. The ray method allows us to describe only those components of  the 
wavefield that  are connected with reflections/transmissions at  the regular parts of  interfaces. 
The description has a form of  superposition of  the single waves 

.t'= f m .  (1) 
m 

Let us give the main definitions related to  the single wavef,. 

2.1 K I N E M A T I C S  

A ray is a space curve the tangential unit vector S ,  of which complies with the differential 
equation : 

where ds is a differential of  the arc length, c, is the wave velocity. This equation determines 
the ray single-valuedly. if its initial direction is given, and if a connection between the direc- 
tions of incident and reflected/transmitted rays at the points of  interface is given as well. 
The latter is expressed by Snell's law. In this law the geometry of the interface is usually 
characterized by the position of  a normal to  the interface. However, in this paper it is more 
convenient to  achieve this b y  means of  a tangential plane t o  the interface. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/79/1/35/601128 by guest on 16 August 2022



The theory of  edge waves 37 
Let K ,  and K 2  be tangents to two arbitrary intersecting curves of  the interface at the 

point of  incidence. As a result we get the position of the tangential plane P at any regular 
point of interface. Let a1 and a2 be acute angles between the incident ray and the lines 
K 1  and K z ,  respectively. Let PI  and Pz be acute angles between the reflected/transmitted ray 
and the same lines K 1  and K 2 .  Let Q be a plane that is normal to  the line K 1  or K 2  at the 
point of  incidence. The Snell’s law can be expressed in the following way (Klem-Musatov 
1980): 

( 1 )  the incident and the generated rays lie on different sides of the plane Q, (2) the  
directions o f  the  above rays comply with the conditions: 

where c and c,  are the velocities of the incident and reflected/transmitted waves, respec- 
tively. 

2.2 D Y N A M I C S  

A single wave: 

f, = @, exp(iwr,) (4) 

is connected with a congruence of the rays S,. Its eikonal T, complies with the differential 
equation : 

Ur, = Sm/C,. (5 1 
The formula (4) itself may represent a scalar wave (optics, acoustices) or  a vector wave 

(elastodynamics, electrodynamics). In the first case, the ray amplitude @, is il scalar one. In 
the second case, 

@m = nm An ( 6 )  

where r z ,  is a unit vector of polarization, @, is the scalar. In an isotropic media the vector 
n, coincides with the vector S, (a longitudinal wave) or is perpendicular t o  S, (a trans- 
verse wave). 

The scalar amplitude am (or @,) complies with the so-called transport equation 

20rm Cram + B, @, = 0 ( 7 )  

where the coefficient B, depends on the kind of  original accurate equations of  optics, 
acoustics (or elastodynamics, electrodynamics). The solution of equation (7) is well 
known: 

where integration must be performed along the ray. The choice of  the constant S, must 
comply with the  boundary conditions. In fact, 2, is the product of reflection/transmission 
coefficients of  the plane waves. Only the first term of the ray series is shown. As it will be 
seen later, the subsequent approach does not deal with the explicit formulae for the ray 
amplitude a,. 
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3 Edge waves 

We extend the theoretical basis using the ideas of the theory of diffraction. Let a certain 
line be formed by points of discontinuity of an interface or any of  its first or second tangen- 
tial derivatives. It is a common linear element of the regular parts of a single interface or 
several ones. This type of  line is called an edge. A point of the edge is considered regular i f  
the  corresponding line is continuous together with its first tangential derivative. The edge is 
considered smooth if any of its points is regular. 

Every single wavefield j ,  exists within a connected domain of its continuity. This 
domain is called the primary illuminated zone. If the interfaces have edges, there may be a 
domain in which the wave .f, does not exist ( f ,  ~ 0 ) .  This type of domain is called the 
primary shadow zone o f  the above mentioned wave. A singly-connected surface dividing these 
zones is called the primary shadow boundary. Let nziz be the double number of  each primary 
shadow boundary of the wave j,. Let a;,, be a symbol 01' the primary shadow zone. 
formed by  the m n t h  shadow boundary. Let a,,, be the symbol of the primary illuminated 
zone. The non-caustic shadow boundaries formed by  the edges are considered. 

We can see that shortcoming of equation (1)  appears as discontinuities of the wavefields 
f m  a t  the primary shadow boundaries. Let us see how it can be put right. 

