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	is paper presents a multi-time channel prediction system based on backpropagation (BP) neural network with multi-hidden
layers, which can predict channel information e
ectively and bene�t for massive MIMO performance, power control, and arti�cial
noise physical layer security scheme design. Meanwhile, an early stopping strategy to avoid the over�tting of BP neural network is
introduced. By comparing the predicted normalizedmean square error (NMSE), the simulation results show that the performances
of the proposed scheme are extremely improved. Moreover, a sparse channel sample constructionmethod is proposed, which saves
system resources e
ectively without weakening performances.

1. Introduction

	e future wireless communications (5G) put forward the
demands of high-speed transmission, quick access, high reli-
ability, and strong security communications [1]. Hence, new
technologies should be adopted to meet the high-speed and
high-e�ciency transmissions and access demands of 5G [2].
Massive MIMO, non-orthogonal multiple access (NOMA),
and tight cooperation forwireless senor nodes are expected to
become key technologies for the future 5G systems. A major
limitation for massive MIMO, NOMA, and coordinated
multipoint (CoMP) systems is the channel state information
(CSI) knowledge at the transmitter, which can be obtained
partly by the channel prediction techniques. Meanwhile, the
physical layer security methods utilize channel reciprocity
and diversity to accomplish the so-called “encryption” in
the physical layer [3, 4]. Compared with the conventional
cryptographic technologies, under the same security require-
ment, the key length in physical layer security is greatly
reduced, and even not required, which is especially suitable
for the quick access system. Unfortunately, physical layer
security transmission is only dependent on physical CSI. For
wireless fading channels, the change of channel information
is not conducive to the implementation of the physical
MIMO, cooperation, and the security. As shown in Figure 1,

the channel information is constantly changing due to the
change of the location of the legal receiver, which makes
the base station unable to perform robust precoding or
beamforming etc. 	erefore, the channel prediction is a key
point for such problems.

	ere are considerable research results on the channel
parameter prediction. 	e literatures [5–8] employ the opti-
mal linear algorithm and autoregressive tracing algorithm
to predict the �at fading channel, in which channel impulse
response prediction is performed by linearly combining the
current CSI with the past one. In [5], performance analysis
is carried out for long range prediction (LRP) under the
actual channel model and the stationary random phase
model. Complex-valued neural networks are discussed by T.
Ding and A. Hirose to predict time-varying channels and
applying themon the hardware [9].	e error rates, compared
to the traditional methods, have made improvements. 	e
article [10] utilizes the echo state network to predict channel
and proposes a �xed weight method, to reduce computing
complexity. Literature [11] proposed a novel support vector
machine method to predict a more sophisticated environ-
ment. 	e MUSIC algorithm for channel prediction is inves-
tigated in [12]. However, the above-mentioned algorithms
either have the lack of high estimation error rate or su
er
from high complexity. 	e major �aws of these methods are
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Figure 1: Predicting scene.

that all of them only predict the parameters for the next
moment without providing the prediction of CSI a�er the
multiple moments.

In this paper, the multi-time channel prediction system
is proposed by taking advantage of the BP neural network
with the single hidden layer. Hinton puts forward the concept
of deep learning in the year of 2006, which is actually the
multi-hidden-layer multi-sensor neural network, including
BP neural network and convolutional network [13]. Deep
learning is o�en used in computer vision, pattern recog-
nition, and image classi�cation [13–15]. In this paper, we
employ deep learning for wireless channel prediction, while
the early stopping strategy is adopted to avoid over�tting [16].
In addition, two-sample construction schemes, namely, the
sparse sample construction scheme (SSCS) and normal sam-
ples construction scheme (NSCS), are proposed, which can
reduce the computational cost and guarantee the prediction
accuracy.

