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Abstract
Reactive stroma initiates during early prostate cancer development and coevolves with prostate
cancer progression. Previous studies have defined the key markers of reactive stroma and have
established that reactive stroma biology influences prostate tumorigenesis and progression.
The stem/progenitor cells of origin and the mechanisms that regulate their recruitment and
activation to myofibroblasts or carcinoma-associated fibroblasts are essentially unknown. Key
regulatory factors have been identified, including transforming growth factor b, interleukin-8,
fibroblast growth factors, connective tissue growth factor, wingless homologs-Wnts, and stromal
cell-derived factor-1, among others. The biology of reactive stroma in cancer is similar to the more
predictable biology of the stroma compartment during wound repair at sites where the epithelial
barrier function is breached and a stromal response is generated. The coevolution of reactive
stroma and the biology of how reactive stroma–carcinoma interactions regulate cancer
progression and metastasis are targets for new therapeutic approaches. Such approaches are
strategically designed to inhibit cancer progression by uncoupling the reactive stroma niche.
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Introduction

The epithelium in the human prostate gland is

composed of cuboidal to columnar secretory epithelial

cells with apical junctional complexes, a continuous

layer of basal cells (El-Alfy et al. 2000), and sparse

neuroendocrine cells, each attached to a basal lamina.

The epithelium is organized as glandular acini that

secrete into the luminal space that converges upon a

duct and into the urethra. A fibromuscular stroma is

situated on the opposite side of the basal lamina. This

stroma is composed of fibroblasts, smooth muscle cells,

and an extracellular matrix rich in collagen fibers that

intervenes between the secretory acini (Fig. 1). Other

key cells in the stroma compartment include endo-

thelial cells, autonomic nerve fibers and associated

ganglia, and various immune cells. After peak

reproductive age, the histological architecture of the

prostate begins to undergo age-related changes that

continue throughout life. Although key mechanisms

are not yet understood, these changes might be

attributed to altered androgen action and inflammatory
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processes that lead to either an unabated trophic effect

on the gland and/or a chronic inflammation. It is

possible that repeated epithelial insult sustained

throughout the aging process, when coupled with the

critical need for androgen action to regulate prostate

gland biology, results in a change of biology from one

of differentiated reproductive function to one of

chronic wound repair (Rowley 1998, Tuxhorn et al.

2001, Schauer & Rowley 2011). We suggest that the

repair state biology is key in promoting different

prostate diseases, all of which have reactive stroma and

inflammation in common. Indeed, there is a well-

established association between prostate cancer and

inflammation, with concomitant changes in the stromal

compartment typified by expression of key markers of

reactive stroma (Fig. 2; De Marzo et al. 2003, 2007,

Nelson et al. 2004).

Prostate cancer is the most commonly diagnosed

non-cutaneous malignancy in men in the United States.

The incidence increases rapidly with age, particularly

after the age of 50 years, although prostate cancer can

occur in men !50 years and has also been observed in
t Britain
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Figure 1 Cellular components of the human prostate gland. Secretory epithelial cells are situated on a basal lamina/basement
membrane and secrete products into the acinar lumen. Basal cells and sparse neuroendocrine cells are also present in the epithelial
compartment. The stromal compartment immediately surrounding the epithelial acini is complex and consists of smooth muscle,
trace fibroblasts, blood vessels, autonomic nerve fibers, inflammatory cells, and extracellular matrix components.
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autopsies of men of this age. It is generally accepted

that organ-confined prostate adenocarcinoma initiates

from preneoplastic lesions known as prostatic intrae-

pithelial neoplasia (PIN), whereby a combination of

cellular events initiates a cascade of genomic

instability (De Marzo et al. 2003, Bettendorf et al.

2008). The histological changes associated with PIN

are reminiscent of cancer, evidenced by a loss of

cellular polarity, nuclear atypia, and focal dysplasia

that results in cellular tufts lining the acinar space of
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Figure 2 Stromal cell phenotypes and associated markers. Stromal
lined organs are distinguished based on their morphology and expr
cell types and associated markers used to identify them in the pros
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normal ducts and glands (Epstein 2009, Zynger &

Yang 2009). Other histological changes include loss of

neuroendocrine and secretory differentiation, nuclear

and nucleolar abnormalities, neovascularity, increased

proliferative potential, and genetic instability with

variation of DNA content (Ayala & Ro 2007). With

increasing degrees of PIN, more nuclear aberration and

basal cell disruption are observed. For the most part,

the basal lamina remains intact during PIN, although

changes in epithelial cell polarity, alterations in
Vimentin

Tenascin-C

Pro-collagen I

blast Fibroblast

cell populations found in the prostate gland and other epithelial-
ession of marker proteins. Shown here are three major stromal
tate gland. Importantly, these markers are not lineage specific.
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junctional complexes, and some changes in basal

lamina may indicate a breach in epithelial layer

integrity, even as early as PIN. We suggest that this

breach in the epithelial barrier is a key event for the

initiation and genesis of reactive stroma observed in

prostatic diseases.
Reactive stroma in prostate
carcinogenesis

The normal stromal compartment has evolved with an

inherent plasticity to respond rapidly to emerging

situations, such as in wound repair and disrupted

homeostasis, which may result from the genesis of

cancer. As such, stromal components within the

microenvironment immediately adjacent to epithelium

act coordinately when the epithelium sustains damage

or is breached. Microorganisms are potentially present

in the lumen and ducts of epithelial acini and on the

apical surface of all epithelial layers. Hence, the rapid

and coordinate stromal responses subsequent to

epithelial damage likely occur to prevent these

microorganisms from invading the underlying stroma

and gaining access to the microvasculature, which

could result in systemic spread and death.
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Figure 3 Prostate gland homeostasis and reactive stroma forma
conditions of the prostate (i.e. proliferative inflammatory atrophy or
prostate cancer can be viewed as an equivalent of chronic wounding
that the inflammatory cell populations recruited to lesions work coor
a reactive stroma response. As cancer progresses, this reactive str
likely to be tumor promoting within the context of early and organ-c
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The phenotypic and genotypic alterations that occur

during this damage response have collectively been

referred to as reactive stroma. This altered stroma is

very similar to that found in a generic wound repair

scenario and includes matrix remodeling and altered

expression of repair-associated growth factors and

cytokines (Gabbiani 2003, Desmouliere et al. 2005). In

the prostate gland, reactive stroma initiates during

premalignant PIN and coevolves with cancer through

high-grade organ-confined disease (Rowley 1998,

Tuxhorn et al. 2001, 2002a, Ayala et al. 2003).

