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Abs t r ac t .  This document describes the RC5 encryption algorithm, a 
fast symmetric block cipher suitable for hardware or software imple- 
mentations. A novel feature of RC5 is the heavy use of data-dependent 
rotations. RC5 has a variable word size, a variable number of rounds, and 
a variable-length secret key. The encryptiou and decryption algorithms 
are exceptionally simple. 

1 Introduct ion 

RC5 was designed with the following objectives in mind. 

- RC5 should be a symmetric block cipher. The same secret cryptographic key 
is used for encryption and for decryption. The plaintext and ciphertext are 
fixed-length bit sequences (blocks). 

- RC5 should be suitable for hardware or software. This means tha t  RC5 
should use only computat ional  primitive operations commonly found on typ- 
ical microprocessors. 

- RC5 should be fast. This more-or-less implies tha t  RC5 be word-oriented: 
the basic computat ional  operations should be operators  that  work on full 
words of da ta  at a time. 

- RC5 should be adaplable to processors of differen~ word-lengths. For example,  
as 64-bit processors become available, it should be possible for RC5 to exploit 
their longer word length. Therefore, the number  w of bits in a word is a 
parameter of RC5; different choices of this parameter  result in different RC5 
algorithms. 

- RC5 should be iterative in structure, with a variable number of rounds. The 
user can explicitly manipula te  the trade-off between higher speed and higher 
security. The number  of rounds r is a second parameter  of RC5. 

- RC5 should have a variable-length cryptographic key. The user can choose 
the level of security appropriate  for his application, or as required by external 
considerations such as export restrictions. The key length b (in bytes) is thus 
a third parameter  of RC5. 

* RC5 is a trademark of RSA Data Security. Patent pending. 
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- RC5 should be simple. It should be easy to implement. More importantly,  
a simpler structure is perhaps more interesting to analyze and evaluate, so 
that  the cryptographic strength of RC5 can be more rapidly determined. 

- RC5 should have a low memory requirement, so that  it may be easily imple- 
mented on smart  cards or other devices with restricted memory. 

- (Last but  not least!) RC5 should provide high security when suitable param- 
eter values are chosen. 

In addition, during the development of RC5, we began to focus our atten- 
tion on a intriguing new cryptographic primitive: data-dependent rotations, in 
which one word of intermediate results is cyclically rotated by an amount  deter- 
mined by the low-order bits of another intermediate result. We thus developed 
an additional goal. 

- RC5 should highlight the use of data-dependent rotations, and encourage 
the assessment of the cryptographic strength data-dependent rotations can 
provide. 

The RC5 encryption algorithm presented here hopefully meets all of the 
above goals. Our use of "hopefully" refers of course to the fact that  this is still a 
new proposal, and the cryptographic strength of RC5 is still being determined. 

2 A Parameterized Family of Encryption Algorithms 

In this section we discuss in somewhat greater detail the parameters of RC5, 
and the tradeoffs involved in choosing various parameters. 

As noted above, RC5 is word-oriented: all of the basic computat ional  oper- 
ations have w-bit words as inputs and outputs. RC5 is a block-cipher with a 
two-word input (plaintext) block size and a two-word (ciphertext) output  block 
size. The nominal choice for w is 32 bits, for which RC5 has 64-bit plaintext and 
ciphertext block sizes. RC5 is well-defined for any w > 0, although for simplicity 
it is proposed here tha t  only the values 16, 32, and 64 be "allowable." 

The number r of rounds is the second parameter  of RC5. Choosing a larger 
number of rounds presumably provides an increased level of security. We note 
here that  RC5 uses an "expanded key table," S, that  is derived from the user's 
supplied secret key. The size t of table S also depends on the number r of rounds: 
S has t = 2(r ~- 1) words. Choosing a larger number of rounds therefore also 
implies a need for somewhat more memory. 