We adopt LTE standard frame structure, and the length of
the frame is set to 10ms. Speci�cally, each frame is strati�ed
into 10 subframes, and each subframe consists of two time
slots. We assume that each time slot uses 1/3 overhead comb-
type pilots. 	e single-time channel prediction system can
save 1/10 pilot resources, and it can save 1/60 system resources.
	e multi-time algorithm we proposed can save 1/2 or 2/3
pilot resources, which can save 1/6 or 2/9 system resources. So
the algorithm we proposed in this paper is very meaningful
and useful.

	is article is structured as follows. Section 2 introduced
the Rayleigh fading channel model and BP neural network,
which will be the basis of our novel mothed. 	e multi-
time channel prediction system that can predict the channel
information at multiple moments is presented in Section 3.
Section 4 includes the simulation results and analyses. Con-
clusions are given in Section 5.

2. Preliminary

	e symbols used in this article will be brie�y described.
Uppercase bold letters are used for the matrix and lowercase
bold letters for vectors. 	e elements are represented by the

letters with subscripts and not bold. 	e ��ℎ vector and the

��ℎ samples are presented by the superscripts with round
brackets.

2.1. Rayleigh Fading Channel Model. 	e propagation in any
wireless channel is either a line-of-sight (LOS) propagation
or a non-line-of-sight (NLOS) propagation. 	e probability
density function (PDF) of a received signal in LOS environ-
ment obeys the Rician distribution, while the PDF of the
received signal in the NLOS environment obeys the Rayleigh
distribution. We can form a Rayleigh channel by scattering
components without a direct path, which can be expressed as
follows [17–19]:

ℎ (�) =
�
∑
�=1

��e�(2����+	�) (1)

where� is the number of multipaths and �� is the amplitude

of the ��ℎ path. ��, 	� represent the Doppler frequency shi�
and the phase of the ��ℎ path, respectively. 	e Doppler fre-
quency shi� is expressed as�� = (V/
)�
 cos ��, where V is the
moving speed of the user. 
 is the speed of light, �
 is the car-
rier frequency, and �� is the angle between the user’s moving
direction and the incident radio wave angle.

	e sharp Rayleigh fading channels conforming to a
given Doppler spectrum are generated by complex sine wave
synthesis, just like the Jakes’ channel model [20]. 	e �nal
channel information of the Jakes model is complex-valued,
which is given by the following:

ℎ (�) = ℎ� (�) + �ℎ� (�) (2)

In this paper, the deep learning samples are sampled at
di
erent transmission time slots, and the associated complex-
valued CSIs of h (t) can be divided into real and imaginary
parts. Accordingly, we predict the real value and the imagi-
nary value of channel state information separately.	e related
processing procedure is given by the following:

ℎ (��) = ℎ� (��) + �ℎ� (��) (3)

	en, we construct the deep learning samples by captur-
ing channel information ℎ�(��), ℎ�(��). Finally, BP neural
network is adopted to predict the channel information at a
later time based on learning from the channel information of
the past time slots.

2.2. Back Propagation (BP) Neural Network. Hornik proved
that the multi-layer feed forward network containing enough
neurons in the hidden layer can approach a continuous
function of arbitrary complexity and precision [21]. 	e deep
learning technology has been extensively used in computer
vision, pattern recognition, and image classi�cation [13–15].
In this paper, the deep learning is exploited to match the
fading channel changing trajectory and to achieve channel
prediction. Backpropagation (BP) algorithmmulti-layer feed
forward neural network prediction model is used to predict
the fading channel. Figure 2 illustrates a typical multi-input
neural network, which includes an input layer, a hidden layer,
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Figure 2: Single hidden layer BP neural network.

and an output layer. In the �eld of machine learning, the
neural network as shown in Figure 2 is generally called two-
layer neural network (the input layer does not count), or
a single hidden layer neural network. We will adopt this
statement in this paper.

