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The Rayleigh-Jeffreys problem with boundary slab 
of finite conductivity 
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Linear perturbation analysis is applied to the problem of the onset of convection 
in a horizontal layer of fluid heated uniformly from below, when the fluid is 
bounded below by a rigid plate of infinite conductivity and above by a solid 
layer of finite conductivity and finite thickness. The critical Rayleigh number 
and wave-number are found for various thickness ratios and thermal conductivity 
ratios. Both numbers are reduced by the presence of a boundary of finite (rather 
than infinite) conductivity in qualitative agreement with the observation of 
Koschmieder (1966). 

1. Introduction 
The problem of determining the conditions for the onset of convection induced 

by buoyancy effects resulting from the heating from below of a horizontal layer 
of a viscous fluid, received its first theoretical treatment from Rayleigh (1916) 
and Jeffreys (1926). (The problem has been referred to as the BBnard problem, 
but this term is more appropriate for the related surface-tension problem.) Many 
subsequent authors have extended the theory, a standard reference for which is 
Chandrasekhar (1961). 

Until recently attention has been concentrated on the case where both upper 
and lower boundaries are of infinite thermal conductivity. Sparrow, Goldstein 
& Jonsson (1964) extended the classical Rayleigh-Jefieys analysis to allow for 
a ‘radiation’ type condition at  a boundary, while Hurle, Jakeman & Pike (1967) 
considered a layer of fluid bounded below and above by the same solid material, 
of finite thermal conductivity, extending to infinity in each vertical direction. 
In  the present paper we treat a configuration more practical than that of Hurle 
et al. Our model is as follows. The upper surface of the fluid is adjacent to the lower 
side of a horizontal slab of solid material whose upper side is in turn bounded by 
a medium of infinite conductivity. The lower boundary of the fluid is assumed to  
be an infinitely conducting rigid plate. (The analysis below could, if desired, 
easily be adapted for the case where this plate was replaced by a second slab of 
finite conductivity.) 

Most experiments on the Rayleigh-Jeffreys problem have been designed to 
ensure good heat conduction on the boundaries. An exception is the experiment 
described by Koschmieder (1966) who, in order to facilitate visual observation of 
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the convection patterns, used as a lid over the fluid a plate of glass whose thermal 
conductivity was only an order of magnitude greater than that of the fluid. 
Koschmieder found that when the Rayleigh number was continuously increased 
beyond the critical value for the onset of convection, the wave-number of the 
convection pattern decreased. This decrease, which is also evident from photo- 
graphs published by Schmidt & Silveston (1959), is in disagreement with the 
theory (for infinitely conducting boundaries) of Platzman (1965) or Schliiter, 
Lortz & Busse (1965). As was pointed out by Dr Koschmieder in a private com- 
munication to the author, the decrease in wave-number is apparently the result 
of increasingly less effective transfer of heat perturbations in the media (glass 
and cooling fluid) above the observed fluid layer in comparison with that in this 
convecting fluid. The present work was undertaken in an attempt to throw some 
light, as far as a linear theory can, on this phenomenon. 

2. Analysis 
We consider a fluid layer of depth d overlain by a solid layer of thickness d'. 

Thus, with z indicating distances vertically upwards, the fluid will occupy the 
region 0 < z < d and the solid the region d < z < d + d'. The planes z = 0 and 
z = d + d' are held at  uniform temperatures To and Tl respectively, and each plane 
is assumed to be a perfect thermal conductor. In  the steady state the fluid velocity 
is then zero and the temperature distribution is given by 

where 

are the adverse temperature gradients in the fluid (of thermal conductivity K )  
and the solid (of thermal conductivity K') respectively. 

The analysis now follows that of Chandrasekhar (1961). The fluid is assumed to 
be of the Boussinesq type (quasi-incompressible, and otherwise with constant 
fluid properties). Perturbations from the steady-state solution are considered, and 
the governing differential equations are linearized. An expansion in normal 
modes, involving a separation of variables, is performed. The following equations 
for a steady neutral disturbance are obtained. 

I n 0  < z < d, v(d2/d$- k2)2W - gak20 = 0, (1)  

and K(d2/dz2-k2)0+/3W = 0, ( 2 )  

whileind < z < d+d' ,  
(d2/dz2- k2)0' = 0. (3) 

Here a, v and K are the thermal expansion coefficient, kinematic viscosity and 
thermal diffusivity of the fluid, g is the gravitational acceleration, and k is the 
horizontal wave-number of the disturbance. W(z)  and 0(x) give the variation 
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with z of the vertical component of the fluid velocity, and the temperature per- 
turbation in the fluid, respectively. In  the solid the corresponding quantities are 
denoted by primes. 

The thermal boundary conditions are 

0 = 0  at  z = O ,  (4) 

o = O’ and Kaqaz  = K’aw/az at = a, ( 5 )  

0‘ = 0 at z = d+d’. (6) 

(It seems that in the paper of Hurle et al. (1967), at this stage of the analysis 
and in their table of results, it is the thermal conductivity K rather than the 
thermal diffusivity K which should be used.) 

The solution of (3) subject to  the condition (6) is 

0’ = C sinh k(d+d’-z) ,  

where C is a constant. Conditions ( 5 )  then imply that 

CE, FE C( - 1)”E, F: Rb2C( - l),E, F, 

C( - l)nE,F; CE,F; RbZCE, F, 

C( - l)nEmFn CEnFn Rb’CE, - $(L + nb coth nb)  

1 a0  K 
--=-kcothkd at  z = d .  0 ax K‘ 

(15) = 0, 

(7 )  
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The minimum value of R as b varies is then the critical value R,, which, for the 
lowest mode, corresponds to the onset of convection. The numerical calculation 
is straightforward. 