There are thus several distinct "RC5" algorithms, depending on the choice 
of parameters w and r. We summarize these parameters below: 

w This is the word size, in bits; each word contains u = (w/8) 8-bit bytes. 
The nominal value of w is 32 bits; allowable values of w are 16, 32, and 64. 
RC5 encrypts two-word blocks: plaintext and ciphertext blocks are each 
2w bits long. 

r This is the number of rounds. Also, the expanded key table S contains 
t = 2(r $ 1 )  words. Allowable values of r are 0, 1, ..., 255. 
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In addition to w and r, RC5 has a variable-length secret cryptographic key, 
specified by parameters b and K: 

b The number of bytes in the secret key K.  Allowable values of b are 0, 1, 
..., 255. 

K The b-byte secret key: K[0], K[1], ..., K[b - 1] . 

For notational convenience, we designate a particular (parameterized) RC5 
algorithm as RCS-w/r/b. For example, RC5-32/16/10 has 32-bit words, 16 rounds, 
a 10-byte (80-bit) secret key variable, and an expanded key table of 2 (16+ 1) = 34 
words. Parameters may be dropped, from last to first, to talk about RC5 with the 
dropped parameters unspecified. For example, one may ask: How many rounds 
should one use in RC5-32? 

We propose RC5-32/12/16 a s providing a "nominal" choice of parameters. 
That  is, the nominal values of t h e parameters provide for w = 32 bit words, 12 
rounds, and 16 bytes of key. Further analysis is needed to analyze the security of 
this choice. For RC5-64, we suggest increasing the number of rounds to r = 16. 

We suggest that  in an implementation, all of the parameters given above 
may be packaged together to form an 1~C5 control block, containing the following 
fields: 

v 1 byte version number; 10 (hex) for version 1.0 here. 
w 1 byte. 
r 1 byte. 
b 1 byte. 
K b bytes. 

A control block is thus represented using b+4 bytes. For example, the control 
block 

I0 20 OC OA 20 33 7D 83 05 5F 62 51 BB 09 (in hexadecimal) 

specifies an RC5 algorithm (version 1.0) with 32-bit words, 12 rounds, and a 10- 
byte (80-bit) key "20 33 . . .  09". RC5 "key-managemenC schemes would then 
typically manage and transmit entire RC5 control blocks, containing all of the 
relevant parameters in addition to the usual secret cryptographic key variable. 

2.1 Discussion of Parameterization 

In this section we discuss the extensive parameterization that  RC5 provides. 
We should first note that it is not intended that  RC5 be secure for all possible 

parameter values. For example, r = 0 provides essentially no encryption, and 
r = 1 is easily broken. And choosing b = 0 clearly gives no. security. 

On the other hand, choosing the maximum allowable parameter values would 
be overkill for most applications. 

We allow a range of parameter values so that  users may select an encryption 
algorithm whose security and speed are optimized for their application, while 
providing an evolutionary path for adjusting their parameters as necessary in 
the future. 
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As an example, consider the problem of replacing DES with an "equivalent" 
RC5 algorithm. One might reasonable choose RC5-32/16/7 as such a replace- 
ment. The input/output blocks are 2w = 64 bits long, just as in DES. The 
number of rounds is also the same, although each RC5 round is more like two 
DES rounds since all data registers, rather than just half of them, are updated in 
one RC5 round. Finally, DES and RC5-32/16/7 each have 56-bit (7-byte) secret 
keys. 

Unlike DES, which has no parameterization and hence no flexibility, RC5 
permits upgrades as necessary. For example, one can upgrade the above choice for 
a DES replacement to an 80-bit key by moving to RC5-32/16/10. As technology 
improves, and as the true strength of RC5 algorithms becomes better understood 
through analysis, the most appropriate parameter values can be chosen. 

The choice of r affects both encryption speed and security. For some appli- 
cations, high speed may be the most critical requirement--one wishes for the 
best security obtainable within'a~given encryption time requirement. Choosing 
a small value of r (say r = 6) may provide some security, albeit modest, within 
the given speed constraint. 

In other applications, such as key management, security is the primary con- 
cern, and speed is relatively unimportant. Choosing r = 32 rounds might be 
appropriate for such applications. Since RC5 is a new design, further study is 
required to determine the security provided by various ~alues of r; RC5 users 
may wish to adjust the values of r they use based on the results of such studies. 

