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In this paper, the Rayleigh hypothesis in the’ theory of reflection by a gratmg is mvestngat;ed
analytically. Conditions are derived under which the Rayleigh hypothesis is rigorously valid. A
procedure is presented that enables the validity of the Rayleigh hypothesis to be checked for a grating

whose profile can be described by an analytic function. As examples, we consider some grating profiles
described by & finite Fourier series. Numerical results are then presented.

. INTRODUCTION of reflected, propagating, and evanescent, spectral waves
(together with the incident field) is assumed to yield a de-

The Rayleigh hypothe51s has been employed by a number scription of the total field that is sufficient to satisfy the
of authors to solve the problem of the reflection of a plane boundary condition to be imposed on the surface of the grat-
wave by a grating.! " Under this hypothesis, the discrete set ing. Tt has been argued by Lippmann,? that the Rayleigh
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grating surface A

FIG. 1. Grating configuration and incident wave, S denotes a single
period of the domain Zmax < z < ; S; denotes a single period of the dormain
Zin < 2 < Zpmax (valiey of the groove).

assumption seems unrealistic, for in between the corrugations,
both incoming and outgoing secondary waves (as well as the
corresponding exponentially growing and evanescent waves)
are expected to exist.

Following Petit and Cadilhae,® Millar* investigated the
conditions under which the Rayleigh hypothesis can be used
for a sinusoidal grating. His basic problem involves the lo-
cation of the singularities in the representation of the solution
of the wave problem and he relates these to the singularities
and the critical points in the Green’s function of the corre-
sponding potential problem. Further progress as regards the
location of the singularities in the solution of the wave problem
has been made in later papers by Neviére and Cad1lhac5 and
Millar.8

In the present paper, we show in a fairly simple way, under
which conditions the Rayleigh hypothesis holds. The method
applies to an arbitrary grating profile, provided that it can be
described by an analytic function of the arc length. As ex-
amples, we consider some grating profiles described by a finite
Fourier series, hence for a limited sum of sinusoids.” Nu-
merical results are then presented.

II. FORMULATION OF THE GRATING PROBLEM

Let the time-harmonic plane wave (with wave number ko),
ui(x,2) = expliagx — iyez) with cg = ko sinf and vg = kg cos-
fly, be incident from z > 0 upon the periodic surface A shown
in Fig. 1. The time-dependence factor exp(—iwt) is sup-
pressed. The reflected field in z > 2y, may be written as8

wixz)= ¥ pnexplonx +ivez), 2>2Zman (1)
n=-—w

in which a, = ag + 27n/D, v, = (k§ — «2)/2 with Re(y,) =
0 and Im(y,) = 0. We suppose that the total field u = ui +
u" vanishes on A (the Dirichlet boundary condition), though
this is inessential for our procedure and both the Neumann
boundary condition and the impedance boundary condition
could be imposed as well.

In the earliest attempts to analyze this problem rigorously,
Rayleigh made the assumption that the series in Eq. (1} was
a valid representation for u” not only in z >2may (S1), but also
in the valley of the groove (S3). Let us write the Rayleigh
solution of the boundary-value problem (1" = —u! on A) as

i R, expliogx + ivnzl, (x,2) € (S1+ Sa).

)

Millart has shown that a necessary and sufficient condition

up(x,z) =
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for the Rayleigh assumption to hold is that the series in Eqg.
(2) is an analytic function® of x and z for (x,2) € (S1 + Sa).
The proof is rather simple. Since (i) the series in Eq. (2) is an
analytic solution of the Helmholtz equation (82 + 82+ k3)ujy
=0in S; + .8y, (ii) uy satisfies the radiation condition as z —
o, (iii) uk satisfies the houndary condition on A, where A is
an analytic surface (without edges), we are then dealing with
a unique solution of the boundary-value problem. Because
of this uniqueness, the coefficients B, in Eq. (2) are equal to
the coefficients p,, in Eq. (1) for alln. Hence, under the as-
sumption of the analyticity, Eq. (2) is the exact solution.10

We directly observe that the series in Eq. (2) is analytic in
S + 8y, if the series is uniformly convergent as z = zuyin, or

lim inf |R,|~/" exp(272min/D) > 1,
n—o

(3)
lim inf |R,|V" exp(27zmin/D) > 1,

o
where we have used the relations lim,— v, = o + i27n/D
and lim,——w v, = —lag =~ i27n/D. In order to investigate the
analyticity of Eq. (2), we need the behavior of |Ry,| for |n| —
=, This behavior of the reflection factors will be discussed
in Sec. II1.

lll. BEHAVIOR OF THE REFLECTION FACTORS

If, now, the Rayleigh hypothesis were to hold exactly for
some type of grating profile, at least the Rayleigh method (u}
= —u’ on A) should lead to an analytic single-valued reflected
wave function upon approaching the grating surface. We
represent the latter by x = f(s) and 2z = g(s), where f(s) and
£(s) are assumed to be analytic functions of the (real valued)
arclength s (0 <s <L). Letus define ui(x,z) on A asui(s),
then, the Rayleigh hypothesis yields

S Rutin(s), Im(s) = 0, @)

n=—w

—ui(s) =

in which u, (s) = explianf(s) + ivag(s)].