Given the training sample set,

� = {(x
(1), y

(1)) , (x
(2), y

(2)) , . . . , (x
(m), y

(m))} ,

x
(�) ∈ R

�, y
(k) ∈ R

�
(4)

where x(�), y(�) denote the ��ℎ input sample and the ��ℎ output
sample, respectively. � and � ar the dimension of the input
sample and output sample, respectively. As discussed above,
we use the lowercase bold letters with parentheses super-

script, for example, (x(�), y(�)) represents the ��ℎ input-output
sample.

	en we get the input sample matrix,

X = [x
(1), x

(2), . . . , x
(m)] , X ∈ R

�×�, (5)

and the output sample matrix,

Y = [y
(1), y

(2), . . . , y
(m)] , Y ∈ R

�×� (6)

	e input value of any node in neural network is the previous
neuron multiplied by the weight plus the threshold and
then activated by the activation function. Without loss of
generality, taking the k-th hidden neuron as an example, �� =
�1(∑��=1 ����� +  �) [13]. 	is paper will use the vectorization
description to the neural network transmission formula.
	e neural network forward propagation vectorization is
expressed as follows:

Z1 = W
�

X + Ξ

B = �1 (Z1)

Z2 = V
�
B +Θ

Ŷ = �2 (Z2)

" (ŷ, y) = 1
2

�
∑
�=1

(#̂� − #�)
2

$ (Ŷ, Y) = 1
%
�
∑
�=1

" (ŷ
(i), y

(i))

(7)

where W ∈ R
�×� is the weight matrix connected the input

layer and the hidden layer, and V ∈ R
�×� is the weight

matrix connected the hidden layer and the output layer.
Ξ = [�, �, ⋅ ⋅ ⋅, �]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�
is the hidden layer threshold matrix which

consists of the hidden layer threshold vector � and Θ =
[�, �, ⋅ ⋅ ⋅, �]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�
is the output layer threshold matrix which con-

sists of the output layer threshold vector �. Z1 is the hidden
layer input matrix and B is the hidden layer output matrix.

Z2 is the input matrix for the output layer. Ŷ is the output
vector of the output layer which is also the �nal output of the
neural network. �1, �2 are the hidden layer and output layer
activation functions, respectively. Note that �1 is always the
sigmoid activation function and �2 is the purelin activation
function. 	e functions operating on vector or matrix mean
act on each element separately (e.g., �(x) = (�(1), �(2)), x =
(1 2)). Additionally, its dimension is the same as the original
vector or matrix. "(ŷ, y) is the loss function. We adopt the
mean square error (MSE) of the output as the loss function.

$(Ŷ, Y) is the cost function, and it is equal to the average of the
loss function with % samples. 	e neural network iteratively
updates the network weight matrix and the threshold vector

by minimizing the cost function $(Ŷ, Y).
We get ŷ by forward propagation and then update the

weight matrix W, V and threshold vector �, � by backprop-
agation with the gradient descent method. For convenience,

the partial derivative of the cost function $(Ŷ, Y) to output

Ŷ is denoted by �Ŷ, which is �Ŷ = 3$(Ŷ, Y)/3Ŷ. 	e vec-
torization representation of neural network backpropagation
iteration formulas is given by the following:

�Z2 =
3$ (Ŷ, Y)

3Ŷ
∗ �2� (Z2)

�V = 1
%B (�Z2)

�

�� = 1
%�Z2 ⋅ e1

(8)

�Z1 = V ⋅ �Z2 ∗ �1� (Z1)

�W = 1
%X (�Z1)

�

�� = 1
%�Z1 ⋅ e1

(9)

where the symbol ∗ denotes the elements in matrix (or

vector) � and B multiplied correspondingly. (⋅)� means the
matrix transpose. ��(⋅) represents the function derivation,
and vector e1 satis�es equation e1 = (1, 1, ⋅ ⋅ ⋅, 1)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�
. 	e

parameter update rule is expressed as 5 ←7 5 − Δ5. For
example, the parameter W is adaptively updated in the form
of W = W − 9�W, where 9 is the learning rate.

As we know, the regularization, dropout, and early stop-
ping strategies are employed to prevent the over�tting of the
neural network [21, 22]. 	is paper adopts the early stopping
strategy to avoid the risk of over�tting; we divide the input
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and output samples into training set, veri�cation set, and test
set. 	e training set is used to calculate the gradient and
update the link weight and threshold. 	e veri�cation set is
used to estimate the error. If the training set error decreases
with the validation set error increasing, training process will
stop and the related weights and thresholds with the smallest
validation set error will be returned.