Similarly, the word size w also affects speed and security. For example, choos- 
ing a value of w larger than the register size of the CPU can degrade encryption 
speed. The word size w = 16 is primarily for researchers who wish to examine 
the security properties of a natural "scaled-down" RC5. As 64-bit processors 
become common, one can move to RC5-64 as a natural extension of RC5-32. It 
may also be convenient to specify w = 64 (or larger) if RC5 is to be used as 
the basis for a hash function, in order to have 128-bit (or larger) input/output 
blocks. 

It may be considered unusual and risky to specify an encryption algorithm 
that permits insecure parameter choices. We have two responses to this criticism: 

1. A fixed set of parameters may be at least as dangerous~ since the parameters 
can not be increased when necessary., Consider the problem DES has now: 
its key size is too short, and there is no easy way to increase it. 

2. It is expected that implementors will provide implementations that ensure 
that suitably large parameters are chosen. While unsafe choices might be 
usable in principle, they would be forbidden in practice. 

It is not expected that a typical RC5 implementation will work with any 
RC5 control block. Rather, it may only work for certain fixed parameter values, 
or parameters in a certain range. The parameters w, r, and b in a received or 
transmitted RC5 control block are then merely used for type-checking--values 
other than those supported by the implementation will be disallowed. The flex- 
ibility of RC5 is thus utilized at the system design stage, when the appropriate 
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parameters are chosen, rather than at run time, when unsuitable parameters 
might be chosen by an unwary user. 

Finally, we note that RC5 might be used in some applications that do not re- 
quire cryptographic security. For example, one might consider using RC5-32/8/0 
(with no secret key) applied to inputs 0, 1, 2, ... to generate a sequence of pseudo- 
random numbers to be used in a randomized computation. 

3 N o t a t i o n  a n d  R C 5  P r i m i t i v e  O p e r a t i o n s  

We use lg(x)to denote the base-two logarithm of x. 
RC5 uses only the following three primitive operations (and their inverses). 

1. Two's complement addition of words, denoted by "+". This is modulo-2 ~ 
addition. The inverse operation, subtraction, is denoted "-" 

2. Bit-wise exclusive-OR of words, denoted by | 
3. A left-rotation (or "left-spin") of words: the cyclic rotation of word x left by 

y bits is denoted x <<< y. Here y is interpreted modulo w, so that when w is 
a power of two, only the lg(w) low-order bits of y are used to determine the 
rotation amount. The inverse operation, right-rotation, is denoted x >>> y. 

These operations are directly and efficiently supported by most processors. 
A distinguishing feature of RC5 is that the rotations are rotations by "vari- 

able" (plaintext-dependent) amounts. We note that on modern microprocessors, 
a variable-rotation x <<< y takes constant time: the time is independent of the 
rotation amount y. We also note that rotations are the only non-linear operator 
in RC5; there are no nonlinear substitution tables or other nonlinear opera- 
tors. The strength of RC5 depends heavily on the cryptographic properties of 
data-dependent rotations. 

4 T h e  R C 5  A l g o r i t h m  

In this section we describe the RC5 algorithm, which consists of three compo- 
nents: a key expansion algorithm, an encryption algorithm, and a decryption 
algorithm. We present the encryption and decryption algorithms first. 

Recall that the plaintext input to RC5 consists of two w-bit words, which we 
denote A and B. Recall also that RC5 uses an expanded key table, S[O...t - 1], 
consisting of t = 2(r + 1) w-bit words. The key-expansion algorithm initializes 
S from the user's given secret key parameter K. (We note that the S table in 
RC5 encryption is not an "S-box" such as is used by DES; RC5 uses the entries 
in S sequentially, one at a time.) 

