
The RDFa Content Editor –

From WYSIWYG to WYSIWYM

Ali Khalili and Sören Auer

Universität Leipzig, Institut für Informatik, AKSW,
Johannisgasse 26, 04103 Leipzig, Germany
{lastname}@informatik.uni-leipzig.de

http://aksw.org

Abstract. Recently practical approaches for managing and supporting
the life-cycle of semantic content on the Web of Data made quite some
progress. However, the currently least developed aspect of the semantic
content life-cycle is the user-friendly manual and semi-automatic creation
of rich semantic content. In this paper we present the RDFaCE approach
for combining WYSIWYG text authoring with the creation of rich se-
mantic annotations. WYSIWYG text authoring is meanwhile ubiquitous
on the Web and part of most content creation and management work-
flows. Our approach is based on providing four different views to the
content authors: a classical WYSIWYG view, a WYSIWYM (What You
See Is What You Mean) view making the semantic annotations visible, a
fact view and the respective HTML/RDFa source code view. The views
are synchronized such that changes made in one of the views automati-
cally update the others. They provide different means of semantic content
authoring for the different personas involved in the content creation life-
cycle. For bootstrapping the semantic annotation process we integrate
five different text annotation services. We evaluate their accuracy and
empirically show that a combination of them yields superior results.

Keywords: RDFa, semantic content authoring, text annotation, rNews

1 Introduction

Recently practical approaches for managing and supporting the life-cycle of se-
mantic content on the Web of Data made quite some progress. On the backend
side, a variety of triple stores were developed and their performance and maturity
improves steadily. Similarly tools and algorithms for linking data and schemata
are progressing and approaches are deployed for the use on the emerging Web of
Data. The quantity of semantic content being made available on the Data Web
is rapidly increasing, mainly due to the use of automated knowledge extraction
techniques or due to the semantic enrichment and transformation of existing
structured data. Despite many interesting showcases (e.g. Sindice, Parallax or
PowerAqua), we still lack more user friendly and scalable approaches for the ex-
ploration, browsing and search of semantic content. However, the currently least

http://aksw.org

developed aspect of the semantic content life-cycle is from our point of view the
user-friendly manual and semi-automatic creation of rich semantic content.

In this paper we present the RDFaCE approach for combining WYSIWYG
text authoring with the creation of rich semantic annotations. WYSIWYG text
authoring is meanwhile ubiquitous on the Web and part of most content cre-
ation and management workflows. It is part of Content Management Systems,
Weblogs, Wikis, fora, product data management systems and online shops, just
to mention a few. Our goal with this work is to integrate the semantic annotation
directly into the content creation process and to make the annotation as easy
and non-intrusive as possible. This is achieved by accompanying the classical
WYSIWYG and source views with views facilitating the semantic annotation.
We devise the concept of aWhat You See Is What You Mean (WYSIWYM) view,
which extends the WYSIWYG view with highlighted semantic annotations. In
addition a fact view helps content authors, curators as well as content and knowl-
edge engineers to quickly review and possibly revise the semantic annotations.
The rationale behind our WYSIWYM concept is that we have to provide an
environment to the user, which she is sufficiently familiar with, but at the same
time enables her to understand, access and work with semantic annotations.
Hence, WYSIWYM is an extension of the WYSIWYG concept, where users can
observe and manage the semantic annotations right in the familiar context of
the WYSIWYG environment. Depending on the focus of work (or the persona
using the tool) the various RDFaCE views provide a different balance between
the visualization of the semantic annotations and the formated textual content.

Despite the improved usability of semantic content creation we aim to achieve
with this work, the manual semantic annotation of longer articles can still be a
tedious and time-consuming task. In order to kick-start the annotation, we in-
tegrated five automatic annotation services into RDFaCE. During an extensive
evaluation of these services, we observed that each individual tool has either
weaknesses regarding precision, recall or the support of certain information do-
mains. Our evaluation also reveals, that a substantial increase in precision and

recall can be achieved, when combining the output of several services.
The contributions of this work are in particular:

1. An architecture and implementation of an RDFa authoring environment
called RDFaCE (RDFa Content Editor) based on different views on the
semantic content including a WYSIWYM view.

2. An extensive evaluation of five automatic text annotation APIs wrt. precision
and recall in the domains wiki, blog and news articles.

3. An approach for the combination of different text annotation services, that
yields superior performance compared to each individual approach.