Reactive stroma in prostate cancer is composed of

carcinoma-associated fibroblasts (CAFs) and myofi-

broblasts. The cell type or types of origin is not

understood. Reactive stroma might evolve from

activation of existing fibroblasts, from vimentin-

positive periacinar cells, from circulating marrow-

derived progenitors, from vessel-associated pericytes,

or from other tissue-resident mesenchymal stem/

progenitor cells (Rowley 1998, Tuxhorn et al. 2002a;

Fig. 3). The precise origin and biology of these cells is

still an unresolved issue, although several groups have

now identified various sources of these unique reactive

stroma cells in different model systems and disease

states (Kalluri & Neilson 2003, Potenta et al. 2008,

Placencio et al. 2010, Zeisberg & Kalluri 2010).
intraepithelial
oplasia

Prostate cancer
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cancer progression
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The stromal microenvironment has emerged as a key

player in the growth and development of cancer

(Ronnov-Jessen et al. 1995, 1996, Olumi et al. 1999,

Tuxhorn et al. 2002a, Hanahan & Weinberg 2011). It is

well understood that the progression of organ-confined

tumors is influenced by angiogenesis and inflammatory

cells, as has already been described elsewhere

(Folkman 1971, Kim et al. 1993, Coussens & Werb

2002, Tuxhorn et al. 2002b, Kalluri 2003, Kalluri &

Neilson 2003, de Visser et al. 2005, Yang et al. 2005).

Coordinately, the biology of reactive stromal cells in

the tumor microenvironment modulates the pro-

gression and severity of cancer, as well as aspects of

angiogenesis and inflammation (Olumi et al. 1999,

Tuxhorn et al. 2002b, Yang et al. 2005, Ao et al. 2007,

Li et al. 2008, Hanahan & Weinberg 2011, Kiskowski

et al. 2011). Fibroblasts can exhibit several different

phenotypic and genotypic properties. The previous

categorization of either resting or activated fibroblasts

is likely an oversimplification. Similar to the pheno-

typic diversity of macrophages in the tumor micro-

environment, the plasticity of activated or reactive

fibroblasts is only beginning to be elucidated. Several

groups have carefully studied an activated form of

fibroblasts, termed myofibroblasts, or CAFs in prostate

cancer (Olumi et al. 1999, Tuxhorn et al. 2002c, Singh

et al. 2004, Yang et al. 2005, Li et al. 2008, Franco

et al. 2011, Kiskowski et al. 2011). There remains

some debate about whether CAFs and myofibroblasts

represent different cell types or are the same cell type

with differential gene expression profiles. Even less is

understood about the origin of these cells and the

mechanisms that lead to their activation in cancer.

Irrespectively, it is widely accepted that these activated

fibroblasts are important modulators of tumorigenesis

(Mueller & Fusenig 2004).

Our data have shown that both CAFs and myofi-

broblasts compose the reactive stroma in well-

differentiated foci of prostate cancer (Tuxhorn et al.

2002a). Myofibroblasts function during classic wound

repair responses in most tissues. The presence of cells

defined as myofibroblasts was first identified over 30

years ago as vimentin-positive, desmin-negative cells

within the fibrillar meshwork of granulation tissue

(Gabbiani et al. 1971, Hirschel et al. 1971). These cells

were later identified within desmoplastic reactions of

human breast cancer, within the reactive stroma

compartment of several other adenocarcinomas, and

in fibrotic diseases (Barsky et al. 1984, Ahmed 1990,

Desmouliere et al. 2003, Brown et al. 2005, Hinz

2007). The biology of myofibroblasts favors survival

by providing a pro-wound repair environment. Myofi-

broblasts are proliferative, synthetic, and exhibit
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contractile properties, all features they share with either

fibroblasts or smooth muscle (Powell et al. 1999).

However, these unique cells have the added capability

of forming granulation tissue fibers and matrix while

also contracting to close the wound. This suturing effect

provides an obvious adaptive advantage during wound

repair. This inherent versatility places the myofibroblast

at a pivotal position in the tightly orchestrated process

of maintaining tissue homeostasis.

Reactive stroma is associated with an increased

number of myofibroblasts/CAFs, greater capillary

density, and deposition of mature type-I collagen and

other ECM-associated substrates (Ronnov-Jessen et al.

1996, Tuxhorn et al. 2001, 2002a, Yanagisawa et al.

2007). In human prostate carcinoma tissue, the reactive

stroma in Gleason 3 prostate cancer foci was composed

of w50% fibroblasts and 50% myofibroblasts, whereas

the stroma in Gleason 4 foci was composed primarily

of myofibroblasts (Tuxhorn et al. 2001, 2002a).

Mesenchymal markers such as pro-collagen type I,

tenascin, fibroblast activation protein, vimentin, and

smooth muscle a-actin are expressed in myofibroblasts

relatively early in the genesis of reactive stroma in

prostate cancer (Tuxhorn et al. 2002a). This is

coordinate with the biology exhibited in response to

tissue damage, as each of the aforementioned

biomarkers is typical of reactive stroma at sites of

wound repair (Rowley 1998, Gabbiani 2003). While

normal fibroblasts are viewed as being instrumental in

maintaining tissue homeostasis in the absence of insult,

their activated counterpart (myofibroblasts/CAFs)

promote tumor progression most likely via their

repair-centric and pro-survival biology that would

include new growth and angiogenesis.