3.1 K I N E M A T I C S  

We use a formal method to find the directions of the rays, generated at the points of  an 
edge. Let the ray impinge on  any regular point of the edge: the direction o f a  generated ray 
must comply with the Snell's law ( 3 ) .  i t  is necessary to  fix the positions of a pair of the lines 
K ,  and K2, i.e. to set the position of the plane P. One of  two lines (for example. K l )  must be 
the tangent to  the  edge because it is a common linear element of  the interfaces. However, 
there are no limitations in choosing the direction of  the second line K z .  That is why, any 
plane, containing the tangent to the edge, may be considered as plane P. Let incident and 
generated rays make the acute angles a and p respectively with the tangent to the edge. Then 
Snell's law appears in the following form: 

Note, the one-parameter set of  generated rays complies with this condition. 
The above-mentioned fact is known as the law of  the edge diffraction (Keller 1962). I t  

reads as follows. Let an incident ray make an acute angle a with a tangent to  an edge. A 
set of generated rays forms a cone with its vortex a t  the point of  incidence. Its apex angle 
is 30. where and a are connected under condition (9). The incident ray and the above- 
mentioned cone lie on  opposite sides of the plane normal to the edge at  the point of  inci- 
dence. Obviously, this law holds true within a small neighbourhood of  the point of 
incidence, in which it is possible to neglect the curvature of  the rays. 

Take S,, to  be a unit vector of  the tangent to  the ray. Let this ray comply with the 
condition (9 )  for that edge, which gives the nzrzth primary shadow boundary. Then the 
differential equation: 

determines the congruence of  the edge diffracted rays. 
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The theory oj'edge waves 39 
3.2 A N  I N T E G R A L  F O R M U L A  

Let the wave 

L n n  @mn exp(iWrnzn), V7-n = 5'1nrz/(.rn (1 1 )  

be connected with the ninth primary shadow boundary. The latter may be given implicitly 
by the equation r,, = r m .  The wave (1 1)  is called an edge diffracted wave. Now we have 
come to the description of  diffracted waves. 

Let r,,?. q. { be the ray coordinates of the wave f,,. Here q and { give a congruence of 
the diffracted rays, i.e. every pair of fixed values q = constant and { = constant gives a single 
ray. This pair of coordinates may be chosen in many different ways. Let the coordinate 
surface q = 0 coincide with the mz th primary shadow boundary r,, = 7,. so that the 
primary shadow zone of' the wave ,f, coincides with the domain q > 0. The coordinate 
surfaces { = constant may be taken as arbitrary. 

In the first place. let us take the case when the amplitude @, of the wave (4) is a scalar 
one. Let the  wave (4) be  a function of the  ray coordinates 

f ,  = @.m(Tmn, 77, {) exp[iWTm(r,,. 77, S) ] .  (12) 

Then this wavefield in the nelghbourhood of' its shadow boundary may be represented by 
the discontinuous function : 

j, =j,,(~,~,7), {) when q < 0, j, = 0 when 7) > 0 (13) 

which displays explicitly the shortcoming of the ray method. 
Suppose, the expression ( I  3) represents an analytic function of  the variable 7) which1 

allows us t o  make an analytic continuation into the complex plane o f q  for any permissible 
values r,, and 5'. In addition, f, + 0, when 17) I +m. Then we may construct the following 
integral 

Fig. 1 shows the contour L of integration. 

Im a 

Figure 1. 'l'he contour  ut' integration. 
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40 
The integral (14) has the following properties. It is zero when I Q ~ ~ W .  It has a discon- 

tinuity when 77 = 0. But the  superposition of  expressions (13) and (14) is a continuous and 
analytic function o f  q within the neighbourhood of the surface 77 = 0. If the function (13) 
is a solution of some linear differential equation (for example, the wave equation) within the 
domain Q < 0, the superposition of (13) and (14) complies with the same equation for 
77 < 0 as well as for q > 0. 

K.  D. Klem-Musatov and  A .  M .  Aizenberg 

3.3 A N  E D G E  D I F F R A C T I O N  C O E F F I C I E N T  

When w + w, the asymptotic value of integral (14) is formed by contributions within a small 
neighbourhood of the saddle point a = - q. Let us take the standard approximations at this 
point: 

and use the following correlations: 

qmn = + 1 within a;,, 4rnn = - 1 within Q,&, 

W ( w )  = exp(~-inw2/2) . t - ” 2  exp(-t) d t  

where W may be regarded as an edge diffraction coefficient. If r,, < r,, we have wmn = ix, 
x = d20(7, -rrnn)/n, W ( i x )  = w(x), where W denotes a complex conjugate of  W .  In these 
formulae we may use the analytic continuation of the  amplitude @, and eikonal 7, into 
the  primary shadow zone by means of any type of parameterization o f  the space. 