The remainder of this article is structured as follows: Section 2 describes the
architecture of the system. Section 3 presents the different views for semantic text
authoring. In Section 4, the combination of different NLP APIs for bootstrapping
the semantic annotation process is discussed. Section 5 introduces three RDFaCE
use cases. Related work is presented in Section 6 and finally Section 7 concludes
with an outlook on future work.

Fig. 1. RDFaCE system architecture.

2 Architecture and Implementation

The RDFaCE system architecture is depicted in Figure 1 and consists of three
layers. The foundation layer on which we ground the RDFaCE plugin includes
the TinyMCE Rich Text Editor1. This open source HTML editor was chosen
because it is very flexible to extend and is used in many popular Content Man-
agement Systems (CMS), blogs, wikis and discussion forums, etc. Therefore, by
focusing efforts on this one particular editor, it is possible to quickly propagate
accessible RDFa authoring practices to a number of other tools [10]. The RD-
FaCE implementation is open-source and available for download together with
an explanatory video and online demo at http://aksw.org/Projects/RDFaCE.
RDFaCE includes the following components:

Annotator UI. This component uses the TinyMCE API as well as jQuery UI
to create user friendly user interfaces for RDFa content editing. As shown in
Figure 2, the normal annotation procedure consists of four steps: 1) Defining
appropriate namespaces. 2) Selecting a fragment of the text. 3) Assigning the
subject (and type) to be used for the selected fragment. 4) Inserting triples by
assigning properties. Besides these steps, RDFaCE provides some shortcuts to

1 http://tinymce.moxiecode.com

http://aksw.org/Projects/RDFaCE
http://tinymce.moxiecode.com

Fig. 2. Annotation user interface.

expedite the creation of new triples. For instance users can use the context menu
and select from a list of predefined properties to instantly add a triple. After
annotations are received by users, they are delivered to RDFa DOMmanipulator.

RDFa DOM Manipulator. This component is responsible for manipulating the
Document Object Model (DOM) according to the desired RDFa annotation.
The simplest solution to add RDFa attributes to content is using tags.
For each new annotation, a new can be created containing related RDFa
attributes. Although this approach is simple to implement it generates a lot
of redundant tags. It might also result in invalid HTML code when
annotating a block of content which already has a <div> tag. This is due to
the fact, that div is a block-level element whereas span is an inline element
according to the HTML standard. To cope with these issues, the RDFa DOM
Manipulator component tries to find the valid and optimized annotation which
manipulates original content as minimally as possible. Before adding a new tag
for annotation, it tries to see whether it is possible to add the annotation to an
existing tag. If this is possible, it will update the current tag rather than adding
a new HTML tag. In case a new tag is required, it also employs either

or <div> tags depending on whether the content is a block or inline element to
prevent invalidness of HTML code.

Inline Semantic Visualizer. The main goal of the inline semantic visualizer is
to provide a kind of on-demand visualization which can be included/excluded
on the fly within the WYSIWYG content editing. This component uses a set
of predefined CSS styles to distinguish the semantically annotated content from
the normal content. To visualize semantic annotations without modifying the
content, dynamic style sheets are used. Different types of borders with different
colors are used to present RDFa annotated content which might be overlapping.
To show the value of RDFa attributes which are not visible in normal text, CSS
tooltips are used. To prevent altering content, tooltips are created on the fly
each time the user moves the mouse pointer over annotated content. Each time
a new annotation is added by RDFa DOM manipulator, this component is called
to visualize the editor.

RDF Triple Browser and Editor. This component extracts the RDF triples em-
bedded in the text and provides the edit and delete functionality for these triples.
This component is in a mutual relation to rich text editor and is dynamically
updated when a new annotation is added to the text (also the text editor is
updated when a triple is modified here). When user edits or deletes a triple,
these changes are delivered to RDFa DOM manipulator to update the content
correspondingly.

Online Resource Suggester. This component provides the user with a set of ac-
cessible online resources. In order to perform this task, it accesses a number
of external Web APIs (a detailed explainable follows below). The Online Re-
source Suggester works in a close relation to Annotator UI. It facilitates the task
of annotating content by searching the terms which are selected by user and
suggesting corresponding URIs.