Now, the dominant behavior of |u,(s)| as [n| — « is given
by '

lim |u, |V = |wy,

n—+w

(6)
fim fun | =1 = fug] 2,
where w, = exp{2=[if(s)
+ g(s)]/D}.

Let the maximum value of [w 16)[, Im(s) = 0, be denoted
by |w1,max| and let the minimum value of |wy(s)|, Im(s) =
be denoted by |we,min|. The series in Eq. (4) has to be a uni-
formly convergent series for real s, This property restricts
the behavior of |R,| as [n| = = to s ’

— ¢(s)1/D), and w; = exp{2xlif(s)

lim sup |R,|Y"|w1 max| <1,

n—w

(8)
lim sup |Rn| l/nle mml 1< 1,
n——w
in which le,mﬂxl = 'wz,min'—1~
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FIG. 2. Conformal transforma-
tions. s, is either a zero of
dw4/ds or a singularity of either
fis) or g(s), or both.

More insight into the behavior of |R,| as |n| — = is ob-
tained as follows. Let f(s) and g(s) be analytic functions of
the complex variable s in a domain A4 of the complex s plane,

containing the real axis. Then, Eq. (4) can be written as

—ui(s) = 3 Rpun(s), se B, (7)
n=—c
in which B denotes the subdomain of A where the series in
the right-hand side of Eq. (7) converges uniformly.!! Since
limpo|up " = |wq| and limp——w|u, | /" = |wo) for all s
€ A, B is also the domain where both series

vi(s) = 2 Row}

n=0

and (8)

0
va(s) = ¥ Rywi
ne—ew

converge uniformly. In order to obtain the behavior of | R, |
as |n| — =, we need the location of the boundary of B in the
complex s plane. Let the real s axis divide the domain B into
Bt and B~ (see Fig. 2). Since f(s) and g(s) are real on the real
s axis, f(s) and g(s) take conjugate values at conjugate points
(principle of reflection; cf. Titchmarsh,!? p. 165). Itis easily
verified that ‘

wi(s) = [wi(s*)]™Y, s € 4, 9)

in which the asterisk denotes the complex-conjugate value.
From Eq. (9), it follows that if the convergence properties of
the first series of Eq. (8) determine the lower boundary of B,
the convergence properties of the second series determine the
upper boundary of B*, An easy procedure to investigate the
domain of convergence of the two series of Eq. (8) is to carry
out the analysis in the complex w plane and the wq plane.

To this end, we employ a conformal mapping of the domain
A in the s plane into the complex wq plane. Let the image of
the arc [0 < Re(s) < L, Im(s) = 0] be denoted by L1 (see Fig.
2). Let further B~ in the s plane be mapped into the domain
Bjin the complex w; plane. Then, B; is the domain in the wy
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Im(w,)

2 [Wo =wo(s); Im(s):O]

Re(ws,)

inner radius of convergence

Im(w,)

(\L, [wy =w(s); Im(s)=0]

Re(w,)

outer radius of convergence

plane bounded by L, and the circle of convergence of the
power series

©

vi(w)) = L Rawi. (10)
. n=0
Note that L is always located completely inside this circle of
convergence, because of Eq. (6). Now, this circle of conver-
gence passes through the singularity of v1(w1) nearest to the
origin. Lets = s, (Im(s) < 0) correspond to this singularity,
then s = s, is either a zero of dw:/ds [at this point the function
v1(wi) has a nonexisting derivative, since dvy/dw; = (dv,/
ds)/(dw+/ds)] or a singularity of either f(s) or g(s), or both.
The zero’s of dwy/ds follow from

(d/ds)[if(s) — g(s)] = 0, Im(s) <0. (11)
The radius of convergence of the power series in the right-
hand side of Eq. (10) is then given by

lim inf |R, |~V = |w(sp)]

n=—re

= |exp{2nlif(s,) — &(sp)]/D}|.  (12)

Using a conformal mapping of the domain A in the s plane into
the complex wy plane, a procedure similar to the one used
earlier, but now with respect to the second series of Eq, (8),
yields

lim inf |Ry|¥r = |we(sp)|™?

n-»—oo

= |exp{2n[if(sp) — &(sp)1/D}|.  (13)

Egs. (12) and (13) specify the behavior of |R,| as |n| — =,
provided that the Rayleigh hypothesis is used.

V. VALIDITY OF THE RAYLEIGH HYPOTHESIS

From Egs. (3), (12), and (13), we observe that the series (2)
is analytic for z > 2y, if and only if

Relif(sp) = &(sp) + Zmin] > 0. (14)
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FIG. 3. hmax @s a function of K when the grating profile is given by
K
z=h2— hY. [4/7%2]— 1)?] cos{2w(2f — 1)x/D}
=1

(= approximation to a triangular profile).