In summary, combined with early stopping strategy, the
gradient descent method is used to continuously update
the neural network information, i.e., weight matrix W, V
and threshold vector �, �. Once the parameters update is
completed, the neural network will be ready to predict the
channel state information (CSI).

3. Rayleigh Fading Channel Prediction Method

	emulti-time channel prediction systemwith single hidden
layer e
ectively predict the channel information at multiple
moments, and the proposed deep learning prediction system
of the multi-layer neural network can cope with a more
sophisticated channel information prediction.

3.1. Prediction Scheme

3.1.1. Single-Time Prediction Scheme. Literature [10] proposed
the prediction scheme of channel prediction through the
echo state network (ESN). In [10], the channel information
of the �rst � moments is regarded as the input samples and

the channel information at the (� + 1)�ℎ moment as the
output samples. And the samples construction scheme of
prediction system in this section will follow this program. Let
the output layer’s dimension be, which is mentioned above,
equal to 1. 	at would be a single-time channel prediction
system. Moreover, we add the estimation error at channel
state information, which is

ℎ̃ (�) = ℎ (�) + � (�) (10)

where �(�) is the Gaussian white noise, and its variance is ;2� .
We construct the following neural network training sample
[10]:

x
(�) = [ℎ̃ (��) , ℎ̃ ((� + 1) �) , . . . , ℎ̃ ((� + � − 1) �)]

#(k) = ℎ̃ ((� + �) �)
(11)

For the ��ℎ input and output sample set (x(�), #(�)), the
input sample x(�) represents the channel information samples

at the ��ℎ time and the next (� − 1) times, and the output

sample #(�) is the channel information samples at the (� +
�)�ℎ time. We choose �� training samples to train the neural
network. And the training set matrix is given by

X�� = [x
(1), x

(2), ⋅ ⋅ ⋅ , x
(�T)]

y�� = [#(1), #(2), ⋅ ⋅ ⋅ , #(��)]
(12)

	e test set matrix consisting of the next �� samples will test
the neural network, as shown below:

X�� = [x
(1), x

(2), ⋅ ⋅ ⋅ , x
(�R)]

y�� = [y
(1), y

(2), ⋅ ⋅ ⋅ , y
(�R)]

(13)

	e training set (X��, y��) is used to train the neural network,
while the test set (X��, y��) will be utilized to measure the
performance of neural network.

3.1.2. Multi-Time Prediction System. 	e existing researches
of channel prediction [5–12] are either not accurate enough
or too complicated to perform in resource-constrained sensor
networks. 	e echo state network (ESN) channel prediction
[10] greatly improves the system predictive performance and
reduces the system complexity properly. But it only can
predict channel information at the next moment. In this
section, amulti-time prediction system is exploited to predict
channel information at multiple time slots. It achieves a
stronger engineering performance. Furthermore, we propose
two-sample construction methods, i.e., sparse sample con-
struction scheme (SSCS) and normal samples construction
scheme (NSCS). In the following, we will discuss these two
schemes in detail.

(a) Normal Samples Construction Scheme (NSCS). 	e nor-
mal samples construction scheme is a continuous sample
construction method. It just adds more outputs on Y. Zhao’s

scheme. 	e ��ℎ input and output samples are expressed as
follows:

x
(�) = [ℎ̃ (��) , ℎ̃ ((� + 1) �) , . . . , ℎ̃ ((� + � − 1) �)]

y
(k) = [ℎ̃ ((� + �) �) , ℎ̃ ((� + � + 1) �) , . . . ,

ℎ̃ ((� + � + < − 1) �)]

(14)

	e NSCS takes full use of the channel information, but it
increases the amount of computation. For example, when � =
10, < = 10, we can construct 4990 training samples from 5000
channel information sample values.	ere is only one channel
data di
erence between two adjacent training samples.