We assume standard little-endian conventions for packing bytes into input/out- 
put blocks: the first byte occupies the low-order bit positions of register A, and 
so on, so that the fourth byte occupies the high-order bit positions in A, the 
fifth byte occupies the low-order bit positions in B, and the eighth (last) byte 
occupies the high-order bit positions in B. 
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4.1 E n c r y p t i o n  

We assume that the input block is given in two w-bit registers A and B. We 
also assume that key-expansion has already been performed, so that the array 
S[0...t - 1] has been computed. Here is the encryption algorithm in pseudo-code: 

A = A + S[0]; 
B = B + S i l l ;  
f o r i =  l t o  r d o  

A = ((A | B) <<< B) + S[2 .  i]; 
B = ( ( B |  

The output is in the registers A and B. 
We note the exceptional simplicity of this 5-line algorithm. 
We also note that each RC5 round updates both registers A and B, whereas 

a "round" in DES updates only half of its registers. An RC5 "half-round" (one 
of the assignment statements updating A or B in the body of the loop above) is 
thus perhaps more analogous to a DES round. 

4.2 D e c r y p t i o n  

The decryption routine is easily derived from the encryption routine. 

for  i - r d o w n t o  1 do 
B = ( ( B -  S [ 2 * i +  1]) >>> A) ~A ;  
A = ( ( A - S [ 2 . i ] ) > > > B ) |  

B = B - S I l l ;  
d = d - S[0]; 

4.3 K e y  Expans ion  

The key-expansion routine expands the user's secret key K to fill the expanded 
key array S, so that S resembles an array of t = 2(r + 1) random binary words 
determined by K. The key expansion algorithm uses two "magic constants," and 
consists of three simple algorithmic parts. 

Def in i t ion  of  the  Magic  Cons t an t s  The key-expansion algorithm uses two 
word-sized binary constants P~ and Qw- They are defined for arbitrary w as 
follows: 

where 

Pw = Odd((e - 2)2 ~) 

Qw = Odd((r - 1)2 ~) 

(1) 
(2) 

e = 2.718281828459... (base of natural logarithms) 

r = 1.618033988749... (golden ratio) , 
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and where Odd(x) is the odd integer nearest to x (rounded up if x is an even in- 
teger, although this won't happen here). For w = 16, 32, and 64, these constants 
are given below in binary and in hexadecimal. 

P16 = 1011011111100001 = b 7 e l  

Q16 = 1001111000110111 = 9e37 

P32 = 101101111110000i0i01000101i00011 = b7elS163 
Q32 = 10011110001101110111100110111001 = 9e3779b9 

P64 = lOllOilllilO00010101000101'lO00101000101011101iOlO010iOlO01101011 
= b7eiS1628aed2a6b 

Q64 = 1001111000110111011110011011100101111111010010100111110000010101 
= 9e3779b97f4a7clS 

C o n v e r t i n g  t h e  S e c r e t  K e y  f r o m  B y t e s  t o  W o r d s .  The first algorithmic 
step of key expansion is to copy the secret key K[O...b-1] into an array L[O...c-1] 
of c = [b/u] words, where u = w/8 is the number of bytes/word. This opera- 
tion is done in a natural manner, using u consecutive key bytes of K to fill up 
each successive word in L, low-order byte to high-order byte. Any unfilled byte 
positions of L are zeroed. 

On "little-endian" machines such as an Intel '486, the above task can be 
accomplished merely by zeroing the array L, and then copying the string K 
directly into the memory positions representing L. The following pseudo-code 
achieves the same effect, assuming that  all bytes are "unsigned" and that  array 
L is initially zeroed. 

f o r i - - - b - 1  d o w n t o  0 d o  
L[i/u] = (L[i/u] <<< S) + K[i]; 

I n i t i a l i z i n g  t h e  A r r a y  S. The second algQr~thmic step of key expansion is 
to initialize array S to a particular fixed (key-independent) pseudo-random bit 
pattern,  using an arithmetic progression modulo 2 ~ determined by the "magic 
constants" Pw and Qw. Since Q~ is odd, the arithmetic progression has period 
2 w . 

s [o ]  = P,,,; 
f o r i = l  t o t - l d o  

S[i] = S[i - 1] + Q~ ; 
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Mix ing  in t he  Secre t  Key. The third algorithmic step of key expansion is 
to mix in the user's secret key in three passes over the arrays S and L. More 
precisely, due to the potentially different sizes of S and L, the larger array will 
be processed three times, and the other may be handled more times. 

i = j = 0 ;  
A = B = 0 ;  
do 3 * max(t, c) times: 

A = S[i] = (S[i] + A + B) <<<3; 
B = L[j] = (L[j] + A +  B) <<< (A-t- B); 
i = (i -k 1) mod(t); 
j = (j + 1) mod(c); 

The key-expansion function has a certain amount of "one-wayness": it is not 
so easy to determine K from S. 