The role of androgen receptor in regulating

homeostasis in prostate gland stromal cells is not

well understood and a role for androgen receptor in

regulating reactive stroma in cancer progression cannot

be ruled out. Recent studies suggest that androgen

receptor is expressed in a subset of fibroblasts in the

prostate gland and regulate expression of several

growth factors (Tanner et al. 2011). Moreover,

secreted factors from androgen stimulation of prostate

stromal cells in this study functioned to stimulate

prostate cancer cell proliferation. Knockout of andro-

gen receptor in prostate stromal cells resulted in a

lower proliferation of epithelial cells, altered depo-

sition of collagen, and decreased expression of several

growth factors (Yu et al. 2012). Androgen action also

functioned to stimulate myodifferentiation of prostate

fibroblasts and functioned to enhance the effects of

transforming growth factor b (TGF-b)-induced myo-

differentiation (Gerdes et al. 2004). Together, these
www.endocrinology-journals.org
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studies suggest that androgen action in prostate

stroma is important for maintenance of homeostasis

and may play a role in reactive stroma biology in

prostate cancer.

Many studies have focused on the biology of CAFs

and myofibroblasts in cancer. Experimentally, CAFs

from human prostate cancer were shown to affect the

proliferation and phenotype of ‘initiated’ prostatic

epithelial cells, whereas normal fibroblasts did not

(Olumi et al. 1999). Likewise, colon cancer CAFs were

shown to facilitate the invasiveness of cancer cells when

co-injected into mice (Dimanche-Boitrel et al. 1994).

Similarly, xenografts containing breast cancer cells

grew faster when supplemented with CAFs compared

with xenografts containing normal fibroblasts (Orimo

et al. 2005). Additional studies have shown that

myofibroblasts at the metastatic site promote local

proliferation of cancer cells, mimicking their tumor

promoting behavior in the primary tumor (Olaso et al.

1997). The role of stromal cell populations in prostate

cancer progression has been explored in xenograft and

tissue recombination models. Remarkably, Hayward

et al. (2001) have shown that nontumorigenic prostate

epithelial cells from BPH tissue were transformed and

formed cancer when recombined with prostate cancer-

derived CAFs. Moreover, xenografts constructed with

recombined human prostate cancer cells and stromal

cells had differential degrees of tumor incidence and

growth rate using several different prostate stromal cell

lines derived from different cadaver donors (Tuxhorn

et al. 2002b). Additional studies have shown that the

loss of TGF-b signaling in stroma and a resulting

stimulation of Wnt3a signaling is involved, further

defining the complexity of the biological functions of

TGF-b in the tumor microenvironment (Li et al. 2008).

Together, these studies suggest that the inductive nature

seems to correspond to altered expression of key genes

that are regulated by TGF-b, including FGF2, CTGF,

SDF1 (CXCL12), and WNT3A (Tuxhorn et al. 2002b,c,

Yang et al. 2005, 2008a, Ao et al. 2006, 2007, Li et al.

2008). Other studies that were focused on mammary

cancer have shown that TGF-b-induced SDF1 was

responsible for the generation of myofibroblasts in the

tumor microenvironment (Kojima et al. 2010).

Subsequent gene expression profiling studies using

laser captured or microdissected reactive stroma from

prostate cancer or from urogenital sinus mesenchyme

have identified other candidate factors that may

mediate the pro-tumorigenic or inductive nature of

myofibroblasts/CAFs, thereby providing insight into

potentially targetable pathways for new therapeutics

(Richardson et al. 2007, Vanpoucke et al. 2007,

Dakhova et al. 2009). More recent computational
www.endocrinology-journals.org
modeling of the potential interactions between

prostate cancer cells, TGF-b, and myofibroblasts/

CAFs has been used as a new tool to help delineate

potential pathways and mechanisms that may affect

both the cancer and the microenvironment (Basanta

et al. 2009, 2012).

It is becoming clear that the activation of myofibro-

blasts/CAFs is a predictable biological response to a

disrupted or damaged epithelial layer, irrespective of

whether this damage results from wounding, benign

prostatic hyperplasia, chronic inflammation, or early

development of cancer. Furthermore, activation of a

reactive stroma is pro-repair and, hence, may affect the

biology of adjacent epithelium. The activation of

reactive stroma biology in these foci facilitates

granulation tissue formation and tissue remodeling

through several mechanisms, including ECM depo-

sition and growth factor production (Gabbiani 2003,

Desmouliere et al. 2005, Schauer et al. 2009, Barron

et al. 2010). This generalized reactive stroma response

is adaptive and functions to preserve tissue integrity

and homeostasis by promoting tissue repair. Our early

studies showed that reactive stroma initiates at foci of

early premalignant PIN in the human prostate gland

and coevolves with the development of cancer

(Tuxhorn et al. 2001, 2002a). Subsequently, we

reported that reactive stroma initiates at focal sites

of benign prostatic hyperplasia that overexpress

interleukin-8 (IL8) and have enhanced deposition of

tenascin-C (Schauer et al. 2008). These observations

were confirmed using different in vivo rodent modeling

studies. These studies showed that elevated IL8 or

keratinocyte chemokine (KC, the murine paralog of

IL8) expression in prostate epithelial cells in either an

orthotopic xenograft (IL8) or a transgenic mouse (KC)

induced a tenascin-C-positive reactive stroma with

markers nearly identical to those observed in prostate

cancer (Schauer et al. 2009, Schauer & Rowley

2011). Together, these studies suggest that several

factors that affect tissue homeostasis, inflammatory

responses, and angiogenesis are involved in the

activation and biology of reactive stroma. Moreover,

these studies suggest that the damage response biology

of reactive stroma is likely to be tumor promoting.