RDFa Proxy for Enricher APIs. This component acts as a proxy to make the
output of enricher APIs (i.e. NLP text annotation services) consumable as RDFa.
Most of the current text enricher APIs do not provide any RDFa output. There-
fore, we need to convert their generated output into RDFa. To do this, the RDFa
proxy first sends the content to an external semantic text enrichment service.
The output of the service is then converted to an standard format which includes
label, URI, type, positions and properties related to the extracted entities. Then
a mapping to a desired vocabulary is performed in order to make appropriate
annotations. These annotations are delivered to the RDFa DOM manipulator to
update the content correspondingly. In case an URI is needed for an entity, the
online resource suggester is used to assign an URI to the entity.

All the former components use Javascript utility libraries like jQuery2 and
RDFQuery3 to implement their functions. To facilitate semantic annotation of

2 http://jquery.com
3 http://code.google.com/p/rdfquery/

http://jquery.com
http://code.google.com/p/rdfquery/

Fig. 3. The main RDFaCE WYSIWIM view (left) with the RDF Triple Browser and
Editor (right).

content, RDFaCE also uses a number of external Web APIs. Online APIs are
invoked to carry out the following functions:

– RDF Namespace Lookup: In order to avoid that users have to type com-
plete URIs, common namespace prefixes can be used everywhere in RDFaCE.
These are looked-up using the prefix.cc service. Furthermore, in case users
want to add a new property for which they do not even know an appropriate
vocabulary, RDFaCE can look-up an appropriate vocabulary and property
resource using the Swoogle4 service.

– Online Resource Locating: Finding an appropriate URI for the resources
which are selected by users can facilitate annotation process to a good ex-
tend. When users select a part of the text and want to create a statement
about the respective entity, the online resource locator will do a Sindice5

search to find suitable resources that match with the users selected item.

– Semantic Text Enrichment: Starting to annotate a document from the
scratch is very tedious and time consuming. There are already some Natural
Language Processing (NLP) APIs available on the Web which extract specific
entities and relations from the text. By using these APIs, we can provide a
good starting point for further user annotations. Users then can modify and
extend these automatically pre-annotated content. RDFaCE currently uses

4 http://swoogle.umbc.edu/
5 http://sindice.com

prefix.cc
http://swoogle.umbc.edu/
http://sindice.com

Fig. 4. The four views for semantic text authoring.

the OpenCalais, Ontos, Alchemy, Extractiv and Evri NLP APIs6 to enrich
the text.

3 Views for Semantic Text Authoring

The main innovation of RDFaCE is the support of different views on the seman-
tically annotated content. RDFaCE supports four different views for semantic
text authoring, which are shown in Figure 4 and explained in more detail in the
sequel. The user can easily switch between these views and even use them in
parallel. The views are syncronized so that applying changes in one of the views
automatically updates other views.

WYSIWYG View. The What-You-See-Is-What-You-Get view is the classical
interface for rich-text authoring and used by authors, journalists etc. WYSI-
WYG text authoring is meanwhile ubiquitous on the Web and part of most
content creation and management workflows. Users authoring content are used
to interact with a WYSIWYG views and there exists a wide variety of WYSI-
WYG editors and editing components, which can be used on the Web or offline.

6 These Web APIs are available at: OpenCalais - http://www.opencalais.com, On-
tos - http://www.ontos.com, Alchemy - http://www.alchemyapi.com, Extractiv -
http://extractiv.com and Evri - http://www.evri.com

http://www.opencalais.com
http://www.ontos.com
http://www.alchemyapi.com
http://extractiv.com
http://www.evri.com

In particular WYSIWYG text authoring is already part of Content Management
Systems, Weblogs, Wikis, fora, product data management systems and online
shops, just to mention a few.

WYSIWYM View. The What-You-See-Is-What-You-Mean view is an exten-
sion of the WYSIWYG view, which highlights named entities and other seman-
tic information. The highlighting is realized with special CSS3 selectors for the
RDFa annotations. They are thus easily configurable in terms of color borders,
backgrounds etc. When pointing with the mouse on a highlighted annotation
RDFaCE shows additional information concerning the particular annotation as
a tooltip. RDFaCE also supports editing in the WYSIWIM view by letting a user
select entities she wants to annotate and provisioning of respective annotation
functionality either via the context menu or a specific form, which opens as an
overly.

RDF Triple View. This view summarizes all the facts, which can be extracted
from the annotated text. It provides a deeper semantic view when compared to
WYSIWYM view. There might be some triples not visible in the WYSIWYM
view (e.g. annotations hidden using the CSS display:none style) but visible in
this view. Since the triple view reveals all the triples embedded in the text, it can
be called as WYMIWYS (What-You-Mean-Is-What-You-See) view. The triple
view is (as all other views) updateable, i.e. facts can be directly deleted, which
results in the removal of the corresponding RDFa annotations. The triple view
is useful for curators and to a lesser extend for the authors for quickly verifying
that entities and facts were correctly annotated.