5 Discussion 

A distinguishing feature of RC5 is its heavy use of data-dependent rotations-- 
the amount of rotation performed is dependent on the input data, and is not 
predetermined. 

The encryption/decryption routines are very simple. While other operations 
(such as substitution operations) could have been included in the basic round 
operations, our objective is to focus on the data-dependent rotations as a source 
of cryptographic strength. 

Some of the expanded key table S is initially added to the plaintext, and 
each round ends by adding expanded key from S to the intermediate values just 
computed. This assures that each round acts in a potentially different manner, 
in terms of the rotation amounts used. 

The xor operations back and forth between A and B provide some avalanche 
properties, causing a single-bit change in an input block to cause multiple-bit 
changes in following rounds. 

6 Implementat ion 

The encryption algorithm is very compact, and can be coded efficiently in assem- 
bly language on most processors. The table S is both quite small and accessed 
sequentially, minimizing issues of cache size. 

A reference implementation of RC5-32/12/16, together with some sample 
input/output pairs, is provided in the Appendix. 

This (non-optimized) reference implementation encrypts 100K bytes/second 
on a 50Mhz '486 laptop (16-bit Borland C++  compiler), and 2.4M bytes/second 
on a Sparc 5 (gcc compiler). These speeds can certainly be improved. In assem- 
bly language the rotation operator is directly accessible: an assembly-language 
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routine for the '486 can perform each half-round with just  four instructions. An 
initial assembly-language implementation runs at 1.2M bytes/sec on a 50MHz 
'486 SLC. A Pentium should be able to encrypt at several megabytes/second. 

7 Analysis 

This section contains some preliminary results on the strength of RC5. Much 
more work remains to be done. Here we report the results of two experiments 
studying how changing the number of rounds affects properties of RC5. 

The first test involved examining the uniformity of correlation between in- 
put  and output  bits. We found that  four rounds sufficed to get very uniform 
correlations between individual input and output  bits in RC5-32. 

The second test checked to see if the data-dependent rotation amounts de- 
pended on every plaintext bit, in 100 million trials with random plaintext and 
keys. Tha t  is, we checked whether flipping a plaintext bit caused some intermedi- 
ate rotation to be a rotation by a different amount. We found that  eight round s in 
RC5-32 were sufficient to cause each message bit to affect some rotation amount.  

The number of rounds chosen in practice should always be at least as great 
(if not substantially greater) than these simple tests would suggest. As noted 
above, we suggest 12 rounds as a "nominal" choice for RC5-32, and 16 rounds 
for RC5-64. 

RC5's data-dependent rotations may help frustrate differential cryptanalysis 
(Biham/Shamir  [1]) and linear cryptanalysis (Matsui [3]), since bits are rotated 
to "random" positions in each round. 

There is no obvious way in which an RC5 key can be "weak," other than by 
being too short. 

I invite the reader to help determine the strength of RCb. 
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9 Appendix 

/* RC5REF.C -- Reference implementation of RC5-32/12/16 in C. */ 
/* Copyright (C) 1995 RSA Data Secur i ty ,  Inc. ,/ 

#include <stdio.h> 
typedef unsigned long int WORD; /* Should be 32-bit = 4 bytes */ 

#define w 32 /* word size in bits */ 
#define r 12 /* number of rounds ./ 
#define b 16 /* number of bytes in key */ 

#define c 4 /* number words in key = ceil(8*b/w)*/ 
#define t 26 /* size of table S = 2*(r+l) words */ 
WORD S[t]; /* expanded key table */ 
WORD P = OxbTelb163, Q = Ox9eS77969; /* magic constants */ 