3. Results and discussion 
In  tables 1 (a )  and 1 (b)  are presented values of the critical Rayleigh number 

R: = n4R, and the corresponding critical wave-number a, = n-be for the most 
unstable mode. As expected, both R, and a, increase with K'/K and decrease 
with increase of d'/d. The same trend is seen in the values given in tables 2(a)  
and 2 ( 6 )  for the second mode of instability. 

d'Jd 
r 7 

A 

k"/K 0 0.01 0.03 0.1 0.3 1 2- 10 
0 - 1295.8 1295.8 1295.8 1295.8 1295.8 1295.8 
0.01 1707.8 1398.5 1337.9 1309.8 1301.4 1299.5 1299.4 
0.03 1707-8 1497.6 1398.7 1334.9 1312.1 1306.6 1306.5 
0.1 1707.8 1607.1 1508.3 1400.4 1345-1 1329-9 1329.6 
0.3 1707.8 1667.1 1607.3 1500.3 1414.0 1384.1 1383.4 
1 1707.8 1694.6 1670.9 1610.3 1529.7 1493.4 1492.7 
3 1707.8 1703.3 1694.6 1668.2 1623.4 1599.3 1598.9 

10 1707.8 1706.5 1704.0 1694.9 1678.1 1668.1 1668.0 
100 1707.8 1707.6 1707.4 1706.4 17044 1703.4 1703.4 

co 1707.8 1707.8 1707.8 1707.8 1707.8 1707.8 1707.8 

TABLE l(a). Values of the critical Rayleigh number R,* = n4R for the lowest mode of 
instability 

d'ld 
A v _____ 7 

K'/K 0 0.01 0.03 0.1 0.3 1 2- 10 
0 - 2.553 2,553 2.553 2-553 2.553 2.553 
0.01 3.117 2.753 2.639 2.582 2.564 2.557 2.556 
0.03 3.117 2.901 2.750 2.632 2.582 2-566 2.565 
0.1 3.117 3-028 2.914 2.751 2.641 2.596 2.594 
0.3 3.117 3.084 3.028 2.900 2.753 2.669 2.665 
1 3.117 3.107 3-087 3.029 2.910 2.819 2.815 
3 3.117 3.113 3.107 3.084 3-027 2.967 2.964 

10 3.117 3.115 3.111 3.106 3.086 3.063 3.062 
100 3.117 3.116 3.116 3.115 3.114 3.110 3-110 

co 3.117 3.117 3.117 3.117 3.117 3.117 3-117 

TABLE l(5). Values of the corresponding critical wave-number a, = nb, for the lowest 
mode of instability 

d'ld 
7 -h__- ~- 7--- 

K'IK 0 0.1 1 2- 10 0 0.1 1 2 1 0  
0 - 15,278 15,378 15,278 - 4.91 4.91 4.91 
0.1 17,610 15,654 15,467 15,467 5.37 5.01 4.94 4.94 
1 17,610 16,803 16,382 16,382 5.37 5.24 5.11 5.11 

10 17,610 17,492 17,421 17,380 5.37 5.35 5.32 5.31 
co 17,610 17,610 17,610 17,610 5.37 5.37 5.37 5-37 

(a)  ( b )  
TABLES 2(ta) and 2(5). Values of the critical Rayleigh number R,* and the corresponding 

critical wave-number a,, for the second mode of instability 
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The published experimental results which are most relevant to the present 
theory are those of Koschmieder (1966), but his experiment was designed prim- 
arily for the visual observation of the convection patterns and not for obtaining 
precise quantitative data. By the time the motion of his fluid was sufficiently well 
developed to be visible, it is probable that the Rayleigh number was substantially 
above the critical value. Thus the agreement between the values R = 1730 
and a = 3.3 from Koschmieder’s experiment for K’/K = 8 and d‘ld = 0.3, and 
the value R, = 1650 and a, = 3.08 from the present theory, is as good as could be 
expected. 

When Koschmieder continued to increase the rate of heating of the fluid, he 
observed that the wave-number a of the convective motion declined from the 
value 3.3 to 2.3, but when the latter value of a had been reached the motion had 
become markedly unsymmetrical. The reduction in wave-number cannot be 
explained merely by noting that higher order modes of instability become in- 
creasingly effective as the Rayleigh number is increased, since the wave-number 
is larger for the higher order modes (for boundaries of given constant conduc- 
tivity). It appears that the observed effect is a result of the effective decrease in 
the appropriate value of our ratio K’/K (or effective increase in d’ld) as the water 
circulating above Koschmieder’s glass plate became less and less effective in 
transporting away the increased heat flux. I n  other words, our assumption that 
the surface z = d + d‘ is perfectly conducting becomes increasingly less appro- 
priate. Presumably the same is true, but to a lesser extent, at the boundary 
x = 0,  which in Koschmieder’s experiment was the upper surface of a copper plate. 
A proper explanation of the reduction in wave-number with increase in heat 
flux must, of course, invoke non-linear considerations, but our linear theory does 
at least make plausible a reduction in wave-number from 3.1 to 2.5 (or to a 
smaller value if the conductivity of the material below the fluid layer is given a 
finite value rather than an infinite one). Further experimental and theoretical 
work is highly desirable. 

The author is grateful to Dr Koschmieder for drawing his attention to this 
problem and the likely explanation. 
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