3 .4  P R O P E R T I E S  O F  T H E  F U N C T I O N  w ( W )  

If 0 G w G w, we have the following approximate formulae: 

when w .+ 0. 

exp(in/4)  
W ( w )  = i- o ( w - 2 )  

ITwfl- 

when w + 00 

where 0 is the symbol of asymptotic estimation. Fig. 2 shows the graph of the function 
(1 8). Numbers above the curve give the values of W .  
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The theory of edge waves 41 

Figure 2. 1 unction W (IU) o f  the real varIablc 

3.5 A B O U N D A R Y  L A Y E R  

Now we shall briefly discuss the type of  approximation given by equation (1 7). Obviously, 
the above approach is approximate even in a high-frequency sense because of the disturbance 
of the boundary conditions at interfaces by the integral (14). To be more accurate, it would 
be necessary t o  add a certain term Sf,, to  the integral (14) t o  satisfy the boundary condi- 
tions. In principle, this term can be found by  using the geometrical theory of  diffraction (for 
example, see Klem-Musatov 1980 for the case c,  = constant). It is essential that such an 
addition Sf,, would have no discontinuity a t  the primary shadow boundary q = O .  Using 
equation (20) allows us to estimate the value to the order of Sf,, - O(o-*’*), except for 
grazing and critical regions. 

Let us see how it would be connected with equation (17). According to  (19)-(20), the 
amplitude of the edge wave changes its value rapidly from an asymptotic estimation 0(1)  
at  w,, = 0 to O(W-’ /~)  at w,, 2 3,. A domain of this rapid change forms a neighbourhood 
of the primary shadow boundary. I t  is called a boundary layer, with a position is deter- 
mined by  the  inequality w,, 5 2. Within the boundary layer an inaccuracy Sf,, -’ O (W- ’ /~ )  
of equation ( 1  7) may be considered of no importance in comparison with O( 1). Outside of 
the boundary layer the amplitude of the edge wave has the same asymptotic estimation 
O(u-”’) as Sf,,. It is clear that (17) fails here. More accurate analysis of the integral 
(14) would not improve the mentioned properties of  this formulae. Thus, (17) gives a 
satisfying result only within the boundary layer. All this is quite enough for putting right 
the ray method. 

Equation (17) has one other local property, which allows us to interpret t h e  forthcoming 
results. According t o  (15), a value of a, would be taken at  the primary shadow boundary 
am = @,(T~,, 0, c). However, it is possible to  consider @, as a function of  the free point 

= Q,(T,,, 77, c) as well because a difference Q,(T~,, 77, {) -- Qrn(~,,, 0 ,  c) is so small 
in comparison with 9, within the boundary layer. The real accuracy o f  the  description of  
the edge wave is independent of  the choice of  the above versions. By the way, this is the 
reason why Q, may be continued analytically into the shadow zones. 

3.6 C O M P A R I S O N  W I T H  K N O W N  R E S U L T S  

We consider briefly, how the above matches the known ideas on the subject, if c, = 
constant. In this case, (17) is an initial approximation o f  the  more precise description of  the 
edge wave by the successive approximation method in the form of  an infinite series (Klem- 
Musatov 1980). Equation (1 7) complies with the so-called parabolic equation of  transverse 
diffusion that describes diffusion of the wave energy out of the primary illuminated zone 
into the shadow zone. This process is only strong within a boundary layer. Outside it is 
damped by diffusion. Here it is replaced by a mechanism of  transfer of wave energy along 
the rays. Thus, the above approach results in consideration of diffusion through the shadow 
boundaries. 
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42 K. D. Klem-Musatov and A .  M. Aizenberg 

On the  other hand. (1 7) matches the ideas of the classic theory of diffraction. The super- 
position o f  (13) and ( 1  7) within the boundary layer can be written in the following form: 

.L + f m n  =.tm F(- Y m n  W m n  d42). 

If c, = constant. the same foi-mula can be  derived by  asymptotic analysis of  the  Kirchhoff 
integral (Klem-Musatov 1980: Aizenberg 1982). 