(b) Sparse Samples Construction Scheme (SSCS). In order to
reduce the computational complexity, we propose a sparse
sample construction scheme. 	at is, there is no duplicate
channel state information for any two input sample informa-
tion, as follows:

x
(�) = [ℎ̃ (� ⋅ ��) , ℎ̃ ((� ⋅ � + 1) �) , . . . ,

ℎ̃ ((� ⋅ � + � − 1) �)]

y
(�) = [ℎ̃ (((� + 1) ⋅ �) �) , ℎ̃ (((� + 1) ⋅ � + 1) �) , . . . ,

ℎ̃ (((� + 1) ⋅ � + < − 1) �)]

(15)

	e SSCS only needs 500 samples to traverse 5000
channel information sample values, if � = 10, < = 10.
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1. 	e weight matrices W, k are initialized randomly from 0 to 1. 	e threshold vectors �, �
initialized to 0. Set the training goal ?goal and learning rate 9 a reasonable value, respectively;

2. Input the channel information training set (X��, y��).
3. while $(ŷ��, y��) > ?goal do:
4. Calculate Z1,B, z2, ŷ��, and the "(ŷ��, y��), $(ŷ��, y��) of the loss function and cost function

according to equation (7);
5. According to equation (8), the gradient of the output layer weight matrix �k and the

gradient of the threshold �� are calculated respectively;
6. 	e weight matrix of the hidden layer �W and the gradient of the threshold vector �� are calculated

are calculated according to (9);
7. Update the weight matrix of the hidden matrix and the output layer W, V and the threshold

vectors �, �;
8. End while
9. Input the channel information test set (X��, y��) and calculate the NMSE according to (16).

Algorithm 1

1. 	e weight matrices W, V are initialized randomly from 0 to 1. 	e threshold vectors �, � are initialized to 0. Set the
training goal ?���� and the learning rate 9 to a reasonable value, respectively. 	e intermediate variable A is initialized to 1;

2. Input the channel information training set (X��, Y��) and veri�cation set (X��, Y��) to train the neural network.

3. For $(Ŷ��, Y��) > ?goal:
4. Calculate the hidden layer Z1,B, output layer data Z2, Ŷ and cost function $(Ŷ, Y) of training set and

veri�cation set according to equation (7), respectively;

5. If $(Ŷ��, Y��) > A;
6. Quit
7. Else do:

8. A = $(Ŷ��, Y��);
9. According to (8), calculate the gradient of the output layer weight matrix �V and threshold vector ��, respectively;
10. According to (9), calculate the gradient of hidden layer weight matrix �W and threshold vector ��, respectively;
11. Update the weight matrix of hidden layer and output layer W, V, and the threshold vector �, �;
12. End for
13. Input the channel information test set (X��, Y��), and calculate the NMSE according to (16)

Algorithm 2

	e simulation and analysis of the two schemes will be
carried out, respectively. 	e prediction performance metric
is expressed by the normalized mean squared error (NMSE).

	e NMSE at the <�ℎ time slot is given by the following:

�BCD� =
∑�∈��

EEEEE#̂
(�)
� − #(�)�

EEEEE
2

∑�∈��
EEEE#(�)

EEEE
2 (16)

In addition, we adopt the early stopping strategy for the
multi-time channel prediction system to avoid over�tting.
More speci�cally, the early stopping divides the sample set
into training set (X��, y��), validation set (X��, y��), and
test set (X��, y��). 	e training set (X��, y��) is used to
calculate the gradient and update the link weight matrixes
W, V and threshold �, �. 	e veri�cation set is only used

to estimate the cost $(Ŷ��, Y��). If the training set error
decreases and the validation set error increases, the training
will stop and the connection weights W���
ℎ, V���
ℎ and

thresholds ����
ℎ, ����
ℎ will return. 	e speci�c algorithm is
shown in Algorithm 1 and Algorithm 2.
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Figure 3: 	ree-layer multi-time prediction system.

3.1.3. Multi-Input and Multi-Output Multi-Layer Neural Net-
work Channel Prediction System. Deep neural network can
e
ectively predict the channel information when channel
environment is complicated. More importantly, the deep
neural network has better performance than other processing
means. Meanwhile, deep neural networks achieve the same
performance with fewer neurons. As shown in Figure 3, there
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is a three-layer neural network structure with double hidden
layer, which is used to predict a more complicated channel.

	e parameter update of the three-layer neural network is
almost the same as that of the two-layer neural network. Both
adopt the backpropagation algorithm, except for the former
needing to update three weight matrixes and three threshold
vectors in one epoch.