Source Code View. Finally, the source code view shows the HTML source
of the article including the RDFa annotations. This view is primarily intended
for software engineers supervising the publication workflow as well as knowledge
engineers. Since all formating and interactive functionality (e.g. tooltips) is in-
tegrated via dynamic linking of CSS3 stylesheets with special selectors for the
RDFa annotations, the source code view is not spoiled with any markup related
to the WYSIWIM visualization.

4 Combining NLP-API results

One of the main features supported by RDFaCE is combining the results of
multiple NLP APIs. Using this approach, we can harness synergies arising from
the combination of different approaches for automatic text annotation. Users can
select a set of NLP APIs and determine how they want to combine the results.
The combination can be performed based on the agreement between two or more
of the involved APIs.

Figure 5 shows the annotation results of the 5 different NLP APIs Alchemy,
Extractive, OpenCalais, Ontos and Evri for a sample text. On the left, a heatmap

visualization reflects the list of items recognized by each API. Black and dark
green cells indicate cases which need disambiguation. Black cells indicate that
there is a conflict between two or more APIs when recognizing the type of a
common entity. In this case we have to investigate what the correct type is.
Dark green cells indicate that an entity is recognized only by one API. In this
case, the error probability is high and further investigation is required.

Fig. 5. Generated results of different NLP APIs for article #1.

We use Precision,Recall and F-measure [8] as metrics for evaluating the cor-
rectness of the recognized entities found by each API as well as combined APIs:

Recall =
Correctly Recognized Entities

Actual Entities in the Text
(1)

Precision =
Correctly Recognized Entities

Entities Recognized by the API
(2)

F = 2×
Precision×Recall

Precision+Recall
(3)

To compare the results of the different APIs, 31 articles7 were collected in
the three categories news articles, weblog posts and Wikipedia articles. For each
article, the following analysis was performed:

We carefully analysed the text and manually annotated it by recognizing
references to location, person and organization entities. As a result we obtained
a list of actual entities together with their types. Then we used the RDFaCE
enrichment feature to automatically annotate the text by employing the external
NLP APIs. By analyzing the RDFaCE generated heatmaps (cf. Figure 5) and
the disambiguation of recognized entities, we extracted the number of recognized
entities, correctly recognized, wrongly recognized and missing entities. Based on
these values, Recall (1), Precision (2) and F-Score (3) were calculated for each
API as well as for various combinations of APIs. Table 1 presents the detailed
results of these metrics for each API as well as for the situation when 2, 3 or 4
of the APIs agree on a recognized entity. The table also shows the average value
of these metrics for each category of the analyzed texts as well as the average
for all analyzed texts. In Figure 6 the results are visualized as bar charts.

The results show that Alchemy, OpenCalais, Ontos and Evri deliver com-
parable results, while Extractive is a little behind. The ranking with regard to
F-Score for all individual categories as well as for the average over all categories
is: 1. Evry. 2. OpenCalais, 3. Alchemy, 4. Ontos, 5. Extractive. That the ranking
is the same for all categories as well as the overall average indicates that all
services perform homogeneously across the different categories. Another inter-
esting observation is that all services deliver the best F-Score for news articles
followed by Wiki articles and blog posts. A plausible reason for this is the degree
of formality and quality checks, which are more likely with news articles than
with blog posts.

As we consider more agreement on an entity to be recognized (i.e. two, three
or four APIs have to agree), we obtain a higher precision but lower recall (Fig-
ure 6). The interesting result of our analysis is that we have the highest F-score
when two or more APIs agree on an entity. In this case, we also get the highest
recall and the result is independent from the type of text (i.e. news, weblog or
wiki article). Further increasing the requirement of agreement, however, dramat-
ically decreases recall.

5 Use Cases

The RDFaCE approach is very versatile and can be applied in a vast number
of use cases. Also, our implementation based on the widely used TinyMCE edi-
tor makes RDFaCE directly applicable in many usage scenarios. In this section
we introduce three complementary use cases for RDFaCE which exemplify the
versatility of the approach.

7 Available at http://rdface.aksw.org/samples/

http://rdface.aksw.org/samples/

Table 1. Recall, Precision and F-score for each API and combined APIs.