As such, the pro-tumorigenic mechanisms of the

factors that mediate this biology could be the focus

of future therapeutic approaches. Of these factors,

perhaps more has been published about TGF-b,

although the biology regulated by TGF-b signaling is

complex and not fully understood. Appropriately,

TGF-b has been termed the ‘Jekyll and Hyde of

cancer’ (Bierie & Moses 2006).
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TGF-b signaling in reactive stroma

The TGF-b superfamily family regulates a vast array of

biological processes with respect to prostate homeo-

stasis (Gerdes et al. 1998, Salm et al. 2005, Zhu &

Kyprianou 2005, Stover et al. 2007, Jones et al. 2009).

The various TGF-b isoforms have similar but not

identical biological actions in cells. All three can

stimulate chemotaxis of inflammatory cells and

production of extracellular matrix proteins through

increased synthesis of collagens and proteoglycans. In

addition, the TGF-b isoforms generally downregulate

the synthesis of matrix metalloproteinases (MMPs) and

upregulate the synthesis of the natural inhibitors of

MMPs, the tissue inhibitors of metalloproteinases

(TIMPs) in stromal cells. These properties make the

TGF-b isoforms important regulators of the deposition

and removal of extracellular matrix. However, excess

or prolonged action of TGF-b has been implicated in

several fibroproliferative diseases, such as sclero-

derma, hepatic sclerosis, and interstitial pulmonary

fibrosis (Sanderson et al. 1995, Menke & Adler 2002,

Prud’homme 2007, Kalluri & Han 2008). Studies on

keloid and hypertrophic scars have also showed

increased expression of TGFb1 mRNA in these lesions

(Jagadeesan & Bayat 2007). Importantly, the

expression of TGFb1 is elevated in most carcinomas

and many proliferative diseases including benign

prostatic hyperplasia, prostate cancer, and prostatitis

(Gann et al. 1999, Shoskes et al. 2002, Ao et al. 2007,

Alonso-Magdalena et al. 2009). Moreover, each of

these disorders is associated with inflammation along

with altered proliferation and tissue remodeling.

The activity of TGF-b induces multiple effects on

various signaling pathways that result in both tumor-

inhibiting and -promoting actions (Dvorak 1986,

Bierie & Moses 2006, Stover et al. 2007). In normal

tissues for example, TGF-b signaling exerts an anti-

proliferative and apoptotic effect on epithelial cells,

which would be expected to limit the emergence

and growth of malignant carcinomas (Hanahan &

Weinberg 2000, Siegel & Massague 2003). TGF-b also

facilitates the interactions between fibroblasts and

epithelial cells to further suppress cancer initiation

events (Bhowmick et al. 2004). Paradoxically, in

advanced cancers, the anti-proliferative properties of

TGF-b are not apparent and TGF-b becomes a

significant factor in inducing epithelial-to-mesenchy-

mal transition (EMT), which is usually associated with

cancer progression (Sugimoto et al. 2006). Pathways

responsible for these actions involve the canonical

Smads as signaling mediators and to a lesser extent,

the noncanonical PI3K and p38 MAPK mediators
R192
(Derynck et al. 2001, Kalluri & Neilson 2003). Indeed,

Hayward et al. showed that TGF-b-induced EMT in

prostate carcinoma cells was mediated through

constitutively active Akt, which functioned to inhibit

Smad3 and p21 translocation to the nucleus (Ao et al.

2006). Accordingly, whereas normal prostate epithelial

cells were growth inhibited by TGF-b, prostate

carcinoma cells avoided cell cycle arrest and were

alternatively induced to undergo EMT by TGF-b.

The actions of TGF-b appear to be critical in

maintaining stromal compartment biology and overall

tissue homeostasis. Interestingly, Bhowmick et al.

(2004) reported that knockout of TGF-b signaling in

mouse fibroblasts resulted in a PIN phenotype in

adjacent prostate epithelial cells, indicating that normal

fibroblasts with intact TGF-b signaling have the

potential to be cancer inhibitory at baseline and that

loss of TGF-b responsiveness is permissive or promo-

tive for PIN development. However, further evaluation

showed that receptor was knocked out in only 40–60%

of fibroblasts in the prostate gland (Kiskowski et al.

2011). Additional tissue recombination studies showed

that elevated expression ofWNT3A in TGF-b receptor 2

null fibroblasts was responsible for stimulated tumor

growth (Li et al. 2008). More recent tissue recombina-

tion studies showed that a mixture of TGF-b receptor

null fibroblasts and receptor intact fibroblasts resulted in

a more potent induction of adenocarcinoma (Franco

et al. 2011, Kiskowski et al. 2011). Moreover, a

heterogeneous mixture of TGF-b responsive and

nonresponsive fibroblasts resulted in higher expression

of chemokines and growth factors, including TGF-b,

which are each associated with inflammation and tumor

promotion (Franco et al. 2011). Our earlier studies had

shown that expression of TGF-b-stimulated genes,

FGF2 and CTGF, in TGF-b-responsive human prostate

stromal cells/fibroblasts promoted angiogenesis and

was tumor promoting when these cells were recombined

with human prostate cancer cells in xenografts

(Tuxhorn et al. 2002b,c, Yang et al. 2005, 2008a).