3.2. Complexity Analysis. In this section, we compare the
computational complexity of existing algorithms with deep
learningmethods.	e existingmethods, such asARmethods
[6], DWT-AR-LR methods [9], the ESN method [10], and
SVM prediction methods [10], will be mentioned below. 	e
computing complexity of AR method is O(���), where���
denotes the order of AR. 	e complexity of ESN prediction
method is O(max(B,���, �)), where B is the number of
variables, ��� is the number of nonzero elements of middle
layer weight matrix, and � is the number of variables
in the middle layer. DWT-AR-LR method’s complexity is
O(max(� !�, ���, �"�)) where � !�, ���, and �"� rep-
resent the number of samples and the order of AR and LR,
respectively.

Note that the propagation weight matrix W, V and
threshold vector �, � of the neural network prediction
algorithm proposed in this paper are calculated o�ine.
In addition, its overhead is very small. 	e computational

complexity of the mathematical operations of W�x(�), V�b

and g2(V�b + �) in the neural network are O(� × <), O(< ×
�) and O(�), respectively. Accordingly, the computational
complexity of the neural network channel prediction system
is O(max(� × <, < × �)), where �, <, � are the number of
neurons in input layer, hidden layer, and output layer, respec-
tively. In this paper, the number of neurons is very small

(e.g., d=10, q=10, p=10), especially in the multi-layer neural
network. And there comes the low complexity.

4. Simulations

4.1. Single-Time Channel Prediction. Firstly, we use the Jakes
model to simulate three channel predicted systems [20]. 	e

channel power is �xed to D20 = 1. In simulation, we set 34
(� = 34) scattering components, 500 (�H = 500) channel
information samples, and the sampling interval to be�H = 1×
10−4H.	emaximumDoppler frequency shi� is�� = 926LM.
Phase 	 observes uniform distribution, i.e., 	 ∼ O(−P, P).
We obtain 400 neural network samples through 500 channel
information samples. Set the training samples �� = 200, test
samples �� = 200, learning rate 9 = 0.001, and the target

error ?g��� = 1 × 10−4. Figure 4 depicts the amplitude and
phase of the simulated andpredicted channels under the Jakes
model.We can see that the channel predicted by the BPneural
network is almost identical to the simulated channel of Jakes
model.

NMSE is the performance measure; Figure 5 is the
comparison of di
erent prediction methods. 	e x-axis is
the signal-to-noise ratios (SNR) of the channel information
ℎ(�) and noise �(�), while the y-axis is the NMSE. 	e red
line with triangle is the performance of single-time predict
system employing two-layer BP neural network. Rich neuron
information gives the BPNN long-term channel memory
capability.	us, it can e
ectively perform channel prediction.
As shown in Figure 5, the NMSE of BP neural network
prediction algorithm gradually decreases with the increase of
SNR and eventually reaches zero. With a low computational
complexity, the accuracy of BPNN method is better than
other methods (i.e., SVM, ESN, and DWT-AR-LR).
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Figure 6: 	e prediction accuracy under di
erent channel models.

In order to verify the robustness of the algorithm, we
present various simulations under di
erent fading Rayleigh
channels, for example, the fast fading channel Clarke/Gan’s
model [23] and the well-known 3GPP Spatial ChannelModel
(SCM) [24] for MIMO systems.

Figure 6 demonstrates the predicted normalized mean
square error (NMSE) under di
erent Rayleigh fading chan-
nels. As we know, the autocorrelation of CSI satis�es the zero-
order Bessel function over time. 	us, a bad time domain
correlation leads to a more di�cult channel prediction. For
the poor time domain correlation, the CSI of Clarke/Gan’s
model is sampled in the frequency domain and transformed
to the time domain by IFFT, leading to a poor channel
prediction performance. Owing to the strong time domain

correlation, Jakes model has the best prediction performance
under di
erent values of SNR.