Alchemy Extractive OpenCalais Ontos Evri 2 Agree 3 Agree 4 Agree

Article R P F R P F R P F R P F R P F R P F R P F R P F

News#1 100 80 89 75 86 80 75 100 86 88 100 93 88 100 93 88 100 93 88 100 93 75 100 86
News#2 88 70 78 88 58 70 100 89 94 88 88 88 100 73 84 100 89 94 88 100 93 50 100 67
News#3 82 90 86 91 83 87 100 92 96 73 100 84 100 69 81 100 92 96 82 100 90 73 100 84
News#4 78 95 86 57 72 63 83 100 90 65 100 79 74 85 79 78 95 86 74 100 85 57 100 72
News#5 67 71 69 22 57 32 67 75 71 61 100 76 94 89 92 83 88 86 56 91 69 33 100 50
News#6 76 87 81 53 64 58 76 93 84 47 89 62 76 93 84 88 88 88 71 100 83 35 100 52
News#7 50 80 62 63 77 69 44 100 61 50 89 64 56 82 67 63 100 77 38 100 55 25 100 40
News#8 79 92 85 71 91 80 86 100 92 86 100 92 93 100 96 100 100 100 79 100 88 64 100 78
News#9 80 80 80 60 75 67 60 67 63 50 100 67 80 89 84 80 89 84 60 86 71 30 75 43
News#10 73 100 84 18 67 29 73 73 73 100 92 96 73 89 80 91 100 95 64 100 78 45 100 63
News#11 46 86 60 38 83 53 54 70 61 31 100 47 46 67 55 62 80 70 38 100 56 15 100 27

Avg. 74 84 78 58 74 62 74 87 79 67 96 77 80 85 81 85 93 88 67 98 78 46 98 60

Blog#1 55 75 63 36 67 47 82 100 90 55 100 71 64 88 74 82 100 90 45 100 63 18 100 31
Blog#2 53 75 62 65 85 73 35 100 52 12 67 20 59 91 71 71 92 80 35 86 50 6 100 11
Blog#3 40 50 44 60 55 57 40 80 53 40 80 53 50 83 63 60 67 63 20 100 33 20 100 33
Blog#4 14 20 17 14 14 14 29 50 36 57 80 67 29 33 31 29 40 33 14 0 0 0 0 0
Blog#5 43 100 60 57 100 73 57 100 73 43 75 55 43 75 55 57 100 73 29 100 44 14 100 25
Blog#6 75 92 83 38 67 48 69 100 81 75 92 83 81 100 90 100 100 100 81 100 90 63 100 77
Blog#7 67 75 71 67 55 60 33 100 50 33 60 43 89 80 84 67 100 80 56 100 71 33 100 50
Blog#8 86 100 92 57 89 70 79 100 88 50 78 61 57 89 70 86 92 89 71 100 83 57 100 73
Blog#9 45 100 63 45 71 56 64 64 64 73 89 80 64 100 78 73 80 76 45 100 63 27 100 43
Blog#10 70 78 74 40 57 47 80 100 89 50 100 67 90 100 95 100 100 100 80 100 89 40 100 57

Avg. 55 77 63 48 66 54 57 89 68 49 82 60 62 84 71 72 87 78 48 89 59 28 90 40

Wiki#1 53 100 69 42 53 47 74 100 85 47 75 58 74 82 78 63 92 75 63 100 77 32 100 48
Wiki#2 50 57 53 31 100 48 50 89 64 44 70 54 56 100 72 56 82 67 25 100 40 19 100 32
Wiki#3 57 92 71 19 67 30 43 82 56 33 78 47 71 100 83 57 92 71 33 100 50 19 100 32
Wiki#4 78 100 88 78 95 86 78 95 86 83 100 90 91 100 95 91 100 95 78 100 88 74 100 85
Wiki#5 100 100 100 25 50 33 100 80 89 75 100 86 75 75 75 100 80 89 75 100 86 50 100 67
Wiki#6 74 78 76 58 61 59 89 81 85 32 86 46 89 85 87 84 94 89 74 100 85 37 100 54
Wiki#7 80 92 86 33 83 48 73 92 81 87 100 93 80 86 83 87 100 93 80 100 89 67 100 80
Wiki#8 63 77 69 69 85 76 63 83 71 38 86 52 69 85 76 63 77 69 56 100 72 38 100 55
Wiki#9 56 90 69 50 67 57 69 92 79 38 67 48 75 100 86 75 100 86 56 100 72 38 100 55
Wiki#10 61 100 76 39 78 52 67 92 77 50 75 60 78 58 67 83 100 91 44 100 62 33 100 50