3.7 1’0 L A K I Z A T I 0  N 

Now let us take the case when the amplitude of wave (4) is the vector (6). Let c I ,  c2 ,  e3  
be the unit vectors of a certain immovable coordinate system (fot example, the Cartesian 
one). Let us decompose the vector (6) over the above basis and represent the wave (4) in a 
form. 

( 2 2 )  

where f$; are the scalars. We use the same approach (12)-(17) for every scalar function 
f$’(~,,, q, {) which was used for the function (1 2). It allows us to  determine three scalar 
functions: 

Inserting (24)  into (23) gives once again equation ( 1  7), where a, is the vector (6). 
This result has t o  be interpreted. Let limn be a unit vector of polarization of the edge 

wave f,,. In accordance with the general theory this vector must coincide with S,, (a 
longitudinal wave) or be perpendicular to  S,, (a transverse wave). But in ( 1  7) the vector 
nmn coincides with n m ( T m n r  0, {), which is out of the line of general theory. In other words, 
the  above approach gives an inaccuracy 6n = n, , (T , , ,  q, {) - n , ( ~ , , ,  0, 5). In fact, the  
real accuracy of the description of polarization is independent of the choice o f  any of the 
versions: n,(Tmn, 0, f ) ,  n m ( T , , ,  q. {) because the corresponding 6n is of no importance in 
comparison with n,, within the boundary layer. That is why, the vector Ct, may be 
considered a function of  the free point Ct,(r,,, Q, 5 )  and then continued analytically into 
the shadow zones. 

4 Tip waves 

The point of  break (or an end) of  a smooth edge is called a tip. The common tip of  several 
edges is a vertex. The sizes of  edge wave domains are limited because of the tips. A single 
edge wave f,, exists within the connected domain coinciding with the corresponding 
congruence of diffracted rays. This wavefield f,, is continuous within its domain every- 
where with the exception of the primary shadow boundary r,, = T ? ~ .  This type of domain 
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The theory oj'edge waves 43 
is called the secondary illuminated zone of the wave j i n .  A domain of absence of the wave 
( f , i zn  0) is called the secondary shadow zone. One-connected surface dividing the above 
zones is called the secondary shadow boundary. It looks like the surface of  a curvilinear cone 
which apex angle complies with the law o f  edge diffraction. Let mnp be the triple number 
of each secondary shadow boundary of the edge wave f,,,. The non-caustic shadow boun- 
daries formed by tips are considered. 

One can see a shortcoming of ( 1  7) appeal-s as discontinuities of the wavefield f,, at the 
secondai-y shadow boundaries. Let us see how it can be put right. 

4.1 K I N E M A T I C S  

Let us  use a formal way to  find directions of  rays arising from a tip. It has t o  do with Snell's 
law in the form (9). However, there are no limitations in choosing the directions of arising 
rays because the tip is not the linear element of  interfaces. Any of  the directions complies 
with the above law forniallp. This fact is formulated as the law of  tip diffraction (Keller 
1962). It reads as follows: the incident ray generates the rays leaving the tip in all 
directions. 

Let Smnp be a unit vector of the tangent to  a ray. Let this ray comply with the law of 
tip diffraction at that tip. which gives the vmptli secondary shadow boundary. Then the 
differential equation 

determines tlie congruence of  tip diffracted rays. 

4.2 A N  I N T E G R A L  F O K M U L A  

Let a wave 

be connected with tlie mirpth secondary shadow boundary. The latter may be given 
implicitly by  the equation rmnP = rmn. The wave (26) is called a tip diffracted wave. Let us 
divide the tip wave domain into separate parts. Suppose, the eikonal r,, may be continued 
analytically into the secondary shadow zone. Then the primary shadow boundary rmn = r ,  
and the secondary shadow boundary rmnp = r,, divide the domain of  the wave f m n p  into 
four parts. Let us give them the numbers: one, two, three and four, going round tlie line 
rmnP - r,, = r, clockwise 01- counter-clockwise, so that the shortest way from the fourth 
part to the first would coincide with the shortest way from the primary illuminated zone of 
the wave j ,  t o  the primary shadow zone through the m n t h  primary shadow boundary. The 
first and third parts have common points only at the line rmRp = r,, = 7,. The second 
and fourth parts have the common points a t  the same line only. Let Q;,, be a symbol, 
of  the domain, formed by the first and third parts. Let s2&, be the symbol of  the domain, 
formed by the second and fourth parts. Let us denote tlie boundary between the first and 
second parts by *+, and between the third and fourth parts by S-. The union of  9' 
and 9- forms the secondary shadow boundary rmnP = r,,. 