Moreover, recombinations with stromal cells null for

TGF-b signaling resulted a reduced tumor mass and a

lower rate of angiogenesis (Yang et al. 2008a). This is

consistent with many reports showing that TGF-b can

stimulate angiogenesis, alter immune surveillance, and

induce tumor stromal cells to secrete growth factors and

matrix-associated proteins (Li et al. 2007). In vitro,

TGF-b1 can induce resting fibroblasts to develop

stress fibers and express smooth muscle a-actin,

reinforcing the idea that this growth factor has a direct

effect on the induction of a myofibroblast-like reactive

stroma (Ronnov-Jessen & Petersen 1993, Peehl &

Sellers 1997, 2000, Gerdes et al. 2004). In addition, it is
www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 08/25/2022 05:19:30PM
via free access



Endocrine-Related Cancer (2012) 19 R187–R204
well documented that TGF-b exhibits pluripotent

activities that are usually modified or dependent on

the activity of other growth factors in the local

environment (Sporn & Roberts 1988, Roberts & Sporn

1996, Wakefield & Roberts 2002). Accordingly,

differential TGF-b activity and function in tissues

and tumors is complicated and may sometimes seem

paradoxical. The key observations that heterogeneous

mixes of TGF-b unresponsive and responsive

fibroblasts result in stimulated tumorigenesis and

expression of factors is very interesting and may

ultimately explain some of these seemingly paradox-

ical results (Franco et al. 2011, Kiskowski et al. 2011).

Hence, the specific role of TGF-b in the initiation and

promotion of early cancer is complex and not entirely

understood.

As discussed earlier, TGF-b also regulates key

immune functions that affect tumor promotion. It

should be noted that TGF-b1 is a key factor released by

platelets at sites of wound repair where it regulates

both inflammatory responses and angiogenesis

(Roberts et al. 1986, Roberts & Sporn 1996).

TGF-b1 can affect several pathways known to mediate

rapid host immune cell modulation through cytostatic,

chemotactic, and fibrotic induction of different cell

populations. Again, TGF-b exhibits multiple functions

that may seem paradoxical. Historically, TGF-b has

been known to be chemoattractive to immune cells,

specifically to monocytes and neutrophils (Wahl et al.

1987, Brandes et al. 1991). Whereas these cell

populations are instrumental in maintaining a rela-

tively aseptic environment during primary wound

healing in normal tissue, evidence from tumor

microenvironment studies suggests that the myeloid

compartment generates tumor-associated macrophages

that have a role in promoting cancer growth and

metastasis via elevated expression of CSF1 among

other factors (Pollard 2004, Condeelis & Pollard 2006).

Importantly, deletion of TGF-b receptor 2 in a

mammary carcinoma mouse model stimulated recruit-

ment of myeloid-derived suppressor cells that

expressed higher levels of TGF-b and MMPs resulting

in elevated tumor invasion and metastasis (Yang &

Moses 2008, Yang et al. 2008b, Bierie & Moses 2010).

It appears likely that the modulation from tumor

inhibiting to tumor-promoting activities may lie in the

different immune cell populations that are recruited

and regulated by TGF-b and the interactions with other

growth factors and downstream mediators of action.

In the development of prostate cancer, overexpres-

sion of TGF-b1 was first noted in PIN-associated

epithelial cells in a heterogeneous focal pattern during

the evolution of PIN, where epithelial cells had lost
www.endocrinology-journals.org
polarity, suggesting defects in acini wall integrity

(Tuxhorn et al. 2002a). Interestingly, we showed that

the overexpression of TGF-b1 targeted to the mouse

prostate gland resulted in an age-dependent phenotypic

alteration characterized by attenuation of epithelium

thickness in acini walls, induction of fibroplasia, and

inflammation in vessels and nerve (Barron et al. 2010).

These mice also exhibited an age-dependent increase

in the frequency of unique fibrotic collagenous

micronodules, with histopathology nearly identical to

collagenous micronodules that are associated with

human prostate cancer (Epstein 2004). The nodules in

the TGF-b1 transgenic mice exhibited elevated

expression of tenascin-C and collagen, both proto-

typical markers of reactive stroma. Accordingly, these

nodules likely form as a result of age-associated

disruption of epithelial and basal lamina integrity,

together with access of epithelial expressed TGF-b1 to

the stromal compartment, resulting in an adaptive

homeostasis to protect from further damage and to

promote repair. We proposed that the evolution of the

TGF-b-induced micronodules was part of a reactive

stroma response, designed to impinge on a damaged

acini in order to close off the lumen from prostatic

ducts, and thereby limit access to microbial agents

potentially present in the lumen and ducts (Barron et al.

2010). Again, we interpret these data as part of a local

host adaptive response to a damaged or breached

epithelial barrier. In this context, it is not surprising

that this phenotype was age dependent.

Less understood was the observed TGF-b-induced

inflammation in local nerve ganglia in these studies and

the role of neural regulation of reactive stroma.

Whereas the interaction between prostate cancer cells

and nerves leading the perineural invasion was

stimulated by the presence of prostate stroma (Cornell

et al. 2003), the regulation of normal or reactive stroma

in prostate cancer by autonomic nerves is poorly

understood. However, it is quite likely that neural

regulation of reactive stroma during wound repair and

in the tumor microenvironment is important in the

evolving biology of reactive stroma. In this regard,

Ayala has shown that nerve density is elevated in both

preneoplastic lesions and in prostate cancer, confirm-

ing the process of axonogenesis in human prostate

cancer (Ayala et al. 2008). These studies also showed

an elevated number of neurons, suggesting that

neurogenesis is also associated with development and

progression of prostate cancer as this was correlated

with more aggressive cancers and with recurrent

disease. Semaphorin 4F was implicated as a putative

mediator of neurogenesis in these studies, although

specific mechanisms are not fully understood.
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The generation of focal fibroplasia, inflammation,

and collagenous micronodules in the stromal micro-

environment of TGF-b1 overexpressing mice is

consistent with the role of reactive stroma in wound

repair biology (Gabbiani 2003, Desmouliere et al.

2005). These important adaptive responses whereby

fibrosis and inflammation act in coordinate manners

may provide additional insight into the tumor-

promoting nature of the reactive stroma microenviron-

ment observed in most carcinomas. Overexpression of

TGF-b1 in other murine epithelial organ systems also

produced reactive and fibrotic responses, albeit some-

what different from what we reported (Sanderson et al.