Undeniably, the BP neural network also faces the prob-
lem, as other algorithms, which is that the poorer time
domain correlation of CSI, the more di�culty to predict
future channel. In short, the BPNN algorithm performs
better than the other two algorithms, and the prediction
performance of the Jakes channel model is the best.

4.2. Multi-Time Channel Prediction System. Similarly, the
CSI is generated by the Jakes model for multi-time channel
prediction system. 	e major di
erence is that we use 5000
channel information samples, i.e., �H = 5000. Other
parameters are the same as the single-time channel prediction
system.

We research two-sample construction methods (NSCS
and SSCS) of multi-time channel prediction system. Under
the two strategies, we select 4000 samples and 400 samples,
respectively, and 75% of which are training samples, 15% of
which are veri�cation samples, and the remaining samples are
the test samples.	e dimension of input layer sample is = 10.
	e number of hidden layer neurons is < = 10. Output layer
neurons are � = 10 and = 20, respectively.

4.2.1. Comparison of Two-Sample Construction Schemes with
10-Input and 10-Output (d=10, p=10). Formulti-time channel
prediction system, as the prediction time increases, the
corresponding error increases exponentially.We compare the
prediction of two sampling methods, i.e., NSCS and SSCS.

Figure 7 shows that prediction accuracy generally
improves as the number of epochs increases. Owing to
the early stopping strategy, it is shown that the normal
sample construction scheme stops a�er 224 epochs and the
sparse sample prediction scheme stops a�er 42 epochs. 	e
SSCS scheme has fewer iterations than the NSCS scheme,
which can increase the speed of operation and save system
resources.

Figure 8 is the NMSE performance of two-sample con-
struction schemes. We can see that the performance of
NSCS is better than that of SSCS at the cost of computation
complexity. On the other hand, the performance di
erence

between NSCS and SSCS is less than 10−4 which can be
ignored. Moreover, in order to achieve the same target of
NMSE, the latter has less epochs than the former, which is
more practical. Notice that an epoch SSCS takes less time than
NSCS. To summarize, the NSCS and SSCS we proposed both
meet the requirement in [25] of a low estimated error. 	e
SSCS e
ectively reduces the resource consumption without
degrading system performance.

4.2.2. Comparison of Two-Sample Construction Schemes with
10-Input and 20-Output (d = 10, p = 20). Figure 9 shows
that the normal samples construction scheme stops a�er 86
epochs. 	e sparse sample prediction scheme stops a�er 61
epochs. Figure 10 is the NMSE of two-sample construction
schemes.	emulti-time prediction, just like the 10-input and
10-output prediction system, error increases exponentially
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Figure 8: 	e NMSE of NSCS and SSCS (d=10, p=10).

with the di
erent timeslot. 	e performance of SSCS is
slightly worse than that of NSCS.

Nevertheless, the calculation and time costs of SSCS are
much smaller than NSCS’s.

4.2.3. �e Performance of SSCS with Di�erent Power of Noise.
Figure 11 demonstrates the predicted NMSE at di
erent SNR
in the multi-time prediction system. With the weakening

of the time domain correlations, the prediction errors of
di
erent time slot increase exponentially.

4.3. Multi-Hidden Multi-Moment Prediction System. Figure
12 compares the prediction performance of three-layer neural
networks and two-layer neural networks. It reveals that the
three-layer neural network outperforms the two-layer neural
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network. However, its e
ectiveness is not obvious since the
channel information is not very complicated.

5. Conclusions

	eBP neural network withmulti-hidden layer is introduced
into the channel prediction application. A novel multiple
moment CSI prediction scheme is proposed for improving
the performance of the massive MIMO, NOMA, CoMP, and
physical layer security schemes. 	e proposed prediction
scheme can perform e
ectively with a short pilot overhead,

which is suitable for resource-constrained communication
scenes. Meanwhile, we proposed two signi�cant sample
construction methods, which extremely improves the pre-
diction performance and reduces the computing complexity.
Wide experiences veri�ed the e
ectiveness of our proposed
scheme

Data Availability

	e data used to support the �ndings of this study are
available from the corresponding author upon request.
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