Avg. 67 89 76 44 74 54 71 89 77 53 84 63 76 87 80 76 92 82 59 100 72 41 100 56

All Avg. 66 83 72 51 71 57 67 88 75 57 88 67 73 86 78 78 90 83 58 95 70 38 96 52

5.1 rNews

rNews8 is a proposed standard for using RDFa to annotate HTML documents
with news-specific metadata. rNews is proposed by International Press Telecom-
munications Council (IPTC)9 which is a consortium of the world’s major news
agencies, publishers and industry vendors.

rNews defines a small set of core concepts for annotating news articles and
a few properties for each concept. Concepts include NewsItem, Tag, Person,
Article, Media, Headline, Location, Organization, Party, TickerSymbol

and Comment. These annotations are derived from the best practices found in
the news industry.

RDFaCE is well suited for the rNews vocabulary. It provides an auto sug-
gestion feature for the classes and properties defined in the rNews vocabulary.
RDFaCE also provides a context menu for the rNews vocabulary so that users
can easily annotate their news articles using the rNews vocabulary. Furthermore,

8 http://dev.iptc.org/rNews
9 http://www.iptc.org/

http://dev.iptc.org/rNews
http://www.iptc.org/

Fig. 6. Average Precision, Recall and F-score for each API and their combination.

RDFaCE maps the output of different annotation APIs to the rNews vocabulary
thereby providing a base set of automatically annotated content for journalists
and content managers.

The adaption of RDFaCE for rNews are performed in a way, that the same
strategies are easily applicable for similar domain specific annotation vocabu-
laries. RDFaCE can be configured to employ an annotation vocabulary for auto
suggestion, context menu and NLP API output mapping.

5.2 OntoWiki

OntoWiki10 [2] is a tool that provides support for agile, distributed knowledge
engineering scenarios. Ontowiki facilitates the visual presentation of a knowledge
base as an information map, with different views on instance data. Furthermore,
it enables intuitive authoring of semantic content, with an inline editing mode
for editing RDF content. OntoWiki supports two complementary edit strategies
for the knowledge base: a) Inline editing which enables users to edit the smallest
possible information chunks (i.e. statements). b) View editing, which enables
users to edit common combinations of information (such as an instance of a
distinct class) in one single step. Ontowiki uses RDFAuthor [9] to make generated
RDFa views editable.

Since OntoWiki is other than other semantic Wikis based on the RDF data
model in the first place (i.e. facts/triples are the main artifacts instead of anno-
tated wiki texts), the semantic annotation of texts is not possible. By integrating
RDFaCE into Ontowiki text literals containing rich text can now be enriched
with semantic annotations. These annotations can subsequently automatically
extracted and explicitly represented in the knowledge base being edited with
OntoWiki. In addition to the form-based editing of information, RDFaCE pro-
vides a WYSIWYM editor component to OntoWiki for selecting and editing
rich text including RDFa annotations. Thus, RDFaCE contributes significantly

10 http://ontowiki.net

http://ontowiki.net

to OntoWiki’s aim of facilitating a pay-as-you-go knowledge engineering strat-
egy: users can firstly add textual content, annotated this textual content in a
second step and later on explicitly materialize the facts, which can be extracted
from the annotations and thus attain a rich semantic representation.

5.3 Wordpress

Wordpress11 is an open source Weblog tool and publishing platform. Wordpress
is often customized into a Content Management System (CMS) and is used by
over 14% of the 1,000,000 biggest websites (54.4% of CMS market share) [11].

Wordpress uses TinyMCE as its content editor. That makes it extremely
easy to add the RDFaCE plugin for semantic content authoring within this
CMS (cf. Figure 7). With the integration of RDFaCE into the Wordpress, the
availability of semantically annotated content on the Web can be substantially
increased. The semantically annotated content can be indexed by the new gener-
ation of search engines, will result in more accurate search results and facilitate
the knowledge extraction from the Web in general.

Fig. 7. Integration of RDFaCE into Wordpress.