1995, Sanvito et al. 1995, Kopp et al. 1996).

Understanding these responses and mechanisms is

important for developing novel therapeutic targets for

disorders where the stromal microenvironment plays a

pivotal role in progression and clinical outcome.

Further insight into downstream pathways of TGF-b1

and mechanisms in prostate tissue homeostasis is

important for understanding the role of this factor in

prostate disease progression.
Modeling the putative origins of reactive
stroma

The origin of reactive stroma fibroblasts and myofi-

broblasts has been an active area of research for the

past several years. Depending on the tissue type

remodeled, precursors to the myofibroblast are

recruited from different cellular compartments, the

most common of which appears to be locally residing

fibroblasts (Sugimoto et al. 2006, Hinz 2007). Other

mesenchymal cells that may serve as myofibroblast

progenitors are pericytes and smooth muscle cells from

the vasculature. These seem to play an important role

in blood vessel repair and in the pathogenesis of

diseases such as scleroderma (Rajkumar et al. 2005,

Hao et al. 2006). The work of Gary Owens and others

has shed light on the importance of local stromal cells

in responding to injury in cardiovascular models

(Hoofnagle et al. 2004). Their studies demonstrated

that the origin of neointimal smooth muscle in

hyperlipidemia-induced atherosclerotic lesions was

from a local population of cells, rather than from

a marrow-derived source (Bentzon et al. 2006,

Hoofnagle et al. 2006). Epithelial cells have also

been proposed as a source of reactive stroma via EMT

events (Kalluri & Neilson 2003, Zavadil et al. 2008,

Kalluri 2009). This has been stratified into different

classifications depending on the biological process in

question (Kalluri & Weinberg 2009).
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Bone marrow-derived circulating cells known as

fibrocytes may represent an alternative source for

myofibroblasts during skin wound healing, and in liver,

lung, and kidney fibrosis (Abe et al. 2001, Direkze

et al. 2003, Ishii et al. 2003, Schmidt et al. 2003,

Forbes et al. 2004). In particular, studies of asthma

showed in both mouse models and human tissues the

recruitment of circulating CD34C progenitors to

bronchial tissue, where they subsequently expressed

collagen type I and smooth muscle a-actin, two

markers that are consistent with the myofibroblast

phenotype (Schmidt et al. 2003). Other studies focused

on mammary cancer, colorectal cancer, and pancreatic

cancer have suggested the recruitment of circulating

cells of hematopoietic origin to sites of reactive stroma

formation, although whether these cells are contribut-

ing more toward an inflammatory state or directly to

reactive stroma remains unknown.

While this highlights the importance of under-

standing the mechanisms of recruitment of circulating

fibrocytes to sites of wound repair, very little is known

about the existence and recruitment of these cells in

prostate cancer, much less any potential mechanisms

that might mediate such biology. In fact, much work

has focused on establishing the existence of tissue-

resident cell populations capable of giving rise to

reactive stroma in the progression from PIN to organ-

confined disease (Tuxhorn et al. 2002b, Kaminski et al.

2006, Sheffer et al. 2007, Verona et al. 2007).

Certainly, these reports underscore the importance of

tissue resident stroma in the genesis of reactive stroma.

It is possible that reactive fibroblasts that evolve at sites

of tissue injury may originate from different sources,

depending on the nature of the wound and the type of

injury sustained. In minor wounding, fibroblasts might

predominantly migrate from surrounding undamaged

tissue, whereas in deep tissue wounds, fibrocytes might

be recruited that can differentiate into fibroblasts.

Investigations by Bucala in the early 1990s that led to

the discovery of these fibrocytes were based on the

hypothesis that specialized cells reminiscent of

fibroblasts in morphology and function were found in

the circulation and had the capacity to home to

experimentally implanted wound chambers much the

same as cells of the innate immune system (Bucala

et al. 1994). This discovery led to a thorough

characterization of a distinct population of CD34C/

Col 1C fibroblast-like cells that rapidly entered sites of

tissue injury where they differentiated to myofibro-

blasts that expressed smooth muscle a-actin (Abe et al.

2001, Schmidt et al. 2003, Quan et al. 2004).

The precise origin of peripheral blood fibrocytes has

puzzled investigators since their discovery. Early
www.endocrinology-journals.org
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studies using sex-mismatched, bone marrow chimeric

mice together with DNA amplification of the male-

specific SRY gene showed that fibrocytes originated

from a bone marrow progenitor cell population (Bucala

et al. 1994). Additional studies showed that fibrocytes

isolated from peripheral blood differentiate ex vivo

from an adherent CD14C cell population (Abe et al.

2001). It has been postulated that circulating fibrocyte

progenitors undergo phenotypic and gene expression

changes and differentiate to fibrocytes that are

subsequently recruited to wound sites where they

become mature fibroblasts and play a role in wound

contracture and healing (Metz 2003). Very little is

known about the potential role of these unique cells in

cancer-associated reactive stroma. Our preliminary

data using bone marrow transplant approaches suggest

that few reactive stroma myofibroblast/CAF cells

originate from bone marrow and that the majority are

derived local stem or progenitor cells. Understanding

the origin of reactive stroma stem/progenitor cells

and mechanisms that regulate differentiation to

myofibroblasts/CAFs is important, as these cells may

be targets for novel therapeutic approaches.

Although reactive stroma in wound repair may be

similar to reactive stroma in cancer, the self-limiting

nature of wound repair appears to be absent in cancer.