- 

Let us  represent the tip wave (16 )  in the form: 
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44 
Let the sum f,, + f' be continuous at the boundary F+, and the sum f,, + f -  be 
continuous at the boundary Y-. Under the above conditions we can find f" and f- 
with the same way which is used for finding j,, . 

Let rmnp, $*, 5 be ray coordinates of the wave f " .  Here $' and u give a congruence of 
the tip diffracted rays, i.e. every pair of fixed values $' = constant and CJ = constant gives a 
single ray. Let $' vary into the number line interval - I T  G $' Q n. We choose $* in such a 
way that the surface $' = 0 would coincide with the surface S', and the surface $' = IT 

and $' = 

ly = *  qmrlp I $' I 

K. D. Klern-Musutov and A.  M. Aizenberg 

n would coincide with gT. Then 
n IT 

when I $' I<  - . $' = qmnp( I $' I - -n)  when I $' I > 7 ~ ( 2 8 )  
I 

qmnp = + 1 within Q r ) l n p ,  4,nnp = - -  1 within sZ&, . (29) 
Let us consider u = 0 at the line rmnp = r,, = 7,. 

one. Let the  edge wavefield ( 1  1)  be a function of  the above ray coordinates 
In the first place, let us take the case when the amplitude Q,, of the wave ( 1  1 ) is a scalar 

f m n  = 'Pmn(rmnp3 $'. C J )  exp[iW~wln(~, ,p .  +'. a)]. (30 1 
Then in the neighbourhood of  the secondary shadow boundary this wavefield may be repre- 
sented b y  the discontinuous function 

Ann =fmn(r,,,,p, $', u) when -71 < $' < 0. fmn = O  when 0 < $' < IT (31) 

which displays explicitly a shortcoming of equation ( I  7) 
Suppose expression (31)  represents an analytical function of  the variable $' and allows 

us to make an analytical continuation into the complex plane of $' for any permissible 
values T , , ~  and u. In addition, f,, + O  when I +' I Am. Then we may construct the 
following integral: 

(32)  

Fig. 1 shows the contour L of  integration. 
The properties o f  the same integral (14) have been discussed above. It has a discontinuity at 

$' = 0. However, the superposition of functions ( 3  1) and (32) is continuous at this point. 
The problem is that integral (32) has two extra discontinuities at $' = - I T  and $' = I T  

because of  the limited number line interval - IT G $'< E .  To eliminate these discontinuities 
we take a periodic function of $', i.e. 

Inserting (32) into (33) and using the well-known formula 

l z  

k = - -  2 2  

ca 

C (Z - 27ik)-' = - cot - (34) 

we get: 

The integral (35)  has the following properties. I t  is Lero when I $' I + 00. It has a discon- 
tinuity at $' = O .  But the superposition of  (31) and (35) is a continuous and analytical 
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The theory of edge waves 45 
function of  $' in the neighbourhood of the surface $' = 0. If the function (3 1) is a solution 
of some linear differential equation (for example, a wave equation) within the domain 
-- rr < $' < 0, the superposition of (31) and (35) complies with the same equation within 
the  whole domain - rr G IL' G rr. 

4.3 A T I P  D I F F K A C T I O N  C O E F F I C I E N T  

When w + m, the asymptotic value of the integral (35) is formed by contributions within a 
small neighbourhood of the saddle point cy = - I)'. Let us take the standard approximation 
at this point 

Qmn ( T m n p ,  lJf + f ~ ,  0 )  zz Qmn(7mnp $0,0) 136) 

( 3 8 )  
rmnp - rmn I j/ ' I = arcsin ~~~~ J Tm n p  - rm 

Let us note that expression (37) may be derived by using a similar method to that used for 
the case c, = constant (Klem-Musatov 1981a). Then the integral (35) may be written as: 

- 
f '  = *mn(rmnp,  0 , ~ )  ~r exp(iwrmnp),  

(39) 

To discuss the accuracy of this expression, we would repeat all that was said concerning 
equation (1  7).  Equation (39) gives a satisfying description within the so-called boundary 
layer where the amplitude of  a tip wave changes rapidly. Within this domain the  amplitude 
am may be  considered as a function of the free point @ m ( ~ m n p ,  $', a). The real accuracy 
of description is independent of the choice of  the versions: 

( 7 m n p  3 0 , ~ )  01- (rmnp > $ ' > 0). 