6 Related Work

Semantic authoring [3] aims to facilitate the composition of intelligent content
(i.e. content with explicit semantic structure) based on a set of shared vocabu-
laries. Semantic content is created by annotating the content with appropriate
vocabularies. With the emergence of the Web of Data, some efforts have been

11 http://wordpress.org

http://wordpress.org

undertaken to blur the border between authoring and annotation of content as
much as possible. Semantic Wikis such as, for example, Semantic MediaWiki [6]
represent an approach that combines traditional wiki systems with semantic
annotation. They provide a collaborative environment for semantic content au-
thoring. Microformats12, RDFa13 and most recently Microdata14 are existing
options used by semantic editors to embed the semantic annotations within the
Web content. Among them, RDFa as a W3C recommendation is the most ex-
pressive and versatile option.

There are already a few RDFa editors available. RADiFy15 is a bookmarklet
for annotating a web page with RDFa. As a bookmarklet, it provides a side
bar to view, edit and load ontologies. RADiFy provides a list of predefined
predicates that can be extended by loading new ontologies. For a user familiar
with ontologies and semantic web concepts, it seems to be a useful and simple tool
to annotate web pages. However, RADiFy has the following drawbacks: There
is no editing option to edit the created triples. Also, the annotation mechanism
of simply adding tags is not very efficient and in some cases erroneous.
For instance, if a link is selected, it adds a tag inside the <a> tag. In
addition, RADiFy does not support the use of the ”rel” attribute but uses the
”property” attribute for all predicates without considering their values and data
types.

WYMeditor16 is a web-based XHTML editor with support for RDFa. WYMed-
itor’s main concept is to leave details of the document’s visual layout, and to
concentrate on its structure and meaning, while trying to give the user as much
comfort as possible (similar as WYSIWYG editors). The emphasis on strict
XHTML compliance, makes it a good option to add RDFa annotations but its
RDFa editor does not include many features. It considers blocks as the unit of
annotation which makes it difficult to annotate a part of text within a block. It
also uses different background colors to distinguish different annotations which
can be problematic in cases when there are too many overlapping annotations.
Furthermore, editing and deleting annotations in a WYSIWYG way is not sup-
ported.

Loomp17 [7] is a tool representing a prove-of-concept for the One Click An-
notation (OCA) strategy. OCA is a concept addressing the issue of creating
semantic content by non-expert users [4]. The main difference between Loomp
and RDFaCE is that Loomp relies on the functionality of a server managing the
semantic content while RDFaCE provides client-side annotation for modifying
RDFa content directly. Morever, Loomp uses a triple store on the server side
but in RDFaCE, triples are created on the fly in the user browser. At the time

12 http://microformats.org
13 http://www.w3.org/TR/rdfa-syntax/
14 http://www.w3.org/TR/microdata/
15 http://duncangrant.co.uk/radify/
16 http://www.wymeditor.org
17 http://loomp.org

http://microformats.org
http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/microdata/
http://duncangrant.co.uk/radify/
http://www.wymeditor.org
http://loomp.org

of writing, we were not able to find any demo of Loomp to further investigate
its implemented features.

RDFauthor18 is another related tool that aims at editing RDFa contents.
The RDFauthor approach is based on the idea of making arbitrary XHTML
views with integrated RDFa annotations editable [9]. RDFauthor converts an
RDFa-annotated view directly into an editable form thereby hiding the RDF
and related ontology data models from novice users. Although RDFauthor has
as RDFaCE the goal to make RDFa editing simple by abstracting the details of
RDFa authoring both differ in two crucial aspects: Firstly, RDFauthor assumes
that the RDFa content is already existing while RDFaCE provides the feature
to creating new RDFa annotations. Secondly, instead of using forms to edit
RDFa contents, RDFaCE employs inline editing of contents by providing a rich
semantic text editor.

OntosFeeder19 and Epiphany20 are two partially related tools. Epiphany is a
service that annotates web pages automatically with Linked Data by creating an
RDFa enhanced versions of the input HTML page [1]. OntosFeeder [5] is also a
TinyMCE plugin which uses the Ontos Web API to provide context information
(in RDFa) to be integrated into content management systems. These tools use
the same annotation mechanism as RADiFy with the above mentioned issues.
Furthermore, they do not provide editing functionality for RDFa generated con-
tent. They can be used as complementary tools to RDFaCE which deliver a set
of initial RDFa annotations to be edited and extended later on by RDFaCE.