In cancer, the stromal and epithelial compartments

seem to coevolve and is self-perpetuating during the

progression of cancer (Rowley 1998). The cancer-

associated factors work in coordination with the

complement of proteins and factors secreted by

vessels, immune-associated cells, and even nerves to

regulate the stromal compartment. The end result is a

response by both marrow-derived cells and local

fibroblasts to re-establish homeostasis. The main

difference in cancer would seem to be the potential

for these stromal cell populations to coevolve with the

carcinoma cells in an orchestrated indolent process

that occurs on the order of months or years, far longer

than a typical wound repair scenario. It is possible that

as the growing tumor co-opts more stromal cellular

elements to develop into reactive stroma, the demands

on the microenvironment are increased, leading to a

sustained inflammatory response observed in the

prostate cancer model systems (Condeelis & Pollard

2006, Pollard 2009). Therefore, it is possible that

marrow-derived progenitor cells recruited to these

sites may evolve either into myofibroblast/CAF-like

stromal cells or follow alternate differentiation

pathways to become more macrophage-like cells

(Fig. 4; de Visser & Coussens 2006, DeNardo et al.

2009, Qian & Pollard 2010, Ruffell et al. 2010).
www.endocrinology-journals.org
New perspectives on the origin and
evolution of reactive stroma

Understanding the cellular origin and the key reg-

ulators of reactive stroma that evolve during pro-

gression are all active areas of investigation. Our

preliminary studies suggest that the majority of

reactive stroma is derived from local, tissue-resident

progenitor cells and a minority from circulating

marrow-derived cells. It is possible that role of bone

marrow-derived cells in the tumor niche is different

from their normal role in re-establishing homeostasis

in damaged tissue such as wounds and infection.

Whereas inflammatory cells are typically viewed as

being beneficial to primary wounds in preventing a

potential nidus of infection from spreading throughout

the organism, tumor-associated inflammation seems to

foster the growth and spread of the cancer. This

inflammation can take on a variety of different forms,

including those subtypes rich in lymphoid and myeloid

cells. If we expand the concept of inflammation to

include cells that contribute directly to reactive stroma,

then this tumor-associated inflammatory cell recruit-

ment could have even broader implications for the

progression of cancer. Indeed, there have been several

reports of marrow-derived myofibroblasts seen in

human tissue as well as a variety of other model

systems (Campbell et al. 2000, Brittan et al. 2002,

Direkze et al. 2003, Epperly et al. 2003, Haudek et al.

2006). In line with the tumor-promoting aspects of

reactive stroma, these myofibroblasts could contribute

to the already developing local microenvironment to

further promote a process of stromal and epithelial

coevolution that has clear growth advantages for the

primary tumor. In addition, there are now suggestions

that infectious agents and sexually transmitted diseases

elevate the risk of prostate cancer. One study has

reported that prostate cancer risk was lower in men

circumcised before the first sexual contact, suggesting

that the elevated risk of sexually transmitted disease in

uncircumcised men is associated with elevated risk of

prostate cancer (Wright et al. 2012).

The involvement of cells from the myeloid lineage

in reactive stroma compartment is interesting not only

due to their plasticity in vivo to differentiate to a wide

range of cell populations in normal tissues but also

because of their striking tumor-promoting ability in

the context of macrophages (Treves 1984, Pollard

2004, Gordon & Taylor 2005, Condeelis & Pollard

2006). Recently, a primitive cell population termed

monocyte-derived multipotential cells (MOMCs) was

discovered (Seta & Kuwana 2010). These cells possess

a fibroblast-like morphology in culture and a unique
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Elevated carcinoma-associated
factors (TGF-β) in stroma
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Figure 4Model of potential origin and regulators of reactive stroma. It is hypothesized that reactive stroma in prostate cancer may be
derived from both bone marrow-derived cells as well as non-marrow sources. The latter cell population is most likely tissue-resident
mesenchymal/stromal stem cells or existing fibroblasts. Carcinoma-produced factors, including TGF-b, have the potential to reach
and regulate the stromal compartment when the epithelial layer integrity and/or basement membrane integrity is disrupted during
cancer progression.
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phenotype positive for CD14, CD45, CD34, and type I

collagen, a similar profile to what has been defined in

the fibrocyte literature. MOMCs are likely derived

from circulating CD14C monocytes; however, pre-

cursors for MOMCs still remain undetermined

although they are likely from myeloblastic cells within

the bone marrow. It was suggested that MOMCs

contain progenitors with capacity to differentiate into a

variety of nonphagocytes, including bone, cartilage,

fat, skeletal, and cardiac muscle; neuron; and endo-

thelium, suggesting that circulating monocytes are

more multipotent than previously thought. This

plasticity is certainly observed in a variety of cell

populations of the hematopoietic system (Zubair et al.

2002, Colvin et al. 2004, Heike & Nakahata 2004,

Zardo et al. 2008, Ogawa 2010). The potential role of
R196
MOMCs in the generation of reactive stroma in cancer

and their biology in wound repair is unknown. The

identification of these cells adds to the growing list of

potential cell types that may contribute to the

composition of reactive stroma in cancer. The putative

plasticity of cells recruited to the tumor microenviron-

ment may explain the heterogeneity observed in the

content and composition of reactive stroma in human

prostate cancer.

The recruitment model of reactive stroma connotes

a scenario of inflammatory cell ‘education’ at the

tissue destination. If the tissue is infected with a

sexually transmitted virus, for example, then a unique

subset of cells is generated from the myeloid

compartment that is recruited to the site of infection.

Most of these may be mature monocytes and
www.endocrinology-journals.org
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macrophages designed to control the level of infection

during an innate immune response to establish a

scenario similar to that observed in proliferative

inflammatory atrophy observed in the prostate gland.

As the tissue is remodeled and altered over time, a

fundamentally different growth factor and extracellular

matrix profile may develop, thereby educating the

recruited myeloid progenitors or local mesenchymal

stem/progenitor cells to differentiate toward reactive

stroma forming cells. This putative model is indeed

consistent with the remodeling-PIN-prostate adeno-

carcinoma spectrum (De Marzo et al. 2007; Fig. 3). If

this model is true, it presents a very attractive

therapeutic target that focuses on the nature of the

inflammatory and microenvironment stromal cell

recruitment in addition to the carcinoma cells.