Equation (14), now, is the condition under which the Rayleigh
hypothesis holds, if it ever does.

Instead of the representation of the grating profile in the
arc length s, we now restrict ourselves to single-valued func-
tions of x, say z = z(x).

It is convenient to write
z= h{(X), Rmin = hg‘mim h > O, (15)

where h is the depth of the grooves of the grating, i.e. h = z 5.5
— Zmin- Bgs. (11) and (14) are then replaced by

i —hd{(x)/dx =0, (16)
Refixp — hi(xp) + Agmin] > 0. a7

Let us assume that A = hy,,y is the smallest value of h,
where

Re[ix, — Amax§(%p) + Amaxlmin] = 0. (18)

For this value of h = k., the Rayleigh hypothesis does not
hold. We then want to investigate whether the Rayleigh
hypothesis still does not hold when & > b, To this end, we
constder the expression

d .
™ Relix, — hf(x,) + Afminl

Re[_ §‘(x,,) + ﬂnin]:
when x,, is a singular point of {{x),

. dx di(x,) dx
hotad SIS Nl lad 22 S 2N .
Re(l ah h d, dh f(xp) + g'mln):

when x,, is a root of Eq. (16).
Using Eq. (16), we observe that

'(;i_h Re[ixp - hf(xp) + hs'min] = Re["'((xp) + grnin]y (19)

where x,, is either a singular point of {(x,) or a root of Eq. (16).
Since Im(x,) <0, it follows from Eq. (18) that the right-hand
side of Eq. (19) is negative for & = A4, and hence

Re[ix, —h{(xp) + himin] <O forh = hna + 4, (20)
in which A is a sufficiently small positive number. Since
Im(x,) is always negative, it follows from Eq. (20) that the
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FIG. 4. hpax as a function of K when the grating profile is given by

z=hi2—h f[z(—)lhr(zj—ﬂ] cos{2m(2j — 1)x/D}
=1

(= approximation to a rectangular profile).

right-hand side of Eq. (19) is still negative for h = . + A.
Repeating this process, we observe that Eq. (20) holds for all
h > Ry Hence, Eq. (17) does not hold for b > hp.4 and the
Rayleigh hypothesis is valid only for 0 < h < b4y, in which
hmayx is the smallest value of h where Eq. (18) applies.

V. NUMERICAL RESULTS

We shall now present some numerical results pertaining to
hmax for different grating profiles. These results are obtained
by a numerical solution of Egs. (16) and (18). We note that
such a root of Egs. (16) and (18) has been taken, that leads to
the smallest value of Anax. This implies a careful investiga-
tion of the Eqgs. (16) and (18) in the complex x plane (0 < Re(x)
< D,Im(x) <0). Further, we have investigated that for 0 <
h < hpayx Eq. (17) applies; in this way the validity of the
Rayleigh hypothesis has been established.

(£) sinusoidal profile: z = (h/2) cos(2zx/D). We then
have
{(x) = Y cos(2wx/D)

and

g'ml'n = "1/2.

We then arrive at hay/D = 0.142 521. The same result was
already obtained by Petit and Cadilhac® and Millar.4

(if) approximation to a triangular profile (see Fig. 3). For
the triangular profile, the Rayleigh hypothesis is never valid,?
since there is a singularity of z(x) on the real x axis and, then,
Eq. (17) does not hold. But, the Rayleigh hypothesis can hold

. when we approximate this profile by a finite Fourier series z

= h{(x),” in which
=1 5 4 2] — D)x/D
$ta) = o= 3. s coslan(2) = Da/D)]
and
K 4
=l B
g-mm /2 jé:l _"_2(2]. _ 1)2 .
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The approximation is better the larger K is. The values of
hmax as a function of K are presented in Fig. 3. For all values
of 0 < h < hypay, we have found that the Rayleigh hypothesis
is valid. From our computations we observe that as K — o,
hence for a triangular profile, the Rayleigh hypothesis never
holds.

(iii) approximation to a rectangular profile (see Fig. 4).
For the rectangular profile, the Rayleigh hypothesis is also
never valid,!3 but the Rayleigh hypothesis can hold when we
approximate this profile by a finite Fourier series x = h{(x),
where

K —-)J
) =t - 3 —

j=1m(2j ~1) cos[2m(2j - 1)x/D]

and
K 9(~)J
n=ht Y .
(mln /2 jgl 7I'(2] _ 1)

The approximation is better the larger K is. The values of
h max as a function of K are presented in Fig. 4, For all values
of 0 < h < hpyax, we have found that the Rayleigh hypothesis
is valid. From our computations we also observe that as K

— =, hence for a rectangplar profile, the Rayleigh hypothesis
never holds.
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