/* Rotation operators, x must be unsigned, to get logical right shift*/ 
#define ROTL(x,y) (((x)<<(yR(w-l))) i ((x)>>(w-(y&(w-l))))) 
#define ROTR(x,y) (((x)>>(y~(w-l))) [ ((x)<<(w-(yR(w-l))))) 

void RCS_ENCRYPT(WORD *pt, WORD *ct) /* 2 WDRD input pt/output ct 
{ WORD i, A=pt [O] +S [0] , B=pt [l] +S [1] ; 

for (i=l; i<=r; i++) 
{ A = ROTL(A^B,B)+S[2*i] ; 

B = ROTL(B'A,A)+S[2*i+I] ; 
} 

c t [ O ]  = A; c t [ l ]  = B; 

,/ 

void RC5_DECRYPT(WORD *ct, WORD *pt) /* 2 WORD input ct/output pt 
{ WORD i, B=ct[l], A=ct[O]; 

for (i=r; i>O; i--) 
{ B : ROTR(B-S[2*i+I] ,A)^A; 

A = ROTR(A-S [2.i] ,B) "B; 
} 

pt[1] = B-SIll; pt[O] -- A-S[O]; 

*/ 

void RCb_SETUP(unsigned char *K) /* secret input key K[O...b-l] 
{ WORD i, j, k, u=w/8, A, B, L[c]; 

,/ 

/* Initialize L, then S, then mix key into S */ 
for (i=b-l,L[c-l]=O; i!=-l; i--) L[i/u] = (L[i/uS<<B)+K[i]; 
for (S[O]=P,i=I; i<t; i++) S[i] = S[i-I]+Q; 
for (A=B=i=j=k=O; k<S*t; k++,i=(i+l)'/.t,j=(j+l)Y.c) / *  3*t  > 3.c * /  

{ A = S[i] = ROTL(S[i]+(A+B),3); 
B = L[j] = ROTL(L[j]+(A+B),(A+B)); 

} 
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void main() 

{ WORD i, j, pti[2], pt212], ct[2] = {0,0}; 
unsigned char key[b]; 

if (sizeof(WORD)!=4) 

printf("RC5 error: WORD has %d bytes.\n",sizeof(WORD)); 
printf("RCS-32/12/16 examples:\n"); 

for (i=1;i<6;i++) 

{ /* Initialize ptl and key pseudorandomly based on previous ct */ 
pt l [O]=ct [O] ;  p t l [ 1 ] = c t [ 1 ] ;  
for (j=O;j<b;j++) key[j] = ct[O]%(255-j); 
/* Setup, encrypt, and decrypt */ 

RCS_SETUP(key); 

RC5_ENCRZPT(ptl,ct); 

RC5_DECRYPT(ct,pt2); 

/, Print out results, ch@cking for decryption failure */ 

printf("\nZd, key = ",i)( 
for (j=0; j<b; j++) printf("Z.2X ",key[j]); 

printf("\n plaintext %.81X %.81X ---> ciphertext %.81X %.81X \n", 

ptl[0], ptl[1], c t [ 0 ] ,  c t [ 1 ] ) ;  
i f  (p t l [0] !=pt2[0]  I] p t l [1 ] !=p t2 [1 ] )  

p r i n t f  ("Decryption Error ! ") ; 

RC5-32/12/16 examples: 

1. key = 00.00 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 O0 

plaintext 00000000 00000000 ---> ciphertext EEDBA521 6D8F4B15 

2. key = 91 5F 46 19 BE 41 B2 51 63 55 A5 01 10 A9 CE 91 

plaintext EEDBA521 6D8F4B15 ---> ciphertext ACI3COF7 52892B5B 

3. key = 78 33 48 E7 5A EB OF 2F D7 B1 69 BB 8D Ci 67 87 

plaintext ACI3COF7 52892B5B ---> ciphertext B7B3422F 92FC6903 

4. key = DC 49 DB 13 75 A5 58 4F 64 85 B4 13 B5 FI 2B AF 
plaintext B7B3422F 92FC6903 ---> ciphertext B278C165 CC97D184 

5. key = 52 69 F1 49 D4 IB AO 15 24 97 57 4D 7F 15 31 25 
plaintext B278C165 CC97D184 ---> ciphertext 15E444EB 249831DA 