Consideration of expressions ( I  7), ( 2 8 ) ,  (38), (39) and using identical mathematical 
transformations (for details, see Klem-Musatov 1981a, b) allow us t o  write (27) in the form: 

- Pmnp - J2w(T-,p -7, )/n, 

where H may be regarded as a tip diffraction coefficient. In these formulae we may use the 
analytical continuation of the amplitude am and eikonals r,, ' i m n  into the piiniary and 
secondary shadow zones by means of any type of parameterization of space. 

t m n p  = arcsin 
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4.4 P K O P t R  r I E S  OE E U N C T I O N  $(  p, 5') 
I t  0 G p < m, 0 G 5' G IT/?, we have the tollowing appioxinidte formulae 

In ~ when p + O ,  (43) *(P. f )  = * ( O ,  5 ' )  - ___ 

(44)  
T P f l  c 

(45 

i p 2 s i n c  n p 2  

8 8 
1 

*(p.5 ' )=-  (1 cot*) cxp(5n1/4)+ w ( p 5 ' ) + o ( p - 2 )  when p ' m  

where 0 is a symbol of asymptotic estimation. The point p = 0 is the essential special point 
because the value of t!ie function depends on the direction of  the way down to  this point. 
f-lowever, the total wavefield at this point is determined single-valuedly. Let us give the 
corresponding result. 

Every single wavefield f, has only two primary shadow boundaries within the small 
neighbourhood of' the line rwnp = r,, = r,, i.e. at p = 0. Let us mark their numbers as 
y1 = A and I Z  = b .  Let yrn bc the dihedral angle between the tangent planes t o  the m A  th  and 
mb th primary shadow boundaries at a point of' the line rpnnp = r,,,, = 7, with n = A and 
n = b.  This angle must be taken within but not outside the primary illuminated zone. Then 
a t  this point the following equality exists: 

. f ;n  + t n ? A  + f m h  + f m A p  + f m b p  =fni YrnlZn. (46) 

Fig. 3 shows the graphs of  modulus and argument o f  equation (42). Numbers at the curves 
give the values of  j- expressed in degrees. 

4.5 C O M P A R I S O N  W I T H  K I K C H O F F ' S  T H E O R Y  

11 was shown (Aizenberg 1082) that (40) matches the classic theory of diffraction. If 
c, = constant, the tip wave can be found out  by asymptotic analysis of Kirchoff's integral in 
the form (40) where 

I t  has been shown both numerically and analytically that this function is identical to  the 
product (41). It allows us t o  represent the superposition of (17) and (40) in the form: 

f,, +t,nnp = t ,  ( ; (q ,nn  4% P c o s t ,  ~ m ~ 2 ~  4 7 2  P sin 5' ), (48 ) 

where G ( A ,  b )  is the so-called generalized Fresnel integral (Clemniow & Senior 1953). 

4.6 P O L A K I L A I I O N  

Now let us take the case when the amplitude o f  the wave ( 1  1 )  is the vector (23) .  Let us 
repiesent the tip wave (26) in the form 
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Figure 3. Modulus and argument o f  function (. p.  5 )  

where f$dp are scalars. Let us use the same approach (27)~-(40) for every function 

scalar functions 
$ m n ( ~ m , p ,  (Y) 

f$& = q m n p  # g ) f i ( p m n p ,  [ m n p ) e x p ( i w T r n n p )  with q = I ,  2.3 .  (51) 

$'. u) which has been used for the scalar case. It allows us to  determine three 

Inserting (5 I )  into (SO) gives again equation (40) where (Dm is the vector (6). 
This result niay be interpreted in the same way as for the edge wave above. Let rip,np 

be a unit vector of polarization of the tip wave f m n p .  In accordance with the general 
theory, this vector must coincide with Smna (a longitudinal wave) or be perpendicular to 
Smnp (a transverse wave'). But in (40) the vector nmnp coincides with n,. In fact. the real 
accuracy of description is independent of this discrepancy because the latter is of no 
importance within the boundary layer. The vector may he considered a function of a 
free point of  space and continued analytically into the shadow zones. 