7 Conclusions and Future Work

The user friendly authoring of semantically enriched content is a crucial aspect
for the ultimate success of semantic technologies. With RDFaCE we presented in
this article an approach and its implementation of a WYSIWYM (What You See
Is What You Mean) editor based on complementing the classical WYSIWYG
view with three additional views on the semantic representations. We showed
that with RDFaCE the semantic annotation and enrichment can be easily in-
tegrated into the content authoring pipelines commonly found in many content
centric scenarios.

We see the work presented in this article as an initial step in a larger research
agenda aiming at simplifying the authoring and annotation of semantically en-
riched textual content. Regarding future work we envision to extend the WISI-
WYM concept towards different modalities, such that the annotation of images
and multimedia object is supported. With regard to the NLP functionality made
available through RDFaCE we aim at extending the current implementation to-
wards supporting relationship and keyword extraction.

18 http://aksw.org/Projects/RDFauthor
19 http://wordpress.org/extend/plugins/ontos-feeder/
20 http://projects.dfki.uni-kl.de/epiphany/

http://aksw.org/Projects/RDFauthor
http://wordpress.org/extend/plugins/ontos-feeder/
http://projects.dfki.uni-kl.de/epiphany/

Acknowledgments

We would like to thank our colleagues from AKSW research group for their
helpful comments and inspiring discussions during the development of RDFaCE.
This work was supported by a grant from the European Union’s 7th Framework
Programme provided for the project LOD2 (GA no. 257943).

References

1. Benjamin Adrian, Jörn Hees, Ivan Herman, Michael Sintek, and Andreas Dengel.
Epiphany: Adaptable rdfa generation linking the web of documents to the web
of data. In Philipp Cimiano and H. Pinto, editors, Knowledge Engineering and
Management by the Masses, volume 6317 of Lecture Notes in Computer Science,
pages 178–192. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-16438-513.

2. Sören Auer, Sebastian Dietzold, and Thomas Riechert. Ontowiki – a tool for social,
semantic collaboration. In The Semantic Web - ISWC 2006, 5th International
Semantic Web Conference, ISWC 2006, pages 736–749. Springer, 2006.

3. Kôiti Hasida. Semantic authoring and semantic computing. In Akito Sakurai,
Kôiti Hasida, and Katsumi Nitta, editors, New Frontiers in Artificial Intelligence,
volume 3609 of Lecture Notes in Computer Science, pages 137–149. Springer Berlin
/ Heidelberg, 2007. 10.1007/978-3-540-71009-712.

4. Ralf Heese, Markus Luczak-Rösch, Radoslaw Oldakowski, Olga Streibel, and
Adrian Paschke. One click annotation. In Scripting and Development for the
Semantic Web (SFSW), May 2010.

5. Alex Klebeck, Sebastian Hellmann, Christian Ehrlich, and Soren Auer. Ontosfeeder
– a versatile semantic context provider for web content authoring. In Grigoris An-
toniou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter
De Leenheer, and Jeff Pan, editors, The Semanic Web: Research and Applications,
volume 6644 of Lecture Notes in Computer Science, pages 456–460. Springer Berlin
/ Heidelberg, 2011. 10.1007/978-3-642-21064-834.

6. Markus Krötzsch, Denny Vrandečić, Max Völkel, Heiko Haller, and Rudi Studer.
Semantic Wikipedia. Journal of Web Semantics, 5(4):251–261, 2007.

7. Ralf Heese Markus Luczak-Roesch. Linked data authoring for non-experts. In
Proceedings of the WWW09, Workshop Linked Data on the Web (LDOW2009),
2009.

8. John Makhoul, Francis Kubala, Richard Schwartz, and Ralph Weischedel. Perfor-
mance measures for information extraction. In In Proceedings of DARPA Broadcast
News Workshop, pages 249–252, 1999.

9. Sebastian Tramp, Norman Heino, Sören Auer, and Philipp Frischmuth. Rdfau-
thor: Employing rdfa for collaborative knowledge engineering. In Philipp Cimiano
and H. Pinto, editors, Knowledge Engineering and Management by the Masses,
volume 6317 of Lecture Notes in Computer Science, pages 90–104. Springer Berlin
/ Heidelberg, 2010. 10.1007/978-3-642-16438-57.

10. Jutta Treviranus. Authoring tools. In Simon Harper and Yeliz Yesilada, editors,
Web Accessibility, Human-Computer Interaction Series, pages 127–138. Springer
London, 2008. 10.1007/978-1-84800-050-69.

11. W3Techs. Usage of content management systems for websites, June 2011.

	The RDFa Content Editor – From WYSIWYG to WYSIWYM