The potential biological significance of tissue-

resident prostate cells contributing to reactive stroma

has been demonstrated in other studies of prostate

cancer that correlated the levels of expression of

CD90 with the degree of tumor-promoting capacity

within the stroma (Zhao & Peehl 2009, True et al.

2010). Importantly, these studies indicated the need

to include CD90 as a biomarker of prostate cancer

based on its association with more aggressive forms

of reactive stroma. The origin of these cells is not

understood but several local cell types are candidate

progenitors. The potential for local endothelial cells

to contribute to stromal lineages was recently shown

in a mechanism termed ‘endothelial-to-mesenchymal

transition’ (Zeisberg et al. 2007, Nataraj et al. 2010).

Similarly, local pericytes associated with the vascu-

lature may be contributing to the evolution of

reactive stroma in tumors. Notably, the phenotypic

and expression profiles of pericytes are very

similar to myofibroblasts, which places them on the

continuum of cells that expresses prototypical

markers of reactive stroma (Sugimoto et al. 2006,

Eyden et al. 2009). Some studies have even linked

the expression of CD34 to adipose stromal cells that

have characteristics of pericytes by virtue of their

perivascular localization and ability to stabilize

endothelial networks (Traktuev et al. 2008, Suga

et al. 2009). Whereas key advancements have been

made in understanding the stem cell types for

prostate epithelium (Wang & Shen 2011), the origins

of reactive stroma CAFs and myofibroblasts remains

poorly understood.

Although TGF-b seems to be a major regulator of

reactive stroma, other interactive factors and processes

are also likely to be important regulators. Regulatory

events may be mediated by a variety of processes,

ranging from direct stromal–epithelial interactions, to
www.endocrinology-journals.org
microvesicle secretion from bone marrow-derived

cells, to even direct fusion of progenitors with local

stromal cells. The nature of these interactions may

involve epigenetic reprogramming of the local stroma

genome to one more consistent with a CAF (Maherali

et al. 2007, Rodriguez-Canales et al. 2007, Hu et al.

2010). Direct communication between marrow-derived

cells and local stroma may also mediate reciprocal

conversion to cells with more ‘reactive’ phenotypes,

similar to what has been observed in tissue recombina-

tion studies done with prostate epithelium and stroma

(Cunha et al. 2002, 2003, Grompe 2003, Ao et al.

2006, Placencio et al. 2008, Basanta et al. 2009, Franco

et al. 2010). Interestingly, microvesicles and fusion

mechanisms may be involved, although these are not

yet understood with respect to prostate reactive stroma

biology. Although cell fusion has mainly been

demonstrated in other tissues such as liver and bone

marrow, it might be a potential mechanism of

interactions of bone marrow-derived cells with more

mesenchymal cells in vivo via fusion with local

fibroblasts, pericytes, or smooth muscle (Grompe

2003, Almeida-Porada et al. 2010, Quesenberry et al.

2010). Interestingly, the existence of microvesicles in

prostate tissue was demonstrated by Michael Freeman

(Di Vizio et al. 2009). These studies show that prostate

cancer cells have the capacity to secrete oncosomes,

which are membrane-bound microvesicle particles

containing several signal transduction proteins, which

significantly altered the proliferation and migration of

recipient tumor cells. The role of such microvesicle

shedding from prostate cancer cells in the genesis of

reactive stroma has not been investigated but will

likely yield some interesting findings.
Future directions

The reactive stroma tumor microenvironment in

carcinomas is very complex and provides a regulatory

function during cancer progression. Specific

mechanisms are largely unknown; however, recent

studies are providing new information on key

pathways. The core biology that has evolved to

maintain tissue homeostasis is likely to be important

in the biology of reactive stroma in cancer. It is

becoming clear that many different cell types interact

within the tumor microenvironment and these

interactions result in focal and heterogeneous nature

of reactive stroma reported in most carcinomas. It is

now becoming clear that the heterogeneity of the

reactive stroma compartment and the apparent

interactions of different types of reactive stroma cells

result in a much more potent tumor-inducing
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microenvironment. Growth factors and chemokines/

cytokines including TGF-bs, interleukins, fibroblast

growth factors, Wnts, and essentially any factor or

pathway that regulates inflammatory processes and

tissue repair biology are likely involved in these

complex interactions. Understanding reactive stroma

stem or progenitor cells and mechanisms that regulate

their recruitment, activation, and biology is an

important issue. Although not yet understood, it is

likely that the paracrine interactions between epi-

thelium and reactive stroma is involved in the

evolution of the castration-resistant phenotype during

prostate cancer progression. Moreover, there is very

little understood about reactive stroma at sites of tumor

metastasis. It is possible that new prognostics can be

developed that evaluate markers of reactive stroma

composition and biology. There is also a clear need to

develop novel therapeutic approaches designed to

target the reactive stroma microenvironment in

prostate cancer. As reactive stroma initiates early

during preneoplastic disease, it may be possible to

target the genesis of early reactive stroma formation, as

an attempt to uncouple the tumor-promoting effects

early in the evolution of cancer. In addition, targeting

reactive stroma biology in well-developed tumors may

inhibit the rate of tumor progression to invasive and

metastatic cancer. Finally, there is a clear need to

understand the possible role of reactive stroma at sites

of metastasis. It is possible that reactive stroma

provides a key biology in maintenance of the niche

that supports active or dormant prostate cancer stem

cells. The targeting of this niche would represent a key

therapeutic advancement. It is anticipated that future

efforts will result in improved early diagnostics and

novel therapeutic approaches designed to target the

tumor microenvironment as an additional tool to

improve direct cancer therapeutic outcomes. The

complex nature of reactive stroma and the involvement

of multiple signaling pathways and cell types provide

much opportunity to develop such novel therapeutic

approaches.
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