5 Multiple diffraction 

Here we shall outline in pi-inciple the generalization o f  the above approach to  many inter- 
faces. We take the wavefield ( I )  t o  be given b y  the forniuiae of  the ray niethod. The pt-oblem 
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is to  include all the  edge and tip waves which can be generated by propagation of the wave- 
field (1). As shown above, the diffracted waves are originated by the primary shadow boun- 
daries of  the field (1). However, when propagated, the diffracted waves may be reflected 
and transmitted at interfaces. If the interfaces have edges, new shadow boundaries in the 
reflected/transmitted diffracted waves must emerge. Hence, the new diffracted waves must 
arise. These phenomena are known as multiple diffraction (Felsen & Marcuvitz 1973). The 
formulae above allow us t o  consider reflection/transmission as well as multiple edge/tip 
diffraction, because their derivation is not connected with any assumption concerning 
special forms of the function (13). 

K.  D. Klem-Musatov and A .  M. Aizenberg 

5.1  M A I N  P R I N C I P L E S  

Let us outline the main points of description of the above mentioned phenomena. 
Obviously, the directions o f  reflected/transmitted diffracted rays at regular parts of inter- 
faces must comply with Snell’s law. The corresponding diffracted waveflelds are determined 
again by (17) and (40). Using these formulae, reflection/transmission must be taken into 
account to compute the eikonals rmn and rmnP, note, there is no need t o  use reflection/ 
transmission coefficients for amplitudes of diffracted waves because the former are 
considered in the term am. The multiple diffraction may be considered by the above 
approach if the term f m  is regarded as the incident diffracted wave. Obviously, directions of 
multiply edge/tip diffracted rays comply with the laws of  edge/tip diffraction. The multiply 
diffracted wavefields are described again with formulae such as (1 7) and (40). 

As we see, the problem results in a recursive use of the formulae above, which require 
the  enumeration of branching sequences of  multiply diffracted waves; there are not diffi- 
culties when computing, but it is inconvenient for an analytical description. That is why we 
use below a symbolic system of description, displaying the recurrent use of the above 
formulae, but giving no particular way of wave sequence enumeration. 

5.2 A F O R M A L  D E S C R I P T I O N  

First, let us take the  case of  single diffraction described in the previous sections. In this case, 
the  modified formula of the ray method, considering corresponding edge and tip waves, can 
be written symbolically in the following way: 

To generalize this formula for multiple diffraction, let us rewrite it as follows: 

f =  C o m f m ,  (53) 
m 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/79/1/35/601128 by guest on 16 August 2022



The theory of edge waves 49 
where a,, G,, and amnp are the corresponding domains of the existence of the waves 

The gist of this form of description is that we may regard the term D, as an operator for 
the generation of diffracted waves. Obviously, it is easy to  write a similar operator for the 
generation o f  multiply diffracted waves. Then multiple diffraction will result in the forma- 
tion of a product of corresponding operators. For brevity, let us use the following system of 
designation: let v be the number of acts of  reflection/transmissions in the course of forma- 
tion of  a given wave, and let f,(,,), f,(,,),(,,) and fm(v)n(u)p(v) be correspondingly the 
incident, edge and tip waves. taking part in the vth act, Let us consider fmc , ,  = 

f ~ ( u - l ) n ( v -  if the incident wave is the edge one, and f,,,(,) = f m ( v - - l ) n ( v - l ) p ( v -  
if the  incident wave is the tip one. Then we may use ( 1  7)  and (40) or (54)  for describing any 
generated diffracted waves with v > 1 if we consider 

frn 7 f m n  and f m n p  . 

m = m(v) ,  mn = rn(v)n(v) ,  rnnp = rn(v)n(v)p(v) .  (55) 

Using the above equations recursively for v = 2, 3 ,  . . . N gives 

where the case of the single diffraction v = 1 is described above by (53). Here Il is a product 
symbol. The term D,(u) is determined by (54), where (55) has to be taken into 
consideration. 

6 Remarks 

In conclusion, let us mention that there are many examples of mathematical modelling of 
wavefields in typical structures by the above method. There are theoretical seismograms for 
several types of  pinch-out and low-amplitude faults (Klem-Musatov 1980), interfaces o f  
complex forms (Aizenberg & Klem-Musatov 1980) and 3-D systems of intersecting faults 
(Klem-Musatov, Aizenberg & Klem-Musatova 1982